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The set of fiber-bunched cocycles with

nonvanishing Lyapunov exponents over

a partially hyperbolic map is open

Lucas Backes, Mauricio Poletti, and Adriana Sánchez

We prove that the set of fiber-bunched SL(2,R)-valued Hölder co-
cycles with nonvanishing Lyapunov exponents over a volume pre-
serving, accessible and center-bunched partially hyperbolic diffeo-
morphism is open. Moreover, we present an example showing that
this is no longer true if we do not assume accessibility in the base
dynamics.

1. Introduction

Given an invertible measure preserving transformation f : (M,µ)→ (M,µ)
of a standard probability space and a measurable functionA : M → GL(d,R)
we define the linear cocycle over f by the dynamically defined products

(1) An(x) =


A(fn−1(x)) · · ·A(f(x))A(x) if n > 0

Id if n = 0

(A−n(fn(x)))−1 = A(fn(x))−1 · · ·A(f−1(x))−1 if n < 0.

The simplest examples of linear cocycles are given by derivative transforma-
tions of smooth dynamical systems: the cocycle generated by A(x) = Df(x)
over f is called the derivative cocycle. Taking as an example the hyperbolic
theory of Dynamical Systems where one can understand certain dynamical
properties of f by studying the action of Df on the tangent space, one
can hope that by studying properties of linear cocycles one can also deduce
some properties of f . Nevertheless, the notion of linear cocycle is much more
general and flexible, and arises naturally in many other situations as in the
spectral theory of Schrödinger operators, for instance.

In this short note we are interested in the asymptotic behavior of An(x).
More precisely, we are interested in understanding certain regularity prop-
erties of Lyapunov exponents. These objects measure the asymptotic rates
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of contractions and expansions along different directions and are one of the
most fundamental notions in dynamical systems.

It is well known that, in general, Lyapunov exponents can be very sen-
sitive as functions of the cocycle. For instance, Bochi [5, 6] proved that in
the space of SL(2,R)-valued continuous cocycles over an aperiodic map, if
a cocycle is not hyperbolic, then it can be approximated by cocycles with
zero Lyapunov exponents. In particular, there are cocycles with positive
Lyapunov exponents that are accumulated by cocycles with zero Lyapunov
exponents. Moreover, Bocker and Viana [7] constructed an example over
a hyperbolic map showing that the same phenomenon can happen in the
Hölder realm. Furthermore, when the base dynamic is far from being hyper-
bolic, for example, when f is a rotation on the circle, Wang and You [14],
showed that having non-zero Lyapunov exponents is not an open property
even in the C∞ topology.

In order to construct their example, Bocker and Viana exploited the
fact that the cocycle is not fiber-bunched. In fact, it was shown by Backes,
Butler and Brown [3] that in the fiber-bunched setting over a hyperbolic
map the Lyapunov exponents vary continuously with respect to the cocycle
and, in particular, cocycles with positive Lyapunov exponents can not be
approximated by cocycles with zero Lyapunov exponents.

In the present work we are interested in understanding the case when the
cocycle still have some regularity properties, namely, it is fiber-bunched but
the base dynamics exhibit some mixed behaviour of hyperbolicity and non-
hyperbolicity, that is, the map f is partially hyperbolic. In fact, we show that
if f is chaotic enough and A is fiber-bunched then the Bochi phenomenon
can not occur. More precisely, (see Section 2 for detailed definitions),

Theorem 1.1. If (f, µ) is a volume preserving partially hyperbolic accessi-
ble and center-bunched diffeomorphism and A : M → SL(2,R) is a Hölder
continuous fiber-bunched map with nonvanishing Lyapunov exponents, then
A can not be accumulated by cocycles with zero Lyapunov exponents.

Moreover, we show that the accessibilty assumption in the previous re-
sult is necessary. More precisely,

Theorem 1.2. There exists a volume preserving partially hyperbolic and
center-bunched diffeomorphism f and a Hölder continuous fiber-bunched
map A with non-zero Lyapunov exponents which is approximated by cocycles
with zero Lyapunov exponents.
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The set of cocycles with nonvanishing Lyapunov exponents 1721

2. Statements

Let f : M →M be a Cr, r ≥ 2, diffeomorphism defined on a compact mani-
fold M , µ an ergodic f -invariant Borel probability measure and let A : M →
SL(2,R) be an α-Hölder continuous map. This means that there exists a
constant C > 0 such that

‖A(x)−A(y)‖ ≤ Cd(x, y)α

for all x, y ∈M where ‖A‖ denotes the operator norm of a matrix A, that
is, ‖A‖ = sup{‖Av‖/‖v‖; ‖v‖ 6= 0}. Let Hα(M) denote the space of all such
α-Hölder continuous maps. We endow this space with the α-Hölder topology
which is generated by the norm

‖A‖α = sup
x∈M
‖A(x)‖+ sup

x 6=y

‖A(x)−A(y)‖
d(x, y)α

.

2.1. Lyapunov exponents

It follows from the subadditive ergodic theorem of Kingman [9] that there
exists a full µ-measure set Rµ ⊂M , whose points are called µ-regular points,
such that for every x ∈ Rµ the limits

λu(A, x) = lim
n→∞

1

n
log ‖An(x)‖ and λs(A, x) = lim

n→∞

1

n
log
∥∥(An(x))−1

∥∥−1
exist. We call such limits Lyapunov exponents. Moreover, when λu(A, x) 6=
λs(A, x) it follows from a famous theorem of Oseledets [11] that there exists
a decomposition R2 = Eu,Ax ⊕ Es,Ax , called the Oseledets decomposition, into
vector subspaces depending measurably on x such that for every x ∈ Rµ,

(2) A(x)E∗,Ax = E∗,Af(x) and λ∗(A, x) = lim
n→±∞

1

n
log ‖An(x)v‖

for every non-zero v ∈ E∗,Ax and ∗ ∈ {u, s}. Furthermore, since the Lyapunov
exponents are f -invariant, ergodicity of µ implies that they are constant
for every x ∈ Rµ. In this case we write λu(A, x) = λu(A,µ) and λs(A, x) =
λs(A,µ).

2.2. Partial hyperbolicity

A diffeomorphism f : M →M of a compact Cr manifold M , r ≥ 1, is said
to be partially hyperbolic if there exists a non-trivial splitting of the tangent
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bundle

TM = Es ⊕ Ec ⊕ Eu

invariant under the derivative Df , a Riemannian metric ‖ · ‖ on M , and
positive continuous functions ν, ν̂, γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1

such that, for any unit vector v ∈ TxM ,

‖Df(x)v‖ < ν(x) if v ∈ Es(x),

γ(x) <‖Df(x)v‖ < γ̂(x)−1 if v ∈ Ec(x),

ν̂(x)−1 <‖Df(x)v‖ if v ∈ Eu(x).

All three sub-bundles Es, Ec, Eu are assumed to have positive dimension.
We say that f is center-bunched if

ν < γγ̂ and ν̂ < γγ̂.

We need this hypothesis because we are going to use the results of [1].
From now on, we take M to be endowed with the distance d : M ×M → R
associated to such a Riemannian structure.

Suppose that f : M →M is a partially hyperbolic diffeomorphism, then
the stable and unstable bundles Es and Eu are uniquely integrable and their
integral manifolds form two transverse continuous foliations Ws and Wu,
whose leaves are immersed sub-manifolds of the same class of differentiability
as f . These foliations are referred to as the strong-stable and strong-unstable
foliations. They are invariant under f , in the sense that

f(Ws(x)) =Ws(f(x)) and f(Wu(x)) =Wu(f(x)),

where Ws(x) and Wu(x) denote the leaves of Ws and Wu, respectively,
passing through any x ∈M . We say that f is accessible if M and ∅ are the
only su-saturated sets. This means that, except of ∅, M is the only set that
is a union of entire strong-stable and strong-unstable leaves.

2.3. Fiber-bunched cocycles

Let f : M →M be a Cr partially hyperbolic map on a compact manifold
M and A : M → SL(2,R) be an α-Hölder continuous map. We say that the
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The set of cocycles with nonvanishing Lyapunov exponents 1723

cocycle generated by A over f is fiber-bunched if

‖A(x)‖‖A(x)−1‖ν(x)α < 1 and ‖A(x)‖‖A(x)−1‖ν̂(x)α < 1

for every x ∈M . As a shorthand for this notion, since our base dynamics
f is going to be fixed, we simply say that A is fiber-bunched. Observe that
this is an open condition in Hα(M).

2.4. Main results

The main results of this note are the following. Recall that a measure µ is
in the Lebesgue class if it is generated by a volume form.

Theorem A. Let f : M →M be a Cr, r ≥ 2, partially hyperbolic, vol-
ume preserving, center-bunched and accessible diffeomorphism defined on a
compact manifold M and µ an ergodic f -invariant measure in the Lebesgue
class. If A ∈ Hα(M) is fiber-bunched and λu(A,µ) > λs(A,µ) then A can
not be accumulated by cocycles with zero Lyapunov exponents.

We observe that a similar result can be stated in terms of GL(2,R)-
valued cocycles changing ‘cocycles with zero Lyapunov exponents’ by ‘cocy-
cles with just one Lyapunov exponent’. Indeed, by continuity of A and con-
nectedness of M (which follows from the accessibility), either det(A(x)) > 0
for every x ∈M or det(A(x)) < 0 for every x ∈M . Suppose we are in the
first case (the other case can be easily deduced from this one). Then, given
A : M → GL(2,R) consider gA : M → R defined by gA(x) = (detA(x))

1

2 and
B : M → SL(2,R) such that A(x) = gA(x)B(x). Therefore,

λu/s(A,µ) = λu/s(B,µ) +

∫
log(gA(x)) dµ(x),

and consequently,

λu(A,µ) = λs(A,µ)⇐⇒ λu(B,µ) = 0 = λs(B,µ).

As already mentioned at the introduction, we also present an example
showing that the accessibilty assumption in the previous theorem is neces-
sary. More precisely,

Theorem B. There exists a volume preserving partially hyperbolic and
center-bunched diffeomorphism f and a Hölder continuous fiber-bunched
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map A with non-zero Lyapunov exponents which is approximated by cocy-
cles with zero Lyapunov exponents.

In light of the previous results, we are lead to make the following con-
jecture which is in the same spirit as the conjectures proposed by Viana [13]
in the hyperbolic setting.

Conjecture 2.1. Under the assumptions of Theorem A the Lyapunov ex-
ponents of Hölder continuous SL(2,R)-valued cocycles vary continuously in
the set of fiber-bunched cocycles.

As a consequence of [10, Corollary 4] (see also [1]) it follows that the
previous conjecture is true in an open and dense subset of the fiber-bunched
elements of Hölder continuous SL(2,R)-valued cocycles giving more evi-
dences of its veracity.

3. Preliminary results

In this section we recall some classical notions and present some useful results
that are going to be used in the proof of our main theorem. Let f : M →M ,
A ∈ Hα(M) and µ be as in Theorem A.

3.1. Accessibility and holonomies

Given x, y ∈M , we write x ∼s y whenever y ∈ Ws(x). Observe that this is
an equivalence relation and moreover, is f -invariant. That is, if x ∼s y then
f(x) ∼s f(y). Analogously, we write x ∼u z if z ∈ Wu(x).

An su-path from x to y is a path connecting x and y which is a concate-
nation of finitely many subpaths, each of which lies entirely in a single leaf
ofWs or a single leaf ofWu. Every sequence of points x = z0, z1, . . . , zn = y,
such that zi ∼∗ zi+1 for ∗ = s or u, and i = 0, . . . , n− 1 defines a unique su-
path. An su-loop or a closed su-path is an su-path beginning and ending at
the same point. If γ1 is an su-path given by z0, . . . , zn and γ2 is an su-path
given by z′0, z

′
1, . . . , z

′
m, with z′0 = zn, we define γ1 ∧ γ2 as the su-path given

by z0, . . . , zn, z
′
1, . . . , z

′
m.

We say that an su-path γ defined by the sequence x = z0, z1, . . . , zn = y
is a (K,L)-path if n ≤ K and dW∗(zi+1, zi) ≤ L for every i = 1, . . . , n− 1
where dW∗ is the distance induced by the Riemannian strucutre on the sub-
manifoldW∗ for ∗ = s, u. For simplicity we write x ∼∗L y if dW∗(zi+1, zi) ≤ L



i
i

“2-Backes” — 2019/2/12 — 16:39 — page 1725 — #7 i
i

i
i

i
i

The set of cocycles with nonvanishing Lyapunov exponents 1725

for every i = 1, . . . , n− 1. Observe that, by the compactness of M and con-
tinuity of stable manifolds of bounded size, the space of (K,L)-paths is
compact. In particular,

Lemma 3.1. [15, Lemma 4.5] There exist constants K and L such that
every pair of points in M can be connected by a (K,L)-path.

For every pair of points x, y ∈M so that x ∼s y, our fiber-bunched as-
sumption assures that the limit

Hs,A
xy = lim

n→+∞
An(y)−1 ◦An(x)

exists (see [1, Proposition 3.2]). Moreover, for every L > 0,

(x, y,A)→ Hs,A
xy is continuous on Ws

L ×Hα(M)

where Ws
L = {(x, y) ∈M ×M ;x ∼sL y} (see [1, Remark 3.4]). In particular,

Remark 3.2. Given a sequence {Ak}k∈N converging to A in Hα(M), since
Ws
L is compact,

{Ws
L 3 (x, y)→ Hs,Ak

xy }k∈N
is equi-continuous for k sufficiently large.

The family of maps Hs,A
xy is called an stable holonomy for the cocycle

(A, f). It is easy to verify that (see [1, Proposition 3.2]) for x ∼s y and
z ∼s y,

Hs,A
xx = Id and Hs,A

xy = Hs,A
zy ◦Hs,A

xz

and

Hs,A
f j(x)f j(y) = Aj(y)Hs,A

xy A
j(x)−1 ∀j ≥ 0.

Similarly, for x ∼u y we define the unstable holonomy Hu,A
xy as the sta-

ble holonomies for (A−1, f−1). If γ is the su-path defined by the sequence
z0, z1, . . . , zn then we write HA

γ = H∗,Azn−1zn ◦ · · · ◦H
∗,A
z0z1 for ∗ ∈ {s, u}.

3.2. Disintegrations and su-invariance

We say that a measure m on M × P1 projects on µ if π∗m = µ where π is
the canonical projection π : M × P1 →M . Observe that any such measure
admits a disintegration with respect to the partition {{x} × P1}x∈M and the
measure µ, that is, there exists a family of measures {mx}x∈M on {{x} ×
P1}x∈M so that for every measurable B ⊂M × P1,
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• x→ mx(B) is measurable,

• mx({x} × P1) = 1 and

• m(B) =
∫
M mx(B ∩ ({x} × P1))dµ(x).

Moreover, such disintegrantion is essentially unique [12]. Identifying each
fiber {x} × P1 with P1, we can think of x→ mx as a map from M to the
space of probability measures on P1 endowed with the weak∗ topology.

Let FA : M × P1 →M × P1 be the map given by

FA(x, v) = (f(x), [A(x)v])

and m be an FA-invariant measure projecting on µ. We say that m is s-
invariant if there exists a total measure set M s ⊂M such that for every
x, y ∈M s satisfying x ∼s y we have Hs,A

xy ∗mx = my. Such measure m is
also known as an s-state. Analogously, we say that m is u-invariant (or
an u-state) if the same is true replacing stable by unstable in the previous
definition. We say that m is su-invariant if it is simultaneously s-invariant
and u-invariant. The main property of su-ivariant measures is the following

Proposition 3.3. [1, Theorem D] Any FA-invariant measure m projecting
on µ which is su-invariant admits a disintegration {mx}x∈M for which M s =
Mu = M and so that mx depends continuously on the base point x ∈M in
the weak∗ topology.

3.3. Trivial holonomies on su-loops

In this section we explain how in certain specific situations we can perform
a change of coordinates that makes the cocycle (A, f) constant without
changing its Lyapunov exponents.

Let us assume that HA
γ = id for every su-loop γ with at most 3K legs

and each of them with length at most L. Recall that we call such loops
(3K,L)-loops. In particular, HA

γ = id for every su-loop γ. Indeed, observe
initially that if γ is a (2K,L)-path from x to y then, by Lemma 3.1, there
exists a (K,L)-path γ′ from x to y so that HA

γ = HA
γ′ . In fact, if −γ′ denotes

the path γ′ with opposite orientation then γ ∧ (−γ′) is a (3K,L)-loop and

HA
γ ◦ (HA

γ′)
−1 = HA

γ ◦HA
−γ′ = HA

γ∧(−γ′) = id .

Hence, HA
γ = HA

γ′ . Now, taking any su-loop γ with an arbitrary number of
legs whose lengths are at most L we can decompose it as γ = γ1 ∧ · · · ∧ γk,
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where every γi is a (K,L)-path. In particular, γk−1 ∧ γk is a (2K,L)-path
and by the previous argumment we can replace it by a (K,L)-path γ′k−1
with the same starting and ending points and, so that HA

γk−1∧γk = HA
γ′k−1

.

Thus, taking γ′ = γ1 ∧ · · · ∧ γk−2 ∧ γ′k−1 we have that γ and γ′ have the
same starting and ending points and HA

γ = HA
γ′ . Repeating this procedure a

finite number of times we get some (K,L)-loop γ′′ such that HA
γ = HA

γ′′ = id.
Finally, observing that any su-loop γ can be transformed into an su-loop
with legs of size at most L just by breaking one “large” leg into several with
smaller sizes we conclude that HA

γ = id for every su-loop proving our claim.
As a consequence we get that if γ is an su-path connecting x and y then
HA
γ does not depend on γ. In fact, if γ1 and γ2 are su-paths connecting x

and y then γ1 ∧ (−γ2) is an su-loop and thus HA
γ1 ◦ (HA

γ2)
−1 = HA

γ1 ◦H
A
−γ2 =

HA
γ1∧(−γ2) = id as claimed. Let us denote this common value simply by HA

xy.
From the properties of the holonomies and the fact that any two points
x, y ∈M can be connected by a (K,L)-path it follows that

• HA
yzH

A
xy = HA

xz,

• A(y)HA
xy = HA

f(x)f(y)A(x),

• A→ HA
xy is uniformly continuous for any pair of points x, y ∈M and

• ‖HA
xy‖ ≤ N for some N > 0 and any x, y ∈M .

Fix x ∈M and, given y ∈M , consider the following transformation

Â(y) = HA
f(y)xA(y)HA

xy.

Then, Â2(y)=Â(f(y))Â(y)=HA
f2(y)xA(f(y))HA

xf(y)H
A
f(y)xA(y)HA

xy and con-

sequently Â2(y) = HA
f2(y)xA

2(y)HA
xy. More generally,

Ân(y) = HA
fn(y)xA

n(y)HA
xy

for every n ∈ N and consequently (Â, f) and (A, f) have the same Lyapunov
exponents. Moreover, for any z, y ∈M ,

Â(z)−1Â(y) =
(
HA
f(z)xA(z)HA

xz

)−1
HA
f(y)xA(y)HA

xy

= HA
zxA(z)−1HA

xf(z)H
A
f(y)xA(y)HA

xy

= HA
zxA(z)−1HA

f(y)f(z)A(y)HA
xy

= HA
zxA(z)−1A(z)HA

yzHxy

= HA
zxH

A
yzHxy = HA

zxH
A
xz = id .
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In particular, Â is constant and consequently its largest Lyapunov exponent
is the logarithm of the norm of the greatest eigenvalue of Â. Summarizing,
if HA

γ = id for every (3K,L)-loop γ then we can perform a change of coordi-
nates that makes the cocycle (A, f) constant without changing its Lyapunov
exponents. This is going to be used in Section 4.3.

3.4. SL(2,R) matrices and invariant measures on P1

The following result plays an important part in our proof below.

Proposition 3.4. For each n ∈ N, let Ln be a SL(2,R) matrix so that

Ln
n→+∞−−−−−→ id and let ηn be an Ln-invariant measure on P1 so that ηn

n→+∞−−−−−→
1
2(δp + δq) for some p, q ∈ P1 with p 6= q. Then for every n sufficiently large
either Ln is hyperbolic or Ln = id.

Proof. The proof is by contradiction. We start observing that as Ln con-
verges to the identity all the matrices have positive trace for n sufficiently
large. Consequently, if Ln is not the identity we have three posibilities: if the
trace tr(Ln) > 2 then the matrix Ln is hyperbolic, if tr(Ln) < 2 then the ma-

trix Ln is elliptic and is conjugated to a rotation of angle θn = arccos( tr(Ln)2 )
and if tr(Ln) = 2 then the matrix Ln is parabolic and is non diagonalizable
with both eigenvalues equal to 1.

Suppose initially that all the matrices Ln have tr(Ln) < 2. In particular,
for each n ∈ N there exists Pn ∈ SL(2,R) so that Ln = P−1n RθnPn where Rθn
stands for the rotation of angle θn. Moreover, since tr(Ln)

n→+∞−−−−−→ 2, we get

that θn
n→+∞−−−−−→ 0.

Now, for each n ∈ N let us consider νn = Pn∗ηn which is an Rθn-invariant
measure. We start observing that there exists a subsequence {nj}j so that

νnj
j→+∞−−−−→ Leb where Leb stands for the Lebesgue measure on P1. Indeed, if

θn is an irrational number then we know that the only Rθn-invariant measure
is Leb. In particular, νn = Leb. Thus, if there are infinitely many values of
n for which θn is an irrational number we are done.

Suppose then that θn is a rational number for every n ∈ N. In particular,

Rθn is periodic and denoting by qn its period, since θn
n→+∞−−−−−→ 0, we have

that qn
n→+∞−−−−−→ +∞.

In what follows we make an abuse of notation thinking of P1 as [0, 1]
identifying the extremes of the interval.

Let ϕ : P1 → R be a continuous map and ε > 0. Since P1 is compact,
there exists δ > 0 so that | ϕ(x)− ϕ(y) |< ε whenever d(x, y) < δ. Thus,
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taking n� 0 so that qn >
1
δ we get that | ϕ(x)− ϕ( j

qn
) |< ε for every x ∈

[ jqn ,
j+1
qn

) and j = 0, 1, . . . , qn − 1. In particular,∣∣∣∣∣ 1

νn([ jqn ,
j+1
qn

))

∫ j+1

qn

j

qn

ϕdνn − ϕ(
j

qn
)

∣∣∣∣∣ < ε.

Now, observing that νn([ jqn ,
j+1
qn

)) = 1
qn

for every j = 0, 1, . . . , qn − 1 once νn
is Rθn-invariant, summing the previous expression for j from 0 up to qn − 1
and dividing both sides by qn we get that∣∣∣∣∣∣

∫ 1

0
ϕdνn −

1

qn

qn−1∑
j=0

ϕ(
j

qn
)

∣∣∣∣∣∣ < ε.

On the other hand, since ϕ is Riemann integrable,

lim
n→∞

1

qn

qn−1∑
j=0

ϕ(
j

qn
) =

∫
ϕdLeb

which implies that νn
n→+∞−−−−−→ Leb as claimed. So, restricting to a subse-

quence, if necessary, we may assume that νn
n→+∞−−−−−→ Leb.

We now analyse the accumulation points of ηn = P−1n ∗νn. If {P−1n }n
stay in a compact set of SL(2,R) then, taking a subsequence if necessary,
we may assume that there exists P ∈ SL(2,R) so that P−1n → P . In par-
ticular, limn→∞ ηn = P∗Leb which contradicts our assumption since P∗Leb
is non-atomic. If

∥∥P−1n

∥∥→∞ then we can work on the compactification of
quasi-projective transformations (see [13] or [8, Section 6.1]). In particular,
restricting to a subsequence, if necessary, we have that P−1n → Q, where Q
is defined outside some kernel (a one dimensional subspace) and the image
Im(Q) ⊂ P1 of Q is a one dimensional subspace. Thus, as the kernel has
zero Lebesgue measure we can apply [2, Lemma 2.4] to conclude that

lim
n→∞

P−1n ∗νn = Q∗Leb = δIm(Q)

which is a contradiction. Consequently, Ln may be elliptic only for finitely
many values of n.

To conclude the proof it remains to rule out the case when tr(Ln) = 2
and the matrices are non diagonalizable for infinitely many values of n. So,
suppose Ln is non diagonalizable and both of its eigenvalues are 1 for every
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n. Then by the Jordan’s normal decomposition we have

Ln = P−1n

(
1 1
0 1

)
Pn

for some Pn ∈ GL(2,R). Consequently, the only invariant measure for Ln
is atomic and have only one atom contradicting the fact that ηn

n→+∞−−−−−→
1
2(δp + δq). Thus, Ln can be parabolic and different from id only for finitely
many values of n concluding the proof of the proposition. �

3.5. PSL(2,R) cocycles

Let us consider the projective special linear group given by PSL(2,R) =
SL(2,R)/{±Id}. That is, given A,B ∈ SL(2,R) let ∼ be the equivalence re-
lation given by A ∼ B if and only if A = B or A = −B. Given A ∈ SL(2,R),
let [[A]] = {B ∈ SL(2,R);B ∼ A} be the equivalence class of A with respect
to ∼. Then, PSL(2,R) = {[[A]];A ∈ SL(2,R)}. Observe that the norm ‖·‖
on SL(2,R) naturally induces a norm, which we are going to denote by the
same symbol, on PSL(2,R): given A ∈ SL(2,R), ‖[[A]]‖ := ‖A‖ = ‖−A‖.

Given A : M → SL(2,R) let us consider Ã : M → PSL(2,R) given by
Ã(x) = [[A(x)]]. By Kingman’s subadditive ergodic theorem [9] and the er-
godicity of µ it follows that the limit

L(Ã, µ) = lim
n→+∞

1

n
log ‖Ãn(x)‖

exists and is constant for µ-almost every x ∈M . In particular, since
‖An(x)‖ = ‖Ãn(x)‖ for every x ∈M and n ∈ N, we get that λu(A,µ) =
L(Ã, µ). Another simple observation is that for every v ∈ P1, [A(x)v] =
[Ã(x)v] and, consequently, the action induced by A on P1 coincide with

the action of Ã on P1. Moreover, HÃ
γ = [[HA

γ ]] ∈ PSL(2,R) is well defined

and have similar properties with respect to Ã as those of HA
γ with respect

to A described in Section 3.3. In particular, a similar conclusion to that of
Section 3.3 holds for Ã whenever HÃ

γ = [[id]] for every (3K,L)-loop γ: we

can perform a change of coordinates that makes the cocycle (Ã, f) constant

without changing L(Ã, µ). Consequently, denoting this new cocycle by ˆ̃A,
it follows that L(Ã, µ) is equal to logarithm of the norm of the greatest

eigenvalue of any representative of ˆ̃A.
Furthermore, the results of Section 3.4 also have a counterpart for

PSL(2,R) cocycles. In order to state it, recall that a sequence {L̃n}n in
PSL(2,R) is said to converge to L̃ ∈ PSL(2,R) if there are representatives
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L and Ln in SL(2,R) of L̃ and L̃n, respectively, so that the sequence {Ln}n
converges to L in SL(2,R).

Proposition 3.5. For each n ∈ N, let L̃n ∈ PSL(2,R) be so that L̃n
n→+∞−−−−−→

[[id]] and let ηn be an L̃n-invariant measure on P1 so that ηn
n→+∞−−−−−→ 1

2(δp +
δq) for some p, q ∈ P1 with p 6= q. Then for every n sufficiently large either
L̃n is hyperbolic or L̃n = [[id]].

This result follows easily from Proposition 3.4: for every L̃n ∈ PSL(2,R)
we can take a representative of L̃n in SL(2,R) with positive trace and apply
the aforementioned result to these representatives.

4. Proof of the main result

Let f : M →M , A : M → SL(2,R) and µ be given as in Theorem A and
suppose there exists a sequence {Ak}k∈N in Hα(M) with λu(Ak, µ) =

λs(Ak, µ) = 0 for every k ∈ N and such that Ak
k→+∞−−−−→ A.

For each k ∈ N, let mk be an ergodic FAk-invariant probability measure
on M × P1 projecting on µ where FAk is defined similarly to FA. Passing to a
subsequence if necessary, we may assume that the sequence {mk}k converges
in the weak∗ topology to some measure m which is, as one can easily check,
FA-invariant and projects on µ. In order to prove Theorem A we are going
to analyse these families of measures and their respective disintegrations.

4.1. Continuity and convergence of conditional measures

It follows from Remark 3.2 and [1, Theorem C] and its proof that

Corollary 4.1. For every k sufficiently large there exists an su-invariant
disintegration {mk

x : x ∈M} of mk with respect to the partition {{x} × P1 :
x ∈M} and µ such that

{M 3 x→ mk
x}k�0 is equi-continuous.

As an application of this corollary we get that

Proposition 4.2. The measure m is su-invariant and admits a continuous
disintegration {mx}x∈M with respect to {{x} × P1}x∈M and µ so that mk

x

converges uniformly on M to mx.
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In order to prove the previous proposition we need the following auxiliary
result.

Lemma 4.3. Let X and Y be compact metric spaces, µ a Borel probability
measure on X and {νk}k∈N be a sequence of probability measures on X × Y
projecting on µ and converging in the weak∗ topology to some measure ν.
Then for every measurable function ρ : X → R and every continuous func-
tion ϕ : Y → R,

lim
k→∞

∫
ρ× ϕdνk =

∫
ρ× ϕdν.

Proof. Given ε > 0 let ρ̂ : X → R be a continuous function so that∫
X
|ρ̂− ρ|dµ < ε

2 supϕ
.

Take k0 ∈ N such that for every k > k0,∣∣∣∣∫ ρ̂× ϕdνk −
∫
ρ̂× ϕdν

∣∣∣∣ < ε

2
.

Then, for k > k0,∣∣∣∣∫ ρ× ϕdνk −
∫
ρ× ϕdν

∣∣∣∣
< supϕ

∫
X
|ρ̂− ρ|dµ+

∣∣∣∣∫ ρ̂× ϕdνk −
∫
ρ̂× ϕdν

∣∣∣∣ < ε.

�

Proof of Proposition 4.2. For each k ∈ N, let {mk
x}x∈M be the disintegration

of mk given by Corollary 4.1. We start observing that for every continu-
ous function ϕ : P1 → R, by Arezelà-Aslcoi’s theorem (recall Corollary 4.1),

there exists a subsequence of {
∫
P1 ϕdm

k
x}k such that

∫
P1 ϕdm

kj
x → Ix(ϕ) uni-

formly on M . Taking a dense subset {ϕj}j∈N of the space C0(P1) of con-
tinuous functions ϕ : P1 → R and using a diagonal argument, passing to a
subsequence if necessary, we can suppose that

∫
P1 ϕdm

k
x → Ix(ϕ) for every

ϕ ∈ C0(P1). It is easy to see that Ix defines a positive linear functional on
C0(P1). Consequently, by Riesz-Markov’s theorem, for every x ∈M there
exists a measure m̂x on P1 such that Ix(ϕ) =

∫
ϕdm̂x.

On the other hand, letting {mx}x∈M be a disintegration of m with re-
spect to {{x} × P1}x∈M and µ and invoking Lemma 4.3 it follows that for
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every continuous function ϕ : P1 → R and any µ-positive measure subset
D ⊂M ,∫

D

∫
P1

ϕdmk
xdµ =

∫
D×P1

ϕdmk →
∫
D×P1

ϕdm =

∫
D

∫
P1

ϕdmxdµ.

Consequently, mx = m̂x for µ almost every x ∈M . Thus, extending mx =
m̂x for every x ∈M we get a continuous disintegration of m such that mk

x →
mx uniformly on x ∈M . In particular, by Remark 3.2 and the su-invariance
of mk for every k it follows that m is also su-invariant as claimed. �

From now on we work exclusively with the disintegrations {mk
x}x∈M and

{mx}x∈M of mk and m, respectively, given by Corollary 4.1 and the previous
proposition.

Recall we are assuming λu(A,µ) > 0 > λs(A,µ). Thus, letting R2 =
Eu,Ax ⊕ Es,Ax be the Oseledets decomposition associated to A at the point
x ∈M , it follows from Proposition 3.1 of [4] that for any FA-invariant mea-
sure m, its conditional measures are of the form mx = aδEu,Ax + bδEs,Ax for
some a, b ∈ [0, 1] such that a+ b = 1 where here and in what follows we
abuse notation and identify a 1-dimensional linear space E with its class [E]
in P1.

Lemma 4.4. There exist continuous and su-invariant functions which co-
incide with x→ Es,Ax , Eu,Ax for µ-almost every point. By su-invariance we
mean that for every (admissible) choice of x, y, z ∈M , Hs,A

xy E∗x = E∗y and

Hu,A
xz E∗x = E∗z for ∗ ∈ {s, u}.

From now on we think of Es,Ax and Eu,Ax as continuous functions defined
for every x ∈M .

Proof. Recall mk is an FAk-invariant measure such that mk → m. Since
λu(Ak, µ) = 0 for every k ∈ N we get that

∫
ΦAkdmk = 0 where ΦAk : M ×

P1 → R is given by ΦAk(x, v) = log ‖Ak(x)v‖‖v‖ . On the other hand,∫
ΦAkdmk →

∫
ΦAdm.

Thus,
∫

ΦAdm = 0 which implies that the numbers a and b given above are
strictly larger than zero. Now, by Proposition 4.2 we know that {mx}x is
su-invariant. Consequently, since Eu,Ax is u-invariant and Es,Ax is s-invariant,
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it follows δEu,Ax = 1
a(mx − bδEs,Ax ) is also s-invariant. Analogously, Es,Ax is u-

invariant. In particular, Eu,Ax and Es,Ax are su-invariant. Continuity follows
easily (see [1, Theorem D]). �

4.2. Excluding the atomic case with a bounded number of atoms

In this subsection we prove that mk
xk can not have a bounded number of

atoms (with bound independent of k) for infinitely many values of k ∈ N
and any xk ∈M . In order to do so, we need the following lemma.

Lemma 4.5. If mk
y has an atom for some y ∈M , then there exists j =

j(k) ∈ N such that for every x ∈M , there exist v1x, . . . , v
j
x ∈ P1 so that mk

x =
1
j

∑j
i=1 δvix.

Proof. Let vy ∈ P1 be such that mk
y(vy) = β > 0 and for every x ∈M , let

γx be an su-path joining y and x. By the su-invariance of the disintegration
{mk

x}k it follows that mk
x(HAk

γx vy) = β for every x ∈M . Thus, considering

L = {(x, vx) ∈M × P1; mk
x(vx) = β} we get that mk(L) =

∫
mk
x(L ∩ {x} ×

P1)dµ ≥ β > 0. Consequently, since L is FAk-invariant and mk is ergodic it
follows that mk(L) = 1. In particular, mk

x(L ∩ {x} × P1) = 1 for µ-almost
every x ∈M which implies that mk

x = 1
j

∑j
i=1 δvix , where 1

j = β (in particu-
lar, j does not depend on x). Finally, to prove that this claim holds true for
every x ∈M , we just take some su-path from a point in the total measure
set and x and use the su-invariance. �

The proof is going to be by contradiction. So, passing to a subsequence
and using the previous lemma suppose mk

x has j(k) atoms and that the se-
quence {j(k)}k is bounded. Restricting again to a subsequence, if necessary,
we may assume that j(k) is constant equal to some j ∈ N. In particular,
since mx = 1

2δEs,Ax + 1
2δEu,Ax , for k sufficiently large mk

x has an even number

of atoms. Thus, writing mk
x = 1

j

∑j
i=1 δvik(x) and reordering if necessary we

may suppose that vik(x)→ Eu,Ax for i ≤ j
2 and v`k(x)→ Es,Ax for ` > j

2 . More-
over, such convergence is uniform. Observe now that for each k ∈ N there
exists some xk ∈M such that Ak(xk)v

ik
k (xk) = vjkk (f(xk)) for some ik ≤ j

2

and jk >
j
2 , otherwise the set L = ∪x∈M{x} × {v1k(x), . . . , v

j

2

k (x)} would be
FAk-invariant with measure

mk(L) =

∫
mk
x({v1k(x), . . . , v

j

2

k (x)})dµ =
1

2
,
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contradicting the ergodicity. Thus, restricting to a subsequence, if neces-
sary, we may assume without loss of generality that vikk (xk) = v1k(xk) and

vjkk (xk) = vjk(xk) for every k ∈ N and that xk → x. In particular,

A(x)Eu,Ax = lim
k→∞

Ak(xk)v
1
k(xk) = lim

k→∞
vjk(f(xk)) = Es,Af(x),

a contradiction. Summarizing, we can not have a subsequence {ki}i so that
the sequence {j(ki)}i is bounded where j(k) stands for the number of atoms
of mk

x (which is independent of x ∈M).

4.3. Conclusion of the proof

Given x ∈M let γ be a non-trivial su-loop at x. In particular, from Lemma
4.4 it follows that HA

γ E
∗,A
x = E∗,Ax for ∗ ∈ {s, u}. Consequently, either HA

γ is

hyperbolic or HA
γ = ± id. If HA

γ is hyperbolic then, since HAk
γ

k→+∞−−−−→ HA
γ , it

follows that HAk
γ is also hyperbolic for every k � 0. Thus, since HAk

γ ∗m
k
x =

mk
x, it follows that mk

x is atomic and has at most two atoms for every k � 0
but from Section 4.2 we know this is not possible. So, we get that HA

γ = ± id

for every su-loop at x and every x ∈M and therefore HÃ
γ = [[id]] for every

su-loop at x and every x ∈M . Consequently, from Proposition 3.5 we get
that either there exists a non-trivial su-loop γ at some point x ∈M and a

sequence {kj}j going to infinite as j → +∞ so that H
Ãkj
γ is hyperbolic for

every j and thus H
Akj
γ is also hyperbolic for every j or HÃk

γ = [[id]] for every
su-loop γ and every k > kγ for some kγ ∈ N. Arguing as we did above we
conclude that the first case can not happen. So, all we have to analyse is
the case when HÃk

γ = [[id]] for every su-loop γ and every k > kγ for some
kγ ∈ N.

If there exists k0 ∈ N so that kγ ≤ k0 for every su-loop γ then making
the change of coordinates given in Section 3.3 for every k > k0 (recall Sec-
tion 3.5) we get the that L(Ãk, µ) is equal to the logarithm of the norm

of the greatest eigenvalue of any representative of ˆ̃Ak(x), where ˆ̃Ak(x) is a

constant element of PSL(2,R), and ˆ̃Ak(x)→ ˆ̃A(x). In particular,

λu(Ak, µ) = L(Ãk, µ)
k→+∞−−−−→ L(Ã, µ) = λu(A,µ)

which is a contradiction. Now, recalling that in order to perform the change
of coordinates in Section 3.3 it is enough to assume that HÃk

γ = [[id]] for
every (K ′, L′)-loop γ for someK ′, L′>0, to conclude the proof of Theorem A,
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in view of the previous argumment, we only have to show that we can not
have kγ arbitrarly large for (K ′, L′)-loops.

Let kγ be minimum for its defining property, that is, HÃk
γ = [[id]] for

every k > kγ and H
Ãkγ
γ 6= [[id]] and suppose that for each j ∈ N there exist

xj ∈M and a (K ′, L′)-loop γj at xj so that kγj
j→+∞−−−−→ +∞. Passing to a

subsequence we may assume xj
j→+∞−−−−→ x and γj

j→+∞−−−−→ γ where γ is an
su-loop at x. This can be done because each γj has at most K ′ legs and
each of them with length at most L′. In particular, if γj is defined by the

sequence xj = zj0, z
j
1, . . . , z

j
nj = xj then nj ≤ K ′ for every j. Thus, passing to

a subsequence we may assume nj = n ≤ K ′ for every j ∈ N and zji
j→+∞−−−−→

xi for every i = 1, . . . , n and consequently γ is the su-loop defined by the

sequence x = x0, x1, . . . , xn = x. Now, since HÃ
γ = [[id]], H

Ãkγj
γj

j→+∞−−−−→ HÃ
γ

and H
Ãkγj
γj 6= [[id]] it follows from Proposition 3.5 (recall Proposition 4.2)

that H
Ãkγj
γj is hyperbolic for every j � 0 and thus H

Akγj
γj is also hyperbolic

for every j � 0. Consequently, m
kγj
x is atomic and has at most two atoms

for every x ∈M and every j ∈ N which again from Section 4.2 we know is
not possible concluding the proof of Theorem A.

Remark 4.6. We observe that Theorem A can also be proved using the
technics of couplings and energy developed in [3]. Maybe those ideas can
be useful in proving Conjecture 2.1. We chose to present the previous proof
because it is shorter and also different. It is also worth noticing that a
similar result was obtained by Liang, Marin and Yang [10, Theorem 6.1]
for the derivative cocycle under the additional assumption that f has a
pinching hyperbolic periodic point. In our context, such a hypothesis would
immediately imply that all the conditional measures mk

x are atomic with
at most two atoms for every k � 0. In particular, Theorem A would follow
from the results of Section 4.2.

5. Examples

At this section we present two examples of fiber-bunched cocycles with non-
vanishing Lyapunov exponents over a partially hyperbolic map which are
accumulated by cocycles with zero Lyapunov exponents.
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5.1. Proof of Theorem B

Let ω be an irrational number of bounded type and f0 : S1 → S1 be given
by f0(t) = t+ 2πω where S1 is the unit circle. Recently, Wang and You
[14, Theorem 1] constructed examples of cocycles A ∈ Cr(S1,SL(2,R)) over
f0, for any r = 0, 1, . . . ,∞ fixed, with arbitrarily large Lyapunov expo-
nents which are approximated in the Cr-topology by cocycles with zero
Lyapunov exponents. Let A0 : S1 → SL(2,R) be such a cocycle and {Ak}k
be a sequence in Cr(S1, SL(2,R)) converging to A so that λu(Ak, ν) = 0
for every k ∈ N where ν denotes the Lebesgue measure on S1. Now, given
f1 : N → N , a volume-preserving Anosov diffeomorphism of a compact man-
ifold N , let us consider the map f : M := S1 ×N →M given by f(t, x) =
(f0(t), f1(x)) and let Â : M → SL(2,R) be given by Â(t, x) = A0(t). Thus,
defining Âk(t, x) = Ak(t) and denoting by µ the Lebesgue measure on M we
have that limk→+∞ Âk = Â, λu(Âk, µ) = λu(Ak, ν) = 0 for every k ∈ N and
λu(Â, µ) = λu(A0, ν) > 0. Consequently, since f is a volume-preserving par-
tially hyperbolic and center-bunched diffeomorphism and f1 may be chosen
so that (Â, f) is fiber-bunched, we complete the proof of Theorem B.

5.2. Random product cocycles

We now present another construction showing that given any real number
λ > 0, we have a fiber-bunched cocycle A over a partially hyperbolic and
center-bunched map f so that λu(A,µ) = λ which can be approximated by
cocycles with zero Lyapunov exponents. We start with a general construc-
tion.

Let Σ = {1, . . . , k}Z be the space of bilateral sequences with k symbols
and σ : Σ→ Σ be the left shift map. Given maps fj : K → K and Aj : K →
SL(2,R) for j = 1, . . . , k where K is a compact manifold, let us consider
f : Σ×K → SL(2,R) and A : Σ×K → SL(2,R) given, respectively, by

f(x, t) = (σ(x), fx0
(t))

and

A(x, t) = Ax0
(t).

The random product of the cocycles {(Aj , fj)}kj=1 is then defined as the
cocycle over f which is generated by A. Observe that this definition general-
izes the notion of random products of matrices explaining our terminology.
Indeed, taking K as being a single point we recover the aforementioned
notion.
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Differently from the case of random products of matrices where one have
continuity of Lyapunov exponents (see [3],[7], [13]), in the setting of random
products of cocycles Lyapunov exponents can be very ‘wild’. This is what
we exploit to construct our next example.

Let f0 : S1 → S1 and ν be as in the previous example and let A0 ∈
Cr(S1,SL(2,R)) be given by [14, Theorem 1] so that λu(A0, ν) > λ. Taking
f1 : S1 → S1 to be f1(t) = t and A1 : S1 → SL(2,R) given by A1(t) = id,
let (A, f) be the random product of the cocycles (A0, f0) and (A1, f1) as
defined above. Thus, letting η be the Bernoulli measure on Σ defined by the
probability vector (p0, p1) where p0 is so that p0λ

u(A0, ν) = λ and consid-
ering µ = η × ν, the cocycle generated by A over f has positive Lyapunov
exponents and is accumulated by cocycles with zero Lyapunov exponents.
Indeed, let {A0,k}k be a sequence in Cr(S1, SL(2,R)) converging to A0 for
which the cocycle (A0,k, f0) satisfies λu(A0,k, ν) = 0 for every k ∈ N whose
existence is guaranteed by our choice of A0 and [14, Theorem 1], {A1,k}k be
the sequence such that A1,k = id for every k ∈ N and (Ak, f) be the random

product of (A0,k, f0) and (A1,k, f1). It is easily to see that Ak
k→∞−−−→ A. Now,

for µ-almost every (x, t) ∈ Σ× S1,

λu(Ak, µ, x, t) = lim
n→∞

1

n
log ‖Ank(x, t)‖.

Thus, observing that Ank(x, t) = A
τn(x)
0,k (t) where

τn(x) = #
{

1 ≤ j ≤ n; σj(x)0 = 0
}
,

it follows that

λu(Ak, µ, x, t) = lim
n→∞

τn(x)

n

1

τn(x)
log
∥∥∥Aτn(x)0,k (t)

∥∥∥ = p0λ
u(A0,k, ν).

In partitular, λu(Ak, µ, x, t) is constant equal to λu(Ak, µ) for µ-almost every
(x, t) ∈ Σ× S1. Analogously, λu(A,µ) = p0λ

u(A0, ν). Consequently,

λu(Ak, µ) = 0 for every k ∈ N and λu(A,µ) = λ > 0

as claimed. Observe that despite the fact of not being smooth, the map f is
partially hyperbolic in the sense of the expansion and contraction properties
when Σ is endowed with the usual metric. Moreover, it is center-bunched
and the cocycle A is fiber-bunched.
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