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The derived category of a non generic

cubic fourfold containing a plane

Riccardo Moschetti

We describe an Azumaya algebra on the resolution of singulari-
ties of the double cover of a plane ramified along a nodal sextic
associated to a non generic cubic fourfold containing a plane. We
show that the derived category of such a resolution, twisted by the
Azumaya algebra, is equivalent to the Kuznetsov component in the
semiorthogonal decomposition of the derived category of the cubic
fourfold.

1. Introduction

A cubic fourfold Y is a smooth hypersurface of degree three in P5. The
derived category of Y has the following semiorthogonal decomposition

Db(Y ) = 〈TY ,OY ,OY (1),OY (2)〉

where OY (i) is an exceptional object for i = 0, 1, 2 and TY , the Kuznetsov
component, is the admissible subcategory of Db(Y ) right orthogonal to
〈OY ,OY (1),OY (2)〉. Kuznetsov proved that TY has many properties in com-
mon with the derived category of a K3 surface, and this is very related with
the problem of rationality of cubic fourfolds, as described in [19]. Hassett,
in [13], studied the divisors Cd of the moduli space of all cubic fourfolds
that parametrize cubic fourfolds containing a surface non homologous to a
complete intersection, also called special cubic fourfolds. The integer d is
the discriminant of the saturated sublattice of H4

prim(Y ;Z) spanned by the
square of the hyperplane class and by the class of the surface which is not
homologous to a complete intersection. Huybrechts in [14] studied deeper
the relations between properties of the component TY and the divisors Cd.

It is known that C8 parametrizes cubic fourfolds containing a plane. Let
Y be a generic cubic fourfold in C8 and let A be the plane contained in Y .
Consider the projection map to another plane B in P5, disjoint from A. The
preimage along this map of a point b ∈ B, obtained by intersecting Y with
a P3 spanned by A and b, consists of the plane A and, since the degree of Y
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is three, a quadric surface. By blowing up the plane A one obtains a quadric
fibration π : Y + → B.

The locus in B which parametrizes the singular fibers is a sextic curve
C, that turns out to be smooth if the cubic fourfold Y is generic in C8.
In the following, C will be called the sextic associated to the pair (Y,A);
notice however that a very general Y in C8 contains a unique plane, by [27].
Since Y is smooth, Proposition 1.2 of [8] applied to the quadric fibration
π : Y + → B ensures that this sextic exists and has at most ordinary double
points. One can also relate a K3 surface S to the cubic fourfold Y by taking
the double covering of the plane B ramified along C.

From the homological point of view, Kuznetsov proved the following

Theorem 1.1 ([17, Theorem 4.3]). Let Y be a generic cubic fourfold in
C8. Then there exists an exact equivalence of triangulated categories TY

∼=
Db(S, B̃0).

Here, Db(S, B̃0) stands for the derived category of coherent sheaves on S
twisted by B̃0, a sheaf of Azumaya algebras with the property that the
pushforward under the map of the double covering is isomorphic to the
sheaf of even Clifford algebras B0 associated with π. It is interesting to
see how it is possible to attach a Brauer class on a smooth K3 surface
to B0 when the sextic associated to the cubic fourfold and the plane is
nodal. It means that some fibres of π are the union of two different planes
and the related quadratic form is no longer simply degenerate. These fibres
correspond exactly to the nodes of the sextic. In this case the double covering
S is singular, and one needs to resolve the singularities in order to obtain a
K3 surface S+. The Clifford algebra B0 can still be seen as the pushforward
of a certain Azumaya algebra B̃0 on S but only on the complement of the
singular locus of the sextic, and this is not sufficient to prove Theorem 1.1.

It is particularly intriguing to look for a way to make the usual theory
work in this singular case as well. More precisely, is it possible to define
an Azumaya algebra A on the K3 surface S+ such that the push forward
of A to the plane B is isomorphic to the Clifford algebra B0? Proposi-
tion 4.7 answers this question positively and allows us to prove the following
a generalization of Theorem 1.1.

Theorem 1.2. Let Y be a cubic fourfold containing a plane such that the
associated sextic curve C on the plane B is nodal. Then there exists an
exact equivalence of triangulated categories TY

∼= Db(S+,A ), where S+ is
the K3 surface obtained by resolving the singularities of the double covering
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The derived category of a non generic cubic fourfold 1527

of B ramified along C and A is an Azumaya algebra on S+ such that the
pushforward to the plane B is isomorphic to the Clifford algebra B0.

A geometrical meaning to the Kuznetsov component TY has already
been established in [26] for cubic fourfolds containing a plane and in [7] for
all cubic fourfolds.

The plan of the paper. Some preliminaries concerning quadric fibrations
and Azumaya algebras are given in Section 2. The geometric context in which
the construction takes place is described in Section 3. Section 4 is devoted
to finding the Azumaya algebra A , which is done in Proposition 4.7 and to
giving the proof of Theorem 1.2. In all the paper we will work over the field
of the complex numbers.

2. Preliminaries

2.1. Quadric fibrations and line bundle valued quadratic forms

Here is a collection of results concerning quadric fibrations of low dimension.
A good tool to deal with such objects is provided by quadratic forms with
values in a line bundle. One can associate to a line bundle valued quadratic
form a particular quadric fibration in such a way that some geometric prop-
erties of the fibration reflect on the quadratic form and vice versa.

Definition 2.1. Let B be a scheme. A line bundle valued quadratic form
on B, often simply called a quadratic form, is a triple (E , q,L ) where E is a
vector bundle on B, L is a line bundle on B and q : E → L is a morphism
of sheaves such that

• q(av) = a2q(v) where a is a section of OB and v is a section of E

• the morphism bq : E × E → L , defined for every v and w sections of
E by

bq(v, w) = q(v + w)− q(v)− q(w)

is OB-bilinear.

The dimension of the quadratic form (E , q,L ) is the rank of E . A quadratic
form (E , q,L ) is called regular if the morphism from E to Hom(E ,L )
induced by bq is an isomorphism. Let B now be a noetherian separated
integral scheme; a quadratic form (E , q,L ) is called generically regular if
the form is regular over the generic point of B.
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Auel, Bernardara and Bolognesi in [3, Lemma 1.1.1] proved the equiv-
alence between Definition 2.1 and other definitions of line bundle valued
quadratic forms. For instance, to give a quadratic form (E , q,L ) is equiv-
alent to give a global section of Hom(L ?, S2E ?) on B, which corresponds
to a morphism of OB modules σ : L ? → S2E ?.

Starting with a quadratic form (E , q,L ), one can consider the projection
π : PS(E )→ S, where PS(E ) is the projectivization of E on S. By denot-
ing X ⊂ PS(E) as the zero locus of σ, it is straightforward to prove that
the fibres of the projection π|X are quadrics. In particular, X is called the
quadric fibration associated to (E , q,L ).

From now on we require all quadric fibrations to be flat. In particular,
we will use only quadratic form with a flat associated quadric fibration.

Definition 2.2 ([16, Section 3.5]). Let (E , q,L ) be a generically regular
quadratic form of dimension n on a scheme B. The d-th degeneration locus
of the quadratic form, denoted by Bd ⊂ B, is a closed subscheme defined by
the following sheaf of ideals

Id = Im(∧n+1−dE ⊗ ∧n+1−dE ⊗ (L ?)n+1−d Λn+1−dσ−−−−−→ OB).

Notice that Bi+1 is contained in Bi for all positive integers i, and that
B1 is a divisor on B that is called the discriminant divisor. Geometrically,
B1 parametrizes the singular fibres of the quadric fibration (E , q,L ). The
notion of simple degeneration will be useful to describe the situation arising
from a generic cubic fourfold containing a plane. The exact definition in
terms of quadratic forms can be found in [3, Section 1.1], whereas a property
of simply degenerate quadratic forms will be taken as a definition in this
paper.

Definition 2.3. A quadratic form is simply degenerate if and only if its
second degeneracy locus B2 is empty.

Notice that in general Sing(Bi) ⊇ Bi+1, so B2 being empty does not
imply B1 to be smooth, as can be seen for instance in [6] Proposition 1.5.

2.2. Clifford algebra and Azumaya algebra

A good introduction to Clifford algebras is provided by [15], where Clifford
algebras are defined in the context of modules over commutative rings. In
the same spirit, one can associate a sheaf of Z-graded algebras to each line
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The derived category of a non generic cubic fourfold 1529

bundle valued quadratic form by following a construction proposed in [11].
The subalgebra of degree zero, denoted by B0, has a structure of a sheaf of
algebras, and is called the even (part of the) Clifford algebra, see [2], Section
1.8. These spaces play an important geometric role, described for example in
[17]. The construction proposed in [3] makes possible to define directly the
even Clifford algebra. Starting from a quadratic form on a scheme B, not
necessarily regular, consider the tensor algebra T (E ⊗ E ⊗L ?), and define
the ideals

J1 = (v ⊗ v ⊗ f − f(q(v)))

J2 = (u⊗ v ⊗ f ⊗ v ⊗ w ⊗ g − f(q(v))u⊗ w ⊗ g)

where u, v, w are sections of E and f, g are sections of L ?. The even Clifford
algebra of the quadratic form (E , q,L ) is defined by the quotient

B0(E , q,L ) := T (E ⊗ E ⊗L ?)/(J1 + J2)

This is not the only way to construct the even Clifford algebra of a
quadratic form; in [16], Kuznetsov defines the sheaf of Clifford algebras, and
the description of B0 and B1 in terms of the initial quadratic form turns
out to be

B0
∼= OB ⊕ (∧2E ⊗L ?)⊕ (∧4E ⊗ (L ?)2)⊕ · · ·

B1
∼= E ⊕ (∧3E ⊗L ?)⊕ (∧5E ⊗ (L ?)2)⊕ · · ·

as OB-modules. Other ways to define the even Clifford algebra are the split-
ting construction and the gluing construction; see [3, Appendix A], for fur-
ther references. These ways turn out to be all equivalent, since the Clifford
algebra of a quadratic form over a ring is unique. The splitting construction
can be used to describe the even Clifford algebra B0 as a functor.

Definition 2.4. An algebra A over a local commutative ring R is said to
be Azumaya if A is a free R-algebra of finite rank and such that the map

A ⊗R A op → EndR(A )

a⊗ b 7→ (x 7→ axb)

is an isomorphism. If X is a scheme, an OX -algebra A is Azumaya if it is
coherent as an OX -module and, for every closed point x of X, Ax is Azumaya
over OX,x.
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The even Clifford algebra of a generically regular quadratic form with
even dimension can be described in terms of an Azumaya algebra.

Proposition 2.5 ([16, Proposition 3.13]). Let (E , q,L ) be a generically
regular quadratic form on B of even dimension, and let f : S → B be the
double cover S of B ramified at the discriminant locus B1, determined by
the centre of the Clifford algebra B0. Then there exists a sheaf of algebras
B̃0 on S such that f∗(B̃0) ∼= B0 := B0(E , q,L ) and the functor

f∗ : Coh(S, B̃0)
∼−→ Coh(B,B0)

is an equivalence of categories. Moreover, the restriction of B̃0 to the com-
plement of f−1(B2) ⊂ S is a sheaf of Azumaya algebras on S.

Some recent results involving cubic fourfolds containing a plane that
make use of the tool of quadric fibrations can be found in [4], [5], [12], [21],
[22], [24] and [26].

2.3. Noncommutative varieties and twisted derived categories

Let X be an algebraic variety and consider a sheaf of OX -algebras B of finite
rank as a OX -module. The pair (X,B) is called a noncommutative variety. A
morphism f := (f0, falg) between (X1,B1) and (X2,B2) is given by a mor-
phism of algebraic varieties f0 : X1 → X2 and a morphism of OX1

-algebras
falg : f∗0 B2 → B1. The morphism f is called strict if B1

∼= f∗0 B2 and falg

is the identity. Since the pullback of an Azumaya algebra is still Azumaya,
see [15] III.5.1, one can define also Azumaya varieties as noncommutative
varieties (X,B) in which the algebra B is Azumaya. Given a noncommu-
tative variety (X,B), the so-called twisted derived category Db(X,B) can
be defined in the usual way starting with the category of coherent sheaves
of right B-modules on X as objects. Some background on noncommutative
varieties can be found in [16], and an introduction to Azumaya varieties
together with all the definitions of functors involving twisted derived cate-
gories can be found in [20]. The following proposition gives a condition for
the fibre product of two objects in the category of noncommutative varieties
to exist.
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The derived category of a non generic cubic fourfold 1531

Proposition 2.6. Let (X,BX)
f−→ (S,BS), and (Y,BY )

g−→ (S,BS) be mor-
phisms of noncommutative varieties. Consider the following base change di-
agram

(1) X ×S Y
q0
��

p0 // X

f0
��

Y
g0 // S

If f is strict, then (X ×S Y, q∗0(BY )) is a fibre product of (X,BX) and
(Y,BY ) over (S,BS). If g is strict, then (X ×S Y, p∗0(BX)) is a fibre product
of (X,BX) and (Y,BY ) over (S,BS).

Proof. The proof follows the same lines of Lemma 10.37 in [20], which does
not actually require the hypothesis of the algebras being Azumaya. Assume
f to be strict, that is BX = f∗0 BS . First define the morphisms q := (q0, qalg)
and p := (p0, palg) that makes the following diagram commute

(2) (X ×S Y, q∗0BY )

q

��

p // (X,BX)

f

��
(Y,BY )

g // (S,BS)

The map qalg : q∗0BY → q∗0BY is the identity. It remains to define palg :
p∗0BX → q∗0BY . Since f is strict p∗0BX is equal to p∗0f

∗
0 BS , and since Square

(1) is a base change, p∗0f
∗
0 BS is equal to q∗0g

∗
0BS . One can then choose as

palg the morphism induced by galg. This choice makes Square (2) commute.
Let now u : (Z,BZ)→ (X,BX) and v : (Z,BZ)→ (Y,BY ) be morphisms
of noncommutative varieties such that f ◦ u = g ◦ v. At the level of varieties,
the base change (1) gives the existence of a morphism t0 : Z → X ×S Y such
that p0 ◦ t0 = u0 and q0 ◦ t0 = v0. The morphism talg : t∗0q

∗
0BY → BZ will

be the one induced by valg : v∗0BY → BZ . The two properties v = q ◦ t and
u = q ◦ p follows by the definitions of q and p. The same proof holds in the
case g is strict. �

The following definition is the analogous for our case of [20, Defini-
tion 2.18].

Definition 2.7. Let (X,BX)
f−→ (S,BS), and (Y,BY )

g−→ (S,BS) be mor-
phisms of noncommutative varieties. If either f or g is strict, then Propo-
sition 2.6 ensures that the fibre product (X ×S Y,BX×SY ) is defined. The
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square

(3) X ×S Y
q //

p

��

Y

g

��
X

f // S

is said to be exact cartesian if the natural morphism of functors

g∗f∗ → q∗p
∗ : D−(X,BX)→ D−(Y,BY )

is an isomorphism.

The following lemma follows the same lines of [20, Corollary 2.27], stated
in the context of Azumaya varieties. The difference here is that B0 and B̄0

are only Clifford algebras and not Azumaya. For the convenience of the
reader we are rewriting the proof.

Lemma 2.8. In the same notation of Definition 2.7, assume g to be a strict
closed embedding, Y a locally complete intersection in S and both S and X
to be Cohen-Macaulay. If the codimension on X of X ×S Y is equal to the
codimension on S of Y , then Square (3) is exact cartesian.

Proof. Let us first remark the content of [20, Lemma 2.26]. Since the map
g is finite, Square (3) is exact cartesian if the morphism

(4) f∗g∗BY → p∗q
∗BY = p∗BX×SY

is an isomorphism. For any F ∈ D−(X,BX) we get

g∗g
∗f∗(F ) ∼= f∗(F )⊗BS

g∗BY
∼= f∗(F ⊗BX

p∗BX×SY )
∼= f∗p∗p

∗(F ) ∼= g∗q∗p
∗(F ).

This isomorphism is induced by the pushforward g∗ applied to the morphism
g∗f∗ → q∗p

∗, which is a morphism of kernel functors:

f∗ ∼= Φ(Γf )∗BX
g∗ ∼= Φ(Γg)∗BY

q∗p
∗ ∼= ΦBX×SY

,

where Γf : X → X × S and Γg : Y → S × Y are the graphs of f and g re-
spectively. We can then apply the result of [20, Lemma 2.8,b], which only
involves the varieties and not the sheaf of algebras, to get the desired iso-
morphism g∗f∗ ∼= q∗p

∗.
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We are left to check that the homomorphism (4) is an isomorphism. Since
the claim is local in S, we may assume Y to be the zero locus of a regular
section s of a vector bundle V on S having rank equal to the codimension
of Y in S. Recall that KoszS(s) is the Koszul complex of the section s:

KoszS(s) := {0→ ΛtopV ? ⊗OX
BX

s−→ . . .
s−→ V ? ⊗OX

BX
s−→ BX → 0}

Since s is regular and X is Cohen-Macaulay we have g∗BY
∼= KoszS(s).

The zero locus of f∗s on X is the fibre product X × SY , but by the
hypothesis on the codimension on X of X ×S Y , we have codimX(X ⊗S
Y ) = rkf∗V . Therefore the section f∗s is regular and we get an isomorphism
and so f∗g∗BY

∼= KoszX(f∗s). This leads to the isomorphism KoszX(f∗s) ∼=
p∗BX×SY which concludes the proof. �

3. The geometric context

Let Y ⊂ P(V ) be a hypersurface of degree 3 containing a projective space A.
Let V be a vector space of dimension n+ 1 and A be P(A0) for a vector sub-
space A0 of V . Let B0 be the quotient space V/A0, and B := P(B0). As de-
scribed in the introduction, it is possible to obtain a quadric fibration Y + →
B that is associated to a line bundle valued quadratic form (E , q,L ). By
using the same notation of [17], the vector bundle E is A0 ⊗ OB ⊕ OB(−1),
the line bundle L is OB(1) and the map q depends on the equations of Y .

Remark 3.1. In the case of a generic cubic fourfold Y in C8, this quadratic
form turns out to be simply degenerate, and then, since Y is also smooth,
the vanishing of B2 implies that the sextic curve C on B, that coincides with
the discriminant divisor B1 of the quadratic form, is also smooth. Hence,
one obtains a sheaf of Azumaya algebras on the double cover of the plane B
ramified along C. Proposition 2.5 can also be applied when, for a non generic
Y , the singular locus B2 of the sextic C turns out to be non empty. The sheaf
of algebras obtained is Azumaya only on the complement of f−1(B2) ⊂ S.

One can compute the symmetric product of E ? tensored by L , according
to one of the equivalent definitions of a line bundle valued quadratic form.

S2E ? ⊗L = S2 (A?0 ⊗ OB ⊕ OB(1))⊗ OB(1)

= S2 (A?0)⊗ OB(1)⊕ (A?0 ⊗ OB(2))⊕ OB(3)

A section of this bundle is given by a section of S2A?0 ⊗ O(1), a section
of A?0 ⊗ O(2) and a section of O(3). The same setting can be described in
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coordinates as follows. Let the ambient space be Pn = Pn(x0 : · · · : xb : y0 :
· · · : ya), with a+ b+ 1 = n. The space A of dimension a will be Pa(y0 : · · · :
ya) = {x0 = · · · = xb = 0} and the space B will be Pb(x0 : · · · : xb) = {y0 =
· · · = ya = 0}. Notice that A ∩B = ∅. Let π be the projection map Pn 99K B
from the space A. One can assume Y := {F = 0},

F :=

a∑
i,j=0

lijyiyj + 2

a∑
k=0

qkyk + f

where lij , qk and f are polynomials in x0, · · ·xb of degree one, two and
three, respectively, and lij = lji. One can arrange these polynomials in the
following symmetric matrix

M :=


l00 · · · l0a q0
...

. . .
...

...
la0 · · · laa qa
q0 · · · qa f


The discriminant divisor of the quadric fibration Y + → B coincides with

the determinant of M , which is a hypersurface of degree a+ 4 in B.
The matrix M can be seen as an injective map between vector bundles,

part of the following exact sequence

(5) 0→ OPb(−2)a+1 ⊕ OPb(−3)
M−→ OPb(−1)a+1 ⊕ OPb → F → 0

The following proposition is just a recap of [9] and relates the matrix M
with a line bundle supported on the hypersurface {detM = 0}.

Proposition 3.2. The cokernel F of the map induced by M in (5) is an
ACM sheaf supported on the hypersurface C = {detM = 0}. If C is smooth,
F is a line bundle.

Proof. This is just a special case of Theorem A and Corollary 1.8 in [9]. �

In the case of a cubic fourfold Y containing a plane, Beauville and Voisin
in [9], [8] and [27] proved that there is a correspondence between Y and the
curve C of degree six defined by {det(M) = 0} in the plane B, together with
a theta-characteristic on C. The singular case was studied by Stellari in [25].
Notice that, in coordinates, this corresponds to the case n = 5, a = b = 2.

Going back to the derived categories, viewing the cubic fourfold as a
quadric fibration is the key for the following proposition, which relates the
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The derived category of a non generic cubic fourfold 1535

Kuznetsov component of Db(Y ) with a twisted derived category. Notice that
since Y is smooth, containing a linear subspace half-dimensional, then the
arising quadric fibration will be flat. One can perform the same construction
carried out in the introduction obtaining a flat quadric fibration with base
a plane B disjoint from A; we recall the following

Proposition 3.3. [17, Theorem 4.3] Let Y be a cubic fourfold containing
a plane A. There is an equivalence

TY
∼= Db(B,B0)

where TY is the Kuznetsov component of Db(Y ) and Db(B,B0) is the de-
rived category of B twisted by the Clifford algebra B0 related to the quadric
fibration.

4. Cubic fourfolds in C8 with an associated nodal sextic

Let’s now consider a cubic fourfold Y with an associated sextic C that is
nodal. This hypothesis makes Y non generic in C8. Since Y is smooth, the
fibres over the nodes of the sextic are double planes, see for instance [8]. This
is equivalent to fact that B2 = Sing(B1) in terms of the degerenacy locus of
the associated line bundle valued quadratic form.

Remark 4.1. One can encode the information about the singularity of the
sextic in the equation of the cubic fourfold. Up to a change of coordinates,
one can assume one node of the sextic to be the point x := (1 : 0 : 0) ∈
P2(x0 : x1 : x2) =: B. The fibre over x is the union of the plane A and two
other planes in the space generated by A and x, that is P3(x0 : y0 : y1 : y2).
One can also assume that, in this P3, the other two planes have equations
y1 = 0 and y2 = 0. Hence, the equation of the cubic fourfold Y is x0y1y2 +
x1k1 + x2k2 = 0 where k1 and k2 are quadratic polynomials in xi and yi.

This geometric picture can be thought as a hyperplane section of a simi-
lar picture in P6(x0 : x1 : x2 : x3 : y0 : y1 : y2). Let Ȳ be the cubic fivefold
defined by the equation F + x3F̄ = 0, where F̄ is a homogeneous poly-
nomial of degree 2. Ȳ still contains the plane A, which in P6 has equa-
tions {x0 = x1 = x2 = x3 = 0} and one can project onto the P3 defined by
B̄ := {y0 = y1 = y2 = 0}. Exploiting the construction of M of the previous
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section, Ȳ is given by the equation∑
i,j=0,1,2

lijyiyj + 2
∑

k=0,1,2

qkyk + f

+ x3

 ∑
i,j=0,1,2

l̄ijyiyj + 2
∑

k=0,1,2

q̄kyk + f̄

 = 0

where l̄ij , the q̄i and f̄ are polynomials in x0, x1, x2, x3 of degree zero, one
and two, respectively, and l̄ij = l̄ji. One can define a symmetric matrix M̄ ,
as before:

(6)

(
lij qk
qk f

)
+ x3

(
l̄ij q̄k
q̄k f̄

)
Taking the determinant of this matrix gives rise to a sextic surface C̄ in
P3(x0 : x1 : x2 : x3).

The idea is to exploit the work of Kuznetsov [18] to obtain an Azumaya
algebra related to the Clifford algebra B0. The first step consists in proving
that it is always possible to find a cubic fivefold as described above with
the singularities of the sextic surface C̄ being at most isolated nodes. The
situation can be reformulated in terms of degeneracy locus of maps between
vector bundles. Recall the following

Definition 4.2. Let E and F be vector bundles on a projective variety X,
φ : E → F a morphism and k a positive integer. Then,

Dk(φ) = {x ∈ X s.t. rk(φx) ≤ k}

is called the k-degeneracy locus of φ.

As in Section 3, but now for the case of B = P3, let E be the vector
bundle 3OP3 ⊕ OP3(−1) on P3. As seen in the previous section, a matrix of
homogeneous forms on P3 with the same degrees as the matrix in Equation
(6) defines a symmetric map φ : E → E ?(1) as in Equation (5), after tensor-
ing the exact sequence with the line bundle OP3(2). This map can be seen as
a section of the bundle S2E ⊗ OP3(1) and its symmetrical degeneracy locus
D3(φ) coincides with the locus of P3 where the determinant of the matrix
(6) is equal to zero, that is the sextic surface C̄. The choice of the second
matrix in (6) defines a linear system T of sections of S2E ⊗ OP3(1).
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Remark 4.3. Let E = 3OP3 ⊕ OP3(−1) as above. The degeneracy locus
D3(φ), of Definition 4.2 coincides with the first degeneration locus of the line
bundle valued quadratic form of Definition 2.2, B1(σ), where σ : OP3(−1)→
S2E is a map equivalent to φ.

The next lemma, following [23], holds in general when X is a projective
variety.

Lemma 4.4. Let E be a vector bundle of rank n, L be a line bundle on
X and let φ : E → E ? ⊗L be a generic symmetric morphism. If S2E ? ⊗
L is globally generated, then Dk(φ) is empty or of codimension

(
n−k+1

2

)
.

Moreover, Sing(Dk(φ)) is contained in Dk−1(φ).

Proof. The exact sequence H0(S2E ? ⊗L )⊗ OX → S2E ? ⊗L → 0 induces
a projection that is everywhere of maximal rank

X ×H0(S2E ? ⊗L )
p−→ S2E ? ⊗L

One can define the variety Σk inside the total space of S2E ? ⊗L that is
composed on each fibre of the n× n matrices with complex coefficients with
rank less or equal than k. Σk has codimension equal to

(
n−k+1

2

)
. Now consider

the following diagram where Z is the preimage of Σk by p.

Z //

��

q

uu

Σk� _

��
H0(S2E ⊗ L) X ×H0(S2E ⊗ L)

p //oo S2E ⊗ L

Z is composed of the pairs (x, φ) where x is a point of X, φ : E → E ? ⊗L is
a symmetric map and the rank of the induced map φx is less or equal than
k − 1. Then, the preimage by q of a generic element φ0 in H0(S2E ⊗ L)
coincides with {(x, φ0) s.t. rk(φ0|x) ≤ k − 1}, which is exactly the definition
of Dk(φ0). Notice that Sing(Z) = p−1Sing(Σk) thus, by restricting p, one
obtains

Z r Sing(Z)
p|ZrSing(Z)−−−−−−−→ H0(S2E ⊗ L).

If the image of p|ZrSing(Z) is dense, then Dk(φ) is smooth by the generic
smoothness theorem, and so Sing(Dk(φ)) ⊂ Dk−1(φ). If the image is not
dense, then Dk(φ) is empty for generic φ. �

The following proposition ensures that for any cubic fourfold Y with an
associated nodal sextic curve C it is possible to find a smooth cubic fivefold
Ȳ with the associated sextic surface C̄ having isolated singularities.
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Proposition 4.5. Let F be the vector bundle S2E ⊗ OP3(1) on P3, where
E is 3OP3 ⊕ OP3(−1). Let T be the linear system of sections of F defined by
the choice of the second matrix in (6). Then a generic section of the linear
system T defines a smooth cubic fivefold and the degeneracy locus D2 of the
morphism corresponding to this section is of codimension 3 in P3. Moreover,
D2 is composed of a finite number of ordinary double points and there is a
bijection between D2 ∩ {x3 = 0} and the nodes of the sextic curve C.

Proof. The generic section of T defines a smooth fivefold. Notice that the ex-
pected codimension of the 2−degeneracy locus of a section of F is

(
4−2+1

2

)
=

3. Let x be a point in P3 r {x3 = 0}. The stalk Fx is globally generated by
the sections in T because q̄k contains the monomial αkx3 and f contains the
monomial βx2

3, αk and β in C. The matrix of complex numbers obtained af-
ter evaluating the second matrix in (6) in the stalk Fx is generic, since l̄ij , αk
and β are arbitrarily chosen. This proves that S2F ⊗ O(3) is globally gen-
erated by sections of T where x3 6= 0. Then, it is possible to apply Lemma
4.4 to the restriction of the bundles to P3 r {x3 = 0}. It remains to prove
that D2 ∩ {x3 = 0} has codimension three, but this is a direct consequence
of the setting of the problem, in which the sextic curve, which coincides with
D2 ∩ {x3 = 0}, has at most singularities of codimension 2 in P2.

Since D2 is of dimension 0 in P3 then it must be finite. Let x be a point
in D2. Proving that x is an ordinary double point of C̄ is the same as proving
that the fibre over x is composed of A and the singular quadric given by
two intersecting planes. Consider the hyperplane section of P6 given by a
hyperplane H containing A and x. This gives rise to a cubic fourfold YH
containing A with a projection to the plane BH := B̄ ∩H still containing
the point x. By construction the fibre over x is the same, and then the
result follows by Proposition 1.2 of [8]. The same proposition ensures that
also the curve C has only nodes. In both cases, each one is determined by
the fact that the quadric fibration has a fibre that consists of the union of
two planes, and this is sufficient to conclude the proof of the last part of the
proposition. �

Corollary 4.6. At the level of noncommutative varieties one has

(P2,B0) = (P3, B̄0)×B̄ B,

where B̄0 is the even Clifford algebra of the quadratic form over P3.

Proof. By Proposition 4.5, the quadric fibration for the cubic fourfold Y is
obtained from the one of the cubic fivefold Ȳ by base change with respect
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to the embedding B
i−→ B̄, where B is the plane {x3 = 0} in P3. It follows

that B0 is the pullback along i of B̄0, and this concludes the proof. �

Let Y be a cubic fourfold containing a plane whose associated sextic
curve C is nodal and B0 be the Clifford algebra on the plane B of the
quadric fibration associated to Y . Let S be the (singular) double cover of
B ramified along C induced from the centre of B0 and S+ be the minimal
resolution of the singularities of S. Consider the double covering X of P3

ramified over the sextic surface C̄ induced from the centre of B̄0.
The key element we need from [18] is the existence of an Azumaya alge-

bra over a small resolution of the singularities of X. We summarize briefly
the steps leading to this construction. Consider first the Fano scheme M
of lines over the family of quadrics associated to X. The hypotheses of [18,
Lemma 2.4] hold in our setting, hence M is smooth. As in [18, Section 4],
we will consider M+, a flip of M constructed by blowing up certain planes
chosen among the ones in the singular elements of the family of quadrics
associated to X. As shown in [18, Proposition 4.4], there is a morphism
M+ → X which factors through a small resolution X+ of the singularities
of X. Moreover, the map M+ → X+ is a P1 fibration, corresponding to an
Azumaya algebra B+ over X+, see [1]. Such an algebra is also explicitly
described in [18, Proposition 5.5]. This will be crucial for our purpose, as
[18, Lemma 5.7] ensures that the push forward of B+ along (f ◦ σ+) is
isomorphic to B̄0.

Proposition 4.7. There exists an Azumaya algebra A defined on S+ such
that the pushforward to B is isomorphic to B0.

Proof. Proposition 4.5 guarantees the existence of a cubic fivefold Ȳ ⊂ P6

such that Y is contained in Ȳ and the degeneracy locus of the associated
quadric fibration is a sextic surface C̄ in P3 with at most ordinary double
points. Taking a specific hyperplane section of P6 gives back the original
picture of Y ⊂ P5. The quadric fibration on P3 arising from Ȳ satisfies the
hypothesis of [18, Theorem 1.1]. Our situation is summarized in the following
diagram

(7) S+

��

X+

��
S

��

X

��
P2 � � // P3
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Lemma 4.8 and Lemma 4.9 located below, ensure that the two vertical maps
of the diagram (7) are actually fibre products, hence the diagram can be
completed as follows

(8) S+

τ+

��

� � g // X+

σ+

��

B+

B̃0 S

π
��

� � // X

f
��

B0 P2 � � // P3 B̄0

where B0 and B̄0 are the Clifford algebras associated to the quadric fibra-
tions related to Y and Ȳ described in the preliminaries, B+ is the Azumaya
algebra described in [18], and the dotted arrows denote the fact that the al-
gebras are defined over the corresponding schemes. By Corollary 4.6 one has
B0
∼= i∗B̄0, and by [18, Lemma 5.7], the push forward of B+ along (f ◦ σ+)

is isomorphic to B̄0.
The two squares in the diagram (8) can be composed to obtain the

following

(9) g∗(B+) S+ � � g //

k
��

X+

h
��

B+

B0 P2 � � i // P3 B̄0

where k := π ◦ τ+ and h := f ◦ σ+.
The inclusion i is strict, hence Proposition 2.6 ensures that square (9)

gives a base change diagram of noncommutative varieties. Moreover, the
pullback A := g∗(B+) is an Azumaya algebra on S+.

It remains to prove that the pushforward (π ◦ τ+)∗(A ) is isomorphic
to B0. Recalling that B0

∼= i∗B̄0, B̄0
∼= h∗B+ and A := g∗B+, one ob-

tains the following base change problem: prove that k∗g
∗B+ is equivalent

to i∗h∗B+. This depends on the Square (9) being exact cartesian, see Def-
inition 2.7. We can apply Lemma 2.8, since the inclusion i is strict and
closed and the codimensions of S+ and P2 on X+ are the same, and hence
the square (9) turns out to be exact cartesian giving that the pushforward
(π ◦ τ+)∗(A ) is isomorphic to B0. which concludes the proof. �

Since being Azumaya is a local property, the pushforward of A to S, re-
stricted to the complement of Sing(C), is isomorphic to B̃0, the Azumaya
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algebra on S r Sing(C) provided by Proposition 2.5. The following lemmata,
used in the proof of Proposition 4.7, hold under the same assumptions.

Lemma 4.8. The fibre product along an inclusion of a branched covering
is again a covering, ramified on the restriction of the ramification locus.

Proof. One has to prove that, if V ⊂W and W̃ is the covering of W ramified
over C, then the fibre product

V ×W W̃ //

��

W̃

f

��
V �
� i //W

is isomorphic to the covering Ṽ
π−→ V of V ramified over i−1(C). This can be

proved by using the definition of the fibre product. If p ∈ Ṽ one can consider

f−1(i ◦ π)(p) and this gives a map to W̃ . Moreover, if Z
a−→ W̃ and Z

b−→ V
are such that f ◦ a = i ◦ b, then one obtains a map Z → Ṽ that makes the
diagram commute, giving the isomorphism between Ṽ and V ×W W̃ . �

Lemma 4.9. The fibre product of X+ σ+

−−→ X along the inclusion S → X is
the minimal resolution of singularities of S.

Proof. By construction, the inclusion sends singular points of S to singular
points of X. By the description of the exceptional locus of X+, the pullback
map to S is an isomorphism on the smooth points of S and is a contraction
of a P1 on the singular points. The singularities of X, in particular the
ones in common with S, are cones on singular quadrics degenerated to two
planes. A small resolution X+, which exists by the work of Kuznetsov, is
hence obtained by blowing up one of these planes for each singular point.
Since the sextic curve was obtained by taking an hyperplane section of the
sextic surface, it follows that S is a Cartier divisor inside X. It remains to
check that the P1 contracted by the resolution is not all contained in the
hyperplane {x3 = 0}. That is implied by the last part of Proposition 4.5,
since a node on X remains a node on S, hence the fibre product X+ ×X S
is smooth. This implies that the restriction of the resolution of singularities
on X coincides with the resolution of the singularities on S. �

It is now possible to give a proof for Theorem 1.2. The notation is the same
used in this whole section. Notice that it is also possible to prove directly
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the equivalence TY
∼= Db(S+,A ) by using the result of Proposition 4.7 and

then retracing the proof of [18, Theorem 1.1].

Proof of Theorem 1.2. The theorem can be proved by a sequence of equiv-
alences; recall first the one given by Proposition 3.3:

(10) TY
∼= Db(B,B0).

Corollary 4.6 gives the following isomorphism of noncommutative varieties:

(P2,B0) = (P3, B̄0)×B̄ B.

As observed in the proof of [16, Lemma 3.2], the base change of such alge-
bras can be described in terms of quadric fibrations. At the level of derived
categories this gives

(11) Db(B,B0) ∼= Db(B, i∗B̄0) ∼= Db
(
(B̄, B̄0)×B̄ B

)
,

that is the base change of Db(B̄, B̄0) to P2.
Then, as in the proof of Theorem 1.1 in [18], there is an equivalence

between the derived category of B̄ twisted by B̄0 and the derived category
of X+ twisted by the Azumaya algebra B+.

(12) Db(B̄, B̄0) ∼= Db(X+,B+).

Finally, as in the proof of Proposition 4.7, since the map i in the square
(9) is strict, it is possible to apply Proposition 2.6, obtaining

(S+,A ) = (X+,B+)×B̄ B.

In the case of Azumaya algebras, the base change can be described in terms
of P1-fibrations, and for them, a semiorthogonal decomposition is provided
in [10]. Hence, as for the equivalence (11),

(13) Db(S+,A ) ∼= Db(S+, g∗B+) ∼= Db
(
(X+,B+)×B̄ B

)
,

The theorem is proved by combining, in order, the equivalences (10),
(11), (12) and (13). �
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