Tangent cones of Hermitian Yang–Mills connections with isolated singularities

ADAM JACOB, HENRIQUE SÁ EARP, AND THOMAS WALPUSKI

We give a simple direct proof of uniqueness of tangent cones for singular projectively Hermitian Yang–Mills connections on reflexive sheaves at isolated singularities modelled on a sum of μ –stable holomorphic bundles over \mathbf{P}^{n-1} .

1. Introduction

A projectively Hermitian Yang–Mills $(PHYM)$ connection A over a Kähler manifold X is a unitary connection A on a Hermitian vector bundle (E, H) over X satisfying

(1.1)
$$
F_A^{0,2} = 0 \text{ and } i\Lambda F_A - \frac{\text{tr}(i\Lambda F_A)}{\text{rk } E} \cdot \text{id}_E = 0.
$$

Since $F_A^{0,2} = 0, \mathcal{E} \coloneqq (E, \bar{\partial}_A)$ is a holomorphic vector bundle, and A is the Chern connection of H . A Hermitian metric H on a holomorphic vector bundle is called **PHYM** if its Chern connection A_H is **PHYM**. The celebrated Donaldson–Uhlenbeck–Yau Theorem [\[3,](#page-15-0) [4,](#page-15-1) [11\]](#page-16-1) asserts that a holomorphic vector bundle $\mathcal E$ on a compact Kähler manifold admits a PHYM metric if and only if it is μ –polystable; moreover, any two PHYM metrics are related by an automorphism of $\mathcal E$ and by multiplication with a conformal factor. If H is a PHYM metric, then the connection A° on $PU(E, H)$, the principal $PU(r)$ –bundle associated with (E, H) , induced by A_H is **Hermitian Yang–Mills (HYM)**, that is, it satisfies $F_{A^{\circ}}^{0,2} = 0$ and $i\Lambda F_{A^{\circ}} = 0$; it depends only on the conformal class of H . Conversely, any HYM connection A° on $PU(E, H)$ can be lifted to a PHYM connection A; any two choices of lifts lead to isomorphic holomorphic vector bundles $\mathscr E$ and conformal metrics H .

An admissible PHYM connection is a PHYM connection A on a Hermitian vector bundle (E, H) over $X \setminus \text{sing}(A)$ with $\text{sing}(A)$ a closed subset with

locally finite $(2n - 4)$ –dimensional Hausdorff measure and $F_A \in L^2_{loc}(X)$ [.](#page-1-0)¹ Bando [\[1\]](#page-15-2) proved that if A is an admissible PHYM connection, then (E, ∂_A) extends to X as a reflexive sheaf $\mathscr E$ with $\operatorname{sing}(\mathscr E) \subset \operatorname{sing}(A)$. Bando and Siu [\[2\]](#page-15-3) proved that a reflexive sheaf on a compact Kähler manifold admits an admissible PHYM metric if and only if it is μ -polystable.

The technique used by Bando and Siu does not yield any information on the behaviour of the admissible $PHYM$ connection A_H near the singularities of the reflexive sheaf \mathscr{E} — not even at isolated singularities. The simplest example of a reflexive sheaf on \mathbb{C}^n with an isolated singularity at 0 is $i_*\sigma^*\mathscr{F}$ with $\mathcal F$ a holomorphic vector bundle over $\mathbf P^{n-1}$; cf. Hartshorne [\[6,](#page-15-4) Example 1.9.1]. Here we use the obvious maps summarised in the following diagram:

The main result of this article gives a description of PHYM connections near singularities modelled on $i_*\sigma^*\mathcal{F}$ with $\mathcal F$ a sum of μ –stable holomorphic vector bundles.

Theorem 1.2. Let $\omega = \frac{1}{2}$ $\frac{1}{2i}\overline{\partial}\partial|z|^2 + O(|z|^2)$ be a Kähler form on $\overline{B}_R(0) \subset$ \mathbb{C}^n . Let A be an admissible $\mathbf{P}HYM$ connection on a Hermitian vector bundle (E, H) over $B_R(0) \setminus \{0\}$ with $\text{sing}(A) = \{0\}$ and $(E, \bar{\partial}_A) \cong \sigma^* \mathcal{F}$ for some holomorphic vector bundle $\mathcal F$ over $\mathbf P^{n-1}$. Denote by F the complex vector bundle underlying $\mathcal{F}.$

If $\mathcal F$ is sum of μ -stable holomorphic vector bundles, then there exist a Hermitian metric K on F, a connection A_* on $\sigma^*(F,K)$ which is the pullback of a connection on $\rho^*(F,K)$, and an isometry $(E,H) \cong \sigma^*(F,K)$ such that with respect to this isometry we have

$$
|z|^{k+1} |\nabla_{A_*}^k (A^\circ - A_*^\circ)| \le C_k (-\log|z|)^{-1/2} \quad \text{for each } k \ge 0;
$$

moreover, if $\mathcal F$ is μ -stable, then

|
|
|

$$
|z|^{k+1} |\nabla_{A_*}^k (A^\circ - A_*^\circ)| \le D_k |z|^\alpha \quad \text{for each } k \ge 0.
$$

It should be pointed out that our notion of admissible PHYM connection follows Bando and Siu [\[2\]](#page-15-3) and not Tian [\[10\]](#page-16-2). The notion of admissible Yang–Mills connection introduced by Tian is stronger: it assumes that the Hermitian vector bundle extends to all of X.

The constants $C_k, D_k, \alpha > 0$ depend on

$$
\omega
$$
, \mathcal{F} , $A|_{B_R(0) \setminus B_{R/2}(0)}$, and $||F_A||_{L^2(B_R(0))}$.

Remark 1.3. Using a gauge theoretic Lojasiewicz–Simon gradient inequality, Yang [\[12,](#page-16-3) Theorem 1] proved that the tangent cone to a stationary Yang–Mills connection — in particular, a $PU(r)$ HYM connection — with an isolated singularity at x is unique provided

$$
|\mathcal{F}_A| \lesssim d(x,\cdot)^{-2}.
$$

In our situation, such a curvature bound can be obtained from [Theorem 1.2;](#page-1-1) our proof of this result, however, proceeds more directly — without making use of Yang's theorem.

The hypothesis that $\mathcal F$ be a sum of μ –stable holomorphic vector bundles is optimal. This is a consequence of the following observation, which will be proved in [Section 6.](#page-13-0)

Proposition 1.4. Let (F, K) be a Hermitian vector bundle over \mathbf{P}^{n-1} . If B is a unitary connection on $\rho^*(F,K)$ such that $A_* \coloneqq \pi^*B$ is HYM with respect to $\omega_0 \coloneqq \frac{1}{2i}$ $\frac{1}{2i}\overline{\partial}\partial|z|^2$, then there is a $k \in \mathbb{N}$ and, for each $j \in \{1, \ldots, k\}$, $\mu_j \in \mathbf{R}$, a Hermitian vector bundle (F_j, K_j) on \mathbf{P}^{n-1} , and an irreducible unitary connection B_j on F_j satisfying

$$
\mathbf{F}_{B_j}^{0,2} = 0 \quad and \quad i\Lambda \mathbf{F}_{B_j} = (2n-2)\pi \mu_j \cdot \mathrm{id}_{F_j}
$$

such that

$$
F = \bigoplus_{j=1}^{k} F_j \quad and \quad B = \bigoplus_{j=1}^{k} \rho^* B_j + i\mu_j \operatorname{id}_{\rho^* F_j} \cdot \theta.
$$

H[e](#page-2-0)re θ denotes the standard contact structure² on S^{2n-1} . In particular,

$$
\mathscr{E} = (\sigma^*F, \bar{\partial}_{A_*}) \cong \bigoplus_{j=1}^k \sigma^* \mathscr{F}_j
$$

with $\mathcal{F}_j = (F_j, \bar{\partial}_{B_j}) \mu$ -stable. ₂

²With respect to standard coordinates on \mathbb{C}^n , the standard contact structure θ on S^{2n-1} is such that $\pi^*\theta = \sum_{j=1}^n (\bar{z}_j \mathrm{d}z_j - z_j \mathrm{d}\bar{z}_j)/2i|z|^2$.

To conclude the introduction we discuss two concrete examples in which [Theorem 1.2](#page-1-1) can be applied.

Example 1.5 (Okonek et al. [\[8,](#page-15-5) Example 1.1.13]). It follows from the Euler sequence that $H^0(\mathcal{T}_{\mathbf{P}^3}(-1)) \cong \mathbf{C}^4$. Denote by $s_v \in H^0(\mathcal{T}_{\mathbf{P}^3}(-1))$ the section corresponding to $v \in \mathbb{C}^{4}$. If $v \neq 0$, then the rank two sheaf $\mathscr{E} = \mathscr{E}_v$ defined by

$$
0 \to \mathscr{O}_{\mathbf{P}^3} \xrightarrow{s_v} \mathscr{T}_{\mathbf{P}^3}(-1) \to \mathscr{E}_v \to 0
$$

is reflexive and $\text{sing}(\mathscr{E}) = \{ [v] \}.$

 $\mathscr E$ is μ -stable. To see this, because $\mu(\mathscr E)=1/2$, it suffices to show that

$$
\operatorname{Hom}(\mathcal{O}_{\mathbf{P}^3}(k), \mathcal{E}) = H^0(\mathcal{E}(-k)) = 0 \quad \text{for each } k \ge 1.
$$

However, by inspection of the Euler sequence, $H^0(\mathscr{E}(-k)) \cong H^0(\mathscr{T}_{\mathbf{P}^3}(-k-1))$ 1)) = 0. It follows that $\mathscr E$ admits a PHYM metric H with $F_H \in L^2$ and a unique singular point at $[v] \in \mathbf{P}^3$. To see that [Theorem 1.2](#page-1-1) applies, pick a standard affine neighborhood $U \cong \mathbb{C}^3$ in which [v] corresponds to 0. In U, the Euler sequence becomes

$$
0 \to \mathcal{O}_{\mathbf{C}^3} \xrightarrow{(1,z_1,z_2,z_3)} \mathcal{O}_{\mathbf{C}^3}^{\oplus 4} \to \mathcal{T}_{\mathbf{P}^3}(-1)|_U \to 0,
$$

and $s_v = [(1, 0, 0, 0)]$; hence,

$$
0 \to \mathcal{O}_{\mathbf{C}^3} \xrightarrow{(z_1, z_2, z_3)} \mathcal{O}_{\mathbf{C}^3}^{\oplus 3} \to \mathcal{E}_v|_U \to 0.
$$

On $\mathbb{C}^3 \setminus \{0\}$, this is the pullback of the Euler sequence on \mathbb{P}^2 ; therefore, $\mathscr{E}_v|_U \cong i_*\sigma^*\mathscr{T}_{\mathbf{P}^2}.$

Example 1.6. For $t \in \mathbb{C}$, define $f_t: \mathcal{O}_{\mathbf{P}^3}(-2)^{\oplus 2} \to \mathcal{O}_{\mathbf{P}^3}(-1)^{\oplus 5}$ by

$$
f_t := \begin{pmatrix} z_0 & 0 \\ z_1 & z_0 \\ z_2 & z_1 \\ t \cdot z_3 & z_2 \\ 0 & z_3 \end{pmatrix},
$$

and denote by \mathscr{E}_t the cokernel of f_t , i.e.,

(1.7)
$$
0 \to \mathcal{O}_{\mathbf{P}^3}(-2)^{\oplus 2} \xrightarrow{f_t} \mathcal{O}_{\mathbf{P}^3}(-1)^{\oplus 5} \to \mathcal{E}_t \to 0.
$$

If $t \neq 0$, then \mathscr{E}_t is locally free; \mathscr{E}_0 is reflexive with $\text{sing}(\mathscr{E}_0) = \{ [0 : 0 : 0 :$ 1]. The proof of this is analogous to that of the reflexivity of \mathscr{E}_v from [Example 1.5](#page-3-0) given in [\[8,](#page-15-5) Example 1.1.13].

For each t , $H^0(\mathscr{E}_t) = H^0(\mathscr{E}_t^*(-1)) = 0$; hence, \mathscr{E}_t is μ -stable according to the criterion of Okonek et al. [\[8,](#page-15-5) Remark 1.2.6(b)]. The former vanishing is obvious since $H^0(\mathcal{O}_{\mathbf{P}^3}(-1)) = H^1(\mathcal{O}_{\mathbf{P}^3}(-2)) = 0$. The latter follows by dualising [\(1.7\),](#page-3-1) twisting by $\mathcal{O}_{\mathbf{P}^3}(-1)$, and observing that the induced map $H^0(f_0^*)\colon H^0(\mathcal{O}_{\mathbf{P}^3})^{\oplus 5} \to H^0(\mathcal{O}_{\mathbf{P}^3}(1))^{\oplus 2}$, which is given by

$$
\begin{pmatrix} z_0 & z_1 & z_2 & t \cdot z_3 & 0 \ 0 & z_0 & z_1 & z_2 & z_3 \end{pmatrix},
$$

is injective.

In a standard affine neighborhood $U \cong {\bf C}^3$ of $[0:0:0:1],$ we have $\mathscr{E}_0|_U \cong \emptyset$ $i_*\sigma^*(\mathcal{T}_{\mathbf{P}^2}\oplus \mathcal{O}_{\mathbf{P}^2}(1)).$ To see this, note that the cokernel of the map $g\colon\mathcal{O}_{\mathbf{P}^2}^{\oplus 2}\to$ $\mathcal{O}_{\mathbf{P}^2}(1)^{\oplus 4} \oplus \mathcal{O}_{\mathbf{P}^2}$ defined by

$$
g := \begin{pmatrix} z_0 & 0 \\ z_1 & z_0 \\ z_2 & z_1 \\ 0 & z_2 \\ 0 & 1 \end{pmatrix}
$$

is $\mathcal{T}_{\mathbf{P}^2} \oplus \mathcal{O}_{\mathbf{P}^2}(1)$.

Conventions and notation. Set $B_r := B_r(0)$ and $\dot{B}_r := B_r(0) \setminus \{0\}$. We denote by $c > 0$ a generic constant, which depends only on $\mathscr{F}, \omega, s|_{B_1 \setminus B_1/2}$, H_{∞} , and $\|\mathbf{F}_{H}\|_{L^{2}(B_{R}(0))}$ (which will be introduced in the next section). Its value might change from one occurrence to the next. Should c depend on further data we indicate this by a subscript. We write $x \lesssim y$ for $x \le cy$. The expression $O(x)$ denotes a quantity y with $|y| \lesssim x$. Since reflexive sheaves are locally free away from a closed subset of complex codimension three, without loss of generality, we will assume throughout that $n \geq 3$.

2. Reduction to the metric setting

In the situation of [Theorem 1.2,](#page-1-1) the Hermitian metric H on $\mathscr E$ corresponds to a PHYM metric on $\sigma^* \mathscr{F}$ via the isomorphism $(E, \bar{\partial}_A) \cong \sigma^* \mathscr{F}$. By slight abuse of notation, we will denote this metric by H as well.

Denote by $\mathcal{F}_1, \ldots, \mathcal{F}_k$ the μ -stable summands of \mathcal{F} . Denote by K_j the **PHYM** metric on \mathcal{F}_j with

$$
i\Lambda_{\omega_{FS}}\mathcal{F}_{K_j}=\lambda_j\cdot\text{id}_{F_j}\coloneqq\frac{2\pi}{(n-2)!\text{vol}(\mathbf{P}^{n-1})}\mu_j\cdot\text{id}_{F_j}=(2n-2)\pi\mu_j\cdot\text{id}_{F_j}
$$

with ω_{FS} denoting the integral Fubini study form and for $\mu_j := \mu(\mathcal{F}_j)$. The Kähler form ω_0 associated with the standard Kähler metric on \mathbb{C}^n can be written as

(2.1)
$$
\omega_0 = \frac{1}{2i} \bar{\partial} \partial |z|^2 = \pi r^2 \sigma^* \omega_{FS} + r \mathrm{d} r \wedge \pi^* \theta
$$

with θ as in [Proposition 1.4.](#page-2-1) Therefore, we have

$$
i\Lambda_{\omega_0} \mathbf{F}_{\sigma^* K_j} = (2n-2)\mu_j r^{-2} \cdot \mathrm{id}_{\sigma^* F_j},
$$

and $H_{\diamond,j} \coloneqq r^{2\mu_j} \cdot \sigma^* K_j$ satisfies

$$
i\Lambda_{\omega_0} F_{H_{\diamond,j}} = i\Lambda_{\omega_0} F_{\sigma^* K_j} + i\Lambda_{\omega_0} \bar{\partial} \partial \log r^{2\mu_j} \cdot id_{\sigma^* F_j}
$$

= $i\Lambda_{\omega_0} F_{\sigma^* K_j} + \frac{1}{2} \Delta \log r^{2\mu_j} \cdot id_{\sigma^* F_j} = 0.$

Denote by $A_{\diamond,j}$ the Chern connection associated with $H_{\diamond,j}$ and by B_j the Chern connection associated with K_j . The isometry r^{μ_j} : $(\sigma^* F_j, H_{\diamond,j}) \to$ $\sigma^*(F_j, K_j)$ transforms $A_{\diamond, j}$ into

$$
A_{*,j} \coloneqq (r^{\mu_j})_* A_{\diamond,j} = \sigma^* B_j + i\mu_j \operatorname{id}_{\sigma^* F_j} \cdot \pi^* \theta.
$$

In particular,

$$
A_* \coloneqq \bigoplus_{j=1}^k A_{*,j}
$$

is the pullback of a connection B on S^{2n-1} ; moreover, A_* is unitary with respect to

$$
H_* \coloneqq \bigoplus_{j=1}^k \sigma^* K_j.
$$

Proposition 2.2. Assume the above situation. Set $H_{\diamond} := \bigoplus_{j=1}^{k} H_{\diamond,j}$ and fix $R > 0$. We have

(2.3)
$$
\left\| |z|^{2+\ell} \nabla_{H_{\diamond}}^{\ell} F_{H_{\diamond}} \right\|_{L^{\infty}(B_R)} < \infty \quad \text{for each } \ell \geq 0.
$$

Moreover, if $\mathcal F$ is μ -stable (that is $k = 1$), then

(2.4)
$$
\int_{\partial B_r} |s|^2 \lesssim r^2 \int_{\partial B_r} |\nabla_{H_\circ} s|^2
$$

for all $r \in (0, R]$ and $s \in C^{\infty}(\partial B_r, i\mathfrak{su}(\sigma^*F, H_{\infty}))$.

Proof. Using the isometry $g := \bigoplus_{j=1}^k r^{\mu_j}$ both assertions can be translated to corresponding statements for A_{*} . The first assertion then follows since A_{*} is the pullback of a connection B on S^{2n-1} . If $k = 1$, then

$$
\nabla_B\colon C^\infty(S^{2n-1},i\mathfrak{su}(\rho^*F,K_1))\to \Omega^1(S^{2n-1},i\mathfrak{su}(\rho^*F,K_1))
$$

agrees with $\nabla_{\rho^*B_1}$ because $i\mu_1 \text{id}_{\sigma^*F_1}$ is central. Therefore, any element of $\ker \nabla_B = \ker \nabla_{\rho^*B_1}$ must be invariant under the S^1 -action and thus be the pullback of an element of ker ∇_{B_1} . The latter vanishes because \mathcal{F}_1 is μ stable; hence, simple. This implies the second assertion.

In the situation of [Theorem 1.2,](#page-1-1) after a conformal change, which does not affect A° , we can assume that det $H = \det H_{\circ}$. Setting

$$
s := \log(H_{\diamond}^{-1}H) \in C^{\infty}(\dot{B}_r, i\mathfrak{su}(\sigma^*F, H_{\diamond}))^3
$$

and $\Upsilon(s) := \frac{e^{ad_s} - 1}{ad_s},$

we have

²

$$
e_*^{s/2}H = H_\diamond \quad \text{and} \quad e_*^{s/2}A = A_\diamond + a
$$

with
$$
a := \frac{1}{2}\Upsilon(-s/2)\partial_{A_\diamond} s - \frac{1}{2}\Upsilon(s/2)\overline{\partial}_{A_\diamond} s;
$$

³If H, K are two Hermitian inner products on a complex vector space V , then there is a unique endomorphism $T \in End(V)$ which is self-adjoint with respect to H and K, has positive spectrum, and satisfies $H(Tv, w) = K(v, w)$. It is customary to denote T by $H^{-1}K$, and thus $\log(H^{-1}K) = \log(T)$.

see, e.g., [\[7,](#page-15-6) Appendix A]. Moreover, with $g \coloneqq \bigoplus_{j=1}^k r^{\mu_j}$ we have

$$
g_* e_*^{s/2} A = A_* + gag^{-1}.
$$

Since

$$
|\nabla_{A_*}^k gag^{-1}|_{H_*} = |\nabla_{H_\diamond}^k a|_{H_\diamond} \quad \text{for each } k \ge 0,
$$

[Theorem 1.2](#page-1-1) will be a consequence of [Proposition 2.2](#page-6-1) and the following result.

Theorem 2.5. Suppose $\omega = \frac{1}{2}$ $\frac{1}{2i}\overline{\partial}\partial|z|^2 + O(|z|^2)$ is a Kähler form on $\overline{B}_R \subset$ \mathbb{C}^n , \mathscr{E} is a holomorphic vector bundle over \dot{B}_R , and H_{\diamond} is a Hermitian metric on $\mathscr E$ which is HYM with respect to ω_0 and satisfies [\(2.3\)](#page-6-2). If H is an admissible HYM metric on $\mathcal E$ with $\text{sing}(A_H) = \{0\}$ and $\det H = \det H_\diamond$, then

$$
s \coloneqq \log(H_\diamond^{-1} H) \in C^\infty(\dot B_R, i \mathfrak{su}(\pi^* F, H_\diamond))
$$

satisfies

$$
|s| \leq C_0
$$
 and $|z|^k |\nabla_{H_0}^k s| \leq C_k (-\log|z|)^{-1/2}$ for each $k \geq 1$.

Moreover, if [\(2.4\)](#page-6-3) holds, then

$$
|z|^k |\nabla_{H_\diamond}^k s| \le D_k |z|^\alpha \quad \text{for each } k \ge 0.
$$

The constants $C_k, D_k, \alpha > 0$ depend on ω, H_{\diamond} , $s|_{B_R \setminus B_{R/2}}$, and $||F_H||_{L^2(B_R)}$.

The next three sections of this paper are devoted to proving [Theorem 2.5.](#page-7-0) Without loss of generality, we will assume that the radius R is one. We set $B \coloneqq B_1$ and $\dot{B} \coloneqq \dot{B}_1$.

3. A priori C^0 estimate

As a first step towards proving [Theorem 2.5](#page-7-0) we bound $|s|$, using an argument which is essentially contained in Bando and Siu [\[2,](#page-15-3) Theorem 2(a) and (b)].

Proposition 3.1. We have $|s| \in L^{\infty}(B)$ and $||s||_{L^{\infty}(B)} \leq c$.

Proof. The proof relies on the differential inequality

(3.2)
$$
\Delta \log \text{tr } H_0^{-1} H_1 \lesssim |\mathbf{K}_{H_1} - \mathbf{K}_{H_0}|
$$

for Hermitian metrics H_0 and H_1 with det $H_0 = \det H_1$, and with

$$
K_H \coloneqq i\Lambda F_H - \frac{\text{tr}(i\Lambda F_H)}{\text{rk } E} \cdot \text{id}_E;
$$

see $[9, p. 13]$ $[9, p. 13]$ for a proof.

Step 1. We have $\log \text{tr } e^s \in W^{1,2}(B)$ and $\|\log \text{tr } e^s\|_{W^{1,2}(B)} \leq c$.

Choose $1 \leq i < j \leq n$ and define the projection $\pi: B \to \mathbb{C}^{n-2}$ by

$$
\pi(z)\coloneqq (z_1,\ldots,\hat{z}_i,\ldots\hat{z}_j,\ldots,z_n).
$$

For $\zeta \in \mathbb{C}^{n-2}$, denote by ∇_{ζ} and Δ_{ζ} the derivative and the Laplacian on the slice $\pi^{-1}(\zeta)$ respectively. Set $f_{\zeta} := \log \text{tr } e^s|_{\pi^{-1}(\zeta)}$. Applying [\(3.2\)](#page-8-0) to $H|_{\pi^{-1}(\zeta)}$ and $H_{\diamond}|_{\pi^{-1}(\zeta)}$ we obtain

$$
\Delta_{\zeta} f_{\zeta} \lesssim |\mathcal{F}_H| + |\mathcal{F}_{H_{\circ}}|.
$$

Fix $\chi \in C^{\infty}(\mathbb{C}^2; [0,1])$ such that $\chi(\eta) = 1$ for $|\eta| \leq 1/2$ and $\chi(\eta) = 0$ for $|\eta| \geq 1/\sqrt{2}$. For $0 < |\zeta| \leq 1/\sqrt{2}$ and $\varepsilon > 0$, we have

$$
\int_{\pi^{-1}(\zeta)} |\nabla_{\zeta} (\chi f_{\zeta})|^2 \lesssim \int_{\pi^{-1}(\zeta)} \chi^2 f_{\zeta} (|\mathbf{F}_H| + |\mathbf{F}_{H_{\circ}}|) + 1
$$

\n
$$
\leq \varepsilon \int_{\pi^{-1}(\zeta)} |\chi f_{\zeta}|^2 + \varepsilon^{-1} \int_{\pi^{-1}(\zeta)} |\mathbf{F}_H|^2 + |\mathbf{F}_{H_{\circ}}|^2 + 1.
$$

Using the Dirichlet–Poincaré inequality and rearranging, we obtain

$$
\int_{\pi^{-1}(\zeta)} |\chi f_{\zeta}|^2 + |\nabla_{\zeta}(\chi f_{\zeta})|^2 \lesssim \int_{\pi^{-1}(\zeta)} |F_H|^2 + |F_{H_{\circ}}|^2 + 1.
$$

Integrating over $0 < |\zeta| \leq 1/$ 2 yields

$$
\int_{B} |\log \operatorname{tr} e^s|^2 + |\nabla' \log \operatorname{tr} e^s|^2 \lesssim \int_{B} |\mathbf{F}_H|^2 + |\mathbf{F}_{H_{\circ}}|^2 + 1
$$

with ∇' denoting the derivative along the fibres of π . Using [\(2.3\)](#page-6-2) and $n \geq 3$, $F_{H_{\circ}} \in L^2(B)$. Since the choice of i, j defining π was arbitrary, the asserted inequality follows.

Step 2. The differential inequality

$$
\Delta \log \operatorname{tr} e^s \lesssim |K_{H_o}|
$$

holds on B in the sense of distributions.

Fix a smooth function $\chi: [0, \infty) \to [0, 1]$ which vanishes on [0, 1] and is equal to one on $[2,\infty)$. Set $\chi_{\varepsilon} := \chi(|\cdot|/\varepsilon)$. By (3.2) , for $\phi \in C_0^{\infty}(B)$, we have

$$
\int_{B} \Delta \phi \cdot \log \text{tr } e^{s}
$$
\n
$$
= \lim_{\varepsilon \to 0} \int_{B} \chi_{\varepsilon} \cdot \Delta \phi \cdot \log \text{tr } e^{s}
$$
\n
$$
\lesssim \int_{B} \phi \cdot |\mathbf{K}_{H_{\circ}}| + \lim_{\varepsilon \to 0} \int_{B} \phi \cdot (\Delta \chi_{\varepsilon} \cdot \log \text{tr } e^{s} - 2 \langle \nabla \chi_{\varepsilon}, \nabla \log \text{tr } e^{s} \rangle).
$$

Since $n \geq 3$, we have $\|\chi_{\varepsilon}\|_{W^{2,2}(B)} \lesssim \varepsilon^2$. Because $\log \text{tr } e^s \in W^{1,2}(B)$, this shows that the limit vanishes.

Step 3. We have $\log tr e^s \in L^{\infty}(B)$ and $\|\log tr e^s\|_{L^{\infty}(B)} \leq c$.

Since $\text{tr } s = 0$, we have $|s| \leq \text{rk}(\mathscr{E}) \cdot \log \text{tr } e^s$; in particular, $\log \text{tr } e^s$ is non-negative. By hypothesis $K_H = 0$. Since H_{\diamond} is PHYM with respect to ω_0 and $|F_{H_o}| \lesssim |z|^{-2}$ by hypothesis [\(2.3\),](#page-6-2) we have $|K_{H_o}| \leq c$. The asserted inequality thus follows from [Step 2](#page-9-0) via Moser iteration; see [\[5,](#page-15-7) Theorem 8.1]. \Box

4. A priori Morrey estimates

The following decay estimates are the crucial ingredients of the proof of [Theorem 2.5.](#page-7-0)

Proposition 4.1. For $r \in [0,1]$, we have

$$
\int_{B_r} |\nabla_{H_\diamond} s|^2 \lesssim r^{2n-2} (-\log r)^{-1}.
$$

Proposition 4.2. If [\(2.4\)](#page-6-3) holds, then there is a constant $\alpha > 0$, depending on $||s||_{L^{\infty}(B)}$ in a monotone decreasing way, such that for $r \in [0,1]$ we have

$$
\int_{B_r} |s|^2 \lesssim r^{2n+2\alpha} \quad \text{and} \quad \int_{B_r} |\nabla_{H_\diamond} s|^2 \lesssim r^{2n-2+2\alpha}.
$$

Both of these results rely on the following inequality.

Proposition 4.3. We have

$$
|\nabla_{H_{\diamond}}s|^2 \lesssim 1 - \Delta|s|^2.
$$

Proof. Since $H = H_{\phi}e^{s}$ is **PHYM**, we have

$$
\Delta|s|^2 + 2|v(-s)\nabla_{H_\diamond} s|^2 \le -4\langle K_{H_\diamond}, s \rangle
$$

with

$$
\upsilon(-s) = \sqrt{\frac{1 - e^{-\operatorname{ad}_s}}{\operatorname{ad}_s}} \in \operatorname{End}(\mathfrak{gl}(E));
$$

see, e.g., [\[7,](#page-15-6) Proposition A.6]. The assertion follows using

$$
\sqrt{\frac{1-e^{-x}}{x}} \gtrsim \frac{1}{\sqrt{1+|x|}},
$$

 $\|K_{H_{\diamond}}\|_{L^{\infty}} \leq c$, which is a consequence of [\(2.3\)](#page-6-2) and the fact that H_{\diamond} is HYM with respect to ω_0 , and the bound on |s| established in [Proposition 3.1.](#page-7-1) \Box

Proof of [Proposition 4.2.](#page-9-1) The proof is very similar to that of [\[7,](#page-15-6) Proposition C.2]. Nevertheless, for the reader's convenience we provide the necessary details.

Define $g: [0, 1/2] \to [0, \infty]$ by

$$
g(r) \coloneqq \int_{B_r} |z|^{2-2n} |\nabla_{H_\diamond} s|^2.
$$

We will show that

$$
g(r) \leq c r^{2\alpha},
$$

which implies the second asserted inequality and using (2.4) also the first.

Step 1. We have $q \leq c$.

Fix a smooth function $\chi: [0, \infty) \to [0, 1]$ which is equal to one on $[0, 1]$ and vanishes outside [0, 2]. Set $\chi_r(\cdot) := \chi(|\cdot|/r)$. For $r > \varepsilon > 0$, using [Propo](#page-10-0)[sition 4.3](#page-10-0) and [Proposition 3.1,](#page-7-1) and with G denoting Green's function on B centered at 0, we have

$$
\int_{B_r \backslash B_{\varepsilon}} |z|^{2-2n} |\nabla_{H_{\varepsilon}} s|^2 \lesssim \int_{B_{2r} \backslash B_{\varepsilon/2}} \chi_r(1 - \chi_{\varepsilon/2}) G(1 - \Delta |s|^2)
$$

$$
\lesssim \int_{B_{2r} \backslash B_r} |z|^{-2n} |s|^2 + r^2 + \varepsilon^{-2n} \int_{B_{\varepsilon} \backslash B_{\varepsilon/2}} |s|^2
$$

$$
\leq c.
$$

Step 2. There are constants $\gamma \in [0,1)$ and $A > 0$ such that

$$
g(r) \le \gamma g(2r) + Ar^2.
$$

Continuing the inequality from [Step 1](#page-8-1) using [\(2.4\),](#page-6-3) we have

$$
\int_{B_r \backslash B_{\varepsilon}} |z|^{2-2n} |\nabla_{H_{\circ}} s|^2 \lesssim \int_{B_{2r} \backslash B_r} |z|^{2-2n} |\nabla_{H_{\circ}} s|^2 + r^2 + \varepsilon^{2-2n} \int_{B_{\varepsilon} \backslash B_{\varepsilon/2}} |\nabla_{H_{\circ}} s|^2
$$

$$
\lesssim g(2r) - g(r) + r^2 + g(\varepsilon).
$$

By Lebesgue's monotone convergence theorem, the last term vanishes as ε tends to zero; hence, the asserted inequality follows with $\gamma = \frac{c}{c+1}$ and $A = c$.

Step 3. We have $g \leq cr^{2\alpha}$ for some $\alpha \in (0,1)$.

This follows from [Step 1](#page-8-1) and [Step 2](#page-9-0) and as in [\[7,](#page-15-6) Step 3 in the proof of Proposition C.2.

Proof of [Proposition 4.1.](#page-9-2) We use the same notation as in the proof of [Propo](#page-9-1)[sition 4.2.](#page-9-1) It still holds that $q \leq c$. However, the proof of the doubling esti-mate in [Step 2](#page-9-0) uses that $\mathcal F$ is simple and will not carry over. Instead, using integration by parts and Hölder's inequality we have

$$
\int_{B_r \backslash B_{\varepsilon}} |z|^{2-2n} |\nabla_{H_{\diamond}} s|^2 \lesssim \int_{B_{2r} \backslash B_{\varepsilon/2}} \chi_r (1 - \chi_{\varepsilon/2}) G(1 - \Delta |s|^2)
$$

$$
\lesssim \int_{B_{2r} \backslash B_r} |z|^{1-2n} \partial_r |s|^2 + r^2 + \varepsilon^{1-2n} \int_{B_{\varepsilon} \backslash B_{\varepsilon/2}} \partial_r |s|^2
$$

$$
\lesssim \left(\int_{B_{2r} \backslash B_r} |z|^{2-2n} |\nabla_{H_{\diamond}} s|^2 \right)^{1/2} + r^2
$$

$$
+ \left(\int_{B_{\varepsilon} \backslash B_{\varepsilon/2}} |z|^{2-2n} |\nabla_{H_{\diamond}} s|^2 \right)^{1/2}.
$$

By Lebesgue's monotone convergence theorem, the last term vanishes as ε tends to zero; hence,

$$
g(r) \lesssim (g(2r) - g(r))^{1/2} + r^2.
$$

The asserted inequality now follows from [Proposition 4.4.](#page-12-0)

Proposition 4.4. If $g: [0, 1] \rightarrow [0, \infty)$ is monotone increasing and satisfies

$$
g(r) \le A(g(2r) - g(r))^{1/2} + Br^2,
$$

then there are constants $c > 0$ and $r_0 \in (0, 1]$, depending on A, B and $g(1)$, such that

$$
g(r) \lesssim c(-\log r)^{-1}
$$

for $r \in (0, r_0]$.

Proof. For $r \in (0, r_0]$ the function $h(r) := g(r) + B/Ar^2$ satisfies

$$
h(r)^2 \le 2A(h(2r) - h(r));
$$

hence,

$$
h(r) \le \frac{1}{1 + \varepsilon h(r)} h(2r)
$$

with $\varepsilon = 1/2A$. We can assume that $\varepsilon h(1) \leq 1/2$. Using $(1+x)^{-1} \leq 1-x$ for $x \ge 0$, and $(1-x)^k \le 1-\frac{k}{2}$ $\frac{k}{2}x$ for $x \in [0, 1/2]$, we derive

$$
0 \le h(2^{-k}) \le \left(1 - \frac{k\varepsilon}{2}h(2^{-k})\right)h(1);
$$

hence,

$$
h(2^{-k}) \le \frac{2}{\varepsilon k}.
$$

 \Box

5. Proof of [Theorem 2.5](#page-7-0)

For $r > 0$, define $m_r: \mathbb{C}^n \to \mathbb{C}^n$ by $m_r(z) \coloneqq rz$. Set

$$
s_r \coloneqq m_r^*(s|_{B_{4r}\setminus B_{r/2}}) \in C^\infty(B_4 \setminus B_{1/2}, i\mathfrak{su}(E, H_*)) \quad \text{and} \quad H_{\diamond,r} \coloneqq m_r^* H_\diamond.
$$

The metric $H_{\diamond,r}e^{s_r}$ is **PHYM** with respect to $\omega_r := r^{-2}m_r^*\omega$ and $||F_{H_{\circ},r}||_{C^{k}(B_{4}\setminus B_{1/2})} \leq c_{k}.$

[Proposition 3.1,](#page-7-1) [\(2.3\)](#page-6-2) and interior estimates for PHYM metrics [\[7,](#page-15-6) Theorem C.1] imply that

$$
||s_r||_{C^k(B_3 \setminus B_{3/4})} \leq c_k.
$$

By [Proposition 4.1,](#page-9-2) we have

$$
\|\nabla_{H_{\diamond,r}} s_r\|_{L^2(B_3 \setminus B_{3/4})} \leq c_k (-\log r)^{-1/2}.
$$

Schematically, $K_{H_{\diamond},r}e^{sr}=0$ can be written as

$$
\nabla_{H_{\diamond,r}}^* \nabla_{H_{\diamond,r}} s_r + B(\nabla_{H_{\diamond,r}} s \otimes \nabla_{H_{\diamond,r}} s_r) = C(K_{H_{\diamond,r}}),
$$

where B and C are linear with coefficients depending on s , but not on its derivatives; see, e.g., [\[7,](#page-15-6) Proposition A.1]. Since $||K_{H_{\diamond,r}}||_{C^{k}(B_3\setminus B_{3/4})} \leq c_k r^2$, as in [\[7,](#page-15-6) Step 3 in the proof of Proposition 5.1], standard interior estimates imply that

$$
\|\nabla_{H_{\diamond,r}}^k s_r\|_{L^\infty(B_2\setminus B_1)} \le c_k (-\log r)^{-1/2}
$$

and, hence, the asserted inequalities, for each $k \geq 1$. (The asserted inequality for $k = 0$ has already be proven in [Proposition 3.1.](#page-7-1))

If [\(2.4\)](#page-6-3) holds, then by [Proposition 4.2](#page-9-1) we have

$$
\|\nabla_{H_{\diamond},r} s_r\|_{L^2(B_4 \setminus B_{1/2})} \lesssim r^{\alpha} \quad \text{and} \quad \|s_r\|_{L^2(B_4 \setminus B_{1/2})} \lesssim r^{\alpha};
$$

hence, using standard interior estimates

$$
\|\nabla_{H_{\diamond,r}}^k s_r\|_{L^2(B_2\setminus B_1)} \lesssim r^{\alpha} \quad \text{for each } k \ge 0.
$$

This concludes the proof of [Theorem 2.5.](#page-7-0)

6. Proof of [Proposition 1.4](#page-2-1)

We will make use of the following general fact about connections over manifolds with free S^1 -actions.

Proposition 6.1. Let M be a manifold with a free S^1 -action. Denote the associated Killing field by $\xi \in \text{Vect}(M)$ and let $q: M \to M/S^1$ be the canonical projection. Suppose $\theta \in \Omega^1(M)$ is such that $\theta(\xi) = 1$ and $\mathscr{L}_{\xi} \theta = 0$. Let A be a unitary connection on a Hermitian vector bundle (E, H) over M. If

 $i(\xi)F_A = 0$, then there is a $k \in \mathbb{N}$ and, for each $j \in \{1, ..., k\}$, a Hermitian vector bundles (F_j, K_j) over M/S^1 such that

$$
E = \bigoplus_{j=1}^{k} E_j \quad and \quad H = \bigoplus_{j=1}^{k} H_j
$$

with $E_j := q^* F_j$ and $H_j := q^* K_j$; moreover, the bundles E_j are parallel and, for each $j \in \{1, ..., k\}$, there are a unitary connection B_j on F_j and $\mu_j \in \mathbf{R}$ such that

$$
A = \bigoplus_{j=1}^{k} q^* B_j + i \mu_j \operatorname{id}_{E_j} \cdot \theta.
$$

Proof. Denote by $\tilde{\xi} \in \text{Vect}(\mathbf{U}(E))$ the A–horizontal lift of ξ . This vector field integrates to an **R**–action on $U(E)$. Thinking of A as an $\mathfrak{u}(r)$ –valued 1–form on $U(E)$ and F_A as an $\mathfrak{u}(r)$ -valued 2-form on $U(E)$, we have

$$
\mathscr{L}_{\tilde{\xi}}A = i(\tilde{\xi})\mathbf{F}_A = 0;
$$

hence, A is invariant with respect to the **R**–action on $U(E)$.

The obstruction to the **R**-action on $U(E)$ inducing an S^1 -action is the action of $1 \in \mathbf{R}$ and corresponds to a gauge transformation $\mathbf{g}_A \in \mathcal{G}(\mathbf{U}(E))$ fixing A. If this obstruction vanishes, i.e., $\mathbf{g}_A = id_{\mathrm{U}(E)}$, then $E \cong q^*F$ with $F = E/S¹$ and there is a connection A_0 on F such that $A = q^*A_0$.

If the obstruction does not vanish, we can decompose E into pairwise orthogonal parallel subbundles E_j such that \mathbf{g}_A acts on E_j as multiplication with $e^{i\mu_j}$ for some $\mu_j \in \mathbf{R}$. Set $\tilde{A} := A - \bigoplus_{j=1}^k i\mu_j \operatorname{id}_{E_j} \cdot \theta$. This connection also satisfies $i(\tilde{\xi})F_{\tilde{A}} = 0 \in \Omega^1(M, \mathfrak{g}_{E})$ and the subbundles E_j are also parallel with respect to E_j . Since $\mathbf{g}_{\tilde{A}} = id_E$, the assertion follows.

In the situation of [Proposition 1.4,](#page-2-1) with $\xi \in S^{2n-1}$ denoting the Killing field for the S^1 -action we have $i(\xi)F_{A_0}=0$; c.f., Tian [\[10,](#page-16-2) discussion after Conjecture 2]. Therefore, we can write

$$
A_*=\bigoplus_{j=1}^k \sigma^*B_j+i\mu_j\operatorname{id}_{E_j}\cdot\pi^*\theta.
$$

Since $d\theta = 2\pi \rho^* \omega_{FS}$, we have

$$
\mathbf{F}_{A_*} = \bigoplus_{j=1}^k \sigma^* \mathbf{F}_{B_j} + 2\pi i \mu_j \mathrm{id}_{E_j} \cdot \sigma^* \omega_{FS}.
$$

Using [\(2.1\),](#page-5-0) A_* being HYM with respect to ω_0 can be seen to be equivalent to

$$
\mathcal{F}_{B_j}^{0,2} = 0 \quad \text{and} \quad i\Lambda \mathcal{F}_{B_j} = (2n-2)\pi\mu_j \cdot \mathrm{id}_{E_j}.
$$

The isomorphism $\mathscr{E} = (E, \bar{\partial}_{A_*}) \cong \bigoplus_{j=1}^k \rho^* \mathscr{F}_j$ with $\mathscr{F}_j = (F_j, \bar{\partial}_{B_j})$ is given by g^{-1} with $g \coloneqq \bigoplus_{j=1}^k r^{\mu_j}$. В последните последните последните последните последните последните последните последните последните последн
В последните последните последните последните последните последните последните последните последните последнит

Acknowledgements. HSE and TW were partially supported by São Paulo State Research Council (FAPESP) grant 2015/50368-0 and the MIT–Brazil Lemann Seed Fund for Collaborative Projects. HSE is also funded by FAPESP grant 2014/24727-0 and Brazilian National Research Council (CNPq) grant $PQ2 - 312390/2014-9$.

References

- [1] S. Bando, Removable singularities for holomorphic vector bundles, Tohoku Math. J. (2) 43 (1991), no. 1, 61–67. DOI:10.2748/tmj/ 1178227535.
- [2] S. Bando and Y.-T. Siu, Stable sheaves and Einstein–Hermitian metrics, in: Geometry and Analysis on Complex Manifolds, pages 39–50. World Sci. Publ., River Edge, NJ, 1994.
- [3] S. K. Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985) , no. 1, 1-26. DOI:10.1112/plms/s3-50.1.1.
- [4] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231–247. DOI:10.1215/S0012-7094- 87-05414-7.
- [5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. ISBN 3-540-41160-7. Reprint of the 1998 edition.
- [6] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. DOI:10.1007/BF01467074.
- [7] A. Jacob and T. Walpuski, Hermitian Yang–Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds, 2016. arXiv:1603.07702.
- [8] C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Complex Projective Spaces, Modern Birkhäuser Classics. Birkhäuser/Springer

Basel AG, Basel, 2011. ISBN 978-3-0348-0150-8. DOI:10.1007/978- 3-0348-0151-5. Corrected reprint of the 1988 edition, with an appendix by S. I. Gelfand.

- [9] Y.-T. Siu, Lectures on Hermitian–Einstein Metrics for Stable Bundles and Kähler–Einstein Metrics, Volume 8 of DMV Seminar, Birkhäuser Verlag, Basel, 1987. ISBN 3-7643-1931-3. DOI:10.1007/978-3-0348- 7486-1.
- [10] G. Tian, Gauge theory and calibrated geometry. I, Ann. of Math. (2) 151 (2000), no. 1, 193–268. DOI:10.2307/121116.
- [11] K. K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian–Yang– Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), S, suppl., S257–S293. DOI:10.1002/cpa.3160390714. Frontiers of the mathematical sciences: 1985 (New York, 1985).
- [12] B. Yang, The uniqueness of tangent cones for Yang–Mills connections with isolated singularities, Adv. Math. **180** (2003), no. 2, 648–691. DOI:10.1016/S0001-8708(03)00016-1.

University of California Davis Davis, CA 95616, USA E-mail address: ajacob@math.ucdavis.edu

Unicamp, Universidade Estadual de Campinas 13083-859 SÃO PAULO, BRAZIL $E-mail$ $address:$ henrique.saearp@ime.unicamp.br

MICHIGAN STATE UNIVERSITY East Lansing, MI 48824, USA E-mail address: thomas@walpu.ski

Received January 10, 2017