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Let M denote a compact 3-manifold. The author proved in [8] that
there exists a Kuranishi structure for the moduli space of pairs con-
sisting of a Riemannian metric on M and a non-zero Z/2-harmonic
spinor subject to certain natural regularity assumptions. This pa-
per proves that the virtual dimension of Z/2-harmonic spinors for
a generic metric is equal to zero. The paper also computes the
virtual dimension of certain Z/2-harmonic spinors on 4-manifolds
using an index theorem developed by Jochen Bruning and Robert
Seeley and, independently, Fangyun Yang.

1. Introduction and main theorem

Let M be a closed oriented smooth 3-manifold. We define the following
spaces

X = {Riemannian metric defined on M},
A = {C1-embeddeding S1 →M},
Y = X ×A.

For any (g,Σ) ∈ Y, we choose a spinor bundle, Sg,Σ, defined on M − Σ which
cannot be extended on M . The choice of this spinor bundle is not unique,
but there are only finitely many choices. We fix a choice of Sg,Σ throughout
the rest of this paper.

The author introduced in [8] the space M which consists of (g,Σ, ψ) ∈
Y × L2

1(Sg,Σ) that satisfy the following conditions: First, ψ obeys the Dirac
equation defined by the metric g on M − Σ. Second, |ψ| can be extended to

the whole of M as a Hölder continuous function. Third, |ψ|(p)
dist(p,Σ)

1
2

is bounded

away from zero near Σ. The space M is said here to be the moduli space of
Z/2-harmonic spinors on M .

The notion of a Z/2-harmonic spinor was introduced by Taubes [1], [3]
to describe the behavior of certain non-convergent sequences of PSL(2;C)-
connections on 3-manifolds. This notion appeared again in Haydys and
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1646 Ryosuke Takahashi

Walpuski’s analysis of noncompact sequences of solutions to multi-spinor
generalizations of the Seiberg-Witten equations on 3-manifolds [6]. Anal-
ogous Z/2-harmonic spinors on 4-dimensional manifolds appeared in the
work by Taubes on the behavior of non-compact sequences of solutions
to the Kapustin-Witten equations [2], to the multi-spinor Seiberg-Witten
equations on 4-manifolds [4], and to the Vafa-Witten equations [5]. All
of these equations have potentially important applications. For example,
Haydys and Walpuski [13] [14], conjecture a fundamental relation between
the multi-spinor Seiberg-Witten equations on 3-manifolds and the spaces of
G2-instantons on certain 7-dimensional manifolds (also see [7]). Meanwhile,
Witten has conjectured [15] that spaces of solutions of the Kapustin-Witten
equations can be used to compute the Jones’ polynomial for knots in S3.
All of these applications require some understanding of the behavior of non-
convergent sequences of solutions to the relevant equations. What has been
shown by Taubes and Haydys-Walpuski is that limits of non-convergent se-
quences of solutions to the relevant equations can be defined (after a renor-
malization) on the complement of a closed set in the ambient manifold of
Hausdorff dimension at most 2 that contains a dense, open C1-submanifold.
This bad set is, in all cases, the zero locus of a Z/2-harmonic spinor. This
being the case, one must come to terms with Z/2-harmonic spinors and
their zero locus. This paper and [8] are the first steps to this end. Here,
as in [8], some additional regularity is assumed that the zero locus of the
Z/2-harmonic spinor is everywhere a codimension 2-submanifold. Thus, it
is assumed to be a union of embedded circles in case when M has dimension
3, and an embedded surface in the dimension 4 case.

Suppose now that M is a closed, oriented 3-manifold. The main structure
theorem for M is as follows (see [8]):

Theorem 1.1. Let p = (g,Σ, ψ) ∈M. There are

a) two finite dimensional vector spaces K0, K1, a ball O0 ⊂ K0 centered
at 0,

b) a set B ⊂ X with B = p1(N ) being the projection of N , a neighborhood
of p, from Y to X , and

c) f : B ×O0 → K1 a C1-map in the sense of Frechet differentiation,

such that f−1(0) is homeomorphic to a neighborhood of p in M.

This theorem implies the following: The subset in M with a fixed met-
ric component, say g = g0, is a finite dimensional object. This fixed metric
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Index theorem for Z/2-harmonic spinors 1647

subset is denoted henceforth as Mg0
. The virtual dimension of Mg0

is de-
fined as follows: Let K0 and K1 denote the vector spaces in the g0 version
of Theorem 1.1. The virtual dimension of Mg0

is dim(K0)− dim(K1). The
following is one of the main results of this paper.

Theorem 1.2. Let (g0,Σ0, ψ0) be a point in M. Then the corresponding
vector spaces K0 and K1 from Theorem 1.1 have the same dimension. In
particular, the virtual dimension of Mg0

is zero.

Remark 1.3. Note that if (g,Σ, ψ) is in M, then so is (g,Σ, cψ) with c
being any non-zero complex number. This in turn implies that the set of
(g,Σ, cψ) from M with ψ having L2 norm equal to 1 has formal dimension -
1. This last observation supports a conjecture made by Haydys and Walpuski
[13] with regards to the multi-spinor Seiberg-Witten equations.

The proof of Theorem 1.2 occupies the first part of this paper. The sec-
ond part of this paper considers a generalization of Theorem 1.2 to the case
when M is a closed, oriented manifold of dimension 4. This part considers
an analog of M, MT 2 , consisting of triples (g,Σ, ψ) where g is a Riemannian
metric, Σ is a C1 embedded 2-dimensional torus in M with trivial normal
bundle and ψ is a harmonic, self-dual spinor on the complement of Σ (defined
by a Spin structure on the complement of Σ) whose norm extends across

Σ as a Hölder continuous function vanishing on Σ and obeying |ψ|(p)
dist(p,Σ)

1
2

on a neighborhood of Σ. Note that in the context of [4], [2] and [5], there
is no a priori reason why the zero locus of |ψ| should be a torus (and with
trivial normal bundle too) even in the event that it is a C1 submanifold.
This constraint on the topology is an extra condition that is imposed here.
In any event, even with the torus restriction, the analog of Theorem 1.1 for
this 4-dimensional version of M has yet to be proved. However, assuming
that Theorem 1.1 holds for a given triple (g0,Σ0, ψ0) as just described, then
the difference between the dimensions of the associated spaces K0 and K1

can be viewed as a virtual dimension for MT 2 near (g0,Σ0, ψ0).
Even though we don’t have the 4-dimensional version of Theorem 1.1 and

Fredholm property for the linearization of MT 2 at p = (g0,Σ0, ψ0), denoted
by FT 2,p : K0 → K1 (defined in (4.6), section 4.2), the corresponding index
can still be obtained based on the 3-dimensional linearization argument.
FT 2,p is determined by the leading term of ψ0, denoted by d±. In the proof of
Theorem 1.1 [8], it is true that the Fredholmness holds for any d± satisfying
|d+|2 + |d−|2 > 0. By assuming the same Fredholm property for FT 2,p, i.e.,
FT 2,p is Fredholm for any d± satisfying |d+|2 + |d−|2 > 0, we will be able to
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prove a four-dimensional version of Theorem 1.2. This will be Theorem 4.4
in Section 4.

2. Preliminary: Linearization of M

2.1. Some background properties and notations

In this subsection, we will introduce some notations and propositions that
will be needed in the proof of Theorem 1.2. Then, we will also briefly go
through the linearization argument of M which appears in [8]. After having
explained this argument, we can then define K1 and K0 precisely. We will
omit all proofs of these propositions because they are all in [8].

First of all, for any (g,Σ) ∈ Y, we can parametrize a small tubular
neighborhood of Σ, N , by (t, z) ∈ S1 × DR where DR is a complex disc
of radius R > 0 in C. In addition, a Z/2 spinor bundle can be written as
Sg,Σ = Sg ⊗ IΣ where Sg is the spinor bundle defined on M and IΣ is a non-
extendable real line bundle over M − Σ. On N − Σ ' T 2 × (0, R), we have
Sg,Σ = (SS1 ⊗ IΣ)⊕ (SS1 ⊗ IΣ) where SS1 ' π∗(S) is the pull-back bundle
of the spinor bundle from the map π : N − Σ→ S1 (by sending (t, z) to t).
The detail of this argument can be found in Section 2.1 of [9] or Appendix B
in [8].

The following proposition can be found in Section 3.1 of [8].

Proposition 2.1. a) L2(M − Σ;Sg,Σ) = ker(D|L2)⊕ range(D|L2
1
),

b) For any v ∈ ker(D|L2), we have

v =

(
c+(t)√
z

c−(t)√
z̄

)
+ vR,

where vR = O(|z|α) for some α > 0 and c+, c− ∈ C∞(N − Σ,SS1 ⊗
IΣ).

c) For any u ∈ ker(D|L2
1
), we have

u =

(
d+(t)

√
z

d−(t)
√
z̄

)
+ uR.

where uR = O(|z|β) for some β > 1
2 and d+, d− ∈ C∞(N − Σ,SS1 ⊗

IΣ).Moreover, uR is in L2
2(N − Σ;Sg,Σ).
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Index theorem for Z/2-harmonic spinors 1649

Suppose that SS1 |N is a trivial complex line bundle. Using the notation
from Proposition 2.1 b), we define the map

B : ker(D|L2)→ L2(S1;C2)

by sending v to (c+, c−). Now, L2(S1;C2) can be decomposed in the following
way:

Exp+ =

{( ∑
l∈Z ple

ilt∑
l∈Z−sign(l)iple

ilt

) ∣∣∣∣(pl) ∈ l2},
Exp− =

{( ∑
l∈Z ple

ilt∑
l∈Z sign(l)iple

ilt

) ∣∣∣∣(pl) ∈ l2}.
Then L2(S1;C2) = Exp+ ⊕ Exp−.

Proposition 2.2. ([8, Proposition 6.1]) Let π± be the projections from
L2(S1;C2) to Exp± and p± := π± ◦B which form the following diagram

Exp+

ker(D|L2(M−Σ;Sg,Σ)
B
>

p+ >

L2(S1;C2)

∧
π+

Exp−,
∨
π−

p− >

then p+ is a compact operator and p− is a Fredholm operator.

Remark 2.3. Whenever SS1 |N is a trivial or nontrivial complex line bun-
dle, we always have B mapping to L2(S1;SΣ ⊕ SΣ) for SΣ being a spinor
bundle on Σ. The same argument works with l ∈ Z + 1

2 when it is nontrivial.
So we only need to focus on one case.

2.2. Linearization of M

Let p = (g0,Σ0, ψ0) ∈M. We choose (gs,Σs, ψs) to be a C1-curve passing
through this point in Y × L2

1(Sg,Σ) with s ∈ (−ε, ε). To be more specific,
firstly, one can parametrize the tubular neighbourhood of Σ0 by {(t, z)|t ∈
[0, 2π] and z ∈ C, |z| < R} for some small R. We call this neighborhood N .
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Under this coordinate, we write

Σs = {(t, sη(t) +O(s2))},
ψs = ψ0(t, z − sη +O(s2)) + sφs

for some C1-map η : S1 → C with ‖η‖C1 ≤ 1 and φs = OL2
1
(1). Here we use

the notation OL2
1
(1) to denote a one-parameter section ρs satisfying ‖ρs‖L2

1
≤

C for some constant C > 0. We also choose ε small enough such that Σs ⊂ N
for all s ∈ (−ε, ε).

In addition, the metric perturbation can be written as

gs = g0 + sδs

which satisfies δs = 0 on the tubular neighborhood N .1 Let Ds be the Dirac
operator defined on M − Σs with respect to gs and D = D0, then we have
Ds = D on N − (Σs ∪ Σ0). So we can write Ds = D + sTs for some first
order differential operator Ts defined on M − Σs supported on M −N .

Since ψ0 vanishes on Σ0 and satisfies the Dirac equation, we can write
down the general solution for it of the form

ψ0 =

(
d+(t)

√
z

d−(t)
√
z̄

)
+O(|z|α)

for some α > 1
2 by Proposition 2.1. So

ψs =

(
d+(t)

√
z − sη +O(s2)

d−(t)
√
z̄ − sη̄ +O(s2)

)
+O(|z − sη +O(s2)|α) + sφs.

Now, for any (δ0, η, φ0) defined as above, we have map

Lp(δ0, η, φ0) :=
d

ds
(Dsψs)

∣∣∣
s=0

= T0(ψ0) +D
( d
ds
ψs

)∣∣∣
s=0

= T0(ψ0) +D

(( d+(t)η√
z

d−(t)η̄√
z̄

)
+Rp(η) + φ0

)
.

Here Rp(η) is an element determined by p = (g0,Σ0, ψ0) and η. We notice
that Rp(η) = OL2

1
(1). Also notice that δ0 corresponds to the metric pertur-

bation (p1(N ) part) in Theorem 1.1. Since we are now interested in the

1This is part of assumption we used in [8]. We assumed the metric perturbation
and the perturbation of Σ will not interfere with each other when s small.
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space Mg0
, we can take δ0 = 0 here. Namely, T0(ψ0) = 0. So we define the

linearization map

Lp : {η : S1 → C; ‖η‖C1 ≤ 1} × L2
1(M − Σ;Sg,Σ)→ L2(M − Σ;Sg,Σ)

Lp(η, φ) := D

(( d+(t)η√
z

d−(t)η̄√
z̄

)
+Rp(η) + φ0

)
(2.1)

with Rp(η) = OL2
1
(1).

Here we study ker(Lp). To satisfy Lp(η, φ0) = 0, we need

D

(( d+(t)η√
z

d−(t)η̄√
z̄

)
+Rp(η) + φ0

)
= 0.(2.2)

To study the condition (2.2), we use the mapB : ker(D|L2)→ L2(S1;C2)
sending a L2-harmonic spinor to its leading coefficient. In our case, we have

B

(( d+(t)η√
z

d−(t)η̄√
z̄

)
+Rp(η) + φ0

)
= (d+η, d−η̄).

Therefore, to fulfill the equation (2.2), we need

(d+η, d−η̄) ∈ range(B).(2.3)

The condition (2.3) still involves the unknown η, so we define the fol-
lowing map.

Definition 2.4. Let ψ be a Z/2-harmonic spinor. Denoted by d± its leading
coefficient as in Proposition 2.1 c). Define

Td± : L2(S1;C2)→ L2(S1;C) by

Td±(a, b) = d̄−a− d+b̄.

Composing Td± with B, then we have the following sequence

ker(D|L2)
B
> L2(S1;C2)

Td±> L2(S1;C).
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Clearly we have Td±((d+η, d−η̄)) = 0. Therefore, we have the following map
from ker(Lp) to ker(Td± ◦B),

(η, φ0) ∈ ker(Lp) −→ u =

(
d+(t)η√

z
d−(t)η̄√

z̄

)
+Rp(η) + φ0.

Here we prove that this map is a bijection by writing down its inverse.
For any u ∈ ker(Td± ◦B), we can write B(u) = (u+, u−). So we can solve
η = u+

d+ = ū−

d− . This is well-defined because B(u) is in ker(Td±). With this η,
we can solve φ0:

φ0 := u−

(
d+(t)η√

z
d−(t)η̄√

z̄

)
+Rp(η).

Therefore, there is an inverse map from ker(Td± ◦B) to ker(Lp). So we
define K0 = ker(Td± ◦B).

In addition, we can prove the following proposition.

Proposition 2.5. coker(Lp) is isomorphic to coker(Td± ◦B)⊕ (ker(D|L2
1
)).

The proof of this result is deferred to the appendix. With these corre-
spondences, we have the definition of K0 and K1:

K0 := ker(Td± ◦B);

K1 := coker(Td± ◦B)× (ker(D|L2
1
)).

Moreover, for any p = (g0,Σ0, ψ0) ∈M, we define the Fredholm operator Fp
to be

Fp : ker(D|L2)→ L2(S1;C)⊕ ker(D|L2
1
);

u 7→ (Td± ◦B(u), 0).

Then K0 and K1 are kernel and cokernel of Fp respectively. It is also clear
that index(Lp) = index(Fp).



i
i

“13-Takahashi” — 2019/1/12 — 23:59 — page 1653 — #9 i
i

i
i

i
i

Index theorem for Z/2-harmonic spinors 1653

Therefore we have the following graph,

Exp+

ker(D|L2(M−Σ;Sg,Σ))
B
>

p+ >

L2(S1;C2)

∧
π+

Td±
> L2(S1)

Td± |Exp+

>

Exp−
∨
π−

Td± |Exp−

>

p− >

Proposition 2.6. ([8, Theorem 6.12]) Td± |Exp− is a Fredholm operator
andindex(Td± |Exp−) = 0.

Now, by Proposition 2.2, we have B = p+ + p− where p+ is compact
and p− is Fredholm. Therefore Td± ◦B is a Fredholm operator because
Td± ◦B = Td± |Exp− ◦ p− + Td± |Exp+ ◦ p+ where the former is a composition
of Fredholm operators and the later is a composition with a compact oper-
ator. This implies that Fp is Fredholm. So

index(Fp) = index(Td± ◦B)

= index(Td± |Exp− ◦ p−) = index(Td± |Exp−) + index(p−).

By Proposition 2.6, we have

index(Td± ◦B) = index(p−).

Therefore, to prove Theorem 1.2, we have to show that the following propo-
sition is true.

Proposition 2.7. index(p−) = −dim(ker(D|L2
1
)).

Remark 2.8. Recall that the index for Fredholm operators will be an
invariant on a connected component. Namely, when we compute the index,
we can assume that the metric defined on a small tubular neighborhood of
Σ is Euclidean. So the Dirac operator defined on the tubular neighborhood
can be written as

D =

(
−i 0
0 i

)
∂t +

(
0 1
0 0

)
∂z +

(
0 0
−1 0

)
∂z̄(2.4)

where z = x+ iy (we rewrite the Dirac operator D = e0∂t + e1∂x + e2∂y in
terms of ∂t, ∂z and ∂z̄).
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3. Proof of Proposition 2.7

3.1. Integration by parts

First of all, by part a) of Proposition 2.1, we have

L2(M − Σ;Sg,Σ) = range(D|L2
1
)⊕ ker(D|L2).

The first step is to extend the map B on a suitable subspace in L2(M −
Σ;Sg,Σ) which contains ker(D|L2). Here let us denote the domain of the
Dirac operator on L2 by Dom(D) (for the detail readers can see the p. 91
in [12]). So for any element v ∈ Dom(D), we have Dv ∈ L2.

In addition, recall that we parametrize the tubular neighborhood N −
Σ ' T 2 × (0, R) by (t, z) ∈ S1 × DR. If we use the polar coordinate z = reiθ,
for any continuous section v and r0 ∈ (0, R), v(r0, ·, ·) will be a section de-
fined on the bundle Sg,Σ|{r=r0} → T 2. We discussed in the second paragraph
of Section 2.1, Sg,Σ|{r=r0} ' (S ⊗ IΣ)⊕ (S ⊗ IΣ). So v(r0, ·) can be regarded
as a section on (S ⊗ IΣ)⊕ (S ⊗ IΣ). Again, here we can just consider the
case that S is trivial complex line bundle because the general case has the
same argument.

Definition 3.1. Let

E∂ =
{
v ∈ Dom(D)

∣∣∣ r 1

2 v(r, ·) ⇀ X as r → 0,

for some X ∈ (L2(S1;C)⊗ e−
1

2
iθ)⊕ (L2(S1;C)⊗ e

1

2
iθ)
}
.

Here

L2(S1;C)⊗ e
1

2
iθ := {v ⊗ e

1

2
iθ ∈ S ⊗ IΣ|v ∈ L2(S1;C)};

L2(S1;C)⊗ e−
1

2
iθ := {v ⊗ e−

1

2
iθ ∈ S ⊗ IΣ|v ∈ L2(S1;C)}.

Here the limit is in weak sense. The existence of this limit is equivalently
to say: When we write v = (v+, v−) on the tubular neighborhood of Σ,( √

zv+
√
z̄v−

)
⇀

(
y+

y−

)
∈ L2(S1;C2)(3.1)

for some y± as r = |z| goes to 0.
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We denote by

∂(v)

X when the weak limit exist. Meanwhile, we can extend the map B on E∂
by using (3.1). When v ∈ ker(D|L2), this limit exists and equals B(v). We
can see thatB(E∂) = L2(S1;C2) because for any Y = (y+, y−) ∈ L2(S1;C2),
then there exists ∂(u) = Y with

u =

(
y+

√
z

y−√
z̄

)
χ ∈ E∂

where χ is a continuous function with value 1 near Σ and 0 on M −N . Ac-
cordingly, this new domain we chose maps onto the space L2(S1;C2). By us-
ing this fact and part a) of Proposition 2.1, for any Y ∈ B(ker(D|L2))⊥, there
exists an element w ∈ range(D|L2

1
) such that Y −B(w) ∈ B(ker(D|L2)).

Secondly, we consider the integration by parts. Let v, w ∈ E∂ . Then we
have ∫

M−Σ
〈Dv,w〉+ 〈v,Dw〉 =

∫ 2π

0

∫
S1

〈∂(v), e∗∂(w)〉dtdθ(3.2)

where e∗ is the Clifford multiplication cl(∂r) =

(
0 e−iθ

−eiθ 0

)
by using

the notation in (2.4). So (3.2) can be written as∫
M−Σ

〈Dv,w〉+ 〈v,Dw〉 = 2π

∫
S1

〈B(v), e0B(w)〉dt(3.3)

where e0 =

(
0 1
−1 0

)
.

Notice that the Clifford multiplication e0 can be regarded as a map from
Exp± to Exp∓. So we can define the following nondegenerate bilinear form

B(X,Y ) =

∫
S1

〈X, e0Y 〉

on L2(S1). Meanwhile, we also have the standard inner product

(X,Y ) =

∫
S1

〈X,Y 〉

on L2(S1), and we write X ⊥ Y if and only if (X,Y ) = 0.
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Proposition 3.2. L2(S1;C2) = B(ker(D|L2))⊕ e0B(ker(D|L2)). Namely,
B(ker(D|L2)) can be regarded as a Lagrangian subspace of L2(S1;C2).

Proof. To prove this proposition, by using equality (3.3), we have

B(ker(D|L2)) ⊥ e0B(ker(D|L2)).

This implies that B(ker(D|L2))⊥ ⊆ e0B(ker(D|L2)). So one can prove this
proposition by showing that B(ker(D|L2))⊥ = e0B(ker(D|L2)). In addition,
every element in B(ker(D|L2))⊥ can be written as B(Du) +B(v) for some
u ∈ L2

1 and v ∈ ker(D|L2). Therefore, to prove

B(ker(D|L2))⊥ = e0B(ker(D|L2)),

one needs to show that if there is a B(Du) +B(v) ∈ B(ker(D|L2))⊥ such
that B(B(Du) +B(v), Y ) = 0 for all Y ∈ B(ker(D|L2)), then

B(Du) +B(v) = 0.

Since v ∈ ker(D|L2), we always have B(B(v), Y ) = 0. So we can rewrite
our assumption as follows

B(B(Du), B(w)) = 0

for all w ∈ ker(D|L2). By (3.3) again,∫
M−Σ

〈D2u,w〉 = 0

for all w ∈ ker(D|L2). So we have D2u ∈ ker(D|L2)⊥ = range(D|L2
1
). This

means that D2u = Du′ for some u′ ∈ L2
1. Therefore Du = u′ + v′ for some

v′ ∈ ker(D|L2), which implies that B(Du) = B(v′) ∈ B(ker(D|L2)). Even-
tually, we have B(Du) +B(v) ∈ B(ker(D|L2)) ∩B(ker(D|L2))⊥ = {0}. So
we prove this proposition. �

Now the following fact can be derived immediately from this proposition:

coker(p−) = [p−(ker(D|L2))]⊥ = [π− ◦B(ker(D|L2))]⊥

= B(ker(D|L2))⊥ ∩ ker(π+) = e0B(ker(D|L2)) ∩ ker(π+)

= {v ∈ Exp−|v ∈ e0B(ker(D|L2))}
= {e0v ∈ Exp+|e0v ∈ B(ker(D|L2))}
= B(ker(D|L2) ∩ Exp+
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(also by the fact that e2
0 = −1).

Here we prove ker(p−)/ker(D|L2
1
) ∼= B(ker(D|L2) ∩ Exp+. If we take the

quotient of p+ : ker(p−)→ B(ker(D|L2) ∩ Exp+ by its kernel ker(D|L2
1
), we

have an injective map from ker(p−)/ker(D|L2
1
) to B(ker(D|L2) ∩ Exp+. It

is obvious by the definition of its range that the this map is onto. This
means B(ker(D|L2) ∩ Exp+ ∼= ker(p−)/ker(D|L2

1
). This completes the proof

of Proposition 2.8.

4. 4-dimensional setting

4.1. Main setting

In this section we consider the 4-dimensional generalization of the index
theorem with respect to the the Z/2-harmonic spinors. Let M be a closed
oriented smooth 4-manifold with the second Stiefel-Whitney class w2 = 0.
X be the space of Riemannian metrics defined on M . In this case, for any
g ∈ X , there exists a (not necessarily unique) spinor bundle S = S+ ⊕ S−.

AT 2 = {C1-embedding surface Σ ⊂M with trivial normal bundle,

Σ is homeomorhic to T 2}.

Let Σ ∈ AT 2 and g ∈ X . Recall that a Z/2-spinor bundle with respect to
(g,Σ) is a spinor bundle which can be written as Sg ⊗ IΣ, where Sg is a
spinor bundle over (M, g) and IΣ is a non-extendable real line bundle over
M − Σ. Again, we use Sg,Σ to denote one of these bundles. Moreover, because
there is a standard decomposition Sg = S+

g ⊕ S−g , we have Sg,Σ = S+
g,Σ ⊕

S−g,Σ accordingly.

The Dirac operator D on Sg,Σ can also be decomposed as D = D+ ⊕D−
where D± map S±g,Σ to S∓g,Σ. We consider one of them, say D+, and define
the moduli space as the following:

MT 2 =
{

(ψ,Σ, g) |D+(ψ) = 0, ψ ∈ C∞(S+
g,Σ)

|ψ| can be extended as a Hölder continuous function on M,

with its zero locus containing Σ,

|ψ|(p)
dist(p,Σ)

1

2

> 0 near Σ,

‖ψ‖L2
1
> 0.

}
and MT 2,g0

= MT 2 ∩ {g = g0}.
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In general, we can define the moduli space MX for any Riemann surface
X. In fact, we will have the same index theorem as the case X = T 2. However
in this paper we focus on this special case because we can precisely write
down the model solution for Dirac equation in the tubular neighborhood
of Σ.

4.2. Linearization of MT 2

To prove a four dimensional version of Theorem 1.2, we should start with the
linearization of MT 2 . This part has the same structure as the 3-dimensional
case. Consider the model of the tubular neighborhood, T 2 × DR where DR
is a complex disc of radius R > 0 in C, the Dirac operator can be written as

D+ = e0D̂ + e1∂z + e2∂z̄(4.1)

where D̂ is the Dirac operator defined on T 2 and e0, e1, e2 are Clifford mul-

tiplications with e0 =

(
0 1
−1 0

)
, e1 =

(
0 1
0 0

)
and e2 =

(
0 0
−1 0

)
.

Note that, in the 3-dimensional case, a general solution of Dirac equation
(2.4) can be written as follows: For any C∞-spinor u, it can be written as a
Fourier series

u(t, r, θ) =
∑
l,k

eilt

(
ei(k−

1

2
)θU+

k,l(r)

ei(k+ 1

2
)θU−k,l(r)

)

where k runs over Z and l runs over Z or Z + 1
2 . Then U±k,l will satisfy an

ODE provided by the Dirac equation Du = 0. It can be written as

d

dr

(
U+

U−

)
k,l

=

(
(k− 1

2
)

r −l
−l − (k+ 1

2
)

r

)(
U+

U−

)
k,l

.(4.2)

The situation is similar in 4 dimensional case: Parametrizing T 2 × R2

by {(x, r, θ) ∈ T 2 × R≥0 × [0, 2π]}, we can write a C∞-section u as follows

u(x, r, θ) =
∑
a,k

(
v∧a (x)ei(k−

1

2
)θU+

k,a(r)

v∨a (x)ei(k+ 1

2
)θU−k,a(r)

)
.

Here k still runs over Z and a runs over Λ, the eigenvalues of D̂ (counting
repeatedly if we have repeat eigenvalues). va = (v∧a , v

∨
a ) satisfies e0D̂

+v∧a =
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av∨a and e0D̂
−v∨a = av∧a . {v∧a } {v∨a } will be orthonormal bases of L2(S+

Σ ) and
L2(S−Σ ) respectively.

In our case that Σ ' S1 × S1 equipped with Euclidean metric, we can
write down these va = (v∧a , v

∨
a ) precisely. Since we have assumed the Fred-

holmness of the linearization, the index wouldn’t change under any per-
turbation of metrics. Therefore one can obtain the index formula under this
assumption. Let us consider the Dirac operator D+ with respect to the stan-
dard flat metric dt2 + ds2 + dr2 + rdrdθ + dθ2 and S±Σ are trivial, then we
have

D+ =

(
1 0
0 1

)
∂t +

(
−i 0
0 i

)
∂s +

(
0 1
0 0

)
∂z +

(
0 0
−1 0

)
∂z̄.

The sum of the first two terms is e0D̂ defined above. So we can define

{
vl,m := (eilteims,

−il +m√
l2 +m2

eilteims)
∣∣∣ (l,m) ∈ Z× Z− (0, 0)

}

and Λ := {
√
l2 +m2|(l,m) ∈ Z× Z− (0, 0)}. When S±Σ are non-trivial, we

can simply replace those Z by Z + 1
2 respectively according to the non-

triviality of S±Σ .
In the following paragraphs, we define

sign(l,m) :=
l + im√
l2 +m2

.

So

vl,m = (eilteims,−sign(l,m)ieilteims).

Notice that this sign function sign(l,m) can be regraded as a generalized sign
for paring numbers: We have sign(l, 0) = sign(l) and sign(0,m) = isign(m).

Given any k, a =
√
l2 +m2, U±k,a will satisfy the same ODE system,

d

dr

(
U+

U−

)
k,a

=

(
(k− 1

2
)

r −a
−a − (k+ 1

2
)

r

)(
U+

U−

)
k,a

,(4.3)
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as they did in the 3-dimensional case. By solving this ODE system, we will
have

u(x, r, θ) =
∑
k,a

(
u+
k,av

∧
a (x)ei(k−

1

2
)θIk− 1

2
,a(r)

−u+
k,av

∨
a (x)ei(k+ 1

2
)θaIk+ 1

2
,a(r)

)
(4.4)

+

(
−u−k,av

∧
a (x)ei(k−

1

2
)θaIk− 1

2
,a(r)

u−k,av
∨
a (x)ei(k+ 1

2
)θIk+ 1

2
,a(r)

)

for some u±k,a ∈ C. Here Ip,a(r) := a−p
∑∞

n=0
1

n!Γ(n+p+1)(ar2 )2n+p is the mod-

ified Bessel function (when a = 0, we simply take Ip,0(r) := rp).
Now, recall that these modified Bessel functions have order Ip,a(r) =

O(rp). So if u(x, r, θ) ∈ L2, then u±k,a = 0 for all k < 0 and the leading order

term of u will be of order O(r−
1

2 ). Similarly, if u ∈ L2
1, then the leading order

term of u will be of order O(r
1

2 ). Therefore, b) and c) in Proposition 2.1 can
be derived in 4 dimensional case. In other words, we have

Proposition 4.1.

a) L2(M − Σ;S+
g,Σ) = ker(D+|L2)⊕ range(D−|L2

1
),

b) For any v ∈ ker(D+|L2), we have

v =

(
c+(x)√

z
c−(x)√

z̄

)
+ vR,

where vR = O(|z|α) for some α > 0 and c± ∈ C∞(N − Σ,S±T 2 ⊗ IΣ).

c) For any u ∈ ker(D+|L2
1
), we have

u =

(
d+(x)

√
z

d−(x)
√
z̄

)
+ uR.

where uR = O(|z|β) for some β > 1
2 and d± ∈ C∞(N − Σ,S±T 2 ⊗ IΣ).

Here S±T 2 are the pull-back bundles of S±Σ by the map π : N − Σ→ Σ
and SΣ = S+

Σ ⊕ S
−
Σ is a spinor bundle defined on Σ.

The proof of this proposition is same as the proof of Proposition 2.1
which can be found in [8]. So we omit it here.
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Here these leading coefficients (c+(x), c−(x)), (d+(x), d−(x)) are in

L2(T 2;SΣ) ∼= L2(T 2;S+
Σ ⊕ S

−
Σ ).

By Proposition 4.1, for any element (g,Σ, ψ) ∈MT 2 , the linearization argu-
ment in Section 2.2 can be derived. So we have the following composition of
maps.

ker(D+|L2(M−Σ;S+⊗I))
B
> L2(T 2;S+

Σ ⊕ S
−
Σ )

Td± > L2(T 2;S+
Σ ⊗ S

−
Σ ).

(4.5)

The map B in this short sequence is also defined in [9] which will give us a
useful index formula in Theorem 4.3. Here we need to explain the map Td±
more. As we follow the argument in Section 2.2, we will have

d+η = c+;

d−η̄ = c−

where η is a complex value function and (d+, d−), (c+, c−) are in L2(T 2;S+
Σ )⊕

L2(T 2;S−Σ ). To kill the term on the left hand side of this equation, we tenser
both sides of the first equation on the right with the conjugate of d− in the
conjugate bundle of S−Σ , denoted by d̄−. Meanwhile, tensor the conjugate of
the second equation on the left with d+. So we have

η(d+ ⊗ d̄−) = (c+ ⊗ d̄−);

η(d+ ⊗ d̄−) = (d+ ⊗ c̄−).

Therefore, we define Td± by

Td±(c+, c−) = (c+ ⊗ d̄−)− (d+ ⊗ c̄−).

By the same argument we used in the 3-dimensional case, the linearization
of MT 2,g can be locally written as a map between the following two spaces:

K0 = ker(Td± ◦B);

K1 = coker(Td± ◦B)× (ker(D−|L2
1
)),

which are the kernel and cokernel of the map FT 2,p,

FT 2,p : ker(D+|L2(M−Σ;S+
g,Σ))→ L2(T 2;S+

Σ ⊗ S
−
Σ )⊕ ker(D|L2

1
);(4.6)

u 7→ (Td± ◦B(u), 0).
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To mimic the argument in the 3-dimensional case, we shall define the
decomposition π±, which appears in the following subsection.

4.3. Decomposition of π±

Unlike the 3-dimensional case, here we wouldn’t use a symmetric decomposi-
tion to make L2(T 2;S+

Σ ⊕ S
−
Σ ) = Exp+ ⊕ Exp−. Instead, we follow the idea

in [11], developed by Atiyah, Patodi and Singer, to decompose L2(T 2;S+
Σ ⊕

S−Σ ) asymmetrically into the following three parts:

Exp+ =

{( ∑
(l,m)∈Z2−0 pl,me

ilteims∑
(l,m)∈Z2−0−sign(l,m)ipl,me

ilteims

)∣∣∣∣ (pl,m) ∈ l2
}
,(4.7)

Exp− =

{( ∑
(l,m)∈Z2−0 pl,me

ilteims∑
(l,m)∈Z2−0 sign(l,m)ipl,me

ilteims

)∣∣∣∣ (pl,m) ∈ l2
}

(4.8)

and ker(DΣ) where DΣ := D̂ is the Dirac operator defined on T 2. We also
denote Exp+ ⊕ ker(DΣ) by Exp+,0 and Exp− ⊕ ker(DΣ) by Exp−,0.

By using this decomposition, we obtain the following diagram:

Exp+,0

ker(D+|L2(M−Σ;S+
g,Σ))

B
>

p+,0 >

L2(T 2;S+
Σ ⊕ S

−
Σ )

∧
π+,0

Exp−
∨
π−

p− >

One can also define Exp− in the following alternative way. We can con-
sider D+ defined in (4.1) on an extended domain T 2 × C with respect to the
product metric (which uses the standard Euclidean metric on the second
component C ∼= R2). Denote by L2(T 2 × C) the space of L2 sections on the
corresponding expended spinor bundle. Then Exp− can be written as

Exp− = {B(u)|u ∈ ker(D+|L2(T 2×C)), |u|(x, r, θ) < ce−δr for some c, δ > 0}.

Now, instead of using D+, we also have the following diagram for
ker(D−|L2). Again, L2(T 2;S+

Σ ⊕ S
−
Σ ) can be decomposed into Exp± and
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ker(DΣ) in the following way:

Exp− = {B(u)|u ∈ ker(D−|L2(T 2×C)), |u|(x, r, θ) < ce−δr for some c, δ > 0},

Exp+ := (Exp+ ⊕ ker(DΣ))⊥ and Exp±,0 := Exp± ⊕ ker(DΣ).
Therefore we have

Exp+,0

ker(D−|L2(M−Σ;S−
g,Σ))

B
>

p+,0 >

L2(T 2;S+
Σ ⊕ S

−
Σ )

∧
π+,0

Exp−
∨
π−

p− >

Proposition 4.2. The operators p−, p− are Fredholm. The operators p+,0,
p+,0 are compact. Moreover, p−,0, the projection from ker(D−|L2(M−Σ;S−

g,Σ))

to Exp−,0, is also a Fredholm operator.

Proof. Here we just prove that p− is Fredholm and p+,0 is compact because
other cases can be obtained by the same argument.

Firstly, we prove p− is Fredholm. This is equivalently to say that p− has
finite dimensional kernel and finite dimensional cokernel. By the computa-
tion in Section 4.2, for any u ∈ ker(D+|L2), we have

u =
∑
l,m

eilteims

 û+
l,m

e
√

l2+m2r
√
z

+ û−l,m
e−
√

l2+m2r
√
z

−sign(l,m)iû+
l,m

e
√

l2+m2r
√
z̄

+ sign(l,m)iû−l,m
e−
√

l2+m2r
√
z̄


+ higher order terms.

Let Nr be the tubular neighborhood of Σ with thickness r. By using
Lichnerowicz-Weizenböck formula,∫

M−Nr

|D+u|2 =

∫
M−Nr

|∇u|2 +

∫
M−Nr

〈Ru, u〉+

∫
∂Nr

〈u, ∂ru〉i∂rdV ol,

and taking r → 0, we have

‖u‖2L2
1
≤
∑
l,m

√
l2 +m2|û−l,m|

2 + C‖u‖2L2 .
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Therefore, if u ∈ ker(p−), then we have û−l,m = 0 for all l,m. So

‖u‖2L2
1
≤ C‖u‖2L2 ,

which implies that kernel p− is finite dimensional.
To prove the cokernel is finite-dimensional, we claim that there exists

N > 0 such that range(p−) + VN = Exp−, where

VN =

∑
l,m

(û−l,m,−sign(l,m)iû−l,m)eilteims
∣∣∣ û−l,m = 0 for all l2 +m2 > N

 .

We can easily see that if this claim is true, then the coker(p−) will be finite
dimensional.

To prove this claim, we need to prove the following statement first: There
exists N > 0 with the following significance. For any

V =
∑
l,m

(û−l,m,−sign(l,m)iû−l,m)eilteims

with û−l,m = 0 for all l2 +m2 < N , there exists u ∈ ker(D+) satisfying

‖B(u)− V ‖ ≤ 1
3‖V ‖

2.
Here we prove this statement by using a proposition in [8]. We choose

u0 = χ(r)
∑

l2+m2>N

eilteims

 û−l,m
e−
√

l2+m2r
√
z

sign(l,m)iû−l,m
e−
√

l2+m2r
√
z̄

 ,

D+(u0) := f,

B(u0) := V.

Here χ is a nonnegative, decreasing function with χ(0) = 1, χ = 0 on M −
NR for some small R. Clearly we have ‖f‖2L2 ≤ CRe−NR‖V ‖2. By Proposition
4.3 in [8], there exists v such that D+(v) = f and ‖B(v)‖2 ≤ CRe−NR‖V ‖2.
So by taking u = u0 − v and N sufficiently large, we have D+u = 0 and
‖B(u)− V ‖ ≤ 1

3‖V ‖
2.

Now, we prove the claim by using the statement we just proved. Suppose
the claim is false, then there exists a non-zero Y ⊥ range(p−) + VN . Suppose
‖Y ‖ = 1 without loss of generality. Then for any

Z =
∑
l,m

(û−l,m,−sign(l,m)iû−l,m)eilteims,
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we have

|〈Y,Z〉| =

∣∣∣∣∣
〈
Y,

∑
l2+m2≤N

(û−l,m,−sign(l,m)iû−l,m)eilteims

〉

+

〈
Y,

∑
l2+m2>N

(û−l,m,−sign(l,m)iû−l,m)eilteims

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
Y,

∑
l2+m2>N

(û−l,m,−sign(l,m)iû−l,m)eilteims

〉∣∣∣∣∣
≤ 1

3

∥∥∥∥∥ ∑
l2+m2>N

(û−l,m,−sign(l,m)iû−l,m)eilteims

∥∥∥∥∥
≤ 1

3
‖Z‖.

However, the sup‖Y ‖=1 |〈Y,Z〉| = ‖Z‖, this leads a contradiction. So
coker(p−) is finite dimensional.

Secondly, we have to prove p+,0 is compact. Since ker(DΣ) is finite di-
mensional, so p+,0 is compact if and only if p+ is compact. To prove that p+

is compact, notice that if the coefficients of u is in Exp+, then u will have
exponential increasing Fourier mode. So∑

l,m

√
l2 +m2|û+

l,m|
2 ≤ C‖u‖2L2 .

This inequality implies that: Any converging sequence {uk} in L2 will provide
a subsequence in {p+(uk)} converging strongly in l2. So p+ is a compact
operator. �

By Proposition 4.2 and (4.6), one can check that FT 2,p is Fredholm if and
only if Td± is Fredholm. Throughout this paper, we assume the following
assumption for FT 2,p in the four-dimensional case:

Assumption. Td± is Fredholm for any d± satisfying |d+|2 + |d−|2 > 0.

One can regard this assumption as the 4-dimensional version of Propo-
sition 2.6. So it is conceivable that this assumption is true if we believe
that the moduli space of Z/2-harmonic spinors has Kuranishi structure in
dimension 4. However, this problem remains open now.

The following index theorem is given by Fangyun Yang in [9, Theo-
rem 1.0.3].
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Theorem 4.3.

dim(ker(p−))− dim(ker(p−,0)) =

∫
Â(M) +

1

2
dim(ker(DΣ)).

In fact, Fangyun Yang gave a more general version of this index therorem
for the 2n-dimensional manifolds with a embedding codimension 2 subman-
ifold Σ . She proved the following formula.

dim(ker(p−))− dim(ker(p−,0))

=

∫
Â(M) +

∫
Â(Σ)

1− cosh( e2)

sinh( e2)
+

1

2
dim(ker(DΣ))

where e is the Euler class of the normal bundle of Σ. However, since the
normal bundle of Σ is trivial, the middle term will vanish.

Theorem 4.4. Suppose that Td± |Exp− is Fredholm provided |d+|2 + |d−|2 >
0, then dim(K0)− dim(K1) =

∫
Â(M).

Under the assumption of Theorem 4.4, we also have the following propo-
sition.

Proposition 4.5. Suppose that Td± |Exp− is Fredholm and

index(Td± |Exp−) = constant

for all d± satisfying |d+|2 + |d−|2 > 0. Then

index(Td± |Exp−) = −1

2
dim(ker(DΣ)).

Proof. By taking d+ = 0, d− = 1 (or d− = ei
1

2
t, d− = ei

1

2
s, d− = ei

1

2
tei

1

2
s ac-

cording to S±Σ ), we have

Td± |Exp−(c) = d̄− ⊗ c

for any c ∈ Exp−. So it is clearly to see that ker(Td± |Exp−) = 0. Meanwhile,
the cokernel of Td± |Exp− will be d̄− ⊗Π+(ker(DΣ)), where Π+ is the pro-
jection from SΣ to S+

Σ . Therefore we have

index(Td± |Exp−) = 0− dim(Π+(ker(DΣ))) = −1

2
dim(ker(DΣ)).

�
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4.4. Index theorem for MT 2,g

With all information above, we are ready to prove Theorem 4.4 now. Firstly,
notice that

dim(K0)− dim(K1) = index(Td± ◦B)− dim(ker(D−|L2
1
)).

So to prove Theorem 4.4, we have to show the following proposition is true.

Proposition 4.6. index(Td± ◦B) =
∫
M Â(M) + dim(ker(D−|L2

1
)).

To begin with, we have to define the 4-dimensional version of E∂ space.

Definition 4.7. Let

E∂ = {v ∈ Dom(D+)|r
1

2 v(r, ·) ⇀ Z ∈ (L2(S+
Σ )⊗ e−

1

2
iθ)⊕ (L2(S−Σ )⊗ e

1

2
iθ)

as r → 0}.

and define ∂(v) = Z when the limit exists.

So for any v ∈ Dom(D+), w ∈ Dom(D−), we have∫
M−Σ

〈D+v, w〉+ 〈v,D−w〉 = 2π

∫
T 2

〈∂(v), e∗∂(w)〉 = 2π

∫
T 2

〈B(v), e0B(w)〉.

It is also easy to check that

e0 : Exp± → Exp∓,(4.9)

e0 : ker(DΣ)→ ker(DΣ)

are isomorphisms. Then we have the following 4-dimensional version of
Proposition 3.2

L2(T 2;S+ ⊕ S−) ∼= B(ker(D+|L2))⊕ e0B(ker(D−|L2))⊕ ker(DΣ)(4.10)

Now we can prove Proposition 4.6. By using the same argument as we
did for 3-dimensional case,

coker(p−) = p−(ker(D+|L2)) = [π− ◦B(ker(D+|L2))]⊥

= [e0B(ker(D−|L2))⊕ ker(DΣ)] ∩ ker(π+,0)

= [B(ker(D−|L2)⊕ ker(DΣ)] ∩ Exp+ ∼= ker(p−,0)/ker(D−|L2
1
).
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So we have

index(Td± ◦B) = index(Td± |Exp− ◦ p−) = index(Td± |Exp−) + index(p−)

= index(Td± |Exp−) + ker(p−)− coker(p−)

= −1

2
dim(ker(DΣ)) + ker(p−)− ker(p−,0)

+ dim(ker(D−|L2
1
))

= −1

2
dim(ker(DΣ)) +

∫
Â(M) +

1

2
dim(ker(DΣ))

+ dim(ker(D−|L2
1
))

=

∫
Â(M) + dim(ker(D−|L2

1
)).

Therefore we prove Proposition 4.6.

5. Appendix: Proof of Proposition 2.5

Here we prove the fact that coker(Lp) is isomorphic to coker(Td± ◦B)⊕
ker(D|L2

1
).

Firstly, we recall that L2(M − Σ;Sg,Σ) = range(D|L2
1
)⊕ ker(D|L2) by

Proposition 2.1. Moreover, we have ker(D|L2) ' B(ker(D|L2))⊕ ker(D|L2
1
)

because any L2-harmonic spinors can be determined by its leading terms and
an element in ker(D|L2

1
). By definition (2.1) and the fact that φ0 ∈ L2

1, we
have coker(Lp) = range(Lp)

⊥ ⊂ ker(D|L2) ' B(ker(D|L2))⊕ ker(D|L2
1
). So

any u ∈ coker(Lp) can be written as a pair

(B(u), v) ∈ B(ker(D|L2))⊕ ker(D|L2
1
).

Our goal is to define a 1-1 correspondence mapping B(u) to an element in
coker(Td± ◦B).

For any u ∈ coker(Lp), we can write (u+, u−) = B(u) and derive the
following equality

0 = Re

∫
M−Σ

〈u,Lp(η, φ0)〉 = Re

∫
S1

d̄−ηu+ − d̄+η̄u−(5.1)

by integration by parts. This equality is true for all C1-maps η : S1 → C. So
we can conclude that

d−ū+ = d̄+u−.
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We define the following c to be the corresponding element in coker(Td±◦B):

c =
ū+

d̄+
=
u−

d−
.

c is well-defined because by the definition of M, we have |ψ|(p)
dist(p,Σ)

1
2
> 0 which

implies |d+|2 + |d−|2 6= 0.
Now, we claim that the map J : u→ (c, v) is a bijection from coker(Lp)

to coker(Td± ◦B)⊕ ker(D|L2
1
).

Before proving this claim, we also have to show that J is well-defined.
In the other words, we have to check that c is in coker(Td± ◦B). To prove
this condition, we have to regard L2(S1;C) as a real vector space and use
the inner product

(f, g) := Re

∫
S1

fḡ.

By using this inner product, for any (w+, w−) = B(w) ∈ B(ker(D|L2)), we
have

(Td± ◦B(w), c) = Re

∫
S1

ū−w+ − u+w̄− = Re

∫
S1

ū−w+ − ū+w−(5.2)

= Re

(∫
M−Σ

〈w,Du〉+ 〈Dw, u〉
)

= 0.

So c is in coker(Td± ◦B).
The injectivity of J is easy to check. So here we only show that J

is surjective. To prove this part, we choose c′ ∈ coker(Td± ◦B) and de-
fine (u′+, u′−) := (d+c̄′, d−c′). Then (d+c̄′, d−c′) will be perpendicular to
e0B(ker(D|L2)). By using Proposition 3.2, we have

(d+c̄′, d−c′) ∈ B(ker(D|L2)).

So we have J is surjective.
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