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Minimizers of the sharp Log entropy on

manifolds with non-negative Ricci

curvature and flatness

Qi S. Zhang

Consider the scaling invariant, sharp log entropy (functional) intro-
duced by Weissler [W] on noncompact manifolds with nonnegative
Ricci curvature. It can also be regarded as a sharpened version of
Perelman’s W entropy [P] in the stationary case. We prove that it
has a minimizer if and only if the manifold is isometric to Rn.

Using this result, it is proven that a class of noncompact mani-
folds with nonnegative Ricci curvature is isometric to Rn. Compar-
ing with the well known flatness results in [An], [Ba] and [BKN] on
asymptotically flat manifolds and asymptotically locally Euclidean
(ALE) manifolds, their decay or integral condition on the curvature
tensor is replaced by the condition that the metric converges to the
Euclidean one in C1 sense at infinity. No second order condition
on the metric is needed.

1. Statement of result

Finding extremals of useful functionals, entropies and inequalities is often an
useful task in mathematics. Examples include the Sobolev inequality, Perel-
man’s F and W entropies, log Sobolev inequalities, Yamabe functional etc.
In this note we consider the scaling invariant log entropy (functional) intro-
duced by Weissler [We] on noncompact manifolds with nonnegtaive Ricci
curvature. It is a scaling invariant version of the log Sobolev functional orig-
inally introduced by Gross [Gs] and Federbush [F]. It can also be regarded
as a sharpened version of Perelman’s W entropy for the Ricci flow in the
stationary case.

Definition 1.1. (a). (After Weissler) Let M be a Riemannian n manifold.
The scaling invariant log functional (entropy) is
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1674 Qi S. Zhang

L = L(v, g) = −
∫
M
v2 ln v2dg +

n

2
ln

(∫
M

4|∇v|2dg
)

+ sn(1.1)

≡ −N(v) +
n

2
ln(F (v)) + sn.

Here sn = −n
2 ln(2πn)− n

2 and v ∈W 1,2(M) with ‖v‖2 = 1;
(b). The infimum of the log Sobolev functional is denoted by

λ = λ(g,M) = inf{L(v, g) | v ∈W 1,2
0 (M, g), ‖v‖L2(M) = 1}.

(c). The infimum of the log Sobolev functional at infinity, in case M is
noncompact, is

λ∞ = λ∞(g,M) = lim
r→∞

λ(g,M−B(x0, r))

where x0 is a reference point in M .

When M = Rn, then L(v, g) is introduced by Weissler [W]. Some ex-
istence results for minimizers of a functional similar to L(v, g) (modified
with a scalar curvature term) were proven in ([Z14]). Since the functional
L(v, g) is scaling invariant, the proof involves an approximation and blow
up analysis which is not needed for the usual W functional. Some applica-
tions were given on breathers and irreversibility of world sheets. Existence
of minimizers for the W functional on compact manifolds was proven by [R].
The situation on noncompact manifolds is different. See [Z12] for existence
and nonexistence results of minimizers of the W functional on noncompact
manifolds.

Remark 1.2. For general noncompact manifolds, the functional L may not
be bounded from below. In fact, if L is bounded from below, then the sharp
log Sobolev inequality holds:∫

M
v2 ln v2dg ≤ n

2
ln

(∫
M

4|∇v|2dg
)

+ sn − inf L, v ∈W 1,2(M).

By now, it is well known (see [BCL] e.g.), that this implies the standard
Sobolev inequality, when n ≥ 3,(∫

M
v2n/(n−2)dg

)(n−2)/n
≤ CS

∫
M
|∇v|2dg, v ∈W 1,2(M).
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Minimizers of the sharp Log entropy 1675

Here CS is a positive constant. It follows that the manifold is volume non-
collapsed i.e.

(1.2) |B(x, r)| ≥ crn, x ∈M, r > 0,

for a uniform constant c > 0.

Remark 1.3. In the above definition, one can write u = v2

(1.3) N = N(v) =

∫
M
v2 ln v2dg =

∫
M
u lnudg

is just Boltzmann’s entropy; and

(1.4) F = F (v) =

∫
M

4|∇v|2dg =

∫
M

|∇u|2

u
dg

is just Perelman’s F entropy minus a term involving the scalar curvature.

The first main result of the note is:

Theorem 1.4. Let M be a noncompact, complete manifold of dimension
n ≥ 3 such that Ricci ≥ 0. The functional L has a minimizer if and only if
M is isometric to Rn.

Normally one would believe that a minimizer exists for many ”nice” man-
ifolds with nonnegative Ricci curvature. The theorem unexpectedly shows
that the only ”nice” one is Rn. The proof is given in the next section. An
application on flatness of some noncompact manifolds is given in Section 3.

2. Proof

Proof of Theorem 1.4. It is well known that the Gaussian functions are
minimizers for L in Rn. So one only needs to prove that if L on M has a
minimizer then M is isometric to Rn.

Let v be a minimizer of L on M such that Ric ≥ 0. Then we solve the
backward heat equation with final value at time t = 1.

(2.1)

{
∆u+ ∂tu = 0, on M× [0, 1];

u(x, 1) = v2(x).

The time interval [0, 1] is chosen for convenience. Any finite interval also
works.
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The minimizer v satisfies the equation (cf. Theorem 1.9 [Z14]):

n

2

4∆v∫
(4|∇v|2)dg

+ 2v ln v(2.2)

+

(
λ(g,M) +

n

2
− n

2
ln

∫
(4|∇v|2)dg − sn

)
v = 0.

Comparing with that paper, the scalar curvature term is dropped here.
By modifying the proof to Lemma 2.3 in [Z12], we can prove that the

function v decays (quadratic ) exponentially near infinity, i.e. for one refer-
ence point, say x0.

(2.3) v(x) ≤ C1e
−C2d2(x,x0), x ∈M,

where C1 and C2 are positive constants with C1 depending on |B(x0, 1)|.
Here we should mention that in the paper [Z12] and [Z14], we assumed that
the curvature tensor and/or its gradients are bounded, which are needed
in constructing a smooth, distance like function. Since these bounds are no
longer available here, we will use the heat kernel to construct this function.
Alternatively one can also use the distance like function in Theorem 4.2 of
[SY]. To avoid interrupting the flow of the proof, we take (2.3) for granted
here and postpone its proof until the end of the section.

Alternatively, one can use the exponential decay property of the Green’s
function of the operator ∆− 1, which follows from the bound of the heat
kernel of ∆− 1− ∂t to prove a weaker decay:

v(x) ≤ C1e
−C2d(x,x0), x ∈M.

This is still sufficient for the main result.
From (2.3), by the standard upper bound on heat kernel [LY], we know

that u = u(·, t) also decays exponentially for each fixed t. Hence we can use
integration by parts to deduce

∂tN = ∂t

∫
M
u lnudg =

∫
M
∂tu lnudg +

∫
M
∂tudg(2.4)

= −
∫
M

(∆u) lnudg =

∫
M

|∇u|2

u
dg = F.

Below we give the details of the integration by parts. All we need are Li-Yau
type bound for heat kernel and Hamilton type gradient bound [Ha]. Both
hold when Ric ≥ 0.
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Minimizers of the sharp Log entropy 1677

The backward heat kernel p(x, t; y, 1) with t < 1 is the same as the (usual
forward) heat kernel G = G(y, 1;x, t). Since the manifold has Ricci ≥ 0, Li-
Yau’s [LY] heat kernel bound implies

c−13

|B(y,
√

1− t)|
e−c

−1
4 d2(x,y)/(1−t) ≤ p(x, t; y, 1)(2.5)

≤ c3

|B(y,
√

1− t)|
e−c4d

2(x,y)/(1−t).

Therefore

u(x, t) =

∫
p(x, t; y, 1)v2(y)dy

≤
∫

c3C
2
1

|B(y,
√

1− t)|
e−c4d

2(x,y)/(1−t)e−2C2d2(y,x0)dy

≤
∫

c3C
2
1

|B(y,
√

1− t)|
e−c4d

2(x,y)/[2(1−t)]e−c4d
2(x,y)/[2(1−t)]e−2C2d2(y,x0)dy

≤ c5e−c6d
2(x,x0), ∀t ∈ [0, 1).

Likewise

(2.6) |∇u(x, t)| ≤ c5√
1− t

e−c6d
2(x,x0), ∀t ∈ [0, 1).

Next we can use the local gradient bound in [SZ] backwardly for the back-
ward heat equation, which is the same as for the heat equation, to deduce

|∇u|2

u
(x, t) ≤ u(x, t)

C

1− t
ln2 A

u(x, t)

where A = supB(x,2
√
1−t)×[t,(1+t)/2] u. Using (2.5) and volume doubling con-

dition, direct computation shows that

(2.7)
|∇u|2

u
(x, t) ≤ c7

(1− t)3
e−c6d

2(x,x0), t ∈ [0, 1).

Here c7 may depend on |B(x0, 1)|. Also the dependence on (1− t)−3 can be
improved but there is no need to do it here. Now for any large r > 0, for
each fixed t ∈ [0, 1), integration by parts shows∫

B(x0,r)
(∆ lnu)udg = −

∫
B(x0,r)

|∇u|2

u
dg +

∫
∂B(x0,r)

∂u

∂n
dS.



i
i

“14-Zhang” — 2019/1/20 — 23:00 — page 1678 — #6 i
i

i
i

i
i

1678 Qi S. Zhang

Since |∂B(x0, r)| ≤ Cnrn−1 by Bishop-Gromov volume comparison, letting
r →∞, we can use (2.6) and (2.7) to conclude that

∫
M

(∆ lnu)udg = −
∫
M

|∇u|2

u
dg,

justifying the integration by parts.
Similar to Hamilton’s calculation [Ha] for the forward heat equation case,

we also have

(2.8) (∆ + ∂t)

(
|∇u|2

u

)
= 2|Hess lnu|2u+ 2Ric(∇u,∇u)/u.

Hence, after integration by parts on large balls of radius say R > 0 and let
R→∞, we can deduce,

(2.9) ∂tF = 2

∫
M
|Hess lnu|2udg + 2

∫
M
Ric(∇u,∇u)/udg.

Again the integration is justified due the exponential decay of u. Since the
integration by parts apparently involves the 3rd derivative of u, we carry it
out in detail.

Let R be a large positive number and η = η(t) be a smooth compactly
supported function in (0, 1). Since the Ricci curvature is nonnegative, ac-
cording to Cheeger and Colding (Theorem 6.33 [CC]), there exists a good cut
off function φR = φR(x) such that φR ∈ C2

0 (B(x0, 2R)), 0 ≤ φR ≤ 1, φR = 1
on B(x0, R) and |∇φR|2 + |∆φR| ≤ C/R2. We comment that although the
bound C/R2 was not specified in [CC], for manifolds with nonnegative Ricci
curvature, one can just scale a large ball to a unit ball and construct the
good cut off function on the unit ball. After scaling back to the original size,
one can obtain the bound. Then (2.8) and integration by parts imply that

−
∫ 1

0

∫
M

|∇u|2

u
φRdgη

′(t)dt =

∫ 1

0
∂t

∫
M

|∇u|2

u
φRdg η(t)dt(2.10)

=

∫ 1

0

∫
M

(
−∆
|∇u|2

u

)
φRdgηdt

+ 2

∫ 1

0

∫
M

(
|Hess lnu|2udg +

Ric(∇u,∇u)

u

)
φRηdgdt



i
i

“14-Zhang” — 2019/1/20 — 23:00 — page 1679 — #7 i
i

i
i

i
i
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=

∫ 1

0

∫
M

(
−|∇u|

2

u

)
∆φRdgηdt

+ 2

∫ 1

0

∫
M

(
|Hess lnu|2udg +

Ric(∇u,∇u)

u

)
φRηdgdt

≡ T1(R) + T2(R).

Notice that the above integrations are justified since the domain of integra-
tion is compact and u > 0. Since

|T1(R)| ≤ C

R2

∫
supp η

∫
M

|∇u|2

u
dgηdt,

from (2.7) and supp η ⊂⊂ (0, 1), we see that

lim
R→∞

T1(R) = 0.

Also, from the properties of the good cut off function, we know that φ2R(x) ≥
φR(x) for x ∈M. For positive integers i, we take R = 2i and let i→∞. Then
φ2i(x)→ 1 when i→∞. Using the monotone convergence theorem on the
T2(R) term and dominated convergence theorem on the left hand side of
(2.10), we deduce that

−
∫ 1

0
F (t)η′(t)dt =

∫ 1

0

∫
M

|∇u|2

u
dgη′(t)dt

= 2

∫ 1

0

∫
M

(
|Hess lnu|2udg +

Ric(∇u,∇u)

u

)
ηdgdt.

This proves (2.9) since η is a arbitrary.
Therefore, from (2.4), (2.9) and the definition of L in (1.1), it follows

that

∂tL =

[
−F 2 + n

∫
M
|Hess lnu|2udg + n

∫
M
Ric(∇u,∇u)/udg

]
F−1(2.11)

= F−1
[
−F 2 +

∫
M

(∆ lnu)2udg

]
+ nF−1

∫
M
|Hess lnu− 1

n
(∆ lnu)g|2udg

+ nF−1
∫
M
Ric(∇u,∇u)/udg.
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Using integration by parts and Cauchy-Schwarz inequality,

F 2 =

(∫
M

|∇u|2

u
dg

)2

=

(∫
M

(∆ lnu)udg

)2

(2.12)

≤
∫
M

(∆ lnu)2udg

∫
udg =

∫
M

(∆ lnu)2udg.

The equality is reached only if

(∆ lnu)
√
u = C

√
u

i.e. ∆ lnu = C, since u > 0. As explained above, integration by parts can be
justified by modifying the proof of Corollary 4.1 in [Z12].

Hence all three terms on the right hand side of (2.11) are non-negative.
From definition, we know L(v, g) = L(

√
u(·, 1), g) = λ and L(

√
u(·, 0), g) ≥

λ. Hence

(2.13) 0 ≥ L(
√
u(·, 1), g)− L(

√
u(·, 0), g) =

∫ 1

0
∂tL(
√
u, g)dt ≥ 0.

This shows

(2.14)

∫ 1

0
∂tL(
√
u, g)dt = 0

As pointed out by the referee, one can also use a solution of the forward
heat equation u = u(x, t), with initial value u(·, 0) = v2(·), to carry out the
above proof.

Substituting (2.11) to the right hand side of (2.14), we find that

∆ lnu(x, t) = C(t),

where C(t) is a function of t only;

Hess lnu− 1

n
(∆ lnu)g = 0;

(2.15) Ric(∇u,∇u) = 0.

Since u(·, t) decays exponentially, we see that C(t) is a non zero constant.
The reason is that if

∆ lnu = 0
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then lnu is harmonic. But u = v2 and v, as a solution to equation (2.2),
is bounded from above and nonnegative (cf [Z12]). Hence lnu < C. Yau’s
Liouville theorem implies lnu is a constant, which is impossible.

From these equalities, it is known that M is isometric to Rn. See Tashiro
[T] Theorem 2 (I, B). Also Naber [N] shows, by a different method, that a
Ricci flat shrinking gradient soliton is Rn. However, one can not assume
that M is Ricci flat yet, since (2.15) holds only in the ∇u direction. So M
is not yet a gradient Ricci soliton to begin with. Here we give a very short
proof for completeness. We work with t = 0. Then, by considering f = lnu
or f = − lnu we can assume

(2.16) Hess f = λg,

where λ is a positive constant. Fix any point p ∈M and pick a point x ∈M.
Let r = r(s) be a minimal geodesic connecting p and x, parameterized by
arc length. Then the definition of Hessian and (2.16) tell us

λ = (Hess f)(∂r, ∂r) = ∇∂r(∇∂rf)− (∇∂r∂r)f =
d2

ds2
f(r(s)).

Therefore, for r = d(x, p),

f(x) =
λ

2
r2 + r

d

ds
f(r(s)) |s=0 + f(p).

This shows that f must have a global minimum. Choose p to be a minimal
point, then

f(x) =
λ

2
r2 + f(p).

Note that the smoothness of f implies that r2 is smooth. Substituting this
to (2.16) and taking trace, we see that

λ

2
∆r2 = λn.

Hence, the following holds in the classical sense for all r > 0:

∆r =
n− 1

r
.

Let w be the volume element in a spherical coordinate centered at p. Then

∂r lnw = ∆r =
n− 1

r
.
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Therefore

∂r(w/r
n−1) = 0.

This shows, since M is a smooth manifold, w = wnr
n−1 where wn is the

volume of standard unit sphere in Rn. Hence the metric is Euclidean by
the equality case of the Bishop-Gromov volume comparison property. This
finishes the proof of the theorem modulo (2.3). �

Next we give a proof of (2.3) i.e. a minimizer v satisfies

v(x) ≤ C1e
−C2d2(x,x0), x ∈M,

where C1, C2 are positive constants depending on x0.
The proof is divided into a number of steps, which similar to the proof

Lemma 2.3 in [Z12]. The main difference is in step 2 where we construct a
distance like function by the heat kernel.

Step 1. First, we rewrite (2.2), the equation for v, in a simpler form

4∆v + αv ln v + βv = 0.

Here α is a positive constant and β is another constant. For consistency with
Lemma 2.3 in [Z12] and without loss of generality we set α = 2 and β = λ.
So v solves

(2.17) 4∆v + 2v ln v + λv = 0.

The existence of a minimizer presumes that the functional L is bounded
from below, which implies, from Remark 1.2, that the standard Sobolev
inequality and volume noncollapsing property hold on M. Hence we can
follow Lemma 2.1 in [Z12] verbatim to prove the following bounds. For
m ∈M, there exists a positive constant C such that

sup
B(m,1)

v2 ≤ C
∫
B(m,2)

v2dg, sup
B(m,1/2)

|∇v|2 ≤ C
∫
B(m,1)

v2dg.

Note one only needs the Sobolev imbedding and volume noncollapsing prop-
erty here.

As in Lemma 2.3 of [Z12], since ln
∫
B(m,1) v

2dg → −∞ as d(m,x0)→∞,

there exists a large r0 > 0 such that, when d(x, x0) ≥ r0, we have

(2.18) 4∆v(x) + v(x) ln v(x) ≥ 0, and v(x) ≤ e−1.
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Step 2. We claim that there exist a smooth, distance like function h =
h(x) on M, which satisfies,

1

2
h(x) ≤ d(x, x0) ≤ 2h(x), |∇h(x)| ≤ 1,

|∆h(x)| ≤ 1

10
h(x), d(x, x0) ≥ r0.

Comparing with the case of bounded geometry, we can not prove that
|∆h(x)| is bounded by a constant. However the above bound is sufficient, as
indicated in Step 3.

Alternatively, since the Ricci curvature is nonnegative, one can also use
the distance like function in Theorem 4.2 of the book by Schoen-Yau [SY].
The gradient and Laplacian of this function is both bounded. We wish to
thank the referee for pointing this out. Here we are using the function h since
the properties listed above may have independent interest since they rely
only on the heat kernel bound together with its gradient and time derivative
bound, which hold under weaker assumptions such as certain integral Ricci
curvature bound.

Indeed, we can take, for a fixed time t to be chosen later

(2.19) h(x) =

∫
M
G(x, t, y)d(y, x0)dg(y),

where G is the heat kernel of the forward heat equation. Let’s verify that
the claim is true. First

h(x)− d(x, x0) =

∫
M
G(x, t, y)[d(y, x0)− d(x, x0)]dg(y),

which implies, by the triangle inequality, that

|h(x)− d(x, x0)| ≤
∫
M
G(x, t, y)d(x, y)dg(y).

By the Li-Yau [LY] bound on heat kernel and the volume noncollapsing
property (1.2), the above shows, for some positive constants C,C ′ that

|h(x)− d(x, x0)| ≤
∫
M

C

tn/2
e−

d(x,y)2

Ct
d(x, y)√

t

√
tdg(y)

≤ C ′
√
t

∫
M

1

tn/2
e−

d(x,y)2

2Ct dg(y).
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Hence

(2.20) |h(x)− d(x, x0)| ≤ C1

√
t,

for some constant C1 > 0.
Next, the Bochner’s formula implies

(∆− ∂t)|∇h|2 = 2|Hess h|2 + 2Ric(∇h,∇h) ≥ 0.

This and the initial condition that |∇h|t=0 = |∇d(·, 0)| = 1 infer, via the
maximum principle, that

(2.21) |∇h| ≤ 1.

Thirdly, from (2.19),

∆h(x) =

∫
M

∆xG(x, t, y)d(y, x0)dg(y) =

∫
M
∂tG(x, t, y)d(y, x0)dg(y).

The Li-Yau [LY] bound on the time derivative of the heat kernel and the
volume noncollapsing property show that

|∆h(x)| ≤
∫
M

C

t(n+2)/2
e−

d(x,y)2

Ct d(y, x0)dg(y)

≤
∫
M

C

t(n+2)/2
e−

d(x,y)2

Ct [d(x, y) + d(x, x0)] dg(y)

=

∫
M

C

t(n+2)/2
e−

d(x,y)2

Ct

[
d(x, y)√

t

√
t+ d(x, x0)

]
dg(y)

This infers, for a constant C > 0, that

(2.22) |∆h(x)| ≤ C
(

1√
t

+
1

t
d(x, x0)

)
.

From (2.20) and (2.22), it is clear that we can fix a large t ≥ 100C > 0 and
one large r0 >>

√
t so that

1

2
d(x, x0) ≤ h(x) ≤ 2d(x, x0), |∆h(x)| ≤ 1

10
h(x), ∀ d(x, x0) ≥ r0.

This and (2.21) prove the claim.
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Since d(x, x0) and h(x) are comparable when they are large, by (2.18),
we can choose r0 sufficiently large so that

(2.23) 4∆v(x) + v(x) ln v(x) ≥ 0, and v(x) ≤ e−1

when h(x) ≥ r0.
Step 3.
Next we compare v with a model function

(2.24) J = J(x) = e−ah
2(x)+ar20−1.

Here the constant a > 0 is to be decided later; By direct computation

∆J = J [4a2|∇h|2h2 − 2ah∆h− 2a|∇h|2],
J ln J = J(−ah2 + ar20 − 1).

Hence

4∆J + J ln J = J [16a2|∇h|2h2 − 8ah∆h− 8a|∇h|2 − ah2 + ar20 − 1]

≤ J
[
16a2h2 + 8a

h2

10
− ah2 + ar20 − 1

]
= J

[
16a2h2 − a

5
h2 + ar20 − 1

]
.

Here we have used the claim in step 2, in particular |∆h| ≤ h/10. This
implies, for fixed a sufficiently small that

(2.25) 4∆J + J ln J ≤ 0

when h(x) ≥ r0 and J(x) = e−1 when h(x) = r0.
The rest of the proof is the same as Lemma 2.3 in [Z12], which is given

for completeness. From (2.25) and (2.23), we have
4∆(J − v) + J ln J − v ln v ≤ 0, if h(x) ≥ r0,
J(x) ≤ e−1, v(x) ≤ e−1, if h(x) ≥ r0
(J − v)(x) ≥ 0, if h(x) = r0,

(J − v)(x)→ 0, if h(x)→∞,

Since J(x), v(x) ≤ e−1, by the mean value theorem, there exists a function
f = f(J(x), v(x)), 0 < f ≤ e−1 such that

J(x) lnJ(x)− v(x) ln v(x) = (ln f + 1)(J(x)− v(x)).
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Observe that

ln f + 1 ≤ lne−1 + 1 ≤ 0, when h(x) ≥ r0.

Therefore we can apply the standard maximum principle for the elliptic
inequality on

4∆(J − v)(x) + (ln f + 1)(J − v)(x) ≤ 0, when h(x) ≥ r0

to conclude that

v(x) ≤ J(x) = e−ah
2(x)+ar20−1, when h(x) ≥ r0.

Since h(x) and d(x, x0) are comparable when they are large, we have proven
(2.3). This concludes the proof of Theorem 1.4.

3. flatness of some manifolds with Ric ≥ 0.

Next we apply the theorem to the study of flatness of manifolds withRic ≥ 0.
Let us recall the definition of asymptotically flat manifolds (cf p64 [LP]).

Definition 3.1. A complete, noncompact Riemannian manifoldM is called
Asymptotically Flat of order τ if there is a partition M = M0 ∪M∞, which
satisfies the following properties.

(i). M0 is compact.
(ii). M∞ is the disjoint union of finitely many components each of which

is diffeomorphic to (Rn −B(0, r0)) for some r0 > 0.
(iii). Under the coordinates induced by the diffeomorphism, the metric

gij satisfies, for x ∈M∞,

gij(x) = δij(x) +O(|x|−τ ), ∂kgij(x) = O(|x|−τ−1),
∂k∂lgij(x) = O(|x|−τ−2).

Remark 3.2. For convenience we will equip the compact component M0

with a reference point 0. We will also assume that M∞ has only one con-
nected component. This assumption does not reduce any generality

These class of manifolds are quite useful in general relativity and dif-
ferential geometry. Ricci flat AF manifolds are often the blow up limits in
many situations. If one can show these manifolds are Rn, then one usually
can prove some useful results by the method of contradiction. In [An], [Ba]



i
i

“14-Zhang” — 2019/1/20 — 23:00 — page 1687 — #15 i
i

i
i

i
i

Minimizers of the sharp Log entropy 1687

and [BKN], these authors showed that Ricci flat (or Ricc ≥ 0) AF manifolds
are isometric to Rn if the curvature tensor is in Ln/2 or it decays faster than
inverse square of the distance function. Note there are various definitions of
AF manifolds. In the definition used in this paper, AF manifolds are special
cases of asymptotically locally Euclidean (ALE) manifolds (cf. [BKN]). AF
manifolds are ALE manifolds which are simply connected at infinity. Re-
lated questions and results on flatness of manifolds with nonnegativity of
certain curvatures and faster than quadratic curvature decay can be found
in [BGS] (p58-59), [GW], [K] and [KS]. Flatness is also related to properties
of a tangent cone at infinity, as indicated in Theorem 0.3 in [Co]. This result
involves good estimate of volume of large geodesic balls and hence implic-
itly Jacobi fields and curvature conditions. See also [MSY], [Ni] and [NT]
for results on Kähler manifolds.

Here we replace the AF condition by a much weaker asymptotic condi-
tion and remove the curvature condition.

Definition 3.3. A complete, noncompact Riemannian manifold M is called
C1 Asymptotically Euclidean (C1AE) if there is a partition M = M0 ∪M∞,
which satisfies the following properties.

(i). M0 is compact.
(ii). M∞ is the disjoint union of finitely many components each of which

is diffeomorphic to (Rn −B(0, r0)) for some r0 > 0.
(iii). Under the coordinates induced by the diffeomorphism, the metric

gij satisfies, for x ∈M∞,

gij(x) = δij(x) + o(1), ∂kgij(x) = o(1).

Here o(1) means a quantity that goes to 0 as |x| → ∞. Observe that
there is no decay assumption on the second order derivatives of the metric
and hence no decay assumption on curvature. The result of this section is:

Theorem 3.4. A C1 asymptotically Euclidean manifold with Ric ≥ 0 is
isometric to Rn.

Proof.

If λ = λ(g,M) = 0, then it is known from Corollary 1.6 [BCL], that M
is isometric to Rn.

So we can assume λ < 0.
We will show that the functional L has a minimizer. Then Theorem 1.4

will imply that M = Rn and hence λ = 0, reaching a contradiction. So M =
Rn to begin with.
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According to Theorem 1.9 in [Z14], if we can show that

(3.1) −∞ < λ < λ∞ = 0

then a minimizer exists. So we are left to prove (3.1). We mention that the
log functional in [Z14] has an extra scalar curvature term comparing with
the current one. However, since the scalar curvature is non-negative, the
same conclusion holds and the proof is the same.

First we prove the following
Claim. Let (M, g) be an C1AE manifold of dimension n ≥ 3.
(a). Then there exists a constant A > 0, such that

(3.2)

(∫
M
v2n/(n−2)dg

)(n−2)/n
≤ A

∫
M

4|∇v|2dg, ∀v ∈W 1,2(M, g);

moreover λ(g) is bounded from below i.e.

(3.3)

∫
M
v2 ln v2dg ≤ n

2
ln

(
A

∫
M

4|∇v|2dg
)
,

∀v ∈W 1,2(M, g), ‖v‖L2(M,g) = 1.
(b). λ∞(g) ≥ 0.
(a). We just need to prove (3.2) since (3.3) follows from Jensen inequality.

A C1AE manifold has maximum volume growth, namely,

|B(x, r)| ≥ Crn

for some positive constant C and all r > 0. Then it is well known that (3.2)
holds.

Now we prove part (b).
First we prove the following assertion.

When the radius r is sufficiently large, we have

(3.4) λ(g,M−B(0, r)) ≥ λ(gE ,R
n − J(B(0, r)) + o(1).

Here J is the coordinate map near infinity in the definition of C1AE man-
ifold; o(1) is a quantity whose absolute value goes to 0 when r →∞; gE is
the Euclidean metric.

Pick a function v ∈ C∞0 (M−B(0, r)) with ‖v‖L2 = 1. Given any ε > 0,
by definition of C1AE manifolds, for x ∈M−B(0, r) with r sufficiently
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large, there are the following relations

(1− ε)dx ≤ dg(x) =
√
detg(x)dx ≤ (1 + ε)dx,(3.5)

(1− ε)|∇Rnf | ≤ |∇v| ≤ (1 + ε)|∇Rnf |(3.6)

where f = v ◦ J−1 and J is the coordinate map. Also ∇Rn is the Euclidean
gradient. Hence

(3.7)

∫
M

4|∇v|2dg ≥ (1− ε)2
∫
Rn

4|∇Rnf |2
√
detg(x)dx

Write
√
detg(x) = w2, then∫

Rn

4|∇Rnf |2
√
detg(x)dx =

∫
Rn

4|w∇Rnf |2dx(3.8)

=

∫
Rn

4|∇Rn(wf)|2dx− 8

∫
Rn

f∇w∇(wf)dx+ 4

∫
f2|∇w|2dx.

By definition of C1AE manifolds, we know that |∇w| ≤ η(r) where η = η(r)
is a function going to 0 as r →∞. Hence, we have∫

Rn

4|∇Rnf |2
√
detg(x)dx(3.9)

≥ (1− η(r))

∫
Rn

4|∇Rn(fw)|2dx− 16η−1(r)

∫
f2|∇w|2dx,

≥ (1− η(r))

∫
Rn

4|∇Rn(fw)|2dx− 16η(r)

∫
f2dx

which implies

(3.10)

∫
M

4|∇v|2dg ≥ (1− ε)2(1− η(r))

∫
Rn

4|∇Rn(fw)|2dx− Cη(r).

Also ∫
M
v2 ln v2dg =

∫
Rn

(fw)2 ln f2dx(3.11)

=

∫
Rn

(fw)2 ln(fw)2dx−
∫
Rn

(fw)2 lnw2dx

=

∫
Rn

(fw)2 ln(fw)2dx+ o(1).
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This and (3.10) imply that

L(v, g,M−B(0, r)) ≥ L(fw, gE ,R
n − J(B(0, r)))(3.12)

+ o(1)− Cη(r)− nε.

Since ‖fw‖L2(Rn) = 1, by taking the infimum of this inequality, it is easy to
see that

(3.13) λ(g,M−B(0, r)) ≥ λ(gE ,R
n − J(B(0, r)) + o(1)− Cη(r)− nε.

Since ε is arbitrary, the assertion is proven.
Using λ(gE ,R

n − J(B(0, r)) ≥ λ(gE ,R
n) = 0, we see that

(3.14) λ∞(g) = lim
r→∞

λ(g,M−B(0, r)) ≥ 0.

This proves part (b) of the claim.
But then

λ < 0 = λ∞.

This is (3.1) and hence the Theorem follows. �

Remark 3.5. From the proof, it is clear that one only needs the condition
λ∞ = 0 to get the result. In the Ricci flat case, this condition holds if there
is a compact set K such that M−K is conformal to a domain in Rn. In
this situation the W 1,2 Sobolev constant is the same as the Yamabe constant
which stays the same under conformal change. So the best constant in the
log Sobolev constant is also the same. This shows λ∞ = λRn = 0. Thus we
obtain a coordinate free result which may also be proven by another method:

Proposition 3.6. A complete, noncompact Ricci flat n(≥ 3) dimensional
manifold which is conformal at infinity to a domain in Rn is isometric
to Rn.
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complete Kähler manifolds, Compositio Math. 44 (1981), no. 1-3,
183–218.

[N] A. Naber, Noncompact shrinking 4-solitons with nonnegative curva-
ture, J. Reine Angew. Math. 645 (2010), 125–153.

[Ni] L. Ni, An optimal gap theorem, Invent. Math. 189 (2012), no. 3,
737–761.
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