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A new proof of scattering below the

ground state for the non-radial
focusing NLS

BENJAMIN DODSON AND JASON MURPHY

We revisit the scattering result of Duyckaerts, Holmer, and
Roudenko for the non-radial F'/2-critical focusing NLS. By prov-
ing an interaction Morawetz inequality, we give a simple proof of
scattering below the ground state in dimensions d > 3 that avoids
the use of concentration compactness.

1. Introduction

We consider the initial-value problem for the focusing H >-critical nonlinear
Schrodinger equation (NLS) in dimensions d > 3 :

O {(i8t+A)u: — |7

u(0) = up € H'(R?),
where u : R x R — C. This includes the 3d cubic NLS, which we studied
in our previous work [§] in the radial setting. In this work, we extend our

arguments to address the non-radial case.
Solutions to conserve mass and energy, defined respectively by

M(®) = [ Ju(t.0) da,

Blult) = [ 3Vulta)f - gt hule.) 5 de

The equation is H'/2-critical in the sense that the H'/2-norm of the
initial data is invariant under the scaling that preserves the class of solutions,
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namely,
(2) ult,z) = A7 u(\2, Ax).

By solution, we mean a function u € C;H}(I x R?) on an interval I > 0
satisfying the Duhamel formula

t 4
u(t) = ePug + ’L/ =9 (|u| 7T u)(s) ds
0

for t € I, where e*? is the Schrodinger group. We write Iax for the maximal-
lifespan of u and call u global if I, = R. A global solution u scatters if

there exist uy+ € H'(R?) so that
i lu(t) — "M u | rey = 0.

The equation admits a global but nonscattering solution

u(t,z) = €"Q(x),

where @ is the ground state, namely, the unique positive decaying solution
to the elliptic equation

(3) —AQ+Q—QITTQ =0.

Duyckaerts, Holmer, and Roudenko [9] proved the following scattering
result below the ground state threshold in dimension d = 3. An analogous
result was proven in higher dimensions and for other intercritical nonlinear-
ities in [2, [12].

Theorem 1.1. Suppose ug € H'(R?) satisfies

(4)  M(uo)E(uo) < M(Q)E(Q) and |uoll2lluoll g < QI L2[|Q1l 42
Then the solution to is global and scatters.

The proof of Theorem was based on the concentration compactness
approach to induction on energy. We present a simplified proof of Theo-
rem that avoids concentration compactness. In particular, we establish
an interaction Morawetz inequality for solutions to obeying (see The-
orem . Combining this with a scattering criterion established in Theo-
rem [3.1] then suffices to establish Theorem [L.1]
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Theorem |1.1| was originally proven in dimension d = 3 in the radial set-
ting [I3] by Holmer and Roudenko, also through the use of concentration
compactness. In our previous work [8] we presented a new proof in the radial
setting that avoided concentration compactness. The key was to exploit the
radial Sobolev embedding in order to establish a virial/Morawetz hybrid,
which (together with a scattering criterion due to Tao [16]) was sufficient to
prove scattering.

The extension of Theorem from the radial to the non-radial setting
in [9] relied on the Galilean invariance of . In particular, using this sym-
metry one shows that minimal blowup solutions must have zero momentum,
which ultimately ameliorates the lack of compactness due to spatial transla-
tion. In our setting, the key ingredient is an interaction Morawetz inequality
for solutions obeying , the proof of which also relies on a Galilean trans-
formation. This estimate is similar to those established in [0} [7] for the mass-
and energy-critical problems. In fact, the estimate here is greatly simplified
by the fact that the solution belongs to H'.

The scattering in Theorem is a consequence of the fact that the
solution obeys global critical space-time bounds. In particular, one can verify
that our arguments ultimately yield an estimate of the form

ull 2wz < exp{r(E(uo), M(uo))},
L, %1 (RxR4)

t,x

where r is a rational polynomial of E(ug), M(ug), d, M(Q), and E(Q). One
can compare this with the work of Tao on the energy-critical NLS [17], as well
as the work of Duyckaerts and Merle concerning near-threshold solutions for
the focusing energy-critical NLW [10].

The rest of this paper is organized as follows: In Section [2| we set up no-
tation, review some linear theory, and review the variational analysis related
to the ground state. In Section |3 we establish a scattering criterion for ,
Theorem In Section 4] we prove an interaction Morawetz inequality for
solutions obeying . Finally, in Section [5, we use the interaction Morawetz
inquality to show that solutions obeying satisfy the scattering criterion
of Theorem thereby completing the proof of Theorem
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2. Preliminaries

We write A < B to denote A < CB for some C > 0. We use the standard
Lebesgue norms

sz = ([ 1@ da) " Wflgns) = 1150

L;(Rd)’ Li(I)
with the usual adjustments if ¢ or r is co. We write a’ € [1, oo] for the Holder
dual of a € [1,00], i.e. the solution to 1 + L =1.

2.1. Local theory and linear estimates

The local theory for is standard (see [I] for a textbook treatment). In
particular, for any ug € H' there exists a maximal-lifespan solution to
in C;H} that conserves mass and energy. Furthermore, any solution that
remains bounded in H! extends to a global solution.

The Schrédinger group obeys the following dispersive estimates:

da d

(5) 1€ L s ay S 1HETH), 2 <r < oo,

These estimates imply the standard Strichartz estimates (cf. [I1} 14, [15]),
which in dimensions d > 3 take the following form: for any 2 < ¢, ¢, 7,7 < 00
satisfying

+ +

Qo
RS
|
ESUIN]
RilisH
Il
[\VIIsH

and any I C R, we have

Local well-posedness follows from standard arguments employing
Strichartz estimates and Sobolev embedding. For example, defining

€2 fll g gy S 1Lz ey

t
/ A (5) ds
0

S HF”L?’U’(Ide)'
LILT (IxR?)

1 1
[ulls = ||UHL% + [Jall O + H\VPUHL%L;% +[IVIzullzer2

t,x Lt

and noting the embeddings

L1 2(d+1) 2d(d+1) 1 2d(d+2) 2(d+2)

P — 2 _54d_ ) 2 —
HZ ©' < LF>2 0 and HZ ©7 o L0,
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one can estimate

¢ 4
”eitAuo”S+ H/ ei(tfs)A(’u‘d—lu)(s) ds
0

S

_4
SVIzuollce + V]2 (Ul 7T 0)|| srsy  2acasa
L d+6 L;i2+4d—4

t

1 T 1 1 448

S IVIEuollze + [lull “ste H!VPUHLQL 2 S IV]zuollLe + flullg"-
- t

d—2
x

t,x

These estimates form the basis for the local theory for . These spaces will
also be used below in Section [3
We also have the standard local smoothing estimates (see e.g. [5]):

IXRIVIZe" 2Bl 12 (rxra) S B2 (6]l 12 ey,

where I C R and xp is a cutoff to a ball of radius R. We will need the
following form of local smoothing:

1
2(d+2) S Re ||FHL’;‘,I(I><1R<1)-

t
/ei(t_s)AXRF(s)ds
L, 271 (IxR4)

0

©

To deduce this bound, one can first write the dual estimate

and then use Sobolev embedding and Strichartz to deduce

Then ([6) follows from the Christ-Kiselev lemma [3].

S R2|F| 22 (1xra)
L2 (R4)

/ V]Ee 0y P (s) ds
R

1
2(d+2) S R: HFHL?_I(Ix]Rd)-
L, &7 (IxR9) '

/ Ay R F(s)ds
R

2.2. Variational analysis

We briefly review the variational analysis related to the ground state (for
more details, see e.g. [18]). The ground state @ is a solution to and an
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optimizer of the Gagliardo—Nirenberg inequality:

2(d+1)

(7) AN e <Co||f|\ IIVfIILz :

where Cj denotes the sharp constant. Taking the inner product of (3|) with @
and z - V@ and integrating by parts yields the following Pohozaev identites:

2(d+1)

. IVQIZ: + 1QIZ: = Q1 o
8 2(d+1)
d 1
(d—2)|VQ|3: +d|Q|3- = d+1>||czu

These imply

2(d+1)

IVQIZ: = dlQlZ- and Q] 2<d+1>—(d+1)IIQH%2,

which allow us to rewrite the sharp constant in @ as
Co = T IQN 2= IVQ| £2] 7.
In fact, we will need the following slight refinement of @:

Lemma 2.1. For any f € H'(R?) and & € RY,

o _d+l [ [ fllz= IV £l 22

f 2(d+1) = :|d_1 V€ix£f 22.
H H (+) d HQHLZHVQHL2 H [ ]HL

2(d+1) . . .
Proof. As the L™ a-1 -norm and L? norm are invariant under f — e f, we
deduce

2(d+1)

d+1 If L2V (e flll g2 | 7255 j 2
HfH 2(d+1) < ngl@fd([m]d IV f11Z2)
dt1 e [ lIVIe s Al 225 | s i€ £1)2
< 9 of [Ménarvar,.] - duf, IVEe™ /.,
which implies the desired result. (|

We next record a lemma that is very similar to [8, Lemma 2.3] (and hence
we omit the proof). The key ingredients are the sharp Gagliardo—Nirenberg
inequality, Pohozaev identities, and conservation of mass and energy.
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Lemma 2.2 (Coercivity). Suppose ug € H' and that for some § € (0,1)
we have

M (uo)E(uo) < (1 =0)M(Q)E(Q) and uol z2[luoll g < QL2 Ql g1-

Let v : I x R — C be the mazimal-lifespan solution to with u(0) = ug.
Then there exists 6’ = §'(5) > 0 so that

lu@llzellu@®)ll g < (1= QUL MQll g for tel.

In particular, I = R and u remains uniformly bounded in H'. In fact,
(9) sup [[u(t)[|F, S E(uo).
teR
3. A scattering criterion

In this section we prove a scattering criterion for . Roughly speaking, it
states that if in any sufficiently large window of time we can find a large
interval on which the scattering norm is small, then the solution must scat-
ter. The argument is perturbative and relies only on dispersive/Strichartz
estimates.

Theorem 3.1 (Scattering criterion). Let u:R x RY — C be a solution

to satisfying

M (up) = E(ug) = Eg  and ilellg ||u(t)H12ql < Ejp.

Suppose that

(10) VaeR 3ty € (a,a+1Ty) such that |ull 2a+2) Se,
L ([to TO ,to]XRd)

where e = e(Fy) is sufficiently small and Ty = To(e, Ey) is sufficiently large.
Then u scatters forward in time.

We begin with the following lemma.

Lemma 3.2. Letu be as in Theorem and suppose that holds. Then
Va € R, 3ty € (a,a + Tp) such that

(11) <era

2(d+1) M
L, & L& 7247 ([tg,00) xR4)

to . 4
/ (=98 ([ 7T0)(5) ds
0
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Proof of Lemmal[3.9 Let a € R and choose ty € (a,a+ Tp) as in (10). By
Strichartz and standard bootstrap arguments, we can use the estimate in

to deduce

(IR YA <1
L2LE72 ([to—T}2 ,to] xRY)

Thus, by Sobolev embedding and Strichartz,

4
< U \Y% %u 2d_ 1 < ga-1,
| |Lt2(j+2)([t0 3 }de)m | HL%LfZ*z([to—Toé to] xR4) ™7

2(d+1) 22d(d+1)
L, ¢ LI 7291 ([to,00) xR?)

to . 4
/ | D (] ) (s) ds
to— T

We treat the remaining part of the integral by interpolation. First, by
the dispersive estimate and 2 < 2(d+1) < 2d2,

i(t—s)A (), |7 < — gl it =
e (Jul#=ru)(s)l] zen S [t =]+ lu(s )H ataen [[0(8)]| 12
sn—ﬂ*%a?“.
Thus

d+3

< E2(d 1)T 6(d+1)

2(d+1) 2(d+1)
L, 1 L4773 ([to,00)xRY)

to-TF }
/ (=8 (|75 ) () ds
0

Next, noting that

1

t07T03 . 4 . % 1 .
l/ ez(t—s)A(’u|ﬁu)(S) ds = ez(t—to—i-TD )Au(to _ T03) _ eztAu(O),
0

we use Strichartz to estimate

S lulto — TOE)HLQ(Rd) + w0 z2rey S E;.

wh—A

to—Tg . 4
/ (=98 ([ 77)(5) ds
0

_2d_
L2LIE72 ([to,00) xRY)

Thus, by interpolation, we have

H/ = (fu| 7w (s) ds
<e

2(d+1) 22d(d+1)
Ly @ L7727 ([to,00) xR?)
d+1

12(d+1) 2(d—1)
4T, EXD

~
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and hence holds for Ty = Ty(Ep, ) sufficiently large. O
We now turn to the proof of Theorem

Proof of Theorem[3.1 Let u be as in the statement of Theorem We

suppose that holds, and hence (by Lemma holds as well.
We begin by splitting R into J = J(e, Ep) intervals I; such that

2d(d+1) < €.
Zod_1

(12) HeitAUOH 2(d+1)
I LI 2 (I xRY)

L,

Our goal is to prove that for Ty large enough, we have

2(d+1)
(13) [l 2?d+1) 2d(d+1) SE, To
L, & L&7271 ([ xRa)

for each j. Once we have established , summation over I; C R yields the
critical global space-time bound
2(d+1)

d
HUH 2(d+1) 22d(d+1) 5E0 TO7
L, & L& 727 Y (RxRY)

and a standard argument then yields scattering.
We turn to . In light of the general bound

2(d+1)
14 ul| ¢ < I
( ) H HLtz(d;rl) L;dg:;i)l (i) ~FEo < >

(see e.g. [16, Section 3]), it suffices to consider j such that |I;| > 2T5.
Therefore we fix some I; = (aj,b;) with |;| > 2Ty. We then choose ¢y €
(aj,a; + Tp) such that the estimate in holds. Writing

to . 4
it=t) Ay (10) = ¢itBy, +i/ A (lu| 7T u)(s) ds
0

we can use and to deduce

||6i(t_t0)Au(t0)H 2(d+1)  -2d(d+1) §5C
L, 7 L& 7270 ((to,by) xRY)

for some 0 < ¢ < 1. Choosing ¢ small enough, a standard continuity argu-
ment then yields

(63
HU” 2(d+1) M 58 R
L, & L7297 ((to,by) xR9)
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and hence (using to — a; < Tp and to handle the contribution of (a;, to))
we deduce and complete the proof of Theorem O

4. Interaction Morawetz inequality

In this section we prove an interaction Morawetz inequality for solutions
to obeying . The interaction Morawetz inequality was originally in-
troduced in [4] in the defocusing setting. The estimate we prove is similar
to those established in [6] and [7] in the focusing mass- and energy-critical
settings. In order to exhibit coercivity, we rely on the sharp Gagliardo—
Nirenberg inequality and Galilean invariance.

Let € > 0 be a small constant and let x be a radial decreasing function
satisfying

19 (@) = {; o

Let R > 1 and define the radial function

0@) = e | G s,

where wg is the volume of the unit ball in R?. In particular, ¢ may be written
in the form ¢(z) = ¢(%) where ¢ does not depend on R. Finally, introduce

||

ba)=1 [ ot dr.
0

Note that

Tk

(16) ()] S min{l, Ff}  and  Op(z) = W[cb(ﬂﬁ) — ().

For a global solution u to , we introduce the interaction Morawetz
quantity

Mg(t) = / / )P0 =)@ =) -2 TmfaVa ¢ ) de dy

Using and assuming M (ug) = E(ug) = Eyp, one has

(17) sup |[Mg(t)| < RES.
teR

Using this quantity, we will establish the following estimate.
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Theorem 4.1 (Interaction Morawetz estimate). Let ug € H' satisfy
(), and suppose further that

M (uo) = E(uo) = Eo.
Let u :RxR%— C be the corresponding global solution to (cf. Lemma.

Lete >0,a € R, Ty > 1, and J > e~ . There exists § = §(Eg) > 0 such
that for Ry = Ry(0) sufficiently large,

/M/Roe o ([ et

SVEO7

)V e u()]|? do dy ds9Z dt

where x is as in ,

J
(18) v= };%GJ +e,

and
fXQ(LES)Im[ﬂVu](t,a:) dz
IR ut, o)) do

(unless the denominator is zero, in which case {(t,s,R) =0).

ng(t,S,R):—

Proof. In the following, repeated indices are summed and explicit depen-
dence on ¢ is suppressed. We write u; = 0ju, and so on.
We rely on the identities

B 4 (d+1)
0:2Im wuy, = 8km|u\ -1

+ 0jjklul* — 4Re 9; (ujuy),
8t]u|2 = —20 Im(ﬂuk),

which follow from the equation (1f). Then

(19) 4G = H// u ()P (x — ) (@ — y)rdplu(e)| 1 dady
(20) + / / ()Pl — ) — )i u()? de dy
(21) — 4 [ [ oy Gy )i e — ) — ) () o) iy

(22) 4 / ()Pl — y) (@ — y)e Red; (up) (z) de dy.
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We will first integrate by parts in . Using , we have
[y (x)xy] = do(z) + (d — 1) (¢ — @) ().

We further introduce

gy 2D
(23) $1(2,y) = o /xz(yR )x -t (F5°) ds.

We can then write

00 [ = g [[ [ RN Rl Plute) 5 dwayds
(25) - 220 [ [ uty)Pluco) d—ﬂ”[w—@(x—y)]dxdy
(26) d+1/ lu(y) 2 u(@)| 5 [p(x — y) — é1 (2, )] da dy.

We will later use and the sharp Gagliardo—Nirenberg inequality (along
with below) to exhibit some coercivity, while and will be
treated as error terms.

We next consider . We integrate by parts twice, which yields

(27) - / / ()2 u(@)]? - VI(d — D)(a —y) + bz — y)] drdy.

This term will be treated as an error term below.
We turn our attention to and . Let us denote

Py(x — y) = 85 — iz,

Then integrating by parts,
= 1 [ [ () )0, 10w — ) (o~ i) () (o) o dy
=~ [ (i) 0) () 05502 ) drdy
~ 4 [ [ (i) (0) (i) ) PG~ (0~ ) )] vy

(28) =-;ta ///XZ( I (g

(200 4 / / T (247) () I (24 () Py — ) [(86 — &) — )] e dy.

2V Im[aVu](z) - Im[aVu](y) dz dy ds
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Integrating by parts in , we compute similarly

(30) @)=t / / /

(31) 4 / ()| Re(@ui) (2) Py — 9)[(6 — ) (x — y)] da dy.

X (52) [u(y) *|Vu(z)|? dz dy ds

We treat the contribution of + and + separately.
First, let Wy denote the angular derivative centered at y. Then

+ (@) =4 / / () 2IIYyu(@) P16 — ) (x — y)] da dy
4 / / Im{aY,ul(y) - Im[aY,u)(z)[(4 — 6)( — y)] d dy,

and hence by Cauchy—Schwarz and the fact that ¢ — ¢ is a nonnegative
radial function, we deduce

(32) B+ @9 >0

We turn to + . For fixed s € R?, consider the quantity defined
by

I

We claim this quantity is Galilean invariant, that is, invariant under the
transformation

yT {\u )| Vu(z) >~ Im[aVu](:c)-Im[ﬂVu](y)}da:dy.

u(t, z) — ub(t, ) = e u(t, z)
for any & = £(t, s, R). Indeed, one has

[u* (y)* |Vt (2)? — Im[a* Vaf] () - Im[a* Vut](y)
= lu(y)’|Vu(@)]* — Im[aVu](z) - Im[@Vu)(y)
+& - Ju(y)|* Im[aVu(z) — € - [u(z)|* Im[aVu(y)

and hence the claim follows by symmetry of x? and a change of variables.
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We now define £ = £(¢, s, R) so that

/XQ(””I}

In particular, we can achieve this by choosing

NEES
fx

provided the denominator is nonzero (otherwise ¢ = 0 suffices).
For this choice of £, we have

0 @8- e [ v

We will combine this term with and use the sharp Gagliardo—Nirenberg
inequality to exhibit coercivity below.

We now collect , , , , , and to deduce

o efffuer

{Ix(E52) Vs (2) P = g IX (5 ul@)| = } da dy ds

) Im[a Vub](z) dz = 0.

uVu]( ) dx
(x)|? dx

&(tys,R) =

X () )P Vus ()] de dy ds.

(36)  + / () ) 5
X | = ¢l(z —y) + [o(x —y) — d1(z,y)]| dx dy
60+ [[ P V@ 966 - )]+ ot - )] dody

for some ¢ > 0.
We will average this inequality over t € [a,a + Tp] and logarithmically

over R € [Ry, Roe’].
We start with . Recalling , we have by the fundamental theorem

of calculus
a+Ty Roe’
dMR dR dt 1 Rge‘]
JTO 0

We turn to (36]). Recalling and the definition of x, we have

|p(a —y) — d1(z,y)| Se

(38)
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Similarly, by construction,

Noting that

we deduce

e’ Ry
(39) ;/},/ Bo)L at < (e + ) ES.
I Ry
We turn to . For this term we note that

Vol < % and |Vy| = || (¢ — 1/’)‘ mln{R, |z|2}

Thus, noting that

e’ Ry

1 dR <

J/ R ~ JR0E07
Ry

we deduce

(40) T / / BDE dt < 55 B

Finally, we consider . We wish to establish a lower bound for this
term by using the sharp Gagliardo—Nirenberg inequality.

To this end, first note that by and Lemma there exists § > 0 so
that

(41) Sup{Hu e V)22 } < (1=30)5 Q|2 | VQ| -

We claim that for R = R(J) large enough, we in fact have

(42) Sup{HX Full VIl } < (1—28)% IVQl|ze-

To see this, first note that multiplication by x only decreases the L?-norm,
so that it suffices to consider the H'-norm. For this, we use the identity

(43) / IV ()P dr = / CIVal? - xAxluf? dz,
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whence
IVIX(F)ulllZ: < [IVul7: +@(32M(U))

In particular, choosing R large enough, (42| . follows from .

In light of , we may apply the sharp GagliardofNirenberg inequality
in the form of Lemma (and then use (43]) once more, possibly choosing
R = R(M (u),0) even larger) to deduce

2(d+1)

a7l L < (1= 20)[VIx(F)u wZe < (1= 0)Ix(F)Vullz:

uniformly for ¢ € R. Consequently,

(44

Roe‘]
B3] @
6 Roe
2[5 [ e

Collecting , , , and , we find

\Vus ()| dz dy ds% dt.

Roe’
YA m// PPNV (@) dedy ds 2
< Ej (Roe tet g+ g )
which completes the proof of Theorem ]

5. Proof of the main result

In this section, we use the interaction Morawetz inequality and the scattering
criterion in Theorem [3.1] to prove Theorem

Proof of Theorem[1.1]. Let up be as Theorem and let u be the corre-
sponding solution to (/). By Lemma u is global and obeys @D It re-
mains to establish scattering. In particular, it suffices to consider scattering
forward in time, for which it is enough to verify the scattering criterion (|10))
appearing in Theorem

Using the rescaling , we may assume that

M(uo) = E(uo) = Ep.

In order to establish , we first fix a e Rand let 0 <e <1 and Ty > 1
(to be determined more precisely below).



Focusing NLS 1821

By Theorem 4.1 there exists t; € (a,a + 1To) and R € [Ro, e’ Ry] so

that
R// (2 Yu(tr, )Pl (s

where & = £(t1,s, R) and v is as in ([18]). We make the change of variables
s = cR(z + 0) where z € Z¢, 6 € [0, 1] , and ¢ = ¢(d) will be specified below.
We deduce that there exists 6; € [0,1]% so that

\Vus (ty, z)|? de dy ds S vE2,

(46) u(ty, y) PIx(P5H) V't (tr, 2)* de dy < vES,

2€74
where now
s1=s1(2) =cR(z+61) and & =¢(t,s1(2), R).
Without loss of generality, we may assume 67 = 0, so that
s1 =cRz and & =&(ti,cRz, R).
Our goal will be to estimate

llur ()]l 2a+2) . where up(t) = TRy (1).
L,

([t 11+ TF | xRY)
To this end, for each z € Z¢, we introduce v(z) : R x R* — C defined by
(47) 0(zit,2) = X (EEE Y (1)

Choosing ¢ = ¢(d) sufficiently close to one, we have by the support properties
of x that

2(d+2) 2(d+2)
(48) lurll i 1 Z [[v( Sdt2) 1 )
L d L ([tl,tlJrTOS}XRd) 274 L d L ([t17t1+T03]><1Rd)

and hence we are faced with estimating each v(z). To this end, note that
each v(z) solves an equation, namely

{(z“o‘wmv(z):zm-w X2 )] g Al (2=gR2)],
v(zit1, ) = x(5FE u(ty, x).

To simplify notation, let us translate ¢; to 0, take space-time norms over

[0, T ] x RY, and denote q = Sl+12).
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We then have the following Duhamel formula for v(z):

(49) v(z;t) = 2 [x(=4E)u(0)]

(50) —i /O =39V (5) - T (=282)] + ug (s)A [ (=52)] ) ds.

To estimate , we will exploit Galilean invariance, specifically through
the identity

eAle f(2)] = e~ HEP it [e"A f](x — 2t€) for any & € R%

Thus by a change of variables, Sobolev embedding, Strichartz, and interpo-
lation, we deduce

BRNG ST PR B EEENE SO
S ICEFE)uO0) |2 |V De (=) e u(O)] | 2.

(=) Ve (o)
VX))

1
2
Lz

We first estimate . We will show that

(53) « <6WOER

for some 0 > 0. Indeed, for d € {3,4} we have ¢ > 4, and hence by we
have

1EDle: 5 ”HX £=e 1, (0) | o (2522 )V [ u(0)]| 12 |

a
2
z

~

N =

S 6 v B,

<[ e e e o |

which is acceptable. On the other hand, when d > 5, we have q € (2,4). We
can therefore firstly estimate

1EDlles < H.M H.Hez

Using as above, we have

e < g2 ) 0) | 2| (=) T[S u(O) |2 |2, < (5705 Eol
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On the other hand, by Cauchy—Schwarz and support properties of y, we
have

2 S I (=5 )u(0 )IlmzIIX(M)V[GB%U(O)H@@ S Eg-

Combining the last two estimates yields , as desired.
For , we instead have

— _ L E;
) 18Dl S pr IO s V) (O < 5o
This completes the estimation of .
We next estimate using the local smoothing estimate @:
o, SR Vur - VIX(ZEE) ez, + B2 [ur A (=52)] o
S R3[| Vuy - Vx (=5 ]Hengz + R ur Alx( ‘CRZ)]Hmp :
Then by the support properties of x, we can bound
TS
/ S IVuslt) VN, dt Sy [ 190001 de S o

ZE€Z4

Estimating similarly for the term containing the Laplacian, we deduce

e e
e eR:  £2R:

(55)

Recalling and and collecting , , and , we deduce

Roe’\’ 1 TP TP
06) 0 E2

Ur|| 20+2 ~ T T T+
| HLM (It 11+ T xR [<T0J5 eiR:  cR: 2R

Choosing Ry and Tj sufficiently large and recalling the definition of uy, yields

1
2(d+2) 5 6E02 .

Jeit-a(y)
([t17t1+T3]XRd)

I
L

ta‘

Thus, for € = ¢(Ep) small enough, a standard continuity argument yields

m\»—A

ull 2tz f Se
L d-1 ([tl,t1+T03]><Rd)

t,x
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1
As € > 0 was arbitrary, this implies (10) with to =t + T € (a,a + To).

Appealing to Theorem we complete the proof of Theorem O
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