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On the uniform Rasmussen-Tamagawa

conjecture in the CM case

Davide Lombardo

We prove a uniform version of a finiteness conjecture due to Ras-
mussen and Tamagawa in the case of CM abelian varieties. This
extends the result of [2] from elliptic curves to abelian varieties of
arbitrary dimension.

1. Introduction

Motivated by previous work of Anderson and Ihara [1], in [19] and [18]
Rasmussen and Tamagawa have formulated (and partially proven) a series
of finiteness conjectures for abelian varieties A over number fields K such
that the extension K(A[`∞])/K(µ`∞) is both pro-` and unramified away
from `. The strongest form of their conjecture, as stated in [18, Conj. 2], is
the following uniform finiteness statement:

Conjecture 1.1. Let

A (K, g, `) =

A abelian variety over K
∣∣∣ dimA = g
K(A[`∞])/K(µ`∞) is pro-`
and unramified outside `

 .

There is a function B(n, g) such that, for every number field K of degree n
and every prime ` > B(n, g), the set A (K, g, `) is empty.

Much progress has been made on this conjecture – in particular, Ras-
mussen and Tamagawa themselves have proven [18] that the Generalized
Riemann Hypothesis implies Conjecture 1.1 for n odd – but an uncondi-
tional proof is only known for g = 1 and [K : Q] equal to either 1 or 3. More
recently, Bourdon [2] has given an unconditional proof of a similar finiteness
result for CM elliptic curves over arbitrary number fields:
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1894 Davide Lombardo

Theorem 1.2. (Bourdon [2]) Let K be a number field with [K : Q] = n.
There is a constant C = C(n) depending only on n with the following prop-
erty: if there exists a CM elliptic curve E/K with K(E[`∞]) a pro-` exten-
sion of K(µ`) for some rational prime `, then ` ≤ C.

A related result was proved by Ozeki:

Theorem 1.3. (Ozeki [17, Corollary 1.3]) For fixed K and g, the set

{A ∈ A (K, g, `) : A admits complex multiplication over K}

is empty for ` large enough (depending on K and g).

The purpose of this note is to extend Theorem 1.2 to CM abelian vari-
eties of arbitrary dimension, or equivalently, to replace the dependence on
K with a dependence on [K : Q] in Theorem 1.3. To be more precise, by an
abelian variety of CM type over K we mean an abelian variety A/K
such that EndK(A)⊗Q contains an étale Q-algebra of dimension equal to
2 dimA. We shall show the following higher-dimensional analogue of Theo-
rem 1.2:

Theorem 1.4. Let

A CM (K, g, `) =

A abelian variety over K
∣∣∣ dimA = g

A of CM type
K(A[`∞])/K(µ`) is pro-`

 .

There exists a function C(n, g) with the following property: for every number
field K of degree at most n the set A CM(K, g, `) is empty for all ` > C(n, g).

As it is clear, Theorem 1.4 yields a proof of Conjecture 1.1 in the special
case of CM abelian varieties. Notice that since CM abelian varieties acquire
everywhere good reduction over a finite extension of their field of definition,
and this extension can be taken of degree bounded by a constant depending
only on the dimension, the condition that K(A[`∞])/K(µ`∞) be unramified
outside ` is inessential in the CM case. In general, however, we do not expect
finiteness if we both drop the ramification requirement and leave the realm
of CM abelian varieties.

We conclude this brief introduction with a quick overview of the ma-
terial to be covered in this article. In Section 2 we show that in order to
prove Theorem 1.4 one only needs to deal with geometrically simple abelian
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On the uniform Rasmussen-Tamagawa conjecture 1895

varieties with multiplication by the full ring of integers of the corresponding
CM field. In §3 we recall a lower bound on the degree of the division fields
of CM abelian varieties (taken from [10]), while in §4 we show how a recent
theorem of Tsimerman [29] gives a finiteness result for the set of CM fields
that can act on g-dimensional CM abelian varieties defined over fields of de-
gree at most n. In §5 we finish the proof of Theorem 1.4, while §6 contains
a few remarks on the problem of effectivity, together with a more detailed
study of the case n = 1, g = 2.

2. Preliminary reductions

The situation is simpler if we assume that our abelian varieties have all their
endomorphisms defined over K. It is thus natural to consider the following
subset of A CM(K, g, `):

A CM,1 (K, g, `) =
{
A ∈ A CM(K, g, `)

∣∣ EndK(A) = EndK(A)
}
.

Fortunately, as the following lemma shows, not much is lost in considering
the smaller set A CM,1 (K, g, `) instead of A CM (K, g, `):

Lemma 2.1. Suppose there exists a function C(1)(n, g) with the following
property: for every number field K of degree at most n, the set A CM,1 (K, g, `)
is empty for all ` > C(1)(n, g). Then Theorem 1.4 holds.

Proof. Recall that, for fixed g, there is a constant D(g) with the following
property: for every abelian variety A of dimension g over a number field
K there exists an extension F of K, of degree at most D(g), such that
EndK(A) = EndF (A) (sharp bounds for D(g) can be found in [26]). Set
C(n, g) = C(1)(D(g) · n, g). Let now K be a number field of degree at most
n. If A/K is an element of A CM (K, g, `), then we can find a number field F
such that [F : Q] = [F : K][K : Q] ≤ D(g)n and EndF (A) = EndF (A). The
abelian variety A/F is then an element of A CM,1 (F, g, `), which by assump-
tion is empty for ` > C(1)(D(g)n, g). This clearly implies that A CM (K, g, `)
is empty as long as ` > C(1)(D(g)n, g) =: C(n, g). �

We can also restrict ourselves to geometrically simple varieties:
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Lemma 2.2. Let

A CM,2(K, g, `) =
{
A ∈ A CM,1(K, g, `)

∣∣ A is absolutely simple
}

and suppose there is a function C(2)(n, g) with the following property: for
every number field K of degree at most n, the set A CM,2 (K, g, `) is empty
for all ` > C(2)(n, g). Then Theorem 1.4 holds.

Proof. It suffices to show that there exists a function C(1)(n, g) as in Lemma
2.1. We claim that we can take C(1)(n, g) = maxg′≤g C

(2)(n, g′). To see this,
suppose by contradiction that there exists a number fieldK of degree at most
n and a prime ` > maxg′≤g C

(2)(n, g′) such that A CM,1(K, g, `) is nonempty.
Let A/K be an element of this set. By definition we have EndK(A) =
EndK(A), so all the abelian subvarieties of A are defined over K. Let A′/K
be an absolutely simple subvariety of A/K, and let g′ be its dimension. It
is clear that A′ has complex multiplication over K, and that the extension
K(A′[`∞])/K(µ`) is pro-` since it is a sub-extension of the (pro-`) extension
K(A[`∞])/K(µ`). It follows that A′ is an element of A CM,2(K, g′, `), but
this is a contradiction, because by assumption A CM,2(K, g′, `) is empty for
` > C(2)(K, g′, `). �

Finally, it will be useful to reduce to the case of abelian varieties having
complex multiplication by the full ring of integers of their corresponding CM
field. To this end, we shall need the following result:

Theorem 2.3. ([20, Theorem 1.1], [31, Proposition 2.5.4]) Let A/K be
an abelian variety and let R = EndK(A) be its endomorphism algebra. Let
N be a positive integer and O be a maximal order of E := R⊗Q such that
N−1R contains O. There exists an abelian variety B/K and K-isogenies ϕ :
A→ B, ψ : B → A such that EndK(B) = O and ψ ◦ ϕ = [N ]. In particular,
if EndK(A)⊗Q is a field E, there exists an abelian variety B/K that is
K-isogenous to A and such that EndK(B) is the ring of integers OE of E.

Lemma 2.4. Let K be a number field, A, B be abelian varieties over K
that are isogenous over K, and ` be a prime number. The fields K(A[`∞])
and K(B[`∞]) coincide.

Proof. Let ϕ be aK-isogeny betweenA andB. Denote by V`(A) (resp. V`(B))
the rational `-adic Tate module of A (resp. B), that is, V`(A) := T`(A)⊗Z`
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On the uniform Rasmussen-Tamagawa conjecture 1897

Q` (resp. V`(B) := T`(B)⊗Z`
Q`). Consider the representation

ρ`,A : Gal(K/K)→ Aut(T`(A)) ↪→ Aut(V`(A))

and the analogous representation ρ`,B attached to B. The isogeny ϕ in-
duces a Galois-equivariant isomorphism V`(A)→ V`(B), so ρ`,A and ρ`,B
are equivalent as representations of Gal(K/K), and in particular they have
the same kernel. Since the fixed field of ker ρ`,A (resp. ker ρ`,B) is K(A[`∞])
(resp. K(B[`∞]), this proves our claim. �

We then obtain the desired reduction to the case of CM by the maximal
order:

Lemma 2.5. Let

A CM,3(K, g, `) =

{
A ∈ A CM,2(K, g, `)

∣∣∣ EndK(A) is the maximal
order of EndK(A)⊗Q

}
.

The set A CM,2(K, g, `) is empty if and only if the set A CM,3(K, g, `) is
empty. In particular, if there exists a function C(3)(n, g) such that
A CM,3(K, g, `) is empty for all number fields K of degree at most n and
for all ` > C(3)(n, g), then Theorem 1.4 holds.

Proof. It suffices to show that if A CM,2(K, g, `) is nonempty then
A CM,3(K, g, `) is also nonempty. Assume A CM,2(K, g, `) 6= ∅ and take A ∈
A CM,2(K, g, `). By Theorem 2.3 there is a K-abelian variety B, isogenous
to A over K, such that EndK(B) is the maximal order of EndK(B)⊗Q =
EndK(A)⊗Q. By Lemma 2.4 we have K(B[`∞]) = K(A[`∞]), which shows
that B lies in A CM(K, g, `). On the other hand, it is clear that B is abso-
lutely simple and that all its endomorphisms are defined over K. Since by
construction EndK(B) is the maximal order of EndK(B)⊗Q, we see that B
belongs to A CM,3(K, g, `) as desired. The last assertion is now an immediate
consequence of Lemma 2.2. �

3. Bounding ` in terms of disc(EndK(A) ⊗ Q)

It remains to establish the existence of a function C(3)(n, g) as in Lemma
2.5. A key step in doing so is the following proposition:

Proposition 3.1. Let A/K be an element of A CM,3(K, g, `) and let E :=
EndK(A)⊗Q. Either ` is at most [K : Q](g + 2)3(g+1) or it divides the dis-
criminant of E.
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Proof. Recall that, by definition of A CM,3(K, g, `), the ring EndK(A) is the
maximal order OE of the CM field E. We shall suppose from the start
that ` does not divide the discriminant of E, that is, that ` is unrami-
fied in E, and prove the claimed bound. Consider the tower of extensions
K(A[`∞])/K(A[`])/K(µ`). Since by assumption K(A[`∞])/K(µ`) is pro-`,
this holds a fortiori for the extension K(A[`])/K(µ`).

On the other hand, the hypothesis EndK(A) = EndK(A) entails that the

action of Gal
(
K/K

)
on A[`] factors through Gal

(
K/K

)ab → (OE ⊗ F`)×.
To see this, notice first that T`A is a free OE,` := OE ⊗ Z` module by [22,
Remark on page 502], hence in particular (comparing Z`-ranks) we have
T`A ∼= OE,`. Furthermore, by [22, Corollary 2 to Theorem 5] the equality
EndK(A) = EndK(A) implies that the action of Gal

(
K/K

)
on T`(A) fac-

tors through O×E,`. Since A[`] ∼= T`(A)/`T`(A) ∼= OE,`/`OE,` ∼= OE ⊗ F`, the
action of an element r of OE,` on A[`] is through its class [r] in OE,`/`OE,` =
OE ⊗ F`, so when we consider the composition

Gal
(
K/K

)ab → O×E,` ↪→ AutT`(A)→ AutA[`]

we see that the map O×E,` → AutA[`] (hence also the Galois action on A[`])

factors through (OE ⊗ F`)× as claimed. Furthermore, as ` is unramified in
E, the group (OE ⊗ F`)× has order prime to `, hence the same is true for
G` := Gal (K(A[`])/K). Since on the other hand K(µ`)/K is a sub-extension
of K(A[`])/K, and by hypothesis Gal (K(A[`])/K(µ`)) is an `-group, this
implies K(A[`]) = K(µ`).

Also remark that the Mumford-Tate group of A is a subtorus of
ResE/Q(Gm,E), which has good reduction at ` by the Galois criterion: in
particular, MT(A) defines a torus over F`, and the Galois group G` is a
subgroup of MT(A)(F`). Notice furthermore that the degree [K(µ`) : K] is
at most ϕ(`) = `− 1.

We now give a lower bound for the degree K(A[`])/K. We take the
notation of [10]: we denote by r the rank of MT(A), by µ the number of
roots of unity in E, by E∗ the reflex field of E, and by TE (resp. TE∗) the
algebraic group ResE/Q(Gm,E) (resp. ResE∗/Q(Gm,E∗)). Finally, we denote

by F the group of connected components of ker
(
TE∗

N−→ TE

)
, where N is

the reflex norm. Since G` ⊆ MT(A)(F`) and ` is unramified in E, we see by
[10, Theorems 1.2 and 1.3] that the degree of K(A[`])/K is at least

1

[MT(A)(F`) : G`]
|MT(A)(F`)| ≥

(1− 1/`)r`r

µ · [K : E∗] · |F |2r
.
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We now give (rough) estimates for the various terms appearing in this ex-
pression:

• the degree [K : E∗] =
[K : Q]

[E∗ : Q]
does not exceed 1

2 [K : Q];

• the number µ of roots of unity in E satisfies ϕ(µ) ≤ [E : Q] = 2g; since

ϕ(x) ≥
√
x

2 for all positive integers x, we have µ ≤ (4g)2;

• again by [10, Theorem 1.3] we have |F | ≤ 2

(
r + 1

4

)(r+1)/2

.

Putting everything together we find [K(A[`]) : K] ≥ 22r2+1

16g2
· (`− 1)r

[K : Q]
(r +

1)−r(r+1). A theorem of Ribet [21, Formula (3.5)] yields the inequality r ≥
2 + log2(g), so that we have 22r2+1 ≥ 29g2; we thus obtain the inequality

[K(A[`]) : K] ≥ 25 (`− 1)r

[K : Q]
(r + 1)−(r+1),

which, combined with [K(A[`]) : K] = [K(µ`) : K] ≤ `− 1, leads to `− 1 ≥
25 · (`− 1)r

[K : Q]
(r + 1)−r(r+1), and finally to

`− 1 ≤
(

[K : Q]

32

)1/(r−1)

· (r + 1)r(r+1)/(r−1) < [K : Q](r + 1)3r

≤ [K : Q](g + 2)3(g+1)

as claimed. �

Remark 3.2. As it is clear from the proof, one can obtain much sharper
inequalities for large g: for example, as long as g ≥ 2, we have r ≥ 3 by
Ribet’s inequality, and in the very last step of the previous proof we obtain
`− 1 ≤ [K : Q]1/2(r + 1)2r.

4. A result of Tsimerman

To finish the proof of Theorem 1.4 we shall need a way to control the possible
endomorphism algebras of CM abelian varieties of a given dimension. This
is made possible by Corollary 4.3 below, which is in turn a consequence of
a recent result of Tsimerman (Theorem 4.2).
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Definition 4.1. Let A/Q be an abelian variety of CM type. The field of
moduli of A is the intersection of all the number fields F such that there
exists an abelian variety AF over F that satisfies (AF )Q = A.

Theorem 4.2. ([29, Theorem 1.1]) For every positive g there exist con-
stants kg, δg > 0 such that if E is a CM field of degree 2g and if A is any
abelian variety over Q of dimension g with endomorphism ring equal to the
full ring of integers OE of E, then the field of moduli F of A satisfies

[F : Q] ≥ kg| disc(E)|δg .

Corollary 4.3. Let n, g be fixed positive integers. Consider the set A(n, g)
all g-dimensional, geometrically simple abelian varieties A/K of CM type,
where K is a number field of degree at most n. The set

R(n, g) =
{

EndK(A)⊗Q
∣∣ A ∈ A(n, g)

}
is finite.

Proof. Consider an abelian variety A ∈ A(n, g) with field of definition K,
and let E denote EndK(A)⊗Z Q. As in the proof of Lemma 2.1, there exists
an extension K ′ of K (with [K ′ : K] bounded by a constant D(g) depending
only on g) such that EndK′(A) = EndK(A). Now A is K ′-isogenous to an
abelian variety B/K ′ with multiplication by the full ring of integers of E
(Theorem 2.3); let F be the field of moduli of B. Since B has a model over
K ′, we have nD(g) ≥ [K ′ : Q] ≥ [F : Q], and applying the previous theorem
we find

nD(g) ≥ [K ′ : Q] ≥ [F : Q] ≥ kg|disc(E)|δg ;

in particular, disc(E) is bounded (in absolute value), hence there are only
finitely many possibilities for EndK(B)⊗Q = EndK(A)⊗Q. As EndK(A)⊗
Q is a subfield of EndK(A)⊗Q, this finishes the proof. �

Remark 4.4. The case g = 1 (that is, the case of elliptic curves) of this
Corollary is well known, and is also a key ingredient for the arguments of
[2]. To see why the case g = 1 follows from the classical theory of elliptic
curves, consider all number fields K of degree at most n, and all elliptic
curves E1/K with (potential) complex multiplication. If E1/K is such an
elliptic curve, with complex multiplication by an order R in the quadratic
imaginary field F , then the action of R on E1 is defined over the compositum
FK, and we can find an elliptic curve E2/FK, isogenous to E1 over FK,
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that has full complex multiplication by the ring of integers of F . Now it is
well-known that the j-invariant of E2 generates the Hilbert class field H of
F , and on the other hand j(E2) is in FK by assumption, so it follows that

h(F ) = [H : F ] ≤ [FK : Q] ≤ 2[K : Q] ≤ 2n

is bounded by n alone. It is a result of Heilbronn [6] (which can be now
obtained as a consequence of the Brauer-Siegel theorem) that there are only
finitely many imaginary quadratic fields F with h(F ) ≤ 2n, and the finite-
ness of R(n, 1) follows.

Remark 4.5. Recent work of Orr and Skorobogatov gives even more pre-
cise finiteness results (that take into account the ring structure of EndK(A)),
see [16].

5. Conclusion

We are now ready to prove Theorem 1.4:

Theorem 5.1. There exists a function C(n, g) such that A CM(K, g, `) is
empty for all number fields K of degree at most n and all primes ` > C(n, g).

Proof. By Lemma 2.5 it suffices to show the existence of a function C(3)(n, g)
such that A CM,3(K, g, `) is empty for all number fields K of degree at most
n and for all ` > C(3)(n, g). Consider the set R(n, g) of Corollary 4.3 and let
∆ be the maximum of the absolute discriminants | disc(E)| for E varying in
R(n, g). We claim that we can take C(3)(n, g) = max

{
∆, n(g + 2)3(g+1)

}
. To

see this, consider a number field K of degree at most n and an element A/K
of A CM,3 (K, g, `), and set E = EndK(A)⊗Q. By Proposition 3.1, we have
either ` ≤ n(g + 2)3(g+1) ≤ C(3)(n, g) or ` ≤ |disc(E)| ≤ ∆ ≤ C(3)(n, g); in
particular, A CM,3(K, g, `) is empty for ` > C(3)(n, g) as claimed. �

6. Some remarks on effectivity

Unlike Theorem 1.2, our Theorem 1.4 is unfortunately non-effective: the
source of this can be traced back to the proof of Theorem 4.2, and more
specifically to Corollary 3.2 of [29], whose proof depends on the full strength
of the Brauer-Siegel theorem, which is not known to be effective at present.
Notice that other parts of Tsimerman’s argument also require the Brauer-
Siegel theorem, but they can be made effective by using the results of [27], so
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[29, Corollary 3.2] is really the crux of the matter. By contrast, notice that
the proof of the case g = 1 of Corollary 4.3 sketched in Remark 4.4 can be
made effective: as it is well known, the problem of determining all imaginary
quadratic fields of a given class number can be solved effectively. This fact
is exploited in [2] to produce explicit bounds for the function C(n, 1) for
various values of n.

On the other hand, even if one is willing to assume the truth of the
Generalized Riemann Hypothesis (which – as it is well known – implies
effective versions of the Brauer-Siegel theorem), the argument of [29] gives
for the constant δg of Theorem 4.2 a very small value, intimately tied to a
certain exponent appearing in the so-called Isogeny Theorem of Masser and
Wüstholz [13] [12]; the Brauer-Siegel theorem is only used to determine the
value of kg, and has no influence on δg. Using the (currently) best available
isogeny bound, due to Gaudron and Rémond [5], we see for example that
Theorem 4.2 holds for all values of δ2 strictly smaller than 2−16: clearly this
number is so small that it makes it impossible in practice to use Theorem 4.2
to determine the set R(n, g). Conditionally on GRH, sharper results are
known, but none of them seems to be completely explicit at present: in the
context of giving lower bounds on Galois orbits of special points on Shimura
varieties, Tsimerman, Ullmo and Yafaev have proven various lower bounds
on the degree of the field of moduli of a CM abelian variety (cf. for example
[30] and [28]), but their results contain some non-explicit constants that
seem hard to compute in practice.

Slightly different techniques – mainly coming from classical analytic
number theory – can however yield results on the sets R(n, g) for certain
small values of g and n, which in turn allows us to determine an admissible
value for C(n, g) – and sometimes even the optimal value – via the argument
described in the previous sections. For example, we can show:

Proposition 6.1. We can take C(1, 2) = 163, and this value is optimal.

As can be expected from our previous discussion, in order to prove this
result we shall require some control on the endomorphism rings of CM
abelian varieties defined over Q. While the information we require is es-
sentially contained in the literature, we could not find the exact statement
we need in print, so we give some details.

Proposition 6.2. Let A/Q be an abelian surface such that EndQ(A) is
(isomorphic to) an order R in a CM field E. Then either AQ is isogenous
to the product of two elliptic curves, or E is one of the 19 fields listed in [8,
Theorem 2.4.5].
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Proof. Suppose thatA is geometrically simple. The field E is not biquadratic,
because biquadratic fields give rise to non-primitive CM types, whose corre-
sponding abelian varieties are geometrically split, see [24, §8.2]. Likewise, E
cannot have Galois closure with Galois group D4 by [23, Proposition 5.17]
(in the D4 case, the extension E∗/Q is not normal). It follows that E/Q is
a cyclic quartic CM field. By [9, Chapter 3, Theorem 1.1], all the endomor-
phisms of A are defined over E∗, hence by Theorem 2.3 we see that there
exists an abelian variety B/E∗ with EndE∗(B) ∼= OE . Let (E,Φ) be the CM
type of B (and (E∗ = E,Φ∗) be its reflex) and fix an E∗-polarization C on B.
The field of moduli k0 of (B, C) is contained in E∗. Denote by IE∗ the group
of invertible fractional ideals of E∗. By [25, Main Theorem 1 on p. 128], the
compositum k0E

∗ = E∗ is the unramified class field over E∗ corresponding
to the ideal group

I0(Φ∗) =
{
a ∈ IE∗ : ∃α ∈ E∗ such that NΦ∗(a) = (α), NE∗/Q(a) = αᾱ

}
,

where NΦ∗ is the reflex norm associated with (E∗,Φ∗). We have just seen
that I0(Φ∗) defines the trivial extension of E∗: this means precisely that E
has “CM class number one” in the sense of P. Kılıçer’s thesis [8]. All cyclic
quartic CM fields E/Q with CM class number one have been determined in
[8, Theorem 2.4.5] (see also [7]) by applying results of Murabayashi [14] and
Louboutin [11]. �

We can now prove Proposition 6.1:

Proof. It is clear by definition that we must have C(1, 2) ≥ C(1, 1) = 163,
where the optimal value of C(1, 1) = 163 is taken from [19] (see also [2]).
Consider now an abelian surface A/Q admitting potential complex multipli-
cation, and suppose first that AQ is isogenous to the product of two elliptic
curves. Let ` be a prime larger than 163: we claim that Q(A[`])/Q(µ`) can-
not be pro-`. Suppose the contrary: we shall obtain a contradiction. We shall
need to rely on the results of [4], so we take the notation of that paper for
the “Galois type” of our abelian variety A. Let K be a minimal field of
definition for the endomorphisms of A; by [4], we have [K : Q]

∣∣ 48, and K
is contained in Q(A[`]) by [26, Propositions 2.2 and 2.3]. In fact we know
even more, namely that K/Q is normal, with Galois group isomorphic to
a subgroup of either S4 × Z/2Z or D6 × Z/2Z ([4, Table 8]). Consider now
the following diagram of field extensions:
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Q(A[`])
pro-`

Q(µ`) K

[K:Q]
∣∣48

Q
Let GK (resp. GQ(µ`), GQ) be the Galois group of Q(A[`]) over K

(resp. Q(µ`), Q). Then [K : Q] = [GQ : GK ] is prime to `, hence GK con-
tains a maximal `-Sylow subgroup of GQ. On the other hand, GQ(µ`) is a
maximal `-Sylow subgroup of GQ (notice that ` - [Q(µ`) : Q]), and it is nor-
mal in GQ because Q(µ`) is Galois over Q. Now since all the maximal `-Sylow
subgroups of a group are conjugate to each other, this proves that GQ has a
unique maximal `-Sylow, namely GQ(µ`). It follows that GK contains GQ(µ`),
hence that K is contained in Q(µ`). In particular, K/Q is a cyclic extension,
and since its Galois group is a subgroup of either S4 × Z/2Z or D6 × Z/2Z
the group Gal(K/Q) must be cyclic of order 1, 2, 3, 4 or 6. Depending on
whether the simple factors of AQ are isogenous or not, the following are then
the only possibilities for the Galois type of A:

1) AQ is isogenous to the square of an elliptic curve: by what we have just
proved, combined with [4, Table 8], the Galois type of A is F[Cn] (n ∈
{1, 2, 3, 4, 6}), F[C2, C1,H], F[C2, C1,M2(R)], F[C4, C2], F[C6, C3,
M2(R)], or F[C6, C3,H];

2) the two elliptic curves appearing as simple factors of AQ are non-
isogenous: the Galois type of A is one of D[C1], D[C2,R×C], D[C2,R×
R], D[C4].

We claim that there exists a quadratic extension M of Q such that AM
admits a 1-dimensional abelian subvariety defined over M (equivalently, AM
is M -isogenous to the product of two elliptic curves defined over M).

Case (2) is easy to deal with: according to [4, Theorem 4.3], only type
D[C4] can arise for an abelian surface A defined over Q, and in this case AQ
is simple ([4, §4.3 and 4.4]), contradicting our assumption. We can therefore
focus on case (1). Let us first notice that, among the various subcases of (1),
only cases F[C2, C1,M2(R)] and F[C6, C3,M2(R)] can arise for A defined
over Q ([4, Theorem 4.3]). As for these two Galois types, the claim about the
existence of M is obvious for F[C2, C1,M2(R)], because in this case K is itself
a quadratic extension of Q, and since all the endomorphisms of A are defined
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overK, so are its abelian subvarieties. For case F[C6, C3,M2(R)], we know by
[4, §4.5.2] that EndK(A)⊗ R ∼= M2(C), and the action of Gal (K/Q) ∼= Z/6Z
on it is determined by the fact that there is a generator g of Z/6Z that acts

on 2× 2 complex matrices by the formula

(
a b
c d

)
7→
(
d̄ ζ3c̄

ζ3b̄ ā

)
. It follows

that g2 acts as

(
a b
c d

)
7→

(
a ζ2

3b

ζ3
2
c d

)
, so the fixed ring of g2 is isomorphic

to C× C (matrices with b = c = 0). If we denote by M the fixed field of
g2, then M/Q is a quadratic extension, and End(AM )⊗ R ∼= M2(C)〈g

2〉 =
C× C. Since by assumption EndM (A) cannot be a number field of degree
4, it follows that EndM (A) is not an integral domain, hence that AM is
nonsimple as claimed. Let now A1/M be an elliptic curve contained in AM :
the field extension M(A1[`])/M(µ`), being contained in M(A[`])/M(µ`), is
pro-`, but by definition of C(2, 1) this is impossible for ` > C(2, 1) = 163
(this value is taken from [2]), which finishes the proof in this case.

Consider then the case of A/Q being a geometrically simple abelian
surface with (potential) complex multiplication by the ring R := EndQ(A).
Let E := R⊗Q and let ` be a prime strictly larger than 61. By Propo-
sition 6.2 and the explicit list of fields given in [8, Theorem 2.4.5] we see
that ` is unramified in E (indeed, 61 is the largest prime dividing the dis-
criminant of one of the fields listed in [8, Theorem 2.4.5]). Since all the
endomorphisms of A are defined over E∗ ([9, Chapter 3, Theorem 1.1]), ap-
plying Theorem 2.3 we see that there is an abelian variety B/E∗ that is
E∗-isogenous to A and satisfies EndE∗(B) = OE . If Q(A[`∞])/Q(µ`) is pro-
`, the same is true for E∗(A[`∞])/E∗(µ`), and therefore, by Lemma 2.4, also
for E∗(B[`∞])/E∗(µ`). This implies in particular that the degree [E∗(B[`]) :
E∗(µ`)] is a power of `. On the other hand, since EndE∗(B) = OE , as in
the proof of Proposition 3.1 we see that the representation Gal

(
E∗/E∗

)
→

AutB[`] factors through (OE ⊗ F`)×, which is a group of order prime to `
since ` is unramified in E. It follows that E∗(B[`])=E∗(µ`), hence [E∗(B[`]) :
E∗] ≤ `− 1. Observe now that (in the notation of the proof of Proposi-
tion 3.1) we have |F | = 1 and r = 3, because this is true for all absolutely
simple CM abelian surfaces; we then obtain from [10, Theorems 1.2 and 1.3]
the inequality [E∗(B[`]) : E∗] ≥ 1

µ(`− 1)3. Since [E : Q] = 4, it is easy to see
that µ ≤ 12, whence

`− 1 ≥ [E∗(µ`) : E∗] = [E∗(B[`]) : E∗] ≥ 1

12
(`− 1)3,

i.e. ` ≤ 3, a contradiction. �
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Remark 6.3. It is interesting to notice that if we only consider absolutely
simple abelian surfaces over Q, then the value 61 obtained in the course
of the previous proof is optimal, as the following example shows. We know
from [15] that there exists an absolutely simple abelian surface A/Q, with
good reduction everywhere except at 61, which admits (potential) complex

multiplication by the full ring of integers of K = Q
(√
−(61 + 6

√
61)

)
.

The discriminant of K is 613, so K is ramified at 61 only, and we have
(61)OK = P4 for a certain prime P of OK . The extension K/Q is cyclic
of degree 4, so – since it is furthermore unramified outside 61 – we see
by the Kronecker-Weber theorem that it is a sub-extension of Q(µ61)/Q.
Writing Gal(K/Q) = {Id, σ, σ2, σ3}, the CM type of A/Q is {Id, σ}, and the
reflex norm is Φ(x) = x · σ3(x). Recall that the reflex norm induces a group
morphism IK → IK , where IK is the group of idèles of K, by acting on the
idèles componentwise. As K/Q is cyclic, K is its own reflex field, and as
a consequence all the endomorphisms of A are defined over K. The class
number of K is 1, so if ω : IK → Gal

(
Kab/K

)
denotes the reciprocity map

of global class field theory we see that ω
(∏

vO
×
K,v

)
is all of Gal

(
Kab/K

)
.

Hence, in order to describe the Hecke character ε attached to AK it suffices
to describe its restriction to

∏
vO
×
K,v, and by the explicit construction of

[15, pp. 664 and 667] we have

ε :
∏
vO
×
K,v → {±1}

(av) 7→

{
1, if aP is a square in F×P
−1, otherwise

.

By [22, Corollary 2 to Theorem 5] we know that, since EndK(A) = OK , the
representation Gal

(
K/K

)
→ AutA[61] factors as

Gal
(
K/K

)
→ Gal

(
K/K

)ab ρ−→ (OK ⊗ F61)× ↪→ AutA[61],

and the map ρ can be described on idèle classes as

ρ((av)) = ε((av)) · Φ(aP).

We claim that the image of Gal
(
K/K

)
→ (OK ⊗ F61)× is contained in the

kernel of the natural map (OK ⊗ FP)× → F×P →
F×P
F×4
P

. Notice first that if (av)

is any idèle class, then ρ((av)) only depends on aP. Thus to prove our claim it
suffices to check that given an element aP ∈ O×K,P the product ε(aP)Φ(aP)

reduces to a fourth power in F×P. Notice furthermore that σ ∈ Gal (K/Q)
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acts trivially on Z61 ⊆ OK,P, so Φ(x) = xσ3(x) induces the map x 7→ x2 on
F×P. We can now prove our claim. Suppose first that aP is a square in F×P:

then we have ε(aP) = 1, and ε(aP)Φ(aP) reduces to 1 · (aP)2 in F×P; since

aP is a square in F×P, the product ε(aP)Φ(aP) is a fourth power in F×P as

claimed. Suppose on the other hand that aP is not a square in F×P: then a2
P

is a square but not a fourth power, and we have ε(aP) = −1, which again
is a square but not a fourth power in F×P ∼= F×61: the product ε(aP)Φ(aP) is

then a fourth power in F×P as claimed.

Let d=61ka (with (61, a)=1) be the degree of the extensionK(A[61])/K:
by what we just showed, a divides∣∣∣ker

(
(OK ⊗ FP)× → F×P

/
F×4
P

)∣∣∣ =
∣∣∣F×4

P

∣∣∣× |FP|3 = 15 · 613,

so a
∣∣ 15. Then since [K(µ61) : K] ≥ 1

[K:Q]ϕ(61) = 15 and K(µ61) is con-

tained in K(A[61]), we see that [K(µ61) : K] = 15 and K(A[61])/K(µ61)
is a pro-61 extension. Finally, since K is contained in Q(µ61), we have
K(µ61) = Q(µ61) and K(A[61]) = Q(A[61]), and therefore Q(A[61])/Q(µ61)
is a pro-61 extension. This shows, as claimed, that the constant 61 is optimal
for absolutely simple abelian surfaces with CM.

As a final remark, we note that the computation of an explicit value for
C(2, 2) might be within reach with the current state of knowledge on quartic
CM fields, and there is work in progress related to the determination of the
set R(2, 2), see for example [3] and the aforementioned [7].
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