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Control for Schrödinger equation on

hyperbolic surfaces

Long Jin

We show that any nonempty open set on a hyperbolic surface pro-
vides observability and control for the time dependent Schrödinger
equation. The only other manifolds for which this was previously
known are flat tori [11–13]. The proof is based on the main estimate
in [10] and standard arguments in control theory.

1. Introduction

Let M be a compact (connected) hyperbolic surface and ∆ the Laplace-
Beltrami operator on M . In a recent paper with Dyatlov, [10], we prove the
following semiclassical control result which roughly says that any open set
in S∗M controls the whole S∗M in the L2-sense.

Theorem 1.1. [10, Theorem 2] Assume that a ∈ C∞0 (T ∗M) and a|S∗M 6≡
0, then there exist constants C, h0 > 0 only depending on M and a such
that for all 0 < h < h0 and u ∈ H2(M),

(1.1) ‖u‖L2(M) ≤ C‖Oph(a)u‖L2(M) + C
log(1/h)

h
‖(−h2∆− 1)u‖L2(M).

In this short notes, we show that Theorem 1.1 implies the following
observability result of the Schrödinger equation on M .

Theorem 1.2. Let Ω ⊂M be any non-empty open set and T > 0, then
there exists a constant K > 0 depending only on M , Ω and T , such that for
any u0 ∈ L2(M), we have

(1.2) ‖u0‖2L2(M) ≤ K
∫ T

0
‖eit∆u0‖2L2(Ω)dt.

The following control result for the Schrödinger equation then follows
immediately by the HUM method of Lions [15].
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Theorem 1.3. Let Ω ⊂M be any non-empty open set and T > 0, then for
any u0 ∈ L2(M), there exists f ∈ L2((0, T )× Ω) such that the solution of
the equation

(1.3) (i∂t + ∆)u(t, x) = f1(0,T )×Ω(t, x), u(0, x) = u0(x)

satisfies

(1.4) u(T, x) ≡ 0.

Remark 1.4. In fact, by an elementary perturbation argument, it is not
hard to see that Theorem 1.1 still holds if we replace the Laplacian operator
−∆ by a general Schrödinger operator −∆ + V with V ∈ L∞(M ;R). Follow-
ing the proof, we can also replace −∆ by −∆ + V in Theorem 1.2 and 1.3.
It is interesting to ask if this can be further extended to L2-potentials as
in the case of two-dimensional tori [5]. Another interesting question is to
extend the result to rough control sets as in [9].

1.1. Control for Schrödinger equations

In general, the pioneering work of Lebeau [14] showed that control for Schrö-
dinger equation holds under the geometric control condition (see [4]):

There exists L = L(M,Ω) > 0(1.5)

s.t. every geodesic of length L on M intersects Ω.

This geometric control condition is necessary when the geodesic flow is pe-
riodic (e.g. M is a sphere), see Macia [16]. However in general, it is not
necessary for observability and control for Schrödinger equation. In fact,
Theorem 1.2 and Theorem 1.3 show that no condition is needed for the
nonempty open set Ω on a compact hyperbolic surface.

To our best knowledge, the only other manifold on which this is true
is the flat torus. This is first proved by Jaffard [12] and Haraux [11] in
dimension two and by Komornik [13] in higher dimensions. These results are
further extended to Schrödinger operators −∆ + V with smooth potential
V by Burq–Zworski [8], and L2-potential V by Bourgain–Burq–Zworski [5]
in dimension two; some class of potentials V including continuous ones by
Anantharaman–Macia [2] in any dimension. We also mention the recent
result of Burq–Zworski [9] on control on two-dimensional tori by any L4

functions or sets with positive measures.
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Control for Schrödinger equation 1867

For certain other manifolds, observability and control for Schrödinger
equation is known under weaker dynamical conditions. For example,
Anantharaman-Rivière [3] proved the case where M is a manifold with neg-
ative sectional curvature and Ω satisfies an entropy condition, i.e. the set of
uncontrolled trajectories is thin. A similar dynamical condition appears in
the work of Schenck [17] on energy decay of wave equation on such manifolds.
In the case of manifolds with boundary, Anantharaman–Léautaud–Macia [1]
showed the control and observability for Schrödinger equation on the disk
by any nonempty open set touching the boundary.

1.2. Control for wave equation

For control of wave equation, by propagation of singularities, the geometric
control condition (1.5) is necessary and sufficient, see Bardos–Lebeau–Rauch
[4] and Burq–Gérard [6].

We remark that the same argument as in Proposition 2.1 (or the abstract
result in Burq–Zworski [7]) gives the following semiclassical observability
result from Theorem 1.1.

Proposition 1.5. Let χ ∈ C∞0 ((1
2 , 2)), then there exists C, K and h0 > 0

such that for all 0 < h < h0, u0 ∈ L2(M), we have
(1.6)

‖χ(h
√
−∆)u0‖2L2(M) ≤

K

C log(1/h)

∫ C log(1/h)

0
‖eit
√
−∆χ(h

√
−∆)u0‖2L2(Ω)dt.

However it is unclear to us at the moment whether the HUM method
gives a control result for some explicit subspace of L2-functions.

1.3. Notations

We recall some notations from semiclassical analysis and refer to the book
[18] for further references. First, the semiclassical Fourier transform on R is
defined by

Fhϕ(τ) =

∫
R
e−itτ/hϕ(t)dt

and its adjoint is given by

(1.7) F∗hϕ(τ) =

∫
R
eitτ/hϕ(t)dt.
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The Parseval identity show that

(1.8) ‖Fhϕ‖L2 = ‖F∗hϕ‖L2 = (2πh)1/2‖ϕ‖L2 .

We also use the standard quantization a(t,Dt) on R and fix a semiclassical
quantization Oph(a) on M . We refer to [18] for the standard definition and
properties. Finally, as usual, C denotes a constant which may change from
line to line.

2. Proof of the theorems

All the parts of the proof are well known in the literature. Here we present
them in a self-contained way.

2.1. Semiclassical observability

We first prove a semiclassical version of the observability result

Proposition 2.1. Let χ ∈ C∞0 ((1
2 , 2)), ψ ∈ C∞0 (R; [0, 1]) not identically zero,

then there exist C, h0 > 0 such that for all 0 < h < h0, u0 ∈ L2(M), we have

(2.1) ‖χ(−h2∆)u0‖2L2(M) ≤ C
∫
R
‖ψ(t)eit∆χ(−h2∆)u0‖2L2(Ω)dt.

In particular, for any T > 0, there exists C, h0 > 0 such that for all 0 < h <
h0, u0 ∈ L2(M), we have

(2.2) ‖χ(−h2∆)u0‖2L2(M) ≤ C
∫ T

0
‖eit∆χ(−h2∆)u0‖2L2(Ω)dt.

Proof. This follows directly from the abstract result in Burq–Zworski [7,
Theorem 4] with G(h) = C log(1/h), g(h) = C and T (h) = 1/h. We present
the argument in this concrete situation.

First, we put v(t) = eith∆χ(−h2∆)u0 and write w(t) = ψ(ht)v(t). It is
clear that v(t) solves the semiclassical Schrödinger equation (ih∂t + h2∆)v =
0 and thus

(ih∂t + h2∆)w = ih2ψ′(ht)v(t).

We take the (adjoint) semiclassical Fourier transform (1.7) to get

(2.3) (−h2∆− τ)F∗hw(τ) = −ih2F∗h(ψ′(ht)v(t))(τ).
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Control for Schrödinger equation 1869

For τ ∈ (1
2 , 2), we use (1.1) and choose a ∈ C∞0 to be supported in {(x, ξ) :

x ∈ Ω} with ‖a‖L∞ ≤ 1. We then choose χ ∈ C∞0 (Ω; [0, 1]) and regard it also
as a function on T ∗M , such that χ ≡ 1 on a neighborhood of supp a, then
for any u ∈ L2(M),

Oph(a)u = Oph(a)(χu) + Oph(a)(1− χ)u,

where Oph(a)(1− χ) = OL2→L2(h∞), so

‖Oph(a)u‖L2(M) ≤ C‖χu‖L2(M) +O(h∞)‖u‖L2(M).

Now (1.1) gives that, for 0 < h < h0,

‖u‖L2(M) ≤ C‖u‖L2(Ω) + C
log(1/h)

h
‖(−h2∆− 1)u‖L2(M).

We can further rescale this estimate to show that uniformly for τ ∈ [1/2, 2],

(2.4) ‖u‖L2(M) ≤ C‖u‖L2(Ω) + C
log(1/h)

h
‖(−h2∆− τ)u‖L2(M).

For τ ∈ [1
2 , 2], applying (2.4) to u = F∗hw(τ), we obtain

‖F∗hw(τ)‖L2(M) ≤ C‖F∗hw(τ)‖L2(Ω)(2.5)

+ Ch log(1/h)‖F∗h(ψ′(ht)v(t))(τ)‖L2(M).

For τ 6∈ [1
2 , 2], by definition,

F∗hw(τ) =

∫
R
e−it(−h

2∆−τ)/hψ(ht)χ(−h2∆)u0dt.

Writing

e−it(−h
2∆−τ)/h = (h2∆ + τ)−N (hDt)

Ne−it(−h
2∆−τ)/h,

and noting that for any u0 ∈ L2(M), by functional calculus,

‖(h2∆ + τ)−Nχ(−h2∆)u0‖L2(M) ≤ CN 〈τ〉−N‖χ(−h2∆)u0‖L2(M),

we can integrate by parts repeatedly to get

(2.6) ‖F∗hw(τ)‖L2(M) = O((h〈τ〉−1)∞)‖χ(−h2∆)u0‖L2(M).
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Combining (2.5) and (2.6), we have the following estimate

‖F∗hw(τ)‖2L2(Rτ ,L2(M)) ≤ C‖F
∗
hw(τ)‖2L2(Rτ ,L2(Ω))

+ C(h log(1/h))2‖F∗h(ψ′(ht)v(t))(τ)‖2L2(Rτ ,L2(M))

+O(h∞)‖χ(−h2∆)u0‖2L2(M).

By the Parseval identity (1.8), we have

‖w‖2L2(Rt,L2(M)) ≤ C‖w‖
2
L2(Rt,L2(Ω))(2.7)

+ C(h log(1/h))2‖ψ′(ht)v(t)‖2L2(Rt,L2(M))

+O(h∞)‖χ(−h2∆)u0‖2L2(M).

From the definition of v and w, we see

‖w‖2L2(Rt,L2(M)) =

∫
R
ψ(ht)2‖eith∆χ(−h2∆)u0‖2L2(M)dt

=

(∫
R
ψ(ht)2dt

)
‖χ(−h2∆)u0‖2L2(M)

= h−1‖ψ‖2L2(R)‖χ(−h2∆)u0‖2L2(M);

‖w‖2L2(Rt,L2(Ω)) =

∫
R
ψ(ht)2‖eith∆χ(−h2∆)u0‖2L2(Ω)dt

= h−1

∫
R
‖ψ(t)eit∆χ(−h2∆)u0‖2L2(Ω)dt;

and

‖ψ′(ht)v(t)‖2L2(Rt,L2(M)) =

∫
R
|ψ′(ht)|2‖eith∆χ(−h2∆)u0‖2L2(M)dt

=

(∫
R
|ψ′(ht)|2dt

)
‖χ(−h2∆)u0‖2L2(M)

= h−1‖ψ′‖2L2(R)‖χ(−h2∆)u0‖2L2(M).

As long as h is small and ψ 6≡ 0, we can absorb the last two terms on the
right-hand side of (2.7) into the left-hand side and conclude the proof. �

2.2. Observability with error

Now we prove Theorem 1.2 with an error in H−4(M).
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Proposition 2.2. There exists a constant C > 0 such that for any u0 ∈
L2(M), we have

(2.8) ‖u0‖2L2(M) ≤ C
(∫ T

0
‖eit∆u0‖2L2(Ω)dt+ ‖u0‖2H−4(M)

)
.

Proof. Again, this argument can be found in Burq–Zworski [7, Theorem 7]
or [8, Proposition 4.1]. To pass from the semiclassical observability to the
classical one, we use a dyadic decomposition

1 = ϕ0(r)2 +

∞∑
k=1

ϕk(r)
2

where

ϕ0 ∈ C∞0 ((−2, 2); [0, 1]), ϕk(r) = ϕ(2−k|r|), ϕ ∈ C∞0 ((1/2, 2); [0, 1]).

Then we have

(2.9) ‖u0‖2L2(M) =

∞∑
k=0

‖ϕk(−∆)u0‖2L2(M),

and

(2.10) ‖u0‖2H−4(M) = ‖(−∆ + 1)−2u0‖2L2(M) ∼
∞∑
k=0

2−4k‖ϕk(−∆)u0‖2L2(M).

Fix an integer K so that 2−K < h2
0, then for k ≥ K, by (2.1), we have

(2.11) ‖ϕk(−∆)u0‖2L2(M) ≤ C
∫
R
‖ψ(t)eit∆ϕk(−∆)u0‖2L2(Ω)dt

uniformly in k where we choose ψ ∈ C∞0 ((0, T ); [0, 1]).
The idea is to use the Schrödinger equation to change the frequency

localization in space ϕk(−∆) to frequency localization in time ϕk(Dt). More
precisely, since (Dt −∆)eit∆ = 0 and all ϕk are even, we have

eit∆ϕk(−∆)u0 = ϕk(−∆)eit∆u0 = ϕk(−Dt)e
it∆u0 = ϕk(Dt)e

it∆u0.

Now we introduce another cutoff function in time ψ̃ ∈ C∞0 ((0, T ); [0, 1]) such

that ψ̃ = 1 on a neighborhood of suppψ. This allows us to express the pseu-
dolocality of ψ(t)ϕk(Dt) as follows:

ψ(t)ϕk(Dt) = ψ(t)ϕk(Dt)ψ̃(t) + Ek(t,Dt)
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where Ek(t,Dt) = ψ(t)[ψ̃(t), ϕ(2−kDt)] with symbol satisfying

(2.12) ∂αEk(t, τ) = O(2−kN 〈t〉−N 〈τ〉−N ), ∀N.

Now we have

‖ψ(t)eit∆ϕk(−∆)u0‖2L2(Ω) = ‖ψ(t)ϕk(Dt)e
it∆u0‖2L2(Ω)

≤ ‖ψ(t)ϕk(Dt)ψ̃(t)eit∆u0‖2L2(Ω) + ‖Ek(t,Dt)e
it∆u0‖2L2(Ω).

Therefore by (2.9) and (2.11), we get

‖u0‖2L2(M) ≤
K−1∑
k=0

‖ϕk(−∆)u0‖2L2(M) +

∞∑
k=K

C

∫
R
‖ϕk(Dt)ψ̃(t)eit∆u0‖2L2(Ω)dt

+

∞∑
k=K

C

∫
R
‖Ek(t,Dt)e

it∆u0‖2L2(Ω)dt.

By (2.10), we see that the first sum is bounded by C‖u0‖2H−4(M). The second
sum is bounded by

C

∫
R

∞∑
k=0

〈ϕk(Dt)
2ψ̃(t)eit∆u0, ψ̃(t)eit∆u0〉L2(Ω)dt = C

∫
R
‖ψ̃(t)eit∆u0‖2L2(Ω)dt.

The final sum is bounded by

(2.13) C

∞∑
k=K

∫
R
‖Ek(t,Dt)e

it∆u0‖2L2(M)dt = C

∞∑
k=K

‖Ek(t,Dt)e
it∆u0‖2L2(R×M).

To show this is also bounded by C‖u0‖2H−4(M), we write

Ek(t,Dt)e
it∆u0 = Ek(t,Dt)(−Dt + 1)2eit∆(−∆ + 1)−2u0

= Ẽk(t,Dt)〈t〉−2eit∆(−∆ + 1)−2u0

where the symbol of Ẽk(t,Dt) = Ek(t,Dt)(−Dt + 1)2〈t〉2 also satisfies (2.12)
and thus Ẽk(t,Dt) = O(2−k) : L2(R)→ L2(R). Therefore (2.13) is bounded
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by

C

∞∑
k=K

2−2k‖〈t〉−2eit∆(−∆ + 1)−2u0‖2L2(R×M)

≤ C‖(−∆ + 1)−2u0‖2L2(M) = C‖u0‖2H−4(M).

This finishes the proof of (2.8). �

Remark 2.3. From the proof, it is clear that the H−4 error can be re-
placed by any H−m error as long as m > 0. Here we take m = 4 to make
the uniqueness-compactness argument in the next section simpler.

2.3. Removing the error

To finish the proof, we use the classical uniqueness-compactness argument of
Bardos–Lebeau–Rauch [4] to remove the H−4 error term. We remark that a
quantitative version of the uniqueness-compactness argument is presented in
[5, Appendix A] which can be used to remove any H−m error and compute
the constant K in (1.2) from the constant C in (2.8) in principle.

For any T > 0, consider the following closed subspaces of L2(M):

NT = {u0 ∈ L2(M) : eit∆u0 ≡ 0 on (0, T )× Ω}.

Lemma 2.4. We have NT = {0}.

Proof. In fact, if u0 ∈ NT , then

vε,0 :=
1

ε
(eiε∆ − I)u0 ∈ NT−δ

if ε ≤ δ. Moreover, vε,0 converges to v0 = i∆u0 in L2(M). To see this, we
only need to show that vε,0 is a Cauchy sequence in L2(M). We write the
orthonormal expansion of u0 in terms of the Laplacian eigenfunctions

u0 =

∞∑
j=0

u0,jej ,

where {ej}∞j=0 is an orthonormal basis of L2(M) formed by Laplacian eigen-
functions:

−∆ej = λjej , ‖ej‖L2(M) = 1,

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj ↗∞.
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Then for α, β ∈ (0, T/2), we have by (2.8) (with T replaced by T/2),

‖vα,0 − vβ,0‖2L2 ≤ C‖vα,0 − vβ,0‖2H−4

≤ C
∞∑
j=1

∣∣∣∣e−iαλj − 1

α
− e−iβλj − 1

β

∣∣∣∣2 (1 + λj)
−4|u0,j |2

≤ C
∞∑
j=1

|α− β|2λ4
j (1 + λj)

−4|u0,j |2 ≤ C|α− β|2‖u‖2L2(M).

Now v0 = i∆u0 ∈ NT−δ for any δ > 0, thus also in NT . As a consequence,
NT is an invariant subspace of ∆ in L2(M). Also, by Proposition 2.2, the
H−4(M)-norm is equivalent to the L2(M)-norm on NT , so the unit ball in
NT is compact and thusNT is of finite dimension. If it is not {0}, then it must
contain some Laplacian eigenfunction ϕ. But this would mean that ϕ ≡ 0
on Ω, which violates the unique continuation for Laplacian eigenfunctions.
Therefore NT = {0}. �

Now we can proceed by contradiction to finish the proof of Theorem 1.2.
Suppose (1.2) is not true, then we can find a sequence {un,0} in L2(M) such
that

(2.14) ‖un,0‖L2(M) = 1, and

∫ T

0
‖eit∆un,0‖2L2(Ω)dt ≤ n

−1.

Then we can extract a subsequence unk,0 converging to u0 weakly in L2(M),
thus strongly in H−4(M). On one hand, by Proposition 2.2 again, we see

1 = ‖unk,0‖2L2(M) ≤ C
∫ T

0
‖eit∆unk,0‖2L2(Ω)dt+ C‖unk,0‖2H−4(M)

≤ Cn−1
k + C‖unk,0‖2H−4(M)

and thus let k →∞, we get ‖u0‖H−4(M) ≥ C−1/2 > 0. On the other hand,
u0 must lie in NT and thus u0 ≡ 0. This contradiction finishes the proof of
Theorem 1.2.

2.4. From observability to control: Hilbert Uniqueness
Method (HUM)

Now we recall how the Hilbert Uniqueness Method of Lions [15] shows that
Theorem 1.2 implies Theorem 1.3.
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Consider the following operators R : L2([0, T ]× Ω)→ L2(M) and S :
L2(M)→ L2([0, T ]× Ω)) defined by Rg = u|t=0 where u is the solution to

(2.15) (i∂t + ∆)u = g1[0,T ]×Ω, u|t=T ≡ 0

and Su0 = eit∆u0|[0,T ]×Ω.

Proposition 2.5. R and S are continuous and R∗ = −iS, i.e. for any
g ∈ L2((0, T )× Ω) and u0 ∈ L2(M),

(2.16) 〈Rg, u0〉L2(M) = i〈g, Su0〉L2((0,T )×Ω).

In particular, the following statements are equivalent:
(a) (Control) R is surjective;
(b) (Observability) There exists c > 0 such that for all u0 ∈ L2(M),

(2.17) ‖Su0‖L2((0,T )×Ω) ≥ c‖u0‖L2(M).

Proof. Let u be the solution to (2.15) and v = eit∆u0, then integration by
parts gives

〈g, Su0〉L2((0,T )×Ω) =

∫
[0,T ]×M

(i∂t + ∆)u · v̄dtdx

= i

∫
M
uv̄|t=Tt=0 dx+

∫
[0,T ]×M

u · (−i∂t + ∆)v̄dtdx

By definition of R, we see that

i

∫
M
uv̄|t=Tt=0 dx = −i〈Rg, u0〉L2(M)

while (−i∂t + ∆)v̄ = 0. This finishes the proof of (2.16). The equivalence of
(a) and (b) follows by standard functional analysis argument. �
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[1] Nalini Anantharaman, Mathieu Léautaud, and Fabricio Macia, Wigner
measures and observability for the Schrödinger equation on the disk,
Invent. Math. 206 (2014), 485–599.

[2] Nalini Anantharaman and Fabricio Macia, Semiclassical measures for
the Schrödinger equation on the torus, J. Eur. Math. Soc. 16 (2014),
1253–1288.

[3] Nalini Anantharaman and Gabriel Rivière, Dispersion and controllabil-
ity for Schrödinger equation on negatively curved manifolds, Anal. PDE
5 (2012), 313–338.

[4] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch, Sharp sufficient con-
ditions for the observation, control, and stabilization of waves from the
boundary, SIAM J. Control Optim. 30 (1992), 1024–1065.

[5] Jean Bourgain, Nicolas Burq, and Maciej Zworski, Control for
Schrödinger equations on 2-tori: rough potentials, J. Eur. Math. Soc.
15 (2013), 1597–1628.

[6] Nicolas Burq and Patrick Gérard, Condition nécessaire et suffisante
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