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Galois descent for the gonality of curves

Joaquim Roé and Xavier Xarles

We determine conditions for the invariance of the gonality under
base extension, depending on the numeric invariants of the curve.
More generally, we study the Galois descent of morphisms of curves
to Brauer-Severi varieties, and also of rational normal scrolls.

1. Introduction

Let C be a smooth and projective curve, geometrically connected, defined
over a field k (which, by abuse of language, we call just a curve). Recall that
the gonality γ(C) of C over k is an integer γ ≥ 1 such that there exists a
rational non-constant map f : C → P1 of degree γ defined over k, and there
is no rational map defined over k of degree less than γ. Such a rational map
f is called a gonal morphism. The gonality is an important invariant of the
curve over k, also for its arithmetic properties (see for example [13] and [20]).
We define the conic gonality γcon(C) as the minimum degree of a rational
non-constant map f : C → D, where D is a genus 0 curve, all defined over
k. Finally, we call the gonality γ(Cksep) of C over a separable closure ksep

of k separable gonality, and denote it by γsep(C), and the gonality over an
algebraic closure k the geometric gonality, and denote it by γ(C). Clearly

γ(C) ≤ γsep(C) ≤ γcon(C) ≤ γ(C),

since the separably closed fields are pseudo-algebraically closed, so in par-
ticular every conic over ksep is isomorphic to P1.

In this work we study relations between the gonality γ, the conic go-
nality γcon and the separable gonality γsep of C, with the aim to obtain
sufficient conditions for equalities between them. These emerge as gener-
alizations of the well known results for hyperelliptic curves that a curve of
genus g ≥ 2 and separable gonality γsep = 2 has conic gonality γcon = 2, and
the result attributed to Mestre [19], that a curve of genus g ≥ 2 which has
even genus and conic gonality γcon = 2, has gonality γ = 2. Observe that
γ = γsep implies γ = γcon, but the converse is not true.
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1568 J. Roé and X. Xarles

Note also that the geometric gonality γ can be smaller than the separable
gonality γsep: see Example 17 for an example of a genus 4 curve which has
separable gonality 4 and geometric gonality 3. Observe however that for
genus ≤ 3 they are equal, as well as for geometric gonality 2.

We say that a gonal map f : C → P1 is unique if there is a unique subfield
F of the function field k(C) isomorphic to k(P1) and with [k(C) : F ] = γ,
namely the one determined by the function f . The main results in this note
are the following.

Theorem 1. Let C be a curve with genus g and separable gonality γsep.
Suppose that the gonal map fksep over ksep is unique. Then

1) γcon = γsep.

2) If the curve C has a k-rational divisor of odd degree, then γ = γcon =
γsep.

3) There exists some degree 2 extension L/k such that γ(CL) = γcon =
γsep.

4) If γsep ≡ g (mod 2), then γ = γsep.

Brill-Noether theory completely determines the possible gonalities of a
curve of genus g over an algebraically closed field k. For every curve C of
genus g > 0, we have

2 ≤ γ ≤
⌊
g + 3

2

⌋
,

and there exists a curve C of genus g and gonality γ for any such number.
The uniqueness hypothesis in Theorem 1 is satisfied in most cases with non-
maximal geometric gonality, at least when the characteristic of the field is 0.

Theorem (Arbarello-Cornalba, [3, 2.4 and 2.6]). Let k be algebraically
closed and of characteristic 0, and denote M1

g,d the moduli space of curves

of genus g admitting at least a map of degree d to P1, with g ≥ 3 and
2 ≤ d < b(g + 3)/2c. Then the generic curve in M1

g,d has a unique map of

degree d to P1. More precisely, the locus in M1
g,d of curves with two or more

such maps has codimension at least g + 2− 2d ≥ 1.

However, it will be much more useful to have effective criteria to decide
whether a given curve has a unique gonal map. We derive such criteria from
Castelnuovo type inequalities like those of [1]. Recall that a non-constant
rational map f : C → D between two algebraic curves C and D is called
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Galois descent for the gonality of curves 1569

simple if there is no smooth curve D′ with maps f1 : C → D′, and f2 : D′ →
D such that deg(fi) ≥ 2, for i = 1, 2, and f = f2 ◦ f1. Equivalently, if the
corresponding extension of function fields k(C)/k(D) is simple as extension.
For example, if the degree of f is a prime number, then f is simple. Under
a simplicity hypothesis and a suitable bound on the separable gonality, we
can prove that uniqueness holds:

Theorem 2. Let C be a curve with genus g and separable gonality γsep.
The gonal map over ksep is unique if it is simple (in particular this is always
the case if γsep is prime) and (γsep − 1)2 < g.

From now on we say that a curve of genus g has low gonality if (γsep −
1)2 < g.

Note also that the class of goneric curves introduced in [26], have unique
gonal maps over k. Gonericity is a condition expressed in terms of the gonal-
ity and the Betti numbers of a minimal resolution of the ideal of the curve
in its canonical embedding, and there exist efficient algorithms to decide
whether a given curve is goneric. In fact, Proposition 3 in [26] shows that
if C is goneric, then W 1

γ is a single reduced point, which shows that in this
case (since ksep is pseudo-algebraically closed) γsep = γ as well.

We give two proofs for Theorem 1. The first one, given in Section 3,
is based on the theory of Brauer-Severi varieties, and it naturally leads to
analogous results for maps from C to Pr: in this general case, uniqueness
over ksep implies descent to a map to a Brauer-Severi variety (see Theorem 5
for a precise statement).

A curve in projective space over an algebraically closed field is called
reflexive if the composition of its Gauss map with that of its dual is an
isomorphism, which is always the case in characteristic zero, and in charac-
teristic p > 2 is equivalent to the intersection multiplicity with its tangent
line at a general point being 2 [15, 3.5]; we say that C is reflexive if Ck is
reflexive. Then, we can give a generalized version of Theorem 1 (4) to maps
to Pr for r > 1; in the case r = 2 we obtain the following result.

Theorem 3. Given a curve C defined over k, denote γ2 (resp. γsep2 ) the
smallest degree of a plane model of C (resp. of Cksep).

1) Suppose that the corresponding g2γsep
2

on Cksep is unique. If γsep2 6≡ 0

(mod 3), then γ2 = γsep2 .

2) If the plane model of Cksep is reflexive (for instance, if char k = 0) and

g >
⌊
(γsep

2 )2−3γsep
2 +3

3

⌋
then the corresponding g2γsep

2
is unique.
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In Section 4 a second proof of Theorem 1 (4) is obtained, which gives
additional information, at least for geometrically trigonal curves (see The-
orem 27). This proof is based on the study of Galois descent for rational
normal scrolls, which may be of independent interest.

2. Galois descent and uniqueness

Let C be a curve defined over a field k, and fix a separable and an algebraic
closure k ⊂ ksep ⊂ k for the whole paper.

Given any divisor D defined over k, denote by L(D) := H0(C,O(D)) the
k-vector space of meromorphic functions f on C such that div(f) +D ≥ 0 is
effective. Denote also by |D| the set of effective divisors linearly equivalent to
D. Then there is a canonical bijection between P(L(D)) and |D| determined
by mapping f ∈ L(D) to the divisor div(f) +D.

Recall that an r-dimensional linear series D over ksep is the family of
divisors given by a vector subspace V in L(D), for some divisor D, and
D is a grd if degD = d and dimV = r + 1. The linear series is complete if
V = L(D). Recall also that a base-point-free linear series D determines a
ksep-morphism φD : C → P(V ∗) ∼= Pr, which maps a point P ∈ C(ksep) to
the point corresponding to the hyperplane

φD(P ) := {s ∈ V | s(P ) = 0}.

A base-point-free linear series grn is called simple if the map φ it determines is
simple in a suitable sense, namely it can not be factored as φ = φ′ ◦ f with
f : C → C ′ and φ′ : C ′ → Pr for some curve C ′, with deg(f),deg(φ′) ≥ 2
(where deg(φ′) = n′ is the degree of the linear series grn′ induced on C ′, i.e.,
n = deg(f1) · n′). For r = 1 this is equivalent to the map of curves C → P1

being simple in the sense above, whereas for r > 1 it is equivalent to φ being
birational onto its image.

We say that a complete linear series D is Galois invariant if for any
σ ∈ Gal(ksep/k), the divisor Dσ is linearly equivalent to D. In this case, any
E ∈ |D| is also in |Dσ|, hence one gets a natural action of Gal(ksep/k) in
P(L(D)). We say that a linear series D given by V ⊂ L(D) is Galois invariant
if the corresponding complete linear series and the subspace P(V ) ⊂ P(L(D))
are Galois invariant.

It is surely well known to the experts that morphisms π : C → C ′ of
degree d, with C ′ a genus zero curve, correspond to g1d’s on Cksep invariant
under the Galois action. We want to extend this result to higher dimensions
of the target space.
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Galois descent for the gonality of curves 1571

Recall that a Brauer-Severi variety of dimension r over k is a smooth
projective variety P such that P ⊗k ksep ∼= Prksep . Hence the Brauer-Severi
varieties P of dimension 1 are the curves of genus 0.

Lemma 4. Let X be a variety defined over k. Then the set of morphisms
to some r-dimensional Brauer-Severi variety, modulo automorphisms, corre-
sponds bijectively to the base-point free r-dimensional linear series over ksep

invariant under the Galois action of the absolute Galois group Gal(ksep/k).

Proof. That morphisms to Brauer-Severi varieties give r-dimensional linear
series over ksep invariant under the Galois action is clear.

To show bijectivity, first of all observe that, if a divisor D is invariant
by the action of Gal(ksep/k), and the associated linear series D is base-point
free, then it determines a k-defined map φD : Xk → P(V ∗)k ∼= Prk.

Now, if the linear series D is Galois invariant, one gets an action of
Gal(ksep/k) in P(V ) by automorphisms; hence also a dual action on P(V ∗).
Both actions determine Brauer-Severi varieties P and P∗ by the classical
theory of Galois descent, which become split on the field of definition of the
corresponding divisor D.

Finally, we only need to show that the map φD commutes with the action
of Gal(ksep/k). But

φD(P σ) := {s ∈ V | s(P σ) = 0} = {sσ−1 ∈ V | sσ−1

(P ) = 0} = φD(P )σ,

since the dual action of σ in P(V ∗) sends a point corresponding to a subspace
W ⊂ V to the subspace W σ−1

. �

As a corollary, one immediately obtains:

Theorem 5. Let C be a (smooth projective) curve defined over k. Suppose
that for a fixed r and d there is only one grd, giving a morphism f : Cksep →
Prksep. Then there exists a Brauer-Severi variety P defined over k together
with a k-morphism g : C → P such that g ⊗k ksep : Cksep → Pksep

∼= Prksep is
equal to f .

Determining the uniqueness of grd’s for r and d small relative to the
genus is a classic problem (see [1], [7], [8], [10], and references therein). In
particular it is widely known that the g2d of a smooth plane curve of degree
d > 3 is unique, but the same is true for “mild” singularities, i.e., if d is
small enough compared to the genus.

We approach uniqueness of grd’s by the classical “Castelnuovo method”,
see [5], [1], [7], [14, IV.6]. The idea is to estimate the dimension of sums
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of linear series, by counting conditions. To begin with, if D1 and D2 are
linear series, the sum D1 +D2 is the minimal linear series containing all
divisors D1 +D2 with Di ∈ Di. If Di is given by the linear subspace Vi ⊂
H0(C,O(Di)), then D1 +D2 is given by the image of the map

φ : V1 ⊗ V2 → H0(C,O(D1 +D2))

determined by φ(s1 ⊗ s2) = s1s2. On the other hand, if D is a linear se-
ries given by the linear subspace V ⊂ H0(C,O(D)), and D′ is an arbitrary
effective divisor, one puts

V (−D′) = {s ∈ V | div(s) ≥ D′}.

The linear series determined by V (−D′) has D′ as a fixed divisor; sub-
tracting D′ from it one obtains a series denoted D −D′. The number of
conditions imposed by D′ on D is dimD − dim(D −D′), or equivalently
dimV − dim(V (−D′)).

Recall that a curve C in projective space Prk is called reflexive if the
composition of the Gauss map of Ck with that of its dual is an isomorphism,
and it is called strange if there is a point of Pr

k
that belongs to every tangent

line of Ck. Observe that reflexive curves are not strange. On the other hand,
the only nonsingular strange curves over an algebraically closed field are
lines, and conics in characteristic 2 [14, IV.3.9], but the plane smooth curve
xp+1 + yp+1 + zp+1 = 0 is not reflexive in characteristic p (see [15], [21, 2.3]
for this and other examples) so there are indeed curves that are neither
reflexive nor strange.

Lemma 6. Let k be an algebraically closed field, and C a curve defined
over k. Suppose D1 and D2 are two different base-point-free simple grn’s on
C, n > r ≥ 2, and let f : C → Prk be the map induced by D1. Assume that
at least one of the following is true:

1) f(C) is reflexive,

2) f(C) is not strange (for instance, f(C) is nonsingular) and r ≥ 4.

Then a general divisor D ∈ D1 is made up of n distinct points, and every
subset of r points in D imposes r conditions to D1, whereas every subset of
r + 1 points in D imposes r + 1 conditions to D2.

Recall that a statement claimed for a general divisor in D is meant to
hold for all divisors in a nonempty Zariski-open subset of D ∼= Pr.
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Proof. That over an algebraically closed field a general divisor is made up
of distinct points is well known ([14, IV, Exercise 3.9], [27, Lemma 3.11.2]).

Then, a general divisor D ∈ D1 imposes r conditions to D1 (i.e., D is the
unique divisor in D1 containing D) and r + 1 conditions to D2 (otherwise
D ∈ D1 ∩ D2, but if this happens for general D ∈ D1, the two linear series
must coincide). Under the hypotheses, the monodromy group of f contains
An [21, 2.2, 2.5]. Then the same proof as in [21, 1.8] gives the result. �

Following Accola, we set

R(l; r) = l(l + 1)r/2− l(l − 1)/2

and

R(l1, l2; r) = R(l1, r) +R(l2, r) + l1l2r.

Castelnuovo’s method (see [1], [7, Lemma 1.3]) yields the following:

Lemma 7 (Accola, [1, 4.2]). Suppose D1, and D2 are two different simple
grn’s without fixed points on C, and assume that a general divisor Di ∈ Di is
made up of n distinct points, and

1) every subset of r points in Di imposes r conditions to Di,

2) every subset of r + 1 points in Di imposes r + 1 conditions to Dj, j 6= i.

Then dim(l1D1 + l2D2) ≥ R(l1, l2, r) for all non-negative integers l1, l2 sat-
isfying (l1 + l2)r + l1 − 1 ≤ d.

Theorem 8. Let C be a curve of genus g over an algebraically closed field
k, with a simple linear series grd, giving a morphism f : C → Prk. Assume
that at least one of the following is true:

1) k has characteristic zero,

2) r = 1,

3) f(C) is reflexive, and r ≥ 2,

4) f(C) is not strange (for instance, f(C) is nonsingular) and r ≥ 4.

Write d = m(2r − 1) + q where q is the residue of d modulo (2r − 1) so that
−r + 2 ≤ q ≤ r. Let v = 1 if q ≤ 1, v = 0 otherwise. If

(1) g > m2(2r − 1) +m(2q − 1− r)− v(q − 1)

then the given series is the unique simple grd on C.
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Remark 9. For r = 1, f(Cksep) = P1
ksep , q = v = 1, m = d− 1 and the in-

equality (1) reads simply g > (d− 1)2. In this case, the result of Propo-
sition 8 was already known to Riemann [23] (for k = C). For r = 2, the
inequality (1) is equivalent to

g >

⌊
d2 − 3d+ 3

3

⌋
.

Proof. For r = 1, the result follows from the so-called “Castelnuovo-Severi”
inequality, see for instance [27, III.11.3]. So assume r ≥ 2.

When k has characteristic zero, R. Accola has shown that the existence
of two distinct simple grd’s contradicts the inequality (1), in [1, Theorem 4.3].
The proof relies on a uniform position lemma [1, 4.1], which needs character-
istic zero, to show that the number of conditions imposed by divisors satisfies
the hypotheses of Lemma 7. In our case they are satisfied thanks to [21, 1.8]
and Lemma 6. The rest of Accola’s argument consists in matching the di-
mension estimate of Lemma 7 with Clifford’s inequality for special divisors.
This does not depend on the characteristic, so the result follows. �

We will use the preceding results, which are stated for algebraically
closed fields, in the proof of Theorem 2; therefore, we need to consider the
inseparable base change k/ksep. It is probably well known to the experts that
under the key assumption made throughout the paper that C is a smooth
curve, the relevant phenomena are all stable under this base change:

Lemma 10. Let C be a (smooth, projetive, geometrically connected) curve
of genus g over an arbitrary field k, and fix an algebraic closure k of k. Let
f : C → D a morphism where D is a (non necessarily smooth) projective
curve defined over k, and for every algebraic extension L/k, denote fL :
CL → DL, its base change.

1) For every algebraic extension L/k, the field of rational functions of CL
is separable over L, of genus g.

2) For every algebraic extension L/k, deg fL = deg f .

3) If fksep is simple, then fk is simple.

4) If a grd is simple on Cksep, then it is simple on Ck.

Proof. If k is perfect then all claims are well known (see [27, chapter III])
so assume k is an imperfect field of characteristic p.
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Since C is smooth, CL is smooth over L. In particular the field k(CL) is
formally smooth over L, and therefore separable. Moreover, genus does not
change for function fields of smooth curves, by [24, §3].

For the second claim, we first prove that the fields L and k(C) are linearly
disjoint over k. By the transitivity of linear disjointness [16, VIII,3.1] it is
enough to consider the cases that L/k is separable or purely inseparable. In
the separable case, as both k(C) and L are separable, the proof of [27, III.6.1]
shows that k(C) and L are linearly disjoint over k. In the inseparable case,
because k(C) is separable over k, it is linearly disjoint with kp

−∞
(MacLane’s

criterion, [16, VIII,4.1]) and hence with L ⊂ kp−∞ over k. Now L and k(C)
being linearly disjoint over k implies that k(DL) = Lk(D) and k(C) are
linearly disjoint over k(D). This gives the second claim.

For the third claim, assume by way of contradiction that f is simple
and there is a nontrivial intermediate field F , k(Ck) ) F ) k(Dk). Then
F is purely inseparable over F ∩ k(Cksep), and by the simplicity of f , F ∩
k(Cksep) = k(Dksep). So F is purely inseparable over k(Dksep) and there-
fore over k(Dk) as well. This implies that there is an element t ∈ k(Dk)
which is not a pth power, with t1/p ∈ F ( k(Ck). On the other hand, let x ∈
k(Cksep) \ k(Dksep) and let P (X) be its minimal polynomial over k(Dksep). By
the simplicity of f , k(Cksep) = k(Dksep)(x) and degP = deg f = n. Moreover
k(Ck) = k(Dk)(x), and by the second claim, P is also the minimal polyno-
mial of x over k(Dk). In particular, since k(Dk)(t

1/p) ( k(Ck), p is a proper
divisor of n. Now let Q(X) be the minimal polynomial of x over k(Dk)(t

1/p).
Considering the degrees of the extensions, one clearly has degQ = n/p. But
then Qp ∈ k(Dk)[X

p] is a monic polynomial of degree n in X vanishing at
x, i.e., Qp = P . This means that P only involves pth powers of X, i.e., xp

is an element in k(Cksep) whose minimal polynomial has degree n/p < p,
contradicting the simplicity of f .

Finally, a linear series grd with r ≥ 2 is simple if and only if the map
f : C → Pr it defines is birational onto its image. Therefore, by the second
claim simplicity does not change under base field extension. The case r = 1
has been dealt with in the third claim. �

Remark 11. Counterexamples to Lemma 10 when C is not smooth do ex-
ist. For instance one can consult articles on “genus change under inseparable
extensions”, starting from classical Tate’s and Rosenlicht’s papers [28], [24].

Proof of Theorem 2. Let f be a gonal map over ksep, which by assumption
is simple. By Lemma 10 its base change fk : Ck → P1

k
is simple as well. By

Theorem 8 in the case r = 1, the unique simple g1γsep on Ck is then the one
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determined by fk. A fortiori, the unique simple g1γsep on Cksep is the one
determined by f . �

Example 12. It is well known that there exist curves with genus g =
(γsep − 1)2 and with more than one simple gonal map. For example, a curve
C embedded as a smooth curve of type (γsep, γsep) in the smooth quadric
surface Q = P1×P1 ⊂ P3. In this case C has gonality γsep and it has exactly
two g1γsep : the ones induced by the projections of Q onto one of its factors
(see for example [18], Theorem 1).

Remark 13. If r = 2 and g >
⌊
d2−3d+3

3

⌋
, so that Theorem 8 holds, every

g1e on C with e < d is cut out on f(Cksep) ⊂ P2
ksep by a pencil of lines, and

there is no g2e with e < d. So the separable gonality is d−m where m is the
maximal multiplicity of a singular point of Γ.

We include the reference to a last uniqueness result, due to Cilliberto and
Lazarsfeld [8], which applies to r = 3 in the case of complete intersections.

Theorem (Ciliberto–Lazarsfeld). Let C ⊂ P3 be a smooth curve defined
over a field of characteristic 0, which is the complete intersection of two
surfaces of degree h and h′, both bigger than 4. Then any simple gsm, with
m ≤ hh′ and s ≥ 2 is unique (and, in particular, the canonical g3hh′).

3. Splitting Brauer-Severi varities

Recall that to any Brauer-Severi variety P of dimension n over a field k one
can assign canonically a central simple algebra of rank (n+ 1)2 over k. Its
class [x] in the Brauer group verifies that in the exact sequence

Pic(P)→ Pic(P ⊗k ksep) ∼= Z→ Br(k)

the last map sends 1 to [x], and hence the image of some generator of Pic(P)
is equal to m, where m is the order of [x]. Hence m divides n+ 1 since [x]
has order dividing n+ 1. We say that P is split over k if P ∼= Pn already
over k. Then P is split if and only if [x] = 0, i.e. its order is equal to 1.

The following result summarizes some properties of P, some of which
are well known.

Theorem 14. Let P be a Brauer-Severi variety of dimension n over a field
k. Then
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1) If P contains a hypersurface of degree coprime with n+ 1, then P is
split.

2) If there is a Galois invariant element in Z[P(ksep)] (e.g. it P has a
k-rational point) whose degree is coprime with n+ 1, then P is split.

3) There exists an immersion P→PN , where N=
(
2n+1
n

)
−1, as a smooth

subvariety of degree (n+ 1)n.

4) There exists a finite map f : P → Pn of degree (n+ 1)n.

5) There exists an extension L/k of degree dividing n+ 1 such that P ⊗k
L ∼= PnL.

Proof. The assertion (1) is clear since the hypersurface determines an ele-
ment in Pic(P) whose image in Pic(P ⊗k ksep) is equal to the degree of the
hypersurface.

The next result (2) is a generalization of a result by Châtelet in [6] (see
also [4]), who showed the case of rational points. We will use the dual Brauer-
Severi variety P̂. It is a Brauer-Severi variety together with an inclusion
reversing correspondence between twisted linear subvarieties of dimension
d− 1 of P and those of codimension d in P̂. Now, a Galois invariant element
in Z[P(ksep)] determines an element in Pic(P̂), whose degree is equal to the
degree of the formal sum, since the degree of a linear hypersurface is 1. The
result is deduced then from (1).

Result (3) is well known: in fact, the immersion is given by the anticanon-
ical sheaf, which is always defined over k. It is known that the anticanonical
sheaf in Pn is equal to O(n+ 1), and it gives the (n+ 1)-tuple Veronese
embedding in PN .

Now, choosing n− 1 sufficiently general hyperplanes in PN , we can find
some whose intersection, which is a linear subvariety of dimensionN − n− 1,
does not intersect the image of P in PN . Projecting to a complementary
linear subvariety of dimension n we get the desired finite morphism.

The last result is due to F. Châtelet in his thesis, and it is a consequence
of the main classical results on central simple algebras. If A denotes a central
simple algebra associated to P, then P splits over an extension L/K if and
only if A does. But A always splits over a maximal commutative subfield,
which has degree over K equal to the index of A, which is the square root
of the dimension of the associated division algebra, which clearly divides
n+ 1. �
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Corollary 15. Let C be a curve defined over a field k, with genus g, go-
nality γ and conic gonality γcon. Then

1) γcon ≤ γ ≤ 2γcon.

2) If the curve C has a k-rational divisor of odd degree, then γ = γcon.

3) If γcon 6= γ, then γ is even.

4) There exists some degree 2 Galois extension L/k such that γ(CL) =
γcon.

Proof. (1) (resp. (2)) follows from (4) (resp. (2)) in Theorem 14, in the case
n = 1. The point (4) follows from (5), except the fact that we can take the
degree 2 extension to be Galois. This follows from the fact that any conic has
a point in a separable extension of degree 2. If the characteristic of the field is
not 2, this is clear. If it is 2, and it has no k-rational point, then the conic can
be described in P2 by an equation of the form ax2 + by2 + cz2 + xz + yz = 0
for some a, b and c ∈ k∗. Then the points which intersect the line x = 0
determine the desired extension. Finally, (3) is immediate from (2). �

Observe that it is not true that the gonality is always the conic gonality
or its double, as the following example shows.

Example 16. The genus 4 curve over Q (or even over R) given in canonical
form as the intersection in P3 of the quadric x2 + y2 + z2 = 0 with the cubic
x3 + y3 + t3 = 0, has conic gonality 3 (with unique gonal map given by the
projection map to the conic x2 + y2 + z2 = 0), and gonality 4 (with gonal
map given by the natural projection to the cubic x3 + y3 + z3 = 0 followed
by the degree two map determined by a rational point of the cubic (e.g.
[1 : −1 : 0])).

Example 17. Let k = F2(s) be the field of rational functions over the
finite field F2. The genus 4 curve given in canonical form as the intersection
in P3 of the quadric xy + z2 + st2 = 0 with the cubic x3 + y3 + t3 = 0, has
geometric gonality 3, and separable gonality 4 (with a gonal map given as
in the previous example). In fact the gonal maps over k are given by the two
rulings of the quadric, which are not defined over ksep.

Proposition 18. Let C be a curve defined over a field k with genus g
and conic gonality γcon. Assume that over a separable closure ksep, the g1γcon

associated to a conic-gonal map is complete. If γcon ≡ g (mod 2), then γ =
γcon.
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Proof. Let f : C → D be a map of degree γcon to a curve of genus zero
as in the claim. If D ∼= P1 there is nothing to prove, so assume D is a
conic. By corollary 15 (4), there is a degree 2 Galois extension L of k over
which D becomes split. Consider the Galois-invariant g1γcon on CL, which by
hypothesis is complete; call E a divisor in this g1γcon . Note that, although E
is only defined over L, the linear series |E| is Galois-invariant.

Now if K is a canonical divisor the complete linear series |K − E| is
Galois-invariant because K and |E| are Galois-invariant. By Riemann-Roch,
and because the g1γcon is complete, dim |K − E| = g − γcon = n, and we get
a morphism C → P to a Brauer-Severi variety of (even) dimension n.

Since K − E is a divisor defined over L, P ⊗k L ∼= PnL. Now if H is a
hyperplane defined over L, and Hσ is its conjugate by Gal(L/k), H +Hσ

is a degree 2 hypersurface defined over k. So P contains a hypersurface of
degree 2, which is coprime with n+ 1, and by Theorem 14, P ∼= Pn. This
means that K − E (and hence E) is linearly equivalent to a divisor defined
over k, so D ∼= P1 and we are done. �

Remark 19. We have seen in the course of the proof that, if over a sep-
arable closure ksep, the g1γcon associated to a conic-gonal map is complete,
then γcon = g − dim |K − E| ≤ g + 1.

Proof of Theorem 1. Part (1) is corollary 5 in the case r = 1. Parts (2) and
(3) are then consequence of the first part and corollary 15.

Finally, to show part (4) we use that by (1), γcon = γsep, and because
gonal series over a separably closed field are always complete, Proposition 18
applies, so γ = γcon. �

Proof of Theorem 3 . By corollary 5, if the g2γsep
2

is unique there is a mor-
phism g : C → P, with P a Brauer-Severi variety of dimension n = 2, whose
base change to ksep is the generically injective morphism of lowest degree.
g(C) is a divisor of degree γsep2 , coprime with n+ 1 = 3, so by Theorem 14
(1), P ∼= P2.

The second claim is a direct application of Theorem 8 in the case r = 2,
taking into account Lemma 10. �

Remark 20. Let C be a curve such that Cksep has a plane model Γ of degree
d not divisible by 3, such that all singularities of Γ are nodes or ordinary
cusps, and assume that either (d− 2)(d− 3) < 2g − 2 or d ≥ 8 and (d−
3)(d− 4) < 2g − 10 . Then γ2 = γ2 = d and Γ is defined over k. In particular,
the smooth plane curves over ksep of degree d > 3 and not multiple of 3 are
already plane curves over k.
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Indeed, by Coppens-Kato [10, Theorem 2.4] and [11], the g2d on Cksep is
unique, and γsep2 = d. Then by Theorem 3, γ2 = γ2 and Γ is defined over
k. Note that the nature of the proofs in the Coppens-Kato papers is inde-
pendent of the characteristic, and hold without the reflexivity hypothesis.
In contrast, the inequalities on the genus are more restrictive than in The-
orem 2.

Example 21. A smooth plane curve of degree 3 has genus 1, and over ksep

any such curve has such a plane model and gonality 2. It is well known that
there are genus one curves over Q (or over any number field) with gonality
d for any d ≥ 2 (see [9], and use that the index and the gonality are equal
if the index is larger than one by Riemann-Roch). Hence, if the gonality is
larger than 3, they do not have a g23 over Q.

4. Rational normal scrolls under base extension

Recall the following well known construction of rational subvarieties of pro-
jective spaces (see [12], [29] or [22, chapter 2]). Let 0 ≤ a1 ≤ · · · ≤ ad be
a list of d integers with ad > 0 for d ≥ 1. A rational normal scroll of type
(a1, . . . , ad) defined over a field k is a d-dimensional subvariety S(a1,...,ad) of

Pn, for n =
∑d

i=1 ai + d− 1, defined as follows: choose d complementary lin-
ear subspaces Li ⊂ Pn for i = 1, . . . , d with dim(Li) = ai. If ai 6= 0, choose a
rational normal curve Ci ⊂ Li and an isomorphism φi : P1 → Ci (if ai = 0,
set Ci = Li and φi to be the constant map). Then

(2) S(a1,...,ad) :=
⋃
t∈P1

φ1(t), . . . , φd(t),

where φ1(t), . . . , φd(t) denotes the linear span of {φ1(t), . . . , φd(t)} ⊂ Pn.
More abstractly, S(a1,...,ad) is the image of P(OP1(a1)⊕ · · · ⊕ OP1(ad)) in

projective n−space by the map (determined up to projective equivalence)
corresponding to the tautological line bundle O(1). There is a natural mor-
phism

P(OP1(a1)⊕ · · · ⊕ OP1(ad))→ P1

which determines a rational map π : S(a1,...,ad) → P1 which we call structural
map. With the description of (2), each smooth point p ∈ S(a1,...,ad) is mapped

to the unique t ∈ P1 such that p ∈ φ1(t), . . . , φd(t). Any two rational normal
scrolls of the same type are projectively equivalent. It is also well known
that the degree of a rational normal scroll S is equal to e :=

∑d
i=1 ai =
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n− d+ 1 = n− dimS + 1, which is the smallest degree of an irreducible
non-degenerate d-fold in Pn. In fact, this condition almost determines these
subvarieties of Pn over an algebraically closed field, the other options being
the cones over the Veronese surface in P5 and irreducible quadrics (noting
that quadrics of rank 3 or 4 are rational normal scrolls as well).

Recall also that a rational normal scroll is non-singular if and only if
a1 > 0 (in which case the structural map is a morphism) or (a1, . . . , ad) =
(0, . . . , 0, 1) (this last case since S(0,...,0,1) ∼= Pn). Singular scrolls are cones
over nonsingular scrolls. A rational normal scroll of dimension 1 is a rational
normal curve; that is, S(a) ⊂ Pa is a rational normal curve of degree a.

Quadric scrolls are also well known varieties, easy to describe. Quadrics
of rank 3, corresponding to the case (a1, . . . , ad) = (0, . . . , 0, 2), are cones
over a conic if d > 1; their structural map is the projection from the ver-
tex of the cone S(0, . . . , 0, 2)→ S(2). Quadrics of rank 4, corresponding
to the case (a1, . . . , ad) = (0, . . . , 0, 1, 1), are cones over the quadric surface
S(1, 1) ∼= P1 × P1, which supports two structures as scrolls, corresponding
to two structural maps which are the two projections to P1. These are all
the cases with degree e = 2.

Rational normal scrolls can also be characterized as the only linearly
normal varieties which contain a pencil of linear spaces of codimension 1
(namely, the fibers of π). Over an algebraically closed field, they can further
be characterized as the irreducible varieties determined by the ideal of 2× 2
minors of a 2× q matrix of linear forms.

A proof of the following result can be found in [22], Chapter 2 and
Appendix A.

Lemma 22. Let S be a rational normal scroll. Then Pic(S) = Z[H]⊕ Z[F ],
where [F ] is the class of a fiber of a structural map, and [H] is the class of
a hyperplane section. Moreover, the canonical class is [K] = −d[H] + (e−
2)[F ].

As a consequence, the structural map is unique whenever e > 2.
We say that a subvariety S ⊂ Pn is a potential rational normal scroll if

there exists a finite algebraic extension L of k such that the base change of
S over L is a rational normal scroll over L, and we will say that S splits
in L. Or, equivalently, that the base change of S to an algebraic closure
becomes a rational normal scroll. As it is the case for rational normal scrolls,
every potential rational normal scroll is a cone over a nonsingular potential
rational normal scroll. A nonsingular potential rational normal scroll is thus
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a k-form S of the abstract variety P(OP1(a1)⊕ · · · ⊕ OP1(ad)), together with
a line bundle L on S which is a k-form of the tautological line bundle O(1).

Example 23. The simplest examples of potential rational normal scrolls
arise in degree 2: every quadric of rank 3 or 4 is a potential rational normal
scroll. Let us show examples of quadric potential rational normal scrolls
defined over some field k which do not split over k. Consider k a field such
that there exists some genus 0 curve C without rational points. Then C
is isomorphic to a conic in P2, which we will denote also by C, which is a
potential rational normal scroll of dimension 1 (a quadric of rank 3).

From this we construct an example of dimension 2 and rank 4. Put P2

inside P5 in two distinct and complementary ways, giving L1 and L2 linear
subspaces. If the conic is given by an equation ax20 + bx21 + cx22 = 0, then the
surface is given by

S :

ax20 + bx21 + cx22 = 0
ax23 + bx24 + cx25 = 0

x1x3 − x0x4 = 0
x1x5 − x2x4 = 0
x0x5 − x2x3 = 0

ax0x3 + bx1x4 + cx2x5 = 0


⊂ P5

Theorem 24. Let S ⊂ Pn be a potential rational normal scroll of degree e.

1) If S is a quadric of rank 4, and char k 6= 2, there is a quadratic or
a biquadratic extension L/k such that SL is a rational normal scroll,
and the following are equivalent:
a) S is a rational normal scroll.
b) S is a cone over a ruled quadric surface in P3.
c) S contains a linear subspace of codimension 1.

2) If S is not a quadric of rank 4, there is a Galois degree 2 extension
L/k such that SL is a rational normal scroll, and the following are
equivalent:
a) S is a rational normal scroll.
b) S contains a linear subspace of codimension 1.
c) S has a k-rational nonsingular point.

Moreover, if e is odd then S is a rational normal scroll.

Example 25. The hypothesis on the characteristic in the first part of the
theorem can not be dropped: let k = F2(s) be the field of rational functions
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over the finite field F2. The quadric xy + z2 + st2 = 0 in P3 is a potential
scroll which is not a scroll over ksep.

Proof. The quadratic cases are classical, but we will give some indications.
If e = 2, then the rank is 3 or 4. The rank 3 case corresponds to cones over
conics, and they are scrolls if and only if the conic has a point. The assertions
in (2) are then easy. If the rank is 4, then it is a cone over a quadric in P3.
If the characteristic is not 2, the quadric can be diagonalized, so we can
suppose it is given by an equation of the form

a0X
2
0 + a1X

2
1 + a2X

2
2 + a3X

2
3

for some ai ∈ K for 0 ≤ i ≤ 3 with a0a1a2a3 6= 0. The quadric is an scroll if
and only if a change of variables can be made to get the equation Y0Y1 −
Y2Y3, and this can be done for example over the quadratic or biquadratic
extension L = K(

√
a0a1,

√
a2a3).

Assume that e > 2 and S is nonsingular (which is not restrictive, as S
is always a cone over a nonsingular potential rational normal scroll).

Consider the divisor class [R′] = [K] + d[H]. By Lemma 22, after base
change to a field L over which S is a rational normal scroll, [R′] equals
(e− 2) times the class of a fiber of the structural map π. Therefore

dimH0(S,OS(R′)) = e− 1,

and the linear system |R′| determines a morphism S → Pe−2 whose image
is a genus zero curve D (which becomes a rational normal curve over L).

If L/k is any extension where D has points, the fiber over any L-point
of D is a linear space of codimension 1 in SL; thus for every degree 2 exten-
sion where D has points, SL is a rational normal scroll, and there are such
extensions L/k which are Galois.

If S(k) 6= ∅ then obviously D has k-rational points in f(S(k)), so S is
a rational normal scroll, which proves (2c)⇒ (2a); and obviously, (2a)⇒
(2b)⇒ (2c).

Finally we prove that if e is odd then S has a k-rational point, by induc-
tion on the dimension d of S. The case of dimension d = 1 is well known,
but we give here a short argument for completeness. In this case S is a curve
in Pe, which is projectively equivalent to a rational normal curve in the al-
gebraic closure. But then any hyperplane section of S is a k-rational divisor
of odd degree e. Since S is a genus 0 curve with a divisor of odd degree,
Riemann-Roch tells us that that S is isomorphic to P1.
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Now, in order to do the induction, observe first that, if k is finite, then D
has points, so it is not restrictive to assume k infinite. If H is a hyperplane
such that HL does not contain any ruling of the scroll SL, then HL ∩ SL is a
scroll and H ∩ S a potential scroll of the same degree e and dimension d− 1,
which by the induction hypothesis contains a k-point. So we are reduced to
showing that such a hyperplane exists. Now, these rulings have dimension
d− 1 so for each of them there is a (n− d)-dimensional linear family of hy-
perplanes containing it, and there is a (n− d+ 1)-dimensional closed subset
of the dual space (PnL)∗ consisting of the hyperplanes containing some ruling.
Since d ≥ 2, n− d+ 1 < n and by the infiniteness of k, not all hyperplanes
in (Pnk)∗ belong to this closed subset, so we are done. �

5. Gonality and rational normal scrolls

Given a linearly normal projective curve C ⊂ Pg−1 and a map f : C → P1 of
degree d, there is a classical construction of a rational normal scroll S ⊂ Pg−1
containing C, such that f is induced by the structural pencil of S (see
[25] for a detailed exposition). The codimension of S is δ = h0(C,OC(1)⊗
f∗(OP1(−1)))− 1, and it can be described as

S :=
⋃
λ∈P1

f−1(λ) ⊂ Pg−1,

where f−1(λ) denotes the linear span of the divisor f−1(λ) ⊂ C seen as a
subscheme of Pg−1. So, if C is canonically embedded in Pg−1 and d = γsep

is the geometric gonality, then S has dimension γsep − 1. We want to show
that this generalizes for maps to genus zero curves, as follows:

Proposition 26. Given a linearly normal projective curve C ⊂ Pg−1 and
a map f : C → D with D a genus zero curve, there is a potential rational
normal scroll S ⊂ Pg−1 defined over k, with a map f̄ : S → D extending f ,
such that, for every extension L/k with DL

∼= P1,

1) SL is a scroll, whose structural pencil is fL : SL → DL.

2) The codimension of S is δ = h0(CL,OCL
(1)⊗ f∗L(OP1

L
(−1)))− 1.

Proof. Let L/k be a Galois degree 2 extension such that DL
∼= P1

L, and
let SL ⊂ PnL be the corresponding scroll containing CL. We claim that the
homogeneous ideal of SL is invariant by the action of Gal(L/k); therefore it
can be generated over k, defining a potential rational normal scroll which
satisfies the conditions.
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To prove the claim, let us recall the construction of the ideal of SL,
following [12]. Consider the divisors of A = f∗L(p) where p ∈ P1

L is a point,
and B = C ·H −A, where C ·H is a hyperplane section, on CL. Denote
V ⊂ H0(OCL

(A)) the 2-dimensional subspace whose projectivization is the
pencil of fibers of f , and W = H0(OCL

(B)). Note that dimW = δ + 1. There
is a natural morphism φ : V ⊗W → H0(OPn

L
(1)) which, after a choice of

bases, can be described by a 2× (δ + 1) matrix M of linear forms on Pn.
The ideal of SL is generated by the 2× 2 minors of M , and it is of course

independent on the choice of bases. We need to show that for every such
minor, its conjugate also belongs to the ideal.

Conjugation leaves the pencil of fibers P(V ) invariant, and so acts on
it. It follows that it also leaves the linear series |B| = P(W ) invariant, and so
acts on it. To be precise, conjugation gives an isomorphism σ :H0(OCL

(B))→
H0(OCL

(B̄)), and by invariance there is an isomorphism i : H0(OCL
(B̄))→

H0(OCL
(B))) (product with a rational function f with div(f) = B̄ −B).

Then σW = i ◦ σ : W →W is an isomorphism which induces the conjuga-
tion action on |B| = P(W ). (σ2W is not in general the identity on W , but
multiplication by a scalar, so it does induce the identity on |B|). Similarly,
there is an isomorphism σV : V → V inducing conjugation on the pencil,
and if the rational functions giving B̄ ∼ B and Ā ∼ A are chosen adequately,
then for every v ∈ V,w ∈W , with φ(σV (v)⊗ σV (w)) = σ(φ(v ⊗ w)). (Other
choices just give proportional images).

Given bases on V and W , application of σV and σW produces new bases
and a new matrix M ′ whose minors equal the minors of M conjugated. Thus,
these conjugated minors belong to the ideal of SL as claimed. �

Now we can give the second proof for Theorem 1 (4).

Proof of Theorem 1(4). We know by Theorem 1 that the gonal map fac-
torizes through a k-defined map C → D to a genus zero curve. Consider
the canonical embedding C ⊂ Pg−1, and the potential rational normal scroll
S ⊂ Pg−1 given by Proposition 26. It has dimension γsep − 1 and degree
(g − 1)− (γsep − 1) + 1, so it is of odd degree, and by Theorem 24, S is ac-
tually a scroll. Therefore the gonal map, which is just the restriction to C
of the structural map S → D, is actually defined over k. �

The geometry of the scroll S allows to detect other cases in which the
gonality of C must agree with its geometric gonality. We illustrate this in
the case of geometrically trigonal curves. In this particular situation, the
potential rational normal scroll is S ∼=k S(a1,a2), either isomorphic over k
to the Hirzebruch surface Fa if a1 > 0, where a = a2 − a1 ≥ 0 is an integer



i
i

“10-Roe” — 2019/1/31 — 21:23 — page 1586 — #20 i
i

i
i

i
i

1586 J. Roé and X. Xarles

called the Maroni invariant of C, or isomorphic over k to a (singular) cone
over a genus zero curve if a1 = 0. Note that in the geometrically trigonal
case the potential scroll is defined by the degree 2 part of the ideal of C in
Pn−1, so it is defined over k even in the case Proposition 26 cannot not be
applied.

Theorem 27. Let C be a geometrically trigonal (i.e., such that γ = 3)
curve with genus g > 4. Then its gonality γ satisfies γ ≤ 6 and if either

1) g is odd, or

2) g is even, and the Maroni invariant a of C satisfies a > 0 and g + a ∈
(4),

then γ = 3.

Proof. Note that the degree of S equals e = a1 + a2 = g − 2 > 2, so S is
already a scroll over ksep by Theorem 24.

We consider first the singular case a1 = 0. In this case γsep = 3, hence
γ ≤ 6 by corollary 15 and if g is odd, γ = 3 by Proposition 18 . The case (2)
cannot occur since g + a2 = 2g − 2 ≡ 2(4).

Suppose now S is non-singular. Therefore S is isomorphic over ksep to
Fa. Let F be a fiber of the ruling on Sksep , defined over ksep. We want to
show that under the hypotheses, F is defined over k and so the gonal map
(which is the restriction of the map given by |F | to C) is defined over k. In
fact it is enough to see that an odd multiple rF is defined over k; indeed,
in that case one obtains a map S → Pr whose image is the rational normal
curve which, if r is odd, is isomorphic to P1.

Denote by H a hyperplane section, by K a canonical divisor on S ∼= Fa,
and by E the negative section (E2 = −a < 0, which is the only smooth
curve in Fa with negative selfintersection and is therefore Galois-invariant);
all three are divisors defined over k. By Lemma 22 we have over ksep that
Pic(Sksep) ∼= ZH ⊕ ZF . In fact, it is well known (see e.g. [14, V.2] or [22])
that H is linearly equivalent to E + a2F , whereas K is linearly equivalent to
−2E − (a+ 2)F . Thus, whenever a2 or a are odd (which is satisfied under
the given hypotheses) there is an odd multiple of F defined over k. �

If g = 4, the bound for the gonality γ also holds since 2g − 2 = 6 in this
case; but if S is non-singular, the Maroni invariant is a = 0 although the
gonal map is not unique and in this case the gonality over k can be 6; in
fact the scroll S belongs to the case considered in Theorem 24, (1).
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Universitat Autònoma de Barcelona

08193 Bellaterra, Barcelona, Catalonia

E-mail address: jroe@mat.uab.cat

E-mail address: xarles@mat.uab.cat

Received March 5, 2015



i
i

“10-Roe” — 2019/1/31 — 21:23 — page 1590 — #24 i
i

i
i

i
i


	Introduction
	Galois descent and uniqueness
	Splitting Brauer-Severi varities
	Rational normal scrolls under base extension
	Gonality and rational normal scrolls
	Acknowledgements
	References

