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Trisections and spun four-manifolds

Jeffrey Meier

We study trisections of 4–manifolds obtained by spinning and twist-
spinning 3–manifolds, and we show that, given a (suitable) Hee-
gaard diagram for the 3–manifold, one can perform simple local
modifications to obtain a trisection diagram for the 4–manifold.
We also show that this local modification can be used to convert a
(suitable) doubly-pointed Heegaard diagram for a 3–manifold/knot
pair into a doubly-pointed trisection diagram for the 4–manifold/2–
knot pair resulting from the twist-spinning operation.

This technique offers a rich list of new manifolds that admit
trisection diagrams that are amenable to study. We formulate a
conjecture about 4–manifolds with trisection genus three and pro-
vide some supporting evidence.

1. Outline

The theory of trisections was introduced by Gay and Kirby as a novel way
of studying the smooth topology of 4–manifolds [13]. Since then, the the-
ory has developed in a number of directions: Extensions of the theory to
the settings of manifolds with boundary [8–11], knotted surfaces [29, 30],
algebraic objects [1, 25], and higher dimensional manifolds [37] have been
established; programs offering connections with singularity theory [4, 5, 12–
15], and Dehn surgery [27, 31], have been initiated; some classification results
have been obtained [27, 28]; interpretations of constructions and cut-and-
paste operation have been explored [16, 26]; and new invariants have been
proposed [19, 23, 38]. The purpose of this note is two-fold: motivate an ex-
tension of the classification program and generate a rich set of examples of
manifolds with trisection diagrams that are simple enough to be amenable
to study.

Manifolds with trisection genus at most one are easy to classify [13].
In [28], it was shown that S2 × S2 is the unique irreducible1 manifold with

1We call a 4–manifold X irreducible if each summand of any connected sum
decomposition of X is either X or a homotopy 4–sphere.
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1498 Jeffrey Meier

trisection genus two, and it was asked to what extent it is possible to enu-
merate manifolds with trisection genus g for low values of g. To this end, we
offer the following conjecture.

Conjecture 1.1. Every irreducible 4–manifold with trisection genus three
is either the spin of a lens space, or a Gluck twist on a specific 2–knot in
the spin of a lens space.

These manifolds have rich but fairly obfuscated history of study in the
literature, which we aim to unify in the discussion below. Since there is a
unique spun lens space for each p ∈ N and at most one additional mani-
fold obtained by the specified Gluck twist, this conjecture would give an
extremely simple enumeration of manifolds admitting minimal genus (3, 1)–
trisections.

(Note that (3, 2)–trisections are trivial in a precise sense [27], while
(3, 0)–trisections are conjecturally trivial in the same sense, so Conjecture 1.1
can really the thought of as a conjecture about manifolds with irreducible
(3, 1)–trisections.) At the end of the paper, we present diagrams for the
subjects of Conjecture 1.1.

Given a closed, connected, orientable 3–manifoldM , let S(M) and S∗(M)
denote the spin and twisted-spin of M , respectively. (See Section 3 for precise
definitions.)

Theorem 1.2. Suppose that M admits a genus k Heegaard splitting. Then
S(M) and S∗(M) admit (3k, k)–trisections.

An immediate application of this theorem is an explicit description of
4–manifolds admitting minimal genus trisections of arbitrarily large genus.

Corollary 1.3. For every integer g ≥ 3 and every 1 ≤ k ≤ g − 2, there
exist infinitely many distinct 4–manifolds admitting minimal (g, k)–
trisections.

A similar corollary has been independently obtained recently by Baykur
and Saeki [5]. Corollary 1.3 becomes more interesting in light of our ability
to give diagrams for the pertinent trisections.

Theorem 1.4. Let (S, δ, ε) be a genus g Heegaard diagram for a closed 3–
manifold M with the property that Hε is standardly embedded in S3. Then
the 4–manifolds S(M) and S∗(M) each admit a trisection diagram that is
obtained from (S, δ, ε) via a local modification at each curve of ε.
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The local moves are described in Figures 6 and 7. See Section 3 for a
more detailed statement of the above theorem.

Finally, we consider what happens when the twist-spinning construction
is applied to a 3–manifold/knot pair. Our main result to this end is that
the twisted-spin of a doubly-pointed Heegaard diagram is a doubly-pointed
trisection diagram. This latter object describes not only the trisected 4–
manifold, but also a knotted sphere therein. Given a 3-manifold/knot pair
(M,K), let Sn(M,K) denote the n–twist-spin of (M,K).

Theorem 1.5. Let (S, δ, ε) be a genus g Heegaard diagram for a closed 3–
manifold M with the property that Hε is standardly embedded in S3. Let K be
a knot in M such that (S, δ, ε, z, w) is a doubly-pointed Heegaard diagram for
the pair (M,K). Then the pairs Sn(M,K) admit doubly-pointed trisection
diagrams that are obtained from (S, δ, ε, z, w) via a local modification at each
curve of ε.

Organization

Section 2 presents general background material regarding spinning and twist-
spinning, Heegaard splittings and trisections, and doubly-pointed diagrams.
In Section 3, we give a singularity theoretic proof of Theorem 1.2, and more
geometric proofs of Theorems 1.4 and 1.5, the former of which also recov-
ers a proof of Theorem 1.2. In Section 4, we prove Corollary 1.3, discuss
Conjecture 1.1, give a number of examples, and pose some questions.

2. Background

2.1. Spun 4–manifolds and 2–knots

We recall the set-up of spun 4–manifolds, as well as some classical results
about these spaces. Given a closed, connected 3–manifold M , we let S(M)
and S∗(M) denote the spin and twisted-spin of M , respectively. These man-
ifolds are given as follows:

S(M) = (M◦ × S1) ∪id (S2 ×D2),

and

S∗(M) = (M◦ × S1) ∪τ (S2 ×D2),

where τ is the unique self-diffeomorphism of S2 × S1 not extending over S2 ×
D2 [17]. Adopting coordinates (h, φ) for S2, where h ∈ [−1, 1] represents
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distance from the equator and φ ∈ S1 is angular displacement from a fixed
longitude, this map is given by

τ((h, φ), θ) = ((h, φ+ θ), θ).

In other words, τ twists S2 through one full rotation as we traverse the
S1 direction. In fact, one could consider gluings using powers of τ , but the
resulting manifold will only depend (up to diffeomorphism) on the parity of
the power [17].

Such spaces were well studied in the 1980s and earlier. Here, we will
summarize some of the more pertinent facts. We denote diffeomorphism
and homotopy-equivalence by ∼= and ', respectively. It appears that a com-
plete classification of when the spin and twisted-spin of a given 3–manifold
are diffeomorphic remains open. However, we have the following significant
progress due to Plotnick.

Theorem 2.1 (Plotnick [35]). Let M be a closed, connected, orientable
3–manifold.

1) If M is aspherical, then S(M) 6' S∗(M).

2) S(M) ∼= S∗(M) if every summand of M is either S1 × S2 or a spher-
ical 3–manifold with all Sylow subgroups of π1(M) cyclic.

Remark 2.2. Note that S(M) and S∗(M) have identical 3–skeleta. One
way to see this is to notice that both of these manifolds are obtained from
M × S1 by surgering a circle ∗ × S1, with the result only depending on the
choice of framing in π1(SO(3)) ∼= Z2. Since the framings can be assumed to
agree on a portion of ∗ × S1, it follows that the surgeries differ only in the
attaching of a 4–cell. As a consequence π1(S(M)) ∼= π1(S∗(M)), and it is
not hard to argue that this group is simply π1(M).

By the above remark, S(L(p, q)) can be obtained by surgering out S1 × ∗
inside S1 × L(p, q). Pao observed that S(L(p, q)) can also be obtained by
surgering the simple closed curve in S1 × S3 representing p ∈ Z ∼= π1(S1 ×
S3) [34]. As in Remark 2.2, there are two choices for the framing of such a
surgery. Let Sp and S ′p denote the manifolds obtained from surgery on the
winding number p curve in S1 × S3. (Note that it follows that Sp and S ′p are
related by a Gluck twist on the belt-sphere of this surgery.) Pao proved the
following.
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Proposition 2.3 (Pao [34]).

1) Sp ∼= S(L(p, q)).

2) S ′p ∼= Sp if p is odd and S ′p 6' Sp if p is even.

We remark that it is not clear whether Pao identified Sp as a spun
lens space, though it appears that Plotnick made the connection [35]. (See
also [40].) Moreover, many authors who have studied Pao’s manifolds since
seem not to have noted the connection with spun lens spaces, instead study-
ing them as manifolds admitting genus one broken Lefschetz fibrations [3,
5, 21].

Combining Theorem 2.1(2) and Proposition 2.3(1), we have the following
corollary.

Corollary 2.4. For all 1 ≤ q < p, both S(L(p, q)) and S∗(L(p, q)) are dif-
feomorphic to Sp.

We will let P = {Sp}p∈N ∪ {S ′p}p∈2N be the set of Pao’s manifolds, and
we will refer to the Sp as the spun lens spaces and to the S ′p as their siblings.

Remark 2.5. Note that there are two pertinent 2–knots in the manifold
Sp = S(L(p, q)). The first is the core of the D2 × S2 used in the spinning
construction. Performing a Gluck twist on this 2–knot results in S∗(L(p, q)),
while surgery yields S1 × L(p, q). The second 2–knot has the property that
surgery yields S1 × S3; thus, it cannot be isotopic to the first 2–knot. Per-
forming a Gluck twist on this latter 2–knot results in the sibling manifold S ′p.

Finally, we extend the definition of twist-spinning to 3–manifold/knot
pairs. For a fixed 3–manifold M and a knot K in M , let Sn(M,K) denote
the n–twist-spin of the pair (M,K):

Sn(M,K) = ((M,K)◦ × S1)
⋃
τn

(S2 ×D2, {n, s} ×D2),

where the gluing is via the n–fold power of the Gluck twist map defined
above. We write Sk(M,K) = (Sk(M),Sk(K)). Since τ2 extends over S2 ×
D2, we have that Sk(M) is either S(M) or S∗(M) (based on whether k is
even or odd). On the other hand, the 2–knots Sk(K) will likely represent
different isotopy classes as k varies.
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When M ∼= S3, the resulting twist-spun knots Sn(K) have been well
studied, starting with Zeeman [41], who introduced the general notion (fol-
lowing Artin [2]). On the other hand, it appears that very little attention has
been focused on the case of twist-spinning knots in non-trivial 3–manifolds.

2.2. Heegaard splittings and trisections

We briefly recall the basic set-up of the theories of Heegaard splittings and
trisections. A genus g Heegaard splitting of a closed, connected, orientable
3–manifold M is a decomposition

M = Hδ ∪Σ Hε,

where Hδ and Hε are handlebodies whose common boundary is a closed
surface Σ of genus g. Every closed 3–manifold admits a Heegaard split-
ting [6, 32], and any two Heegaard splittings of a fixed manifold are stably
equivalent [36, 39].

Let δ be a collection of g disjoint curves on Σ arising as the boundary of
g properly embedded disks in Hδ and satisfying the property that Σ \ ν(δ) is
connected and planar. Let ε be a similar collection of curves corresponding
to Hε. The triple (Σ, δ, ε) is called a Heegaard diagram for the splitting
M = Hδ ∪Σ Hε. Any two diagrams for a given splitting can be related by
handleslides (among the respective sets of curves) and diffeomorphism [24].

A (g, k)–trisection of a smooth, orientable, connected, closed 4–
manifold X is a decomposition X = X1 ∪X2 ∪X3, where

1) each Xi is a 4–dimensional 1–handlebody, \k(S1 ×B3);

2) for i 6= j, each of Xi ∩Xj is a three-dimensional handlebody, \g(S1 ×
D2); and

3) the common intersection Σ = X1 ∩X2 ∩X3 is a closed surface of
genus g.

The surface Σ is called the trisection surface, and the genus of the trisection
is said to be g = g(Σ). The trisection genus of a 4–manifold X is the smallest
value of g for which X admits a trisection of genus g, but no trisection of
smaller genus.

Note that Σ is a Heegaard surface for ∂Xi
∼= #k(S1 × S2), so 0 ≤ k ≤ g.

As in the case of Heegaard splittings, every smooth 4–manifold admits a
trisection, and any two trisections for a fixed 4–manifold are stably equiva-
lent [13].
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Trisections and spun four-manifolds 1503

A trisection diagram is a quadruple (Σ, α, β, γ) where each triple
(Σ, α, β), etc., is a Heegaard diagram for #k(S1 × S2). As before, any two
diagrams corresponding to a given splitting can be made diffeomorphic af-
ter handleslides within each collection of curves. See [13, 27] for complete
details.

2.3. Doubly-pointed diagrams

A doubly-pointed Heegaard diagram is a tuple (Σ, δ, ε, z, w), consisting of a
Heegaard diagram, together with a pair of base points, z and w, in Σ \ ν(δ ∪
ε). Suppose the underlying Heegaard diagram describes the 3–manifold M .
Then, the base points encode a knot K in M in the following way. Let υδ
and υε be arcs connecting z and w in Σ \ ν(δ) and Σ \ ν(ε), respectively.
Equivalently, υδ and υε are boundary parallel arcs contained in the 0–cells
of the respective handlebodies. The knot K is the the union of these two
(pushed-in) arcs along their common end points, z and w. The following
theorem is standard.

Theorem 2.6. Given any 3–manifold/knot pair (M,K), there is a doubly-
pointed Heegaard diagram describing (M,K).

A doubly-pointed trisection diagram is a tuple (Σ, α, β, γ, z, w) where
each sub-tuple (Σ, α, β, z, w), etc., is a doubly-pointed Heegaard diagram for
(#k(S1 × S2), U), where U is the unknot. Suppose the underlying trisection
diagram describes the 4–manifold X. Then the base points encode a knotted
sphere K in X in the following way. Let Di ⊂ ∂Xi be spanning disks for the
three unknots described by the diagram. Let K be the union of these three
disks, after the interiors of the disk have been isotoped to lie in the interiors
of the Xi.

The decomposition (X,K) = (X1, D1) ∪ (X2, D2) ∪ (X3, D3) is called a
1–bridge trisection of the pair (X,K), and K is said to be in 1–bridge position
with respect to the underlying trisection of X. The following results are
proved in [30].

Theorem 2.7. Let X be a smooth, orientable, connected, closed 4–manifold,
and let K be a knotted sphere in X. There exists a trisection of X with respect
to which K can be isotoped to lie in 1–bridge position.

Corollary 2.8. For any 4–manifold/2–knot pair (X,K), there is a doubly-
pointed trisection diagram describing (X,K).
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3. Proof of main theorems

In this section, we give the proofs for the main theorems described in the
introduction. First, we will adopt the Morse 2–function perspective to prove
that both the spin and twisted-spin of a 3–manifold admitting a genus g
Heegaard splitting admit (3g, g)–trisections.

Roughly, for a smooth, orientable, connected, closed 4–manifold X, a
map F : X → R2 is a Morse 2–function if

1) Every regular value y ∈ R2 has a neighborhood D2 such that F is
projection S ×D2 → D2 for some closed surface S.

2) The set of critical points of F is a smooth one-dimensional submanifold
whose image in R2 is a collection of immersed curves with isolated
crossings and semi-cubical cusps.

3) Every critical value y ∈ R2 has local coordinates such that F looks like
a generic homotopy of a Morse function: If y is a cusp, F looks like
the birth of a canceling pair of Morse critical points. If y is a crossing
point, F looks like two Morse critical points swapping height. If y is
not on a cusp or a crossing point, F looks like a Morse critical point
times I.

See [13] for a complete definition. See also [5] for a detailed overview of
various types of generic functions from 4–manifolds to surfaces.

We now sketch a quick, Morse 2–function proof of our first result, which
was first conceived by Alex Zupan. Our proof of Theorem 1.4, below, will
provide a second, independent proof of this result.

Theorem 1.2. Suppose that M admits a genus g Heegaard splitting. Then
each of S(M) and S∗(M) admits a (3g, g)–trisection.

Proof. Let M be a closed, connected, orientable 3–manifold, and suppose
that M admits a genus g Heegaard splitting H. Let f : M → R be a Morse
function corresponding to H, and suppose that f has isolated critical points
of non-decreasing index.

Consider the 4–manifold X̄ = M × S1, and let F̄ : X → R2 be the Morse
2–function induced fiber-wise by the Morse function f . See Figure 1(a). The
map F̄ has a single (definite) fold of both indices zero and three, as well as g
indefinite folds of both indices one and two. Note that F̄ (X̄) is an annulus.
We decorate indefinite folds with arrows that point from the higher genus
side of the fold to the lower genus side.
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Figure 1: (a) The Morse 2–function F̄ on X̄ = M × S1 induced by a Morse
function f on M with isolated critical points of non-decreasing index. (b)
The corresponding Morse 2–function F on the manifold X obtained as
surgery on the round three-handle inside X̄. (c) The trisected Morse 2–
function homotopic to F with no folds of index two.

Finally, let X denote a 4–manifold obtained from X̄ by surgering out
the round three-handle, whose core projects to the fold of index three. In
other words, cut out the B3 × S1 corresponding the the h3 × S1, where h3

is the three-handle of M , and glue in a copy of S2 ×D2. In fact, there are
two ways to do this [17]. One choice results in S(M), the other in S∗(M).
However, this distinction is not visible in the base diagrams of the Morse
2–functions, so we will simply let X denote either choice.

Let F : X → R2 denote the resulting Morse 2–function, which differs
from F̄ in that it has no (definite) fold of index three, and F (X) is a disk.
See Figure 1(b). Note that the fiber Σ over the central point of the disk is
a two-sphere. To complete the proof, we will homotope F , using standard
moves, until it has no folds of index two or greater. To do this, we will take
each fold of index two and transform it into an immersed fold of index one
containing six cusps. We can do this one index two fold at a time, and we
illustrate this sub-process in Figure 2.

Figure 2: The process (from left to right) of turning a index two fold inside
out. Arrows indicate the direction of decrease of the fiber genus.
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First, we select three points on the index two fold and drag them radially
towards and past the center point, this can be seen as a sort of a contraction
of the shaded area in Figure 2(a), which results in Figure 2(b). This is
accomplished via a R20 move followed by a R33 move. (See [5] for details.
All base diagram moves employed here are always-realizable.) Next, we turn
each of the three kinks into a pair of cusps, resulting in Figure 2(c). This
can be accomplished via three instances of the flip move, each followed by a
R22 move. Note that the genus of Σ has been increased by three. Figure 2(d)
follows via three C-moves, and Figure 2(e) follows after three R22 moves.

After the above process has been carried out on the innermost indefinite
fold of index two in Figure 1(b), the resulting six-cusped fold can be pushed
outward, past the indefinite folds of index two. To pass each such fold, we
require six instances of the C-move, followed by three R33 moves, followed by
six R22 moves. Then, the above process can be repeated for each indefinite
fold of index two, resulting in the simplified diagram shown in Figure 1(c).

Note that the fiber Σ of the central point now has genus 3g. Choose three
rays as in Figure 1(c): The preimages of these rays are genus 3g handlebod-
ies, which intersect at their common boundary, Σ. Similarly, the preimages
of the regions between the rays are diffeomorphic to \g(S1 ×B3). (Each
such region is the thickening of a three-dimensional handlebody union 2g
three-dimensional two-handles that are attached along primitive curves.)
Therefore, we have a (3g, g)–trisection of X, as desired. �

Note that the base diagram in Figure 1(c) is a simplification of the
original base diagram. Baykur and Saeki introduced the notion of a simple
Morse 2–function, which they defined to be a Morse 2–function whose base
diagram consists of disjoint, embedded circles (no cusps) and triangles (three
cusps) [5]. They showed that every 4–manifold admits a simplified Morse 2–
function, and asked whether every 4–manifold admits a simplified Morse
2–function where the genus of central fiber is minimal for that 4–manifold.
The answer to this question seems to be “Yes” for many 4–manifolds [4].
Here, we pose related questions.

Question 3.1. Does every 4–manifold admit a Morse 2–function whose
base diagram consists of a disjoint union of curves, some of which are em-
bedded circles (no cusps) and the rest of which are are immersed with six
cusps and three double points, as in Figure 2(e)? If so, does such a Morse
2–function exists where the central fiber is of minimal possible genus for the
4–manifold?
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3.1. From Heegaard diagrams to trisection diagrams

Next, we show how, given a Heegaard diagram for a 3–manifold M , one
can produce a trisection diagram for either S(M) of S∗(M). Though the
distinction between this pair of 4–manifolds was not visible from the Morse
2–function perspective, these manifolds are not, in general, diffeomorphic,
so they will necessarily be described by different trisection diagrams.

Theorem 1.4. Let (S, δ, ε) be a genus g Heegaard diagram for a closed
3–manifold M with the property that Hε is standardly embedded in S3.
Then,

1) the 4–manifold S(M) admits a trisection diagram that is obtained
from (S, δ, ε) via the local modification at each curve of ε shown in
Figure 6, and

2) the 4–manifold S∗(M) admits a trisection diagram that is obtained
from (S, δ, ε) via the local modification at each curve of ε shown in
Figure 7.

Note that the condition on Hε is equivalent to the condition that (S, δ, ε)
be drawn as in Figure 3.

Figure 3: A suitable Heegaard diagram; the ε–curves bound obvious disks
in the plane.

Proof. We’ll first discuss the the spin S(M), then modify the argument to
address the twisted-spin S∗(M).

Let M = Hδ ∪S Hε be a genus g Heegaard splitting for M . We have the
following decomposition:

S(M) = (Hδ × S1) ∪Y (S(Hε)),

where Y = S × S1. This decomposition is visible in Figure 1(b), where Y
is the preimage of a circle separating the indefinite folds of index one from
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those of index two. In the proof of Theorem 1.2 above, the Morse 2–function
was modified on S(Hε) in such a way that the central fiber became a genus
3g surface Σ. Our first task is to identify Σ inside S(Hε). Our approach will
be to work from Figure 1(b), beginning at the center, and “trisect” each
subsequent index two fold.

The space S(Hε) can be obtained from S2 ×D2 by attaching g round
one-handles in the following manner. We will parameterize D2 by (r, θ) with
r ∈ [0, 1] and θ ∈ S1 ⊂ C, and we will let ~rθ ⊂ D2 denote the unit-length
segment at angle θ. For i = 1, 2, . . . , g, let D+

i and D−i be a pair of dis-
joint disks on S2, and attach a three-dimensional one-handle hθi to S2 × ~rθ
along D±i × {(1, θ)} for each θ ∈ S1. (For each i, the union hi =

⋃
θ h

θ
i is

a 4–dimensional round one-handle.) Equivalently, we can view this handle
attachment as the identification of D+ × {(1, θ)} with D− × {(1, θ)} via a
reflection (conjugation) map. We parameterize D±i by (s, φ), where s ∈ [0, 1]
and φ ∈ S1 ⊂ C, and we let

ωθi (s, φ) = ((s, φ)× ~rθ) ∪ ((s, φ)× ~rθ).

In other words, the ωθi (s, φ) are arcs that run over hθi , connecting identified
pairs of points in D± on S2 × {(0, 0)}.

Consider the arcs ωθi given by

ωθi = ωθi (1/2, θ) = ((1/2, θ)× ~rθ) ∪ ((1/2, θ)× ~rθ).

In other words, ωθi is an arc running over hθi connecting the point with angle
θ on the circle of radius 1/2 on D+

i to the conjugate point on D−i . Note that
hθi can be regarded as a regular neighborhood of ωθi , so S(Hε) is a regular
neighborhood of the two-complex

S2 ∪

(
g⋃
i=1

⋃
θ∈S1

ωθi

)
.

Consider the three angle values θj = 2π
3 j, for j = 0, 1, 2, along with the

3g arcs ω
θj
i . Let Σ be the surface obtained by surgering the central S2 along

these 3g arcs. Note that Σ has genus 3g and is contained in the interior
of S(Hε). We now describe three compression bodies whose higher genus
boundary component coincides with Σ and whose lower genus boundary
component is a fiber of Y = S × S1, hence has genus g. Thus, we must
describe 2g compression disks for each compression body.

Let hji denote a small tubular neighborhood of ω
θj
i . We can think of hji

as a small three-dimensional one-handle inside the larger three-dimensional



i
i

“7-Meier” — 2019/1/24 — 1:18 — page 1509 — #13 i
i

i
i

i
i

Trisections and spun four-manifolds 1509

one-handle h
θj
i , as in Figure 4. Let ∆j

1,i denote the cocore of hji . Next, notice

that Σ ∩D+
i is a thrice-punctured disk. These punctures cut the circle of

radius 1/2 in D+
i into three arcs. Call these arcs aji , with the value j de-

termined by the property that aji ∩ hji = ∅. See Figure 4(a). Let ∆j
2,i be the

union of the arcs ωθi corresponding to the points in arc aji . Note that the

∆j
2,i are compression disks for Σ.

Figure 4: (a) The disk D±i on the central sphere S2 × {(0, 0)} describing the
attaching region for hθi . (b) The handle h0

i inside the hθ0i , and the portion
of Hα bounded thereby. (c) The handle hθi for some θ ∈ (2π/3, 4π/3). In
the interior, we have the arc ωθi , which lies in the α–disk ∆0

2,i. One the

boundary, we have the curve εθi and potions of the curves from δ, which
serve to parameterize the genus g surface S × θ in ∂(S(Hε)) = ∂(Hδ × S1) =
S × S1.

Let Hj denote the compression body defined by the disks {∆j
1,i,∆

j
2,i}

g
i=1.

Note that Σ is contained in the union

S2 ∪

 g⋃
i=1

2⋃
j=0

h
θj
i

 .

If we compress Σ using, say, the disks ∆0
1,i, then the resulting surface can be

made disjoint from the handles at angle 0. Slightly differently, if we compress
further using the disks ∆0

2,i, then Σ can be isotoped to lie in any single angle,

say 2π/3. It follows that the result of compressing Σ along the disks ∆0
1,i

and ∆j
2,i is the surface S × {2π/3}. Repeating this, we see that the lower

genus boundary component of Hj can be assumed to be S × {θj + 2π/3},
as desired.
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Consider the complex X = Σ ∪H0 ∪H1 ∪H2. This complex is a three-
dimensional neighborhood of the two-complex described above. It follows
that S(Hε) is obtained by thickening X.

We complete the Hj to handlebodies by attaching a copy of Hδ to the
lower genus boundary component. For example, we let Hα = H0 ∪ (Hδ ×
{2π/3}), and we obtain Hβ and Hγ from H1 and H2 similarly. We claim that
Hα ∪Hβ ∪Hγ is the spine of a trisection of S(M). A regular neighborhood
of this spine is given by S(Hε) plus thickening of the three Hδ–fibers. All
that remains is to fill in the four dimensional spans between the Hδ–fibers.
Each of these pieces is Hδ × I, which is a 4–dimensional one-handlebody. If
follows that this spine defines a (3g, g)–trisection of S(M).

Finally, we will describe a trisection diagram corresponding to this spine
by describing the curves α lying on Σ that determine the handlebody Hα.
The construction is symmetric in α, β, and γ, so the description of the
other curves will follow. Recall that we assumed that the Heegaard diagram
(S, δ, ε) was standard, as in Figure 3. Figure 4 shows how to take each handle
hi and create from it a triple of handles, hji , as in the construction of the
trisection above. For each i, two α disks are obtained. Let αg+i = ∂∆0

1,i, and

let α2g+i = ∂∆0
2,i. See Figure 5. Compressing along these 2g disks gives the

fiber S × {2π/3}.

Figure 5: The local transition from a Heegaard diagram (δ, ε) to the α–
curves of the trisection diagram (α, β, γ). The β– and γ–curves are obtained
in a symmetric way.

Figure 4(c) shows one θ–slice of the round handle hi. At each such θ–
slice, we see εθi bounding to the inside, while the curves of δθ run over the
handle as prescribed by the original diagram (Figure 3). Imagine θ = 2π/3
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here, and recall that we think of h
2π/3
i as a neighborhood of ω

2π/3
i (the arc

shown in Figure 4(c)). The disks bounded by the curve δ in Hδ × {2π/3} are
almost the remaining α–disks, but their boundary lies on the lower genus
boundary component of the compression body H0, not on Σ. However, it is a
simple matter to flow the boundaries of this disk up through the compression
body (using the vertical structure) until they lie on Σ.

Thus, for i = 1, . . . , g, αi will be determined by δi in the following way.
Outside of the D±i , αi coincides with δi. Inside, the arcs run from ∂D±i to
the handle h1

i . In fact, this choice is well-defined, thanks to the presence of
the curves αg+i and α2g+i, as in Figure 5. Let αδ = {α1, . . . , αg}.

Figure 6: The local modification used to transform a Heegaard diagram
(δ, ε) for a 3–manifold M into a trisection diagram (α, β, γ) for the spun
manifold S∗(M).

The sum total of this local modification is shown in Figure 6. Note that
the curves αδ, βδ, and γδ coincide after compressions of the other types of
curves. This reflects the fact that these curves come from Hδ × S1. This
completes the proof of part (1).

To pass from the case of S(M) to that of S∗(M), we will perform a
Gluck twist on the central S2, cutting out a S2 ×D2 neighborhood and
re-gluing with a full twist. Importantly, we assume that the twisting takes
place in the θ–interval [0, 2π/3]. Under this assumption, we see that Σ is
preserved after the Gluck twist, as are Hα and Hβ. Further, the γδ and
γg+i are also preserved. The only change occurs to the curves γ2g+i; the
Gluck twist is concentrated above the arc a2

i . The disks γ2g+1 sitting above
these arcs get twisted around the terminal locus of the arc. In terms of the
diagram, this gluing amounts to performing a Dehn twist of the γ2g+i about
the corresponding βg+i. Thus, Figure 6 changes to Figure 7. This completes
the proof of part (2). �

Note that within the above proof, we have also given a second proof of
Theorem 1.2 that is independent of the original Morse 2–function proof.
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Figure 7: The local modification used to transform a Heegaard diagram
(δ, ε) for a 3–manifold M into a trisection diagram (α, β, γ) for the twist-
spun manifold S∗(M).

3.2. Doubly-pointed diagrams

Let M be a closed, connected, orientable 3–manifold, and let K be a knot
in M . Let M = H1 ∪S H2 be a Heegaard splitting for M . Assume that S
has large enough genus (stabilizing if necessary) so that K can be put in
1–bridge position with respect to S. This means that υi = K ∩Hi is a prop-
erly embedded, boundary-parallel arc for i = 1, 2. Let {z, w} = K ∩ S, and
assume that υ1 is contained in the zero-handle h0, while υ2 is contained in
the three-handle h3.

Theorem 1.5. Let (S, δ, ε) be a genus g Heegaard diagram for a closed 3–
manifold M with the property that Hε is standardly embedded in S3. Let K
be a knot in M such that (S, δ, ε, z, w) is a doubly-pointed Heegaard diagram
for the pair (M,K). Then the pairs Sn(M,K) admit doubly-pointed trisec-
tion diagrams that are obtained from (S, δ, ε, z, w) via a local modification
at each curve of ε.

Proof. By the last part of the proof of Theorem 1.4, it is clear that gluing
using τn corresponds to Dehn twisting γ2g+i n times about βg+i. Thus,
the underlying trisection diagram (Σ, α, β, γ) results from the same local
modification as in Figure 7, except with the added Dehn twists.

It remains to show that Sn(K) is in 1–bridge position with respect to
this trisection, so we verify that Sn(K) intersects the three handlebodies in
boundary parallel arcs and intersects the 4–dimensional pieces in boundary
parallel disks.

The sphere Sn(K) can be decomposed as

D2 × {N} ∪ (υ1 × S1) ∪D2 × {S}.
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We now consider how the various parts of this decomposition intersect the
trisection of Sn(M).

Consider υ1 × S1 ⊂ Hδ × S1. This annulus intersects each of fibers in an
arc. For example, υ1 × {2π/3} is an arc in Hδ × {2π/3} with endpoints in
the lower genus boundary component, S × {2π/3}, of the compression body
H0. The endpoints of this arc are {z, w} × {2π/3}. Since υ1 is boundary
parallel (in Hδ ⊂M) into S, we have that υ1 × {2π/3} is boundary parallel
(in Hδ × {2π/3} ⊂ Hα) into S × {2π/3} and that the disk υ1 × [0, 2π/3] is
boundary parallel (in Hδ × [0, 2π/3]) into S × [0, 2π/3].

Let us focus now on υα = Sn(K) ∩Hα, recalling that

Hα = Hδ × {2π/3} ∪S×{2π/3} H0.

We have already seen that Sn(K) ∩ (Hδ × {2π/3}) = υ1 × {2π/3} is bound-
ary parallel into S × {2π/3}. Next, we note that Sn(K) ∩H0 is simply two
arcs. One arc runs from {z} × {2π/3} to the north pole N of the sphere
S2 × {0} that was the core of the original filling in the twist-spinning oper-
ation. Of course, this sphere was stabilized to produce the trisection surface
Σ, but these modification were performed away from the poles. Thus, this
arc is vertical in the compression body H0. Similarly, the second arc is ver-
tical and connects {w} × {2π/3} to the south pole S of Σ. Since Σ and
S × {2π/3} cobound the compression body H0 and υα is a flat arc in the
lower genus side together with two vertical arcs, it follows that υα can be
isotoped to lie in Σ, as desired. The same goes for the arcs υβ and υγ .

Next, let us focus on the 4–dimensional region X3 between Hα and Hγ .
Recall that Hγ = H2 ∪Hδ × {0}, so we can write

X3 = (Hδ × [0, 2π/3]) ∪S×[0,2π/3]

(
(H0 ∪Σ H

2)× I
)
.

The second piece of the union comes from the fact that Sn(Hε) was seen
to be a thickening of the complex Σ ∪H0 ∪H1 ∪H2. Now, we note that
D3 = Sn(K) ∩X3 is simply the disk υ1 × [0, 2π/3], which we have already
observed is boundary parallel into S × [0, 2π/3], together with some vertical
pieces in the thickening (H0 ∪Σ H

2)× I.
Since ∂D3 = υα ∪{N,S} υγ , once we have pushed most of D3 into S ×

[0, 2π/3], we can use the product structure of (H0 ∪Σ H
2)× I and the bound-

arly parallelism of υα and υγ to push D3 into H0 ∪Σ H
2 ⊂ Hα ∪Σ Hγ , as

desired. The same goes for the other 4–dimensional pieces (X2,D2) and
(X1,D1).

Thus, Sn(K) is in 1–bridge position with respect to the trisection de-
scribed in the proof of Theorem 1.4. Note that the local modification require
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here is slightly different: We must twist the γ2g+i around the βg+i a total
of n times. However, once we have done that, we have a doubly-pointed
diagram for Sn(M,K); since the double-point {z, w} is distant from the
εi, it is not affected by the modification, and it becomes the double-point
{N,S} for the doubly-pointed trisection diagram. This completes the proof.
(In order to see that {N,S} = {z, w} in the appropriate manner, we sim-
ply treat the original surface S as the boundary of the result of attaching
handles to S2 × {0} in the standard way. In other words, if we think of the
original double-point {z, w} as the “poles” of S, the the new double-point
{z, w} = {N,S} for Σ is simply the “poles” of Σ coming from the poles of
S1 × {0}.) �

4. Corollaries, examples, and questions

Let us return to the question of classifying manifolds with low trisection
genus. The following facts are easy to verify.

1) The only manifold with trisection genus zero is S4.

2) The only manifolds with trisection genus one are CP2, CP2, and S1 ×
S3.

Moreover, S2 × S2 is the only irreducible 4–manifold with trisection genus
two. We also have the following.

Proposition 4.1. Suppose X admits a (g, k)–trisection. Then,

1) χ(X) = 2 + g − 3k.

2) π1(X) has a presentation with k generators.

3) |H1(X;Q)| ≤ k and |H2(X;Q)| ≤ g − k.

Proof. Such an X admits a handle decomposition with a single 0–handle, k
1–handles, g − k 2–handles, k 3–handles, and a single 4–handle [13, 27]. �

We can now prove Corollary 1.3. Note that (g, k)–trisections are standard
if k ≥ g − 1 [27].

Corollary 1.3. For every integer g ≥ 3 and every 1 ≤ k ≤ g − 2, there exist
infinitely many distinct 4–manifolds admitting minimal (g, k)–trisections.

Proof. Let l ≥ 1, and letM be a three-manifold with Heegaard genus g(M) =
l and rk(π1(M)) = l. (For example, choose M to be a connected sum of l lens
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spaces.) Let X = S(M)#(#mCP2). By Theorem 1.2, and since CP2 admits
a (1, 0)–trisection, X admits a (3l +m, l)–trisection. By Proposition 4.1(2),
since π1(X) = π1(M), X cannot admit a (g′, k′)–trisection with k′ < l. By
Proposition 4.1(1), X cannot admit a (g′, l)–trisection with g′ < 3l +m. In
this way, we can produce infinitely many distinct X (distinguished by their
fundamental groups) that admit minimal (3l +m, l)–trisections for l ≥ 1
and m ≥ 0. This proves the corollary in the case that g ≥ 3k.

Next, let X ′ = S(M)#(#nS1 × S3). This time, since S1 × S3 admits a
(1, 1)–trisection, X ′ admits a (3l + n, l + n)–trisection. By Grushko’s The-
orem [18, 33], we have rk(π1(X ′)) = l +m, so this trisection is minimal,
as above. Again, infinitely many such X ′ can be produced and seen to be
distinct whenever l ≥ 1 and n ≥ 0. This proves the lemma in the case that
g ≤ 3k. �

Conspicuously absent from this result is the case of k = 0.

Question 4.2. For some g ≥ 3, are there infinitely many 4–manifolds ad-
mitting (minimal) (g, 0)–trisections?

Since the classification of 4–manifolds with trisection genus three is the
first open case, we next turn our attention to the case of spun lens spaces.

4.1. Spinning lens spaces

Figure 8 shows how to obtain a trisection diagram for S5. The process is
general. Start with the genus one Heegaard diagram (δ, ε) for L(p, q) where ε
is drawn as the boundary of the disk filling the center hole, and the curve δ is
a (p, q)–curve. After performing the local modification, we see the character-
istic 6–tuple of curves in the center, encircled by three copies of something
similar to a (p, q)–curve. In fact, these three more complicated outer curves
will become (p, q)–curves (and will coincide) after the compression of any
pair of same colored curve in the center. Let T (p, q) denote the trisection
obtained in this way.

By Corollary 2.4, we know that S(L(p, q)) and S∗(L(p, q)) are diffeo-
morphic to Sp, independent of q and q′. This raises the following question.

Question 4.3. Are T (p, q) and T (p, q′) diffeomorphic as trisections for
distinct values of q?

For completeness, we describe how to obtain diagrams for the S ′p. Al-
though, these diagrams depend on understanding the Gluck twist and surgery
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Figure 8: A genus one Heegaard diagram for the lens space L(5, 2) is
transformed into a genus three trisection diagram for the spun lens space
S5
∼= S(L(5, 2)).

operations from a trisection diagram perspective, the details of which are
presented in [16]. The relevant sequence of diagrams is shown in Figure 9.
Begin with a diagram for Sp. (In this example, p = 4 and the diagram comes
from S(L(4, 1)).) We place points in the two central hexagons (one on the top
of the surface and one on the bottom). Colored arcs are given to show that
the points can be connected in the complement of curves of each color. The
fact that the arcs can be slid to coincide (paying attention to the relevant
color) ensures that this is a doubly-pointed Heegaard triple. Let K denote
the 2–knot in Sp encoded thusly. We surger the surface along the dots, and
extend the colored arcs to curves across the new annulus. The resulting dia-
gram describes the result of surgery on K. An easy exercise shows that this
diagram destabilizes to give the genus one diagram for S1 × S3. (This proves
that we identified the correct 2–knot.) Finally, the third diagram describes
the result of performing a Gluck twist on K in Sp, which, by definition, gives
S ′p. Details justifying these diagrammatic changes appear in [16]. The inter-
ested reader should compare Figure 9 with recent work of Dale Koenig [26],
where trisections of 3–manifold bundles over S1 are studied.

Remark 4.4. The right diagram in Figure 9 is obtained from the left one
by a Dehn twist of one γ–curve about a β–curve. If we had twisted the other
γ–curve about the other β–curve, we would have a diagram for S∗(L(p, q)),
as described by Theorem 1.4.

Baykur and Saeki have independently identified the manifolds in P as
admitting simplified genus three trisections [4, 5]. The proof of Theorem 1.2
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Figure 9: (Left) A doubly-pointed trisection diagram encoding the relevant
2–knot in Sp. (Middle) The trisection diagram corresponding to the result
of performing surgery on this 2–knot in Sp. An easy exercise shows that
this diagram destabilizes to give the standard diagram for S1 × S3. (Right)
The diagram corresponding to the result of performing a Gluck twist on this
2–knot in Sp; i.e., the sibling manifold S ′p. (Here, p = 4.)

gives a different type of “simplified” trisection for these spaces. (See Ques-
tion 3.1 above.) This leads to the the following questions.

Questions 4.5.

1) If X admits a simplified genus three trisection (in either sense), is
X ∈ P?

2) If X admits a genus three trisection, does X admit a simplified genus
three trisection?

4.2. Spinning homology spheres

Let Σ(p, q, r) denote the homology sphere that is a Seifert fibered space over
the base orbifold S2(p, q, r). Such spaces are known as Brieskhorn spheres.
When pq + qr + rp = ±1, we can consider Σ(p, q, r) as the branched double
cover of S3 along the pretzel knot P (p, q, r). In this case, it is particularly
easy to give a genus two Heegaard splitting for Σ(p, q, r) via the 3–bridge
splitting of P (p, q, r). Such a diagram is shown on the left in Figure 10 in
the case of Σ(−2, 3, 5), which is the Poincaré homology sphere.

Figure 10 shows how to obtain a trisection diagram for S(Σ(p, q, r))
when pq + qr + rp = ±1. As far as we know, these are the simplest possible
trisection diagrams for homology 4–spheres.
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Figure 10: (Left) A Heegaard splitting for the Poincaré homology sphere
Σ(−2, 3, 5). (Right) A trisection diagram for S(Σ(−2, 3, 5)). Note that two
of the γ–curves (green) are not shown, but can be taken to be the same as
the two complicated α–curves (red/pink).

4.3. Spinning a Boileau-Zieschang space

In 1984, Boileau and Zieschang exhibited a family of Seifert fibered spaces
whose members have Heegaard genus three but fundamental groups of rank
two [7], showing that these two complexity measures of a three-manifold
do not always coincide. Proposition 4.1 states that if X admits a (g, k)–
trisection, then rk(π1(X)) < k, so we pose the following, analogous question
in dimension four.

Question 4.6. Does there exist a 4–manifold X such that every (g, k)–
trisection of X satisfies k > rk(π1(X))?

The answer to this question is almost certainly affirmative; however,
there are presently no tools capable of bounding the value of k away from
rk(π1(X)). A logical first step towards the resolution of this question would
be to consider the spins of the Boileau-Zieschang manifolds, the simplest of
which is the Seifert fibered space Y = S2(−1/2,−1/2, 1/2,−1/3) and can
be described as the double cover of S3 branched along the pretzel knot
P (−2,−2, 2,−3). Figure 11 gives a genus three (minimal) Heegaard diagram
for Y and the corresponding (9, 3)–trisection diagram for the spin S(Y ),
which may or may not be minimal. We pose the following question with this
example in mind.
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Figure 11: (Left) A Heegaard splitting for the Boileau-Zieschang Seifert
fibered space Y = S2(1/2,−1/2, 1/2,−1/3). (Right) A trisection diagram
for its spin S(Y ). Note that three of the γ–curves (green) are not shown, but
can be taken to be the same as the three complicated α–curves (red/pink).

Questions 4.7. If H is a irreducible Heegaard splitting, is S(H) (as con-
structed above) necessarily irreducible?

Note that it is an easy consequence of the construction above and Haken’s
Lemma [20] that S(H) will be reducible whenever H is.

4.4. Spinning manifold pairs

We conclude by presenting two diagrams of spun pairs, one coming from a
knot in S3 and the other coming from a knot in a lens space. First, consider
the doubly-pointed diagram for the torus knot T (3, 4) shown on the left in
Figure 12. One interesting property about torus knots is that the bridge
number of T (p, q) is equal to min(p, q). This was used in [29] to show that
the spins S(T (p, q)) have bridge number 3 min(p, q) + 1. On the other hand,
every torus knot can be isotoped to lie on the genus one Heegaard splitting
of S3, and, therefore, T (p, q) admits a doubly-pointed genus one Heegaard
diagram. It follows, as is shown on the right side of Figure 12, that S(T (p, q))
admits a doubly-pointed genus three trisection diagram.

Next, let Y = L(7, 3), and let K be the knot described by the doubly-
pointed Heegaard diagram on the left side of Figure 13. The knot K is an
example of a knot in Y that has a surgery to S3. (See [22] for an overview
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Figure 12: (Left) A doubly-pointed Heegaard splitting for the torus knot
T = T (3, 4). (Right) A doubly-pointed trisection diagram for the pair
S(S3, T ). Note that the third β–curve (blue) is not shown, but can be as-
sumed to coincide with the complicated γ-curve (green).

of these so-called simple knots.) Figure 13 shows the corresponding doubly-
pointed trisection diagram for S(Y,K).

Figure 13: (Left) A doubly-pointed Heegaard splitting for a simple knot
K in L(7, 3). (Right) A doubly-pointed trisection diagram for the pair
S(L(7, 3),K). Note that the third β–curve (blue) is not shown, but can
be assumed to coincide with the complicated γ-curve (green).
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Sem. Univ. Hamburg 4 (1925), no. 1, 174–177.

[3] R. I. Baykur and S. Kamada, Classification of broken Lefschetz fibra-
tions with small fiber genera, J. Math. Soc. Japan 67 (2015), no. 3,
877–901.
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