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Distinguished representations for SL(n)

U. K. Anandavardhanan and Dipendra Prasad

For E/F a quadratic extension of local fields, and π an irreducible
admissible generic representation of SLn(E), we calculate the di-
mension of HomSLn(F )[π,C] and relate it to fibers of the base
change map corresponding to base change of representations of
SUn(F ) to SLn(E) as suggested in [16]. We also deal with finite
fields.

1. Introduction

The paper [16] formulates a general conjecture — in terms of Langlands
parameters, more specifically in terms of fibers of a certain base change
map — on the dimension of the space HomG(F )[π,C] for an irreducible
admissible representation π of G(E) where G is a general reductive group
over a local field F , and E/F is a quadratic extension of fields. In this
paper, we consider the case of G = SLn. The main theorem of this paper,
Theorem 5.6, computes dimC HomSLn(F )[π,C] for an irreducible admissible
generic representation π of SLn(E) in terms of the fiber of the base change
map from SU(n) to SLn(E), and thus confirms the general conjecture in
[16] for G = SLn. The dimension of HomSLn(F )[π,C] was computed earlier
in [4] when n = 2 and in [1] when n is odd. This paper could be considered
a natural sequel to these two earlier works, but now considered more from
the point of view of base change from unitary groups.

The symmetric space (SL2(E), SL2(F )) studied in [4] was the first ex-
ample in the literature which is not a supercuspidal Gelfand pair, that
is to say the symmetric space affords irreducible supercuspidal represen-
tations with multiplicity > 1. In contrast with the n = 2 case, when n is
odd, it was proved in [1] that the symmetric space (SLn(E), SLn(F )) is a
Gelfand pair, i.e., for any irreducible admissible representation π of SLn(E),
dimC HomSLn(F )[π,C] ≤ 1. In this paper we reconsider the multiplicity one
theorem of [1] for (SLn(E),SLn(F )) as well as go a little further for n even.

The pair (SLn(E),SLn(F )) is much simpler than the general pair
(G(E), G(F )) among other things because the adjoint group of SLn(E),
i.e., PGLn(E), operates transitively on an L-packet of SLn(E), and in fact
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PGLn(F ) operates transitively on those representations of SLn(E) in a
given generic L-packet of SLn(E) for which HomSLn(F )[π,C] 6= 0, and clearly
dimC HomSLn(F )[π,C] is the same for all representations of SLn(E) which are
conjugate under PGLn(F ).

Before we end the introduction, let us briefly describe the main ingre-
dients in this work. There are two non-obvious inputs in our work. First,
a recent work of Matringe describes exactly which generic representations
of GLn(E) are distinguished by GLn(F ) [13]. This allows one to make
some headway into understanding dimC HomSLn(F )[π,C] where π is an irre-
ducible, admissible, generic representation of SLn(E) which is distinguished
by SLn(F ) and is contained in an irreducible representation π̃ of GLn(E) dis-
tinguished by GLn(F ). Second, we are able to say that the set of irreducible,
admissible representations of SLn(E) contained inside π̃, and which are dis-
tinguished by SLn(F ), are in a single orbit under the action of GLn(F ). This
follows from a more precise result according to which an irreducible, ad-
missible, generic representation of SLn(E) which is distinguished by SLn(F )
must have a Whittaker model for a non-degenerate character of N(E)/N(F )
where N is the group of upper-triangular unipotent matrices. This is a con-
sequence of some recent work of the first author with Matringe [3], for which
we have given a more direct proof in this paper but one which is valid only
for tempered representations, or more generally unitary representations.

Most of the paper is written both for p-adic as well as for finite
fields since methods are essentially uniform. It might be mentioned that
dimC HomSLn(F )[π,C] for F a finite field which we prove in this paper to be
bounded by 2 (and bounded by 1 if n is odd, or p is even) was not known
in any precise way in the literature. Throughout the paper, when dealing
with p-adic fields, we will assume that they have characteristic zero unless
otherwise mentioned.

2. Preliminaries

In this paper, E will be a quadratic extension of either a p-adic or a finite field
F . Let G̃ = GLn(E), H̃ = GLn(F ), G = SLn(E), and H = SLn(F ). An irre-
ducible admissible representation of G̃ will usually be denoted by π̃ and that
of G by π. Let σ be the non-trivial element of the Galois group Gal(E/F ).
Let Nm : E× → F× be the norm map. If F is p-adic, the quadratic character
of F×/NE/F (E×) is denoted by ωE/F ; if F is finite, we let ωE/F = 1.

For a p-adic field k, let W ′k = Wk × SL2(C) be its Weil-Deligne group
where Wk is the Weil group of k. A Langlands parameter of W ′k valued
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Distinguished representations for SL(n) 1697

in GL(n,C), for some n, will typically be denoted by ρ̃ and a Langlands
parameter of W ′k valued in PGLn(C) will typically be denoted by ρ.

For a representation τ of a group, τ∨ stands for the contragredient rep-
resentation, and ωτ denotes its central character (if it has one). For a rep-
resentation τ of G̃ or G, τσ is the Galois conjugate representation given
by τσ(g) = τ(gσ). Similarly for a Langlands parameter τ of W ′E , its Ga-
lois conjugate is given by τσ(g) = τ(σ−1gσ). A representation π of GLn(E)
(or its Langlands parameter) is said to be conjugate self-dual if πσ ∼= π∨.
Conjugate self-dual representations of GLn(E) (or its Langlands parame-
ter) come in two flavors: conjugate orthogonal and conjugate symplectic (to
be referred to as having parity 1 and −1 respectively); we refer to [10] for
the definition. Note that a conjugate self-dual representation may be neither
conjugate orthogonal nor conjugate symplectic, and that these two options
are not mutually exclusive either. This paper will deal exclusively with rep-
resentations/parameters which are either conjugate orthogonal or conjugate
symplectic since they are the only ones relevant for distinction by GLn(F ).

For a character α of F×, an irreducible admissible representation π̃ of
GLn(E) is said to be α-distinguished if

HomGLn(F )[π̃, α] 6= 0;

here, as elsewhere in the paper, we identify a character α of F× to a character
of GLn(F ) via the determinant map det : GLn(F )→ F×. If α = 1, an α-
distinguished representation is also said to be distinguished by GLn(F ).

The most basic result about distinguished representations for (GLn(E),
GLn(F )) is the following result due to Flicker which is proved by the well-
known Gelfand-Kazhdan method [8, Propositions 11 & 12].

Proposition 2.1. If π̃ is an irreducible admissible representation of GLn(E)
which is GLn(F )-distinguished, then

dimC HomGLn(F )[π̃,C] = 1,

and furthermore, π̃∨ ∼= π̃σ (and also ωπ̃|F× = 1).

The following theorem due to Matringe [13, Theorem 5.2] is much more
precise (which builds on the earlier works on discrete series representations
[2, 12]).
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Proposition 2.2. Let π̃ be an irreducible admissible generic representation
of GLn(E) which is conjugate self-dual. Write

π̃ ∼= ∆1 × · · · ×∆t

as the representation parabolically induced from irreducible essentially square
integrable representations ∆i of GLni

(E), with n = n1 + · · ·+ nt, and where
the segments associated to ∆i’s are not linked (in the sense of Bernstein-
Zelevinsky). Then, π̃ is distinguished by GLn(F ) if and only if after a re-
ordering of the indices if necessary,

1) ∆σ
i+1
∼= ∆∨i , for i = 1, 3, . . . , 2r − 1, for some integer r ≥ 0, and

2) ∆σ
i
∼= ∆∨i , for 2r < i ≤ t, and the discrete series representations ∆i of

GLni
(E) are distinguished by GLni

(F ).

The following result was known as the Flicker-Rallis conjecture, and is
now a theorem by combining [14, Lemma 2.2.1] (see also [10, Theorem 8.1])
and [13, Theorem 5.2].

Theorem 2.3. An irreducible admissible generic representation π̃ of
GLn(E) is distinguished by GLn(F ) if n is odd, and ωE/F -distinguished if
n is even, if and only if its Langlands parameter is in the image of the
restriction map

Φ : H1(W ′F , Ûn)→ H1(W ′E ,GLn(C)),

where Ûn is the Langlands dual group of a unitary group defined by a her-
mitian space of dimension n over E (which comes equipped with an action
of W ′F ). Equivalently, an irreducible admissible generic representation of
GLn(E) is distinguished by GLn(F ) precisely when it is a conjugate orthog-
onal representation.

For the case of finite fields, we will need to use the following result due
to Gow [11, Theorem 3.6] (see also [15]).

Proposition 2.4. For E/F a quadratic extension of finite fields, an irre-
ducible representation π̃ of GLn(E) is distinguished by GLn(F ) if and only
if π̃σ ∼= π̃∨.

As this paper deals with representations of SLn(E) through restriction of
representations from GLn(E) to SLn(E), and similarly deals with represen-
tations of special unitary groups through restriction of representations from
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unitary groups, we will need to use twisting of representations of GLn(E),
or parameters of them, by characters of E×, or in the case of unitary groups,
by characters of E1 = E×/F×.

This motivates us to introduce Strong and Weak Equivalences among
representations of GLn(E), or parameters of them.

Two Langlands parameters of W ′E with values in GLn(C) will be said
to be weakly equivalent if they are twists of each other by a character of
E×, and they will be said to be strongly equivalent if they are twists of each
other by a character of E×/F×, i.e.,

(1) ρ̃2 ∼w ρ̃1 ⇐⇒ ρ̃2
∼= ρ̃1 ⊗ χ for χ : E× → C×,

and

(2) ρ̃2 ∼s ρ̃1 ⇐⇒ ρ̃2
∼= ρ̃1 ⊗ χ for χ : E×/F× → C×.

We denote the weak (resp. strong) equivalence class by [·]w (resp. [·]s), and
the set of strong equivalence classes in the weak equivalence class containing
a representation π̃ by [π̃]w/ ∼s.

In this paper, we will use these equivalence relations among representa-
tions of the same parity = (−1)n−1. If ρ̃ is one such representation, the num-
ber of strong equivalence classes in the weak equivalence class of ρ̃ (among
representations of the same parity as ρ̃) will be denoted by q(ρ̃).

Clearly, the same notions can be defined on the class of irreducible ad-
missible conjugate self-dual representations π̃ of GLn(E) of a given parity,
and as for parameters, we will denote by q(π̃) the number of strong equiv-
alence classes in the weak equivalence class of π̃ (among conjugate self-dual
representations of GLn(E) of the same parity as π̃).

We remark that Strong and Weak Equivalences among representations
of GLn(E) was first introduced in [1].

3. Distinction for (SLn(E), SLn(F ))

The subgroup of GLn(E) defined by

GLn(E)+ = {g ∈ GLn(E) | det g ∈ F×} = GLn(F )SLn(E),

will play an important role in our analysis as we will consider the restric-
tion of an irreducible representation π̃ of GLn(E) to SLn(E) in two stages.
First we restrict π̃ to GLn(E)+ and write it as a direct sum of irreducible
representations, and then we look at the restriction of each of these direct
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summands to SLn(E). This was indeed the strategy employed in [4]. In the
paper [4], we had added the center E× too in the definition of GLn(E)+, but
since center acts by a scalar, this makes no difference, whereas for a later
argument in this paper, where we will have to make an induction on n, the
present definition is better.

Note the following simple lemma:

Lemma 3.1. All the irreducible constituents of the restriction of an irre-
ducible representation of GLn(E)+ to SLn(E) admit the same number of
linearly independent SLn(F )-invariant functionals.

Proof. Since GLn(F )SLn(E) = GLn(E)+, all the irreducible constituents of
the restriction of an irreducible representation of GLn(E)+ to SLn(E) are
conjugates to one another under the inner conjugation action of GLn(F ) on
SLn(F ), proving the lemma. �

For an irreducible, admissible representation π̃ of GLn(E), define the
sets Xπ̃, X ′π̃, Yπ̃, Zπ̃ as follows:

1) Xπ̃ = {α ∈ F̂× | π̃ is α-distinguished},

2) X ′π̃ = {α ∈ F̂× | π̃ is α-distinguished or α · ωE/F -distinguished},

3) Zπ̃ = {χ ∈ Ê× | π̃ ⊗ χ ∼= π̃},

4) Yπ̃ = {χ ∈ Ê× | π̃ ⊗ χ ∼= π̃, χ|
F× = 1}.

Observe that Zπ̃, Yπ̃ are abelian groups, whereas Xπ̃, X
′
π̃ are just sets, and

that characters of E× in Zπ̃ when restricted to F× act on the sets Xπ̃, X
′
π̃

by translation, giving rise to a faithful action of Zπ̃/Yπ̃ on the sets Xπ̃, X
′
π̃.

Characters in Zπ̃ are said to be self-twists of π̃.

Lemma 3.2. Let E be a quadratic extension of either a finite or a non-
archimedean local field F which if it is of positive characteristic we as-
sume p does not divide n. Let π be an irreducible admissible representa-
tion of SLn(E) which is distinguished by SLn(F ). Then there exists an irre-
ducible admissible representation of GLn(E) containing π upon restriction
to SLn(E) which is distinguished by GLn(F ).

Proof. Let π̃ be an irreducible admissible representation of GLn(E) contain-
ing π upon restriction to SLn(E). Consider the vector space

V = HomSLn(F )[π̃,C]
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of SLn(F )-invariant linear functionals on π̃. The group GLn(F ) operates on
V via

(g · λ)(v) = λ(g−1 · v),

for v ∈ π̃. Observe that SLn(F ) acts trivially on V by the definition of V ,
and F× < GLn(F ) acts by a character – the central character of π̃ restricted
to F× – on V . Since,

GLn(F )/F×SLn(F ) ∼= F×/F×n,

a finite abelian group (here we are using that if F is non-archimedean local,
the characteristic of F does not divide n), it follows that V is a finite direct
sum of characters of F× whose restriction to the n-th roots of unity µn(F )
in F× is trivial (since π is distinguished by SLn(F )). Such characters have
an n-th root, i.e., α = βn for some character β of F× as follows from the
exact sequence:

1→ µn(F )→ F×
n→ F×.

If

V =
⊕
α∈F̂×

mαα,

take any character α = βn appearing in this sum. Clearly, the representation
π̃ ⊗ β̃, where β̃ is any extension of β to E×, is an irreducible admissible rep-
resentation of GLn(E) containing π upon restriction to SLn(E), and which
is distinguished by GLn(F ), completing the proof of the lemma. �

Proposition 3.3. Let E be a quadratic extension of either a finite or a non-
archimedean local field F . Let π be an irreducible admissible representation
of SLn(E) which is distinguished by SLn(F ), and let π̃ be an irreducible
admissible representation of GLn(E) which is distinguished by GLn(F ) with
π̃ containing π upon restriction to SLn(E). Then

1) If n is odd,

dimC HomSLn(F )[π,C] ≤ 1.

2) If n is even,

dimC HomSLn(F )[π,C] ≤ |{α ∈ F̂× | π̃ ⊗ (α ◦ Nm) ∼= π̃, α2 = 1}|
≤ |F×/F×2|;

in particular, for F a finite field, dimC HomSLn(F )[π,C] ≤ 1 if F has
characteristic 2, and dimC HomSLn(F )[π,C] ≤ 2 in odd characteristics.
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Proof. Let us begin by considering the vector space

V = HomSLn(F )[π̃,C]

of SLn(F )-invariant linear functionals on π̃ as in the last lemma. The group
GLn(F ) operates on V and we have the decomposition of V as a direct sum
of characters of F×. If

V =
⊕
α∈F̂×

mαα,

then π̃ is α−1-distinguished with respect to GLn(F ) for any character α of

F× with mα 6= 0. Notice also that mα ≤ 1 for each α ∈ F̂×, since

dimC HomGLn(F )[π̃, α] ≤ 1,

by the first part of Proposition 2.1. Therefore,

dimC HomSLn(F )[π̃,C] = |Xπ̃| .

Note that if π̃ is α−1-distinguished for a character α : F× → C×, then if
α̃ denotes any extension of α to E×, by Proposition 2.1 we must have,

(π̃ ⊗ α̃)σ ∼= (π̃ ⊗ α̃)∨.

This combined with the isomorphism π̃σ ∼= π̃∨ (because π̃ is GLn(F )-
distinguished), implies that:

π̃ ⊗ (α̃σ · α̃) ∼= π̃,

or α ◦ Nm ∈ Zπ̃.
Sending a character α of F× to the character α ◦ Nm of E×, defines a

homomorphism, call it Nm from F̂× to Ê×, whose restriction to Xπ̃ will
also be denoted by the same symbol Nm,

Nm : Xπ̃ −→ Zπ̃/Yπ̃.

Note that Xπ̃ being only a set, the map Nm on it is only a set theoretic
map, but being the restriction of a group homomorphism, the fibers of this
map are contained in translates of any particular element in the fiber by
‘the kernel of the map’ which consists of those characters α of F× for which
α ◦ Nm ∈ Yπ̃, i.e., π ⊗ (α ◦ Nm) ∼= π and α ◦ Nm|F× = α2 = 1. By central
character considerations, we already know that if χ and χ · α both belong to
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Xπ̃, then αn = 1. Therefore if n is odd, the map of sets Nm : Xπ̃ −→ Zπ̃/Yπ̃,
is injective, and if n is even, any fiber of this map has order at most the
number of characters α of F× with π ⊗ (α ◦ Nm) ∼= π and α2 = 1.

It is clear that an irreducible representation of

GLn(F )SLn(E) = GLn(E)+

when restricted to SLn(E) has |Zπ̃/Yπ̃| many irreducible components, and
since GLn(F ) acts transitively on these irreducible representations of SLn(E),
the number of SLn(F )-invariant linear forms on π̃ contributed by that irre-
ducible representation of GLn(E)+ which contains π equals

|Zπ̃/Yπ̃| · dimC HomSLn(F )[π,C].

On the other hand, the space of SLn(F )-invariant linear forms on π̃ has
dimension equal to |Xπ̃|. Thus, we get the obvious inequality:

|Zπ̃/Yπ̃| · dimC HomSLn(F )[π,C] ≤ |Xπ̃|.

Now, the properties of the mapping Nm : Xπ̃ −→ Zπ̃/Yπ̃ discussed ear-
lier proves parts (1) and (2) of the proposition. �

Remark 1. The multiplicity one property for n odd was already proved
in [1] by a similar method as above. It is not clear to the authors if this
multiplicity one property is a consequence of ‘Gelfand’s trick’.

The following proposition refines the earlier proposition when X ′π̃ is
known to be a group, for example, when F is a finite field, or when F
is a p-adic field, and π̃ is a discrete series representation.

Proposition 3.4. Let E/F be a quadratic extension of either finite or p-
adic fields. Let π be an irreducible admissible discrete series representation
of SLn(E) if F is p-adic, and any irreducible representation of SLn(E) if
F is a finite field. Assume π is distinguished by SLn(F ) and is contained
in an irreducible representation π̃ of GLn(E) distinguished by GLn(F ). Let
Nm : X ′π̃ −→ Zπ̃/Yπ̃ be the norm map defined earlier. Let c(F ) = 2 if F is a
p-adic field, and c(F ) = 1 if F is a finite field. Then for n an even integer,

c(F ) dimC HomSLn(F )[π,C] =
|X ′π̃|
|Zπ̃/Yπ̃|

=
|Ker Nm|
|Coker Nm|

=
|{χ ∈ F̂× | π̃ ⊗ (χ ◦ Nm) ∼= π̃, χ2 = 1}|

|{λ|F× such that λ is a self-twist of π̃}/2X ′π̃|
.
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Proof. The proof of this proposition follows the same strategy which was
used in the proof of the previous proposition by using the following addi-
tional inputs:

1) A discrete series representation π̃ of GLn(E) is ωE/F -distinguished or
distinguished if and only if

π̃σ ∼= π̃∨;

furthermore, such a representation π̃ of GLn(E) is either distinguished
or ωE/F -distinguished, with exactly one possibility. This follows from
[12, Theorem 7] and [2, Corollary 1.6] if F is a p-adic field, and a
consequence of Proposition 2.4 if F is finite (where ωE/F = 1). This
implies in particular that X ′π̃ is a group and the map

Nm : X ′π̃ −→ Zπ̃/Yπ̃,

is now a group homomorphism, whose kernel is

{χ ∈ F̂× | π̃ ⊗ (χ ◦ Nm) ∼= π̃, χ2 = 1}.

2) The restriction of π̃ to GLn(E)+ has exactly one irreducible represen-
tation — the one which carries a Whittaker functional for a character
of N(E)/N(F ) - which is distinguished by SLn(F ); this is the content
of the next section.

The first two equalities in the statement of the proposition follows from
these. For the last equality in the statement of the proposition, observe that

(a) The natural map j : Zπ̃/Yπ̃ → Xπ̃ is injective, and

(b) the composition of the maps: X ′π̃
Nm−→ Zπ̃/Yπ̃

j→ X ′π̃ is multiplication
by 2. �

Corollary 3.5. Assume that F is a finite field, n is even, and the repre-
sentation π̃ of GLn(E) is distinguished by GLn(F ). Then if π̃ does not have
a self-twist by the unique character of E× order 2 (such a character of E×

comes from F× through the norm map),

dimC HomSLn(F )[π,C] ≤ 1.
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If π̃ has a self-twist by the unique character of E× of order 2, and also by a
character χ with χ(−1) = −1, then also

dimC HomSLn(F )[π,C] ≤ 1.

Proof. Observe that the image of the map Nm : Xπ̃ −→ Zπ̃/Yπ̃, consists of
those characters on F× whose value on −1 ∈ F× is 1. Therefore, if there
is a self-twist of π by a character χ of E× with χ(−1) 6= 1, then the map
Nm : Xπ̃ −→ Zπ̃/Yπ̃, could not be surjective. This allows one to prove the
corollary. �

Remark 2. Proposition 3.4 allows us to calculate dimC HomSLn(F )[π,C]
(which we already know is ≤ 2) in all cases for F a finite field even if in
the above corollary, we have not handled all the cases. We just want to
add the observation – without proof – that dimC HomSLn(F )[π,C] for π an
irreducible representation of SLn(E) as well as dimC HomGLn(F )[π̃,C] for π̃
an irreducible representation of GLn(E), depends only on the semisimple
part of the Jordan decomposition of π, π̃ (in the sense of Lusztig).

The next proposition follows from the method of proof of Proposition 3.3
(using that a generic distinguished representation of SLn(E) is generic for a
character of N(E)/N(F ) for which we refer to the next section). For n = 2,
this proposition is [4, Theorem 1.4] and for a tempered representation π for
any n, this is [1, Theorem 4.3]).

Proposition 3.6. Let π be an irreducible admissible generic representation
of SLn(E) which is distinguished by SLn(F ) and contained in an irreducible
representation π̃ of GLn(E) distinguished by GLn(F ). Then,

dimC HomSLn(F )[π,C] =
|Xπ̃|

|Zπ̃|/|Yπ̃|
.

Remark 3. That the right hand side of the identity in Proposition 3.6 is
indeed a positive integer can be observed independently. Indeed, the group
Zπ̃/Yπ̃ acts freely on Xπ̃, and hence it is the number of orbits under this
action.

Our next result relates distinction for the symmetric space (SLn(E),
SLn(F )) to the notions of strong and weak equivalence defined at the end
of §2.
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Proposition 3.7. Let π be an irreducible admissible generic representation
of SLn(E) which is distinguished by SLn(F ). Let π̃ be an irreducible admis-
sible generic representation of GLn(E) which contains π on restriction to
SLn(E), and is distinguished by GLn(F ). Then,

dimC HomSLn(F )[π,C] = q(π̃),

where q(π̃) is the number of strong equivalence classes in the weak equiva-
lence class of π̃, i.e., the cardinality of the set [π̃]w/ ∼s (inside conjugate
orthogonal representations of GLn(E)).

Proof. If α is a character of F× in Xπ̃ and if α̃ is any extension of α to E×,
then by the definition of Xπ̃, π̃[α̃] = π̃ ⊗ α̃−1 is distinguished by GLn(F ),
hence by Theorem 2.3, it is a conjugate orthogonal representation, there-
fore π̃[α̃] ∈ [π̃]w; different extensions α̃ of α give rise to elements in a given
strong equivalence class, thus π̃[α̃] as an element of [π̃]w/ ∼s depends only
on α. Since by Theorem 2.3, conjugate orthogonal generic representations
are precisely the irreducible admissible generic representations of GLn(E)
that are distinguished by GLn(F ), the mapping α→ π̃[α̃] is surjective onto
[π̃]w/ ∼s.

Under the natural action of Zπ̃/Yπ̃ on Xπ̃, it is clear that π̃[β̃α̃] = π̃[α̃]
as an element of [π̃]w/ ∼s for β̃ ∈ Zπ̃.

Conversely, if π̃[α̃] = π̃[β̃] as an element of [π̃]w/ ∼s, then π̃ ⊗ β̃−1 ∼=
π̃ ⊗ α̃−1χ for some character χ of E×/F×. This condition is equivalent to
saying that β̃α̃−1χ ∈ Zπ̃. Therefore α̃ and β̃ differ by an element of Zπ̃. �

4. Distinction by SLn(F ) and Whittaker models

In [4] using the explicit realization of a GL2(F )-invariant linear form on
the Kirillov model of a representation π of GL2(E) due to Jeff Hakim, it
was proved that any irreducible admissible generic representation of SL2(E)
which is distinguished by SL2(F ) has a Whittaker model for a character
ψ : E/F → C×. This non-trivial result was among the most important in-
gredients to our work in [4]. Its analogue for SLn(E) will be similarly crucial
to us in this paper.

In a recent work of the first author with Matringe [3], it has been proved
that for an irreducible generic representation π̃ of GLn(E), the linear form

`(W ) =

∫
Nn(F )\Pn(F )

W (p)dp
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defined on the Whittaker space W(π̃, ψ) of π̃ (absolutely convergent inte-
gral for π̃ unitary [7, Lemma 4], and defined by regularization in general
[3, §7]), is up to multiplication by scalars, the unique non-zero element in
HomGLn(F )(π̃, 1). This allows one to conclude as in [4] that any irreducible
generic representation of SLn(E) which is distinguished by SLn(F ) has a
Whittaker model for a non-degenerate character ψ : N(E)/N(F )→ C×.

In this section, we offer a ‘pure thought’ argument based on Clifford
theory with the ‘mirabolic’ subgroup of GLn(E), the subgroup of GLn(E)
with last row (0, . . . , 0, 1), first for SL2(E), and then for SLn(E) in general
but only for tempered representations. Our proof for SL2(E) works for finite
fields, but the proof for SLn(E), when E is finite, works only for cuspidal
representations.

Lemma 4.1. Let π be an irreducible generic representation of SL2(E).
Then if π is distinguished by SL2(F ), π must have a Whittaker model for a
character ψ : E/F → C×.

Proof. Since π is distinguished by SL2(F ), the largest quotient of π on which
SL2(F ) operates trivially is non-zero. As a consequence, the largest quotient
πF of π on which N(F ) = F operates trivially is non-zero. Clearly πF is a
smooth module for N(E)/N(F ) = E/F . Thus there are two options:

1) N(E)/N(F ) does not operate trivially on πF , in which case it is easy
to prove that for some non-trivial character ψ : N(E)/N(F )→ C×,
πψ 6= 0.

2) N(E)/N(F ) operates trivially on πF , in which case in particular N(E)
will operate trivially on the linear form ` : π → C which is SL2(F )-
invariant. Thus this linear form will be invariant under SL2(F ) as well
as N(E), and therefore by the group generated by SL2(F ) and N(E).
It is easy to see that the group generated by SL2(F ) and N(E) is
SL2(E). Thus ` : π → C is invariant under SL2(E), so π must be one
dimensional, a contradiction to its being generic.

This completes the proof of the lemma. �

Proposition 4.2. Let π be an irreducible admissible representation of
SLn(E) which is tempered. Then if π is distinguished by SLn(F ), π must have
a Whittaker model for a non-degenerate character ψ : N(E)/N(F )→ C×.

We will prove this proposition in the following equivalent form.
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Proposition 4.3. Let π be an irreducible admissible tempered representa-
tion of the group GL+

n (E) = GLn(F )SLn(E). Then if π is distinguished by
GLn(F ), π must have a Whittaker model for a non-degenerate character
ψ : N(E)/N(F )→ C×.

The proof of this proposition depends on the following lemma which
allows an inductive procedure to prove the previous proposition.

In what follows, for any k ≥ 0, we let ν be the character ν(g) = |det g|
on GLk(F ), and any of its subgroups.

Lemma 4.4. Let P+
k (E) be the mirabolic subgroup of GL+

k (E), thus with
P+
k (E) = GL+

k−1(E) oNk(E) = GL+
k−1(E) o Ek−1. Let k∆ be a smooth rep-

resentation of P+
k (E) having a Whittaker model. Fix a non-trivial character

ψ0 : E/F → C×, and let ψk−1 = ψ0 ◦ pk−1 : Ek−1 → C× be the character on
Ek−1 where pk−1 : Ek−1 → E is the projection to the last co-ordinate. Then
if k∆ is distinguished by Pk(F ), but the (un-normalized) Jacquet module

k∆N(E), a representation of GL+
k−1(E) is not distinguished by GLk−1(F ), the

smooth representation (un-normalized twisted Jacquet module) ∆Nk(E),ψk−1

of P+
k−1(E), must have a Whittaker model and is ν−1/2-distinguished by

Pk−1(F ).

Proof. Since k∆ is distinguished by Pk(F ), the largest quotient k∆Nk(F ) of

k∆ on which Nk(F ) = F k−1 operates trivially is non-zero, and is distin-
guished by GLk−1(F ). Clearly k∆Nk(F ) is a smooth representation for

GLk−1(F ) o (Nk(E)/Nk(F )) = GLk−1(F ) o F k−1.

Thus we are in the context of Clifford theory which applies to any smooth
representation of a group in the presence of an abelian normal subgroup,
cf. [5, §5.1 C], for a similar analysis, and [6, §3] for developing the Clifford
theory in greater generality.

Note that for k ≥ 2, the action of GLk−1(F ) on the set of non-trivial
characters of Nk(E)/Nk(F ) = F k−1 is transitive.

It follows from [6, Proposition 1] that the representation k∆Nk(F ) of

GLk−1(F ) o (Nk(E)/Nk(F )) = GLk−1(F ) o F k−1

has a filtration with two subquotients, which are (with un-normalized in-
duction):

1) ind
GLk−1(F )oF k−1

Pk−1(F )oF k−1 (k∆Nk(E),ψk−1
),
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2) k∆Nk(E).

Since we know that k∆Nk(F ) is distinguished by GLk−1(F ), at least one
of the representations above is distinguished by GLk−1(F ). In case (1), by
Mackey theory, k∆Nk(E),ψk−1

, a smooth representation of P+
k−1(E), is ν−1/2-

distinguished by Pk−1(F ), whereas in case (2), k∆Nk(E), is distinguished by
GLk−1(F ). By the hypotheses of the lemma, k∆Nk(E), is not distinguished
by GLk−1(F ), leaving us with only option (1).

This completes the proof of the lemma. �

Proof of Proposition 4.3. For the proof of the proposition, we will apply
the previous lemma to the representation k∆ = π(n−k)|P+

k (E) where π(n−k)

is the (n− k)-th derivative of Bernstein-Zelevinsky, which is a represen-
tation of GLk(E), starting with k = n, and n∆ = π|P+

n (E). It follows from

Bernstein-Zelevinsky that k∆Nk(E) = ν1/2π(n−k+1), a smooth representation

of GL+
k−1(E). Further, ν1/2

k∆Nk(E),ψk−1
= k−1∆, a smooth representation

of P+
k−1(E). This implies that the way we have defined k∆, decreasing in-

duction hypothesis holds if we can ensure that the condition, “k∆Nk(E) =

ν1/2π(n−k+1), a smooth representation of GL+
k−1(E), is not distinguished by

GLk−1(F )”, is satisfied. This is where we will use the temperedness hypoth-
esis.

Recall that a tempered representation π of GLn(E) is of the form π =
π1 × · · · × πr where πi are irreducible unitary discrete series representa-
tions of GLni

(E). It is known that any unitary discrete series representation
πi is the unique irreducible quotient representation of ρiν

−(ni−1)/2 × · · · ×
ρiν

(ni−1)/2 for a unitary supercuspidal representation ρi of some GLmi
(E)

for mi|ni, and that π
(k)
i = 0 if k is not a multiple of mi, and for k = mir,

π
(mir)
i is the unique irreducible quotient of ρiν

−(ni−1)/2+r × · · · × ρiν(ni−1)/2.
The Leibnitz rule for derivatives allows one to calculate the derivative

of π = π1 × · · · × πr, and from the recipe of the derivatives of a discrete

series recalled above, we find that any non-zero positive derivative π
(k)
i

has a central character ω(π
(k)
i ) whose absolute value |ω(π

(k)
i )| is a positive

power of ν unless k = 0 or k = ni. Since a distinguished representation Λ
of GLn(E) must have Λσ ∼= Λ∨, in particular, |ω(Λ)| = 1. This implies that
ν1/2π(k) cannot be GLn−k(F ) distinguished, unless it is a representation of
GL0(E) = 1. �

Remark 4. We believe that Propositions 4.2 and 4.3 remain valid for finite
fields, but have not been able to find a proof, except as mentioned earlier
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in the case of cuspidal representations where the proof given here for p-
adic fields remains valid, and the case of SL2(E) independently proved in
Lemma 4.1.

Remark 5. The proof of Proposition 4.3 given here is based on an idea
contained in [2] that although the restriction to mirabolic of a representa-
tion of GLn(E) has two subquotients, the non-generic component cannot
carry Pn(F )-invariant linear forms because of the presence of the modulus
character. Since the modulus character for finite fields is trivial, we are not
able to rule this possibility out for finite fields. Note that [2] uses a lemma,
[2, Lemma 2.4], according to which (using un-normalized induction unlike
[2, Lemma 2.4]),

HomPn(F )[ind
Pn(E)
Pk(E)(π × ψn−k),C] ∼= HomGLk(F )[π,C];

here Pn(E) is the mirabolic subgroup of GLn(E), Pk(E) is the subgroup of
GLn(E) contained in the (k, n− k)-parabolic and containing its unipotent
radical with Levi replaced by GLk(E)×Un−k(E) where Un−k(E) is the
upper triangular unipotent subgroup of GLn−k(E), and ψn−k is its generic
character. For the proof of this lemma, [2] refers to the main lemma of
Flicker’s paper [9], whose proof is rather long winded. Our proof here does
not need [2, Lemma 2.4], but rather gives a proof of it.

5. Fibers of the base change map from SU(n) to SLn(E)

In this section we consider Langlands parameters for the groups SU(n) and
SLn(E). Our aim here is to compute the number of parameters of SU(n)
that lift to a given parameter of SLn(E).

A Langlands parameter of SLn(E)

φ : W ′E → PGLn(C)

gives rise to an element of H1(W ′E ,PGLn(C)), where the Weil-Deligne group
W ′E of E acts trivially on PGLn(C). It is well-known that such a parameter

φ lifts to a Langlands parameter φ̃ of GLn(E)

φ̃ : W ′E → GLn(C),

which can be thought of as an element of H1(W ′E ,GLn(C)) with the W ′E-
action on GLn(C) being trivial. Indeed, the above observation follows from a
theorem of Tate according to which H2(W ′E ,C×) = 0 for the trivial action of
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W ′E on C×. We note that though Tate’s theorem is usually stated in terms of
the absolute Galois group Gal(Ē/E) instead of the Weil-Deligne group W ′E ,
i.e., H2(Gal(Ē/E),C×) = 0 with Gal(Ē/E) acting trivially on C× (cf. [18,
Theorem 4]); the W ′E-version, H2(W ′E ,C×) = 0, and its relation to lifting
of continuous projective representations is known too, cf. [17, Theorem 1,
Theorem 8]. We will continue to call the vanishing of H2(W ′E ,C×) as Tate’s
theorem.

That a Langlands parameter for SLn(E) lifts to a Langlands parameter
for GLn(E) is related to the fact that an irreducible admissible represen-
tation π of SLn(E) occurs in the restriction of an irreducible admissible
representation π̃ of GLn(E).

As in the case of (GL(n), SL(n)), an irreducible representation of SU(n)
occurs in the restriction of an irreducible admissible representation of U(n).
We will check below that a Langlands parameter for SU(n) lifts to a Lang-
lands parameter for U(n).

Since the Langlands dual group of U(n) is

LU(n) = GLn(C) oW ′F ,

where W ′F acts by projection to Gal(E/F ), which operates via

σ(g) = J tg−1J−1,

where J is the anti-diagonal matrix with alternating 1,−1. We will de-
note the group GLn(C) with this action of W ′F by GLn(C)[τ ]; similarly for
PGLn(C). Thus a Langlands parameter for U(n) gives rise to an element of
H1(W ′F ,GLn(C)[τ ]), where W ′F acts on GLn(C) as above. Similarly, a Lang-
lands parameter for SU(n) gives rise to an element of H1(W ′F ,PGLn(C)[τ ]).

Thus the fact that a Langlands parameter for SU(n) lifts to a Langlands
parameter for U(n) follows from the following lemma.

Lemma 5.1. Let W ′F operate on C× by z 7→ z−1 via the quotient W ′F →
W ′F /W

′
E
∼= Z/2. Denote the corresponding representation of W ′F by C×[τ ].

Then,

H2(W ′F ,C×[τ ]) = 0.

Proof. Consider the restriction-corestriction sequence

H2(W ′F ,C×[τ ])→ H2(W ′E ,C×)→ H2(W ′F ,C×[τ ]).
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Since the composite map is multiplication by 2, and since H2(W ′E ,C×) = 0
by Tate’s theorem, it follows that

2H2(W ′F ,C×[τ ]) = 0.

Using the exact sequence,

1 // Z/2 // C×[τ ]
[2] // C×[τ ] // 1,

since 2H2(W ′F ,C×[τ ]) = 0, it follows that we have an exact sequence

H1(W ′F ,C×[τ ])→ H1(W ′F ,C×[τ ])→ H2(W ′F ,Z/2)→ H2(W ′F ,C×[τ ])→ 0.

Now,

H2(W ′F ,Z/2) = Z/2,

since this is the 2-torsion in the Brauer group. Therefore, to prove that

H2(W ′F ,C×[τ ]) = 0,

it suffices to prove that

2H1(W ′F ,C×[τ ]) 6= H1(W ′F ,C×[τ ]).

A cocycle in H1(W ′F ,C×[τ ]) upon restriction to W ′E gives rise to a char-
acter of E× which is trivial on elements of F× which arise as norms from
E×. It can be seen that a character χ : E×/NmE× → C× extends to a co-
cycle on W ′F with values in C×[τ ] if and only if χ is trivial on F×, and then
the cocycle is unique up to coboundary. Thus,

H1(W ′F ,C×[τ ]) = Hom(E×/F×,C×) = Hom(U(1),C×),

where the second equality is the result of the identification χ→ χ′ via
χ′(x/xσ) = χ(x). (Since C×[τ ] is the L-group of U(1), H1(W ′F ,C×[τ ]) ∼=
Hom(U(1),C×) is the usual Langlands correspondence for tori.) Clearly, a
character χ′ of U(1) has a square root if and only if χ′(−1) = 1, and therefore

H1(W ′F ,C×[τ ])/2H1(W ′F ,C×[τ ]) = Z/2,

proving the lemma. �
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We are interested in computing the number of Langlands parameters of
SU(n) that lift to a given Langlands parameter of SLn(E). Thus, we need
to analyse the fiber of the restriction map

H1(W ′F ,PGLn(C)[τ ])
PΦ // H1(W ′E ,PGLn(C)).

For this, observe that the above map fits into the following commutative
diagram:

H1(W ′F ,PGLn(C)[τ ])
PΦ // H1(W ′E ,PGLn(C))

H1(W ′F ,GLn(C)[τ ])

PF

OO

Φ // H1(W ′E ,GLn(C))

PE

OO

where Φ is the restriction map which corresponds to lifting a Langlands pa-
rameter of U(n) to a Langlands parameter of GLn(E), and the maps PF and
PE are the natural maps on cohomology induced from the homomorphism
GLn(C)→ PGLn(C). Note that we have proved in the preceding paragraphs
that both the maps PF and PE are surjective; surjectivity of PE follows from
Tate’s theorem and surjectivity of PF is a consequence of Lemma 5.1.

The map Φ which takes a U(n)-parameter to a GLn(E)-parameter is
well understood: its image consists precisely of conjugate self-dual Langlands
parameters of W ′E of parity +1 if n is odd, and parity −1 if n is even. We
will need to make use of another well-known fact about the map Φ for which
we refer to [16, Proposition 7] for a proof.

Lemma 5.2. The restriction map

H1(W ′F ,GLn(C)[τ ])
Φ // H1(W ′E ,GLn(C))

is injective.

We will have many occasions to use the following lemma, cf. [19, Propo-
sition 42].

Lemma 5.3. Suppose G is a group with an action of W ′F , and Z is a
central subgroup of G left invariant by the action of W ′F . Then elements
φ1, φ2 of H1(W ′F , G) which lie over the same element of H1(W ′F , G/Z) are
translates of each other by an element of H1(W ′F , Z), i.e., φ2 = φ1 · c for
some c ∈ H1(W ′F , Z).



i
i

“1-Prasad” — 2019/2/8 — 23:44 — page 1714 — #20 i
i

i
i

i
i

1714 U. K. Anandavardhanan and D. Prasad

The following proposition is a simple consequence of the previous two
lemmas using the definitions of strong and weak equivalence introduced at
the end of §2.

Proposition 5.4. Let ρ∈H1(W ′F ,PGLn(C)[τ ]). Let ρ̃∈H1(W ′F ,GLn(C)[τ ])
be such that PF (ρ̃) = ρ. Then the cardinality of the set

{µ ∈ H1(W ′F ,PGLn(C)[τ ]) | PΦ(µ) = PΦ(ρ)}

equals q(Φ(ρ̃)), which is the number of strong equivalence classes in the weak
equivalence class of Φ(ρ̃) (among conjugate self-dual representations of a
given parity).

Proof. By Lemma 5.3, parameters for SLn(E) can be identified to parame-
ters for GLn(E) up to twisting by characters χ : E× → C×. Similarly, by
Lemma 5.3, parameters for SUn(F ) can be identified to parameters for
Un(F ) up to twisting by characters χ : E×/F× → C×, because

H1(W ′F ,C×[τ ]) ∼= Hom(U(1),C×) = Hom(E×/F×,C×).

By Lemma 5.2, parameters for Un(F ) embed into parameters for GLn(E)
by the base change map Φ. Thus the cardinality of the fiber of the base
change map

H1(W ′F ,PGLn(C)[τ ])
PΦ // H1(W ′E ,PGLn(C))

is the number of strong equivalence classes in the weak equivalence class
of Φ(ρ̃) among conjugate self-dual representations of a given parity (=
(−1)n−1). �

We next restate Theorem 2.3 taking into account Lemma 5.2 according
to which parameters for Un(F ) embed into parameters for GLn(E) by the
base change map Φ.

Theorem 5.5. An irreducible admissible generic representation π̃ of GLn(E)
is distinguished by GLn(F ) if n is odd, respectively ωE/F -distinguished if n
is even, if and only if its Langlands parameter ρ̃π̃ is in the image of

Φ : H1(W ′F ,GLn(C)[τ ])→ H1(W ′E ,GLn(C)),

and moreover,

(3) dimC HomGLn(F )[π̃, ω
n−1
E/F ] = |Φ−1(ρ̃π̃)|.
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The main theorem of this paper is the SL(n)-analogue of Theorem 5.5.

Theorem 5.6. An irreducible admissible generic representation π of SLn(E)
is distinguished by SLn(F ) if and only if

1) its Langlands parameter ρπ is in the image of the base change map:

PΦ : H1(W ′F ,PGLn(C)[τ ])→ H1(W ′E ,PGLn(C)),

2) π has a Whittaker model for a non-degenerate character of N(E)/N(F ).

Further, if HomSLn(F )[π,C] 6= 0,

(4) dimC HomSLn(F )[π,C] = |PΦ−1(ρπ)|.

Proof. Choose π̃ as in Proposition 3.7 and ρ̃ as in Proposition 5.4 so that
Φ(ρ̃) = ρ̃π̃. Such a choice does exist by the first part of Theorem 5.5. Thus,
the assertion (1) about the Langlands parameter ρπ follows from the com-
mutativity of the diagram:

H1(W ′F ,PGLn(C)[τ ])
PΦ // H1(W ′E ,PGLn(C))

H1(W ′F ,GLn(C)[τ ])

PF

OO

Φ // H1(W ′E ,GLn(C)).

PE

OO

The assertion (2) about Whittaker models is part of the conclusion of §4.
For the assertion on dimC HomSLn(F )[π,C], observe that the left hand

side of (4) is q(π̃) by Proposition 3.7, whereas the right hand side of (4) is
q(ρ̃π̃) by Proposition 5.4. Since q(π̃) = q(ρ̃π̃), this proves the theorem. �
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