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Symmetries and regularity for

holomorphic maps between balls

John P. D’Angelo and Ming Xiao

Let f : Bn → BN be a holomorphic map. We study subgroups Γf ⊆
Aut(Bn) and Tf ⊆ Aut(BN ). When f is proper, we show both these
groups are Lie subgroups. When Γf contains the center of U(n),
we show that f is spherically equivalent to a polynomial. When f is
minimal we show that there is a homomorphism Φ : Γf → Tf such
that f is equivariant with respect to Φ. To do so, we characterize
minimality via the triviality of a third group Hf . We relate prop-
erties of Ker(Φ) to older results on invariant proper maps between
balls. When f is proper but completely non-rational, we show that
either both Γf and Tf are finite or both are noncompact.

1. Introduction

Let Bn denote the unit ball in complex Euclidean space Cn. We consider
bounded holomorphic maps f : Bn → CN ; after division by a constant we
assume that the image of the ball under f lies in the unit ball BN . Following
[DX] we study various groups associated with such an f . Our set-up and
many of the results require neither that the map be proper nor that it be
rational. Under these assumptions, however, we obtain additional informa-
tion.

The holomorphic automorphism group Aut(Bn) is transitive. It is a Lie
group that can be regarded as the quotient of SU(n, 1) by its center or
as a collection of linear fractional transformations. Holomorphic maps f, g :
Bn → BN are spherically equivalent if there are automorphisms γ and ψ
such that ψ ◦ g = f ◦ γ.

In [DX] the authors associated a subgroup Af of Aut(Bn)×Aut(BN ) to
a proper map f . This group Af is defined to be those pairs (γ, ψ) for which
f ◦ γ = ψ ◦ f . Note that this definition makes sense whenever the image of
f is contained in BN . One of our key regularity results holds in this more
general setting.
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1390 J. P. D’Angelo and M. Xiao

Most of the results in [DX] involve properties of Γf , the projection of
Af onto its first factor. In this paper we develop further uses of this group,
including results that make no regularity assumptions about f . In Proposi-
tion 2.3 we show that Γf is a Lie subgroup of Aut(Bn), without assuming
f is rational. We also use properties of Tf , the projection onto the second
factor. Here properness is used to show that Tf is a (closed) Lie subgroup.

A map f : Bn → CN is called minimal if its image lies in no lower
dimensional affine linear subspace. See the survey article [HJY]. Let Hf

denote the subgroup of Tf consisting of those target automorphisms ψ for
which ψ ◦ f = f . In Proposition 3.1 we show that Hf is trivial if and only if
f is minimal. When f : Bn → BN is minimal, we prove (Theorem 3.1) that
there is a group homomorphism Φ : Γf → Tf , and hence f is equivariant with
respect to Φ. When f : Bn → BN is also proper, the kernel of Φ depends on
the boundary regularity of f . The kernel of Φ coincides with the group Gf ,
as defined in [DX]. Thus Gf is the subgroup of Γf consisting of those source
automorphisms γ for which f ◦ γ = f .

We next summarize the results in the paper. We start with the following
result.

Corollary 1.1. Suppose f : Bn → BN is holomorphic. If Γf contains the
center of U(n), then f is spherically equivalent to a polynomial.

This corollary follows from the next theorem, where we give a general
condition implying that a holomorphic map f is a polynomial. Since Γf
is a Lie group, Γf ∩U(n) also is. The Lie algebra g of Γf ∩U(n) consists
of skew-Hermitian matrices M . For M ∈ g put L = −iM . Then L has real
eigenvalues. We prove Theorem 1.1 in Section 4 and obtain the consequences
in Corollary 1.2.

Theorem 1.1. Let f : Bn → BN be holomorphic with f(0) = 0. If the Lie
algebra g of Γf ∩U(n) contains a matrix M such that L = −iM has k pos-
itive eigenvalues, then there is a k-dimensional linear subspace V such that
the restriction of f to V is a polynomial.

Corollary 1.2. Let f : Bn → BN be a proper holomorphic mapping.

• Assume Γf contains the maximal n-torus in Aut(Bn). Then f is spher-
ically equivalent to a monomial map.

• Assume Γf contains U(n). Then f is spherically equivalent to an or-
thogonal sum of tensor products.
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Symmetries and regularity for holomorphic maps 1391

• Suppose Γf contains the center of U(n) and is noncompact. Then f is
a linear fractional transformation.

These statements appear in [DX] when f is assumed to be rational.
Recall from [F1], when n ≥ 2, that a proper holomorphic map between balls,
with sufficient boundary regularity, must be rational. Here we show that
Hermitian invariance under a large group forces rationality. In particular, if
the group Γf contains the maximal n-torus in Aut(Bn), then f is rational.
Once we know that the map is rational, the results from [DX] yield the
additional information about spherical equivalence in this corollary. At the
end of this paper we mention a rigidity problem discussed in [S] and [CM]
and related to the third conclusion of the corollary.

The projections of Af onto each of the factors will be significant in this
paper. It is natural to ask when there is a homomorphism from Γf to Tf .
We answer this question (Theorem 3.1) as follows.

Theorem 1.2. Let f : Bn → BN be a minimal proper map. Then there is a
homomorphism Φ : Γf → Tf ⊆ Aut(BN ). Thus f is equivariant with respect
to Φ.

Proposition 3.1 shows that f is minimal if and only if Hf is trivial.
Another name for minimal is target essential. The related notion of source
essential appears in [DX] and is expressed there in terms of Γf .

Section 3 also gathers some older known results (see for example [D,
F2, Li1, Li2]) about the groups Gf and places them in the context of this
paper. As noted above, for minimal proper maps, Gf is the kernel of Φ. The
possible invariant groups Gf for proper maps depend upon the regularity
assumptions. As has been long known, the invariant group for a rational
proper map must be cyclic ([Li2]) and the list of possible representations is
short ([D]). On the other hand, every finite group arises when we drop the
assumption of rationality.

Section 4 provides the proof of Theorem 4.1, the first theorem stated
above.

Section 5 considers completely non-rational proper maps f ; that is,
for each positive-dimensional affine linear subspace V of Cn, the restriction
of f to V is not rational. We prove the following result.

Theorem 1.3. Let f be a minimal completely non-rational proper mapping
between balls. Then Γf and Tf are either both finite or both noncompact.
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2. preliminaries

The inner product of z, w in complex Euclidean space is denoted by 〈z, w〉
and the Euclidean squared norm by ||z||2. We use the same notation in
each dimension. Let Bn denote the unit ball in Cn and let U(n) denote the
unitary group. As noted in the first paragraph of the introduction, f is not
assumed to be proper in the following crucial definitions.

Definition 2.1. Suppose f : Bn → BN is holomorphic. Then Af is the sub-
group of Aut(Bn)×Aut(Bn) consisting of those pairs (γ, ψ) for which

f ◦ γ = ψ ◦ f.

Definition 2.2. In the setting of Definition 2.1, we consider the following
groups:

• Γf is the projection of Af on the first factor.

• Tf is the projection of Af on the second factor.

• Gf = {γ ∈ Aut(Bn) : f ◦ γ = f}.

• Hf = {ψ ∈ Aut(BN ) : ψ ◦ f = f}.

We first observe the following simple facts about spherical equivalence.

Proposition 2.1. Let f, g : Bn → BN be spherically equivalent. Put g =
α ◦ f ◦ β. Then Hg = α ◦Hf ◦ α−1.

Proof. Suppose ψf ◦ f = f . Then

α ◦ ψf ◦ α−1 ◦ g = α ◦ ψf ◦ α−1 ◦ α ◦ f ◦ β = α ◦ ψf ◦ f ◦ β = α ◦ f ◦ β = g.

�

Proposition 2.2. Let f, g : Bn → BN be spherically equivalent. Put g =
α ◦ f ◦ β. Then

Ag = {(β−1 ◦ γ ◦ β, α ◦ ψ ◦ α−1) : (γ, ψ) ∈ Af}.

Proof. The proof is a formal calculation similar to the previous proof. �

Proposition 2.3. Let f : Bn → BN be a proper holomorphic map. Then
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Symmetries and regularity for holomorphic maps 1393

• Γf is a Lie subgroup of Aut(Bn).

• Tf is a Lie subgroup of Aut(BN ).

• Γf is noncompact if and only if Tf is noncompact.

Proof. Both Γf and Tf are subgroups; we must therefore show that they are
closed. That Γf is closed relies only on f being continuous; that Tf is closed
relies on f being continuous and proper.

We first note that γν → γ in Aut(Bk) if γν(z)→ γ(z) for each z ∈ Bk.
Here k can be n or N . Recall in each case that an automorphism has the
form Lφc where L ∈ U(k) and φc is a linear fractional transformation with
φc(0) = c.

After composing with an automorphism we assume f(0) = 0. Consider
a sequence γν ∈ Γf converging to γ. By definition there is a sequence ψν ∈
Aut(BN ) such that

f ◦ γν = ψν ◦ f.

Write γν = Uνφav and ψν = Vνϕbv as above. Evaluating at 0 gives

(1) f(Uνaν) = Vνbν .

If γv converges to γ ∈ Aut(Bn), then the sequence {aν} lies in a compact
subset of Bn. Since Uν is unitary and f is continuous, the left-hand side
of (1) lies in a compact subset of BN . Therefore, since Vν is unitary, the
sequence {bν} lies in a compact subset of BN as well.

Next consider a sequence ψv ∈ Tf converging in Aut(BN ). Using the
above notation, now {bν}, and hence Vνbν , lies in a compact subset of the
target ball BN . Since f is continuous and proper, the inverse image of a
compact set is compact. Hence (1) implies that {Uνaν}, and hence {aν}, lies
in a compact subset of Bn.

Thus, if γν ∈ Γf and γν converges to γ, or if ψν ∈ Tf and ψν converges to
ψ, then the sequences {aν} or {bν} are bounded and hence have convergent
subsequences. The unitary groups are compact, and hence the Uν and the
Vν also have convergent subsequences. Thus there is a subsequence of source
automorphisms converging to a source automorphism γ and a corresponding
target automorphism ψ with f ◦ γ = ψ ◦ f . Thus both Γf and Tf are closed
subgroups of their respective automorphism groups. Hence each is a Lie
subgroup.

The third statement has a similar proof. If Γf contains a sequence of au-
tomorphisms Uνφaν where {aν} tends to the boundary sphere in the source,
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1394 J. P. D’Angelo and M. Xiao

then the corresponding sequence Vνϕbν , by properness, must have {bν} tend-
ing to the sphere in the target, and conversely. �

An automorphism of the ball preserves the origin if and only if it is
unitary. This fact leads to the following lemma.

Lemma 2.1. Suppose f : Bn → BN is holomorphic and f(0) = 0. Let γ ∈
U(n). Then γ ∈ Γf if and only if ||f ◦ γ||2 = ||f ||2.

Proof. Suppose first that ||f ◦ γ||2 = ||f ||2. Then, by a well-known result
from [D], there is a U ∈ U(N) such that f ◦ γ = U ◦ f . Thus γ ∈ Γf . Con-
versely, suppose γ ∈ Γf . Then f ◦ γ = ψγ ◦ f for some target automorphism
ψγ . Evaluating at 0 and using f(0) = 0 gives ψγ(0) = 0. Hence ψγ is unitary
and

||f ◦ γ||2 = ||ψγ ◦ f ||2 = ||f ||2.
�

3. Equivariance

The primary purpose of this section is to prove the following theorem.

Theorem 3.1. Let f : Bn → BN be a minimal holomorphic map. Then
there is a homomorphism Φ : Γf → Tf ⊆ Aut(BN ). Thus f is equivariant
with respect to Φ.

We also have the following characterization of minimality.

Proposition 3.1. Let f : Bn → BN be holomorphic. Then Hf is the trivial
group if and only if f is minimal.

Proof. Lemma 3.1 below states that f minimal implies Hf trivial. Lemma
3.2 shows that f not minimal implies Hf not trivial. �

Lemma 3.1. Let f be a minimal map from Bn to BN . Then Hf is the
trivial group consisting of the identity map IN .

Proof. By Proposition 2.1, the statement is true for f if and only if it is
true for ψ ◦ f ◦ γ with γ ∈ Aut(Bn) and ψ ∈ Aut(BN ). Thus, without loss of
generality, we can compose with a target automorphism to make f(0) = 0.
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Consider the span:

SpanC(f) =

{
s∑
i=1

λif(zi) : zi ∈ Bn and λi ∈ C

}
.

Since f is minimal, SpanC{f} = CN . Let ψ ∈ Hf . Then ψ ◦ f = f . We put
z = 0 to conclude ψ(0) = 0. Thus ψ ∈ U(N). Since ψ is linear and preserves
every f(z), it must preserve every element in SpanC(f) = CN . Thus ψ is the
identity map. �

Lemma 3.2. Let f be a minimal map from Bn to Bm. Let g be a holomor-
phic map from Bn to BN that is spherically equivalent to 0⊕ f . Then Hg is
conjugate to U(k)⊕ Im.

Proof. It suffices to assume g = 0⊕ f . The general case follows from this
special case and Proposition 2.1. As usual, we can assume f(0) = 0 and
g(0) = 0. Since f is minimal, we have SpanC{g} = 0⊕ Cm. Let ψ ∈ Hf .
Then ψ ◦ f = f . Again we let z = 0 to get ψ(0) = 0. Thus ψ is unitary. As
above, since ψ is linear and preserves every g(z), it preserves SpanC{g} =
0⊕ Cm. Thus ψ ∈ U(k)⊕ Im. Hence Hg ⊆ U(k)⊕ Im. The definition of g
yields the opposite inclusion. We conclude Hg = U(k)⊕ Im. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We use minimality to show, for each γ ∈ Γf , that
there is a unique ψ ∈ Tf such that (γ, ψ) ∈ Af . Assume (γ, ψ1), (γ, ψ2) ∈ Af .
Then

(γ ◦ γ−1, ψ1 ◦ ψ−12 ) = (In, ψ1 ◦ ψ−12 ) ∈ Af .

Thus ψ1 ◦ ψ−12 ∈ Hf . Proposition 3.1 implies that Hf is trivial and hence
ψ1 = ψ2.

By the uniqueness of ψ, there is a well-defined map Φ : Γf → Aut(BN )
with Φ(γ) = ψ where (γ, ψ) ∈ Af . We next verify that Φ is a homomorphism.
Assume Φ(γ1) = ψ1 and Φ(γ2) = ψ2. By the definition of Φ, we have ψ1 ◦ f =
f ◦ γ1 and ψ2 ◦ f = f ◦ γ2. Consequently,

ψ2 ◦ ψ1 ◦ f = ψ2 ◦ f ◦ γ1 = f ◦ γ2 ◦ γ1.

We conclude that Φ(γ2 ◦ γ1) = ψ2 ◦ ψ1 = Φ(γ2) ◦ Φ(γ1). Hence Φ is a homo-
morphism. The definition of equivariance now yields the equivariance of f
with respect to Φ, completing the proof. �
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Let f : Bn → BN be a minimal map. By Theorem 3.1, f induces a ho-
momorphism Φ : Γf → Aut(BN ). We say Φ represents Γ = Γf in Aut(BN ).

We discuss the kernel of the induced homomorphism Φ when f is proper.
The behavior of Φ then depends on the boundary regularity of f . Proposi-
tions 3.4 and 3.5 are known but are expressed in different language in the
literature. The proof of Proposition 3.2 uses the following simple fact.

Remark 3.1. A proper holomorphic map is finite: the inverse image of a
point is a finite set.

Proposition 3.2. Let f : Bn → BN be a minimal proper map. Let Φ be the
induced homomorphism. Then Ker(Φ) a finite subgroup of Aut(Bn).

Proof. That Ker(Φ) is a subgroup of Aut(Bn) is clear. First we show that
Ker(Φ) is closed in Aut(Bn). Assume γν ∈ Ker(Φ) and γν converges to γ ∈
Aut(Bn). By continuity, we conclude that γ ∈ Ker(Φ).

Next we claim Ker(Φ) is compact. If not, then Ker(Φ) moves some point
a in Bn arbitrarily close to the boundary. By Remark 3.1, f−1(f(a)) is a
finite set, yielding a contradiction.

Thus Ker(Φ) is a compact Lie subgroup of Aut(Bn). By standard Lie
group theory (cf. [HT]), it is contained in a conjugate of U(n).

We finally claim that Ker(Φ) is finite. It is contained in a conjugate of
U(n). If it were infinite, then there would exist a ∈ Bn such that {γ(a) : γ ∈
Ker(Φ)} is infinite. This conclusion contradicts f being a finite map. �

Proposition 3.3. Let G be a finite subgroup of Aut(Bn). Then there exists
an N and a holomorphic proper map f : Bn → BN such that Ker(Φ) = G.

Proof. We first assume G is a subgroup of U(n). In this case, the statement
was proved in [Li1] (See Theorem 4.3.4 there). Next we assume G is an
arbitrary finite subgroup of Aut(Bn). By Lie group theory,G is contained in a
conjugate of U(n). For some χ ∈ Aut(Bn), we thus have G0 = χ ◦G ◦ χ−1 ⊆
U(n). By the result above for U(n), there is a holomorphic proper map g
for which Ker(Φg) = G0. Then Ker(Φf ) = G if f = g ◦ χ. �

We recall the notion of fixed-point-free subgroup of U(n). A finite sub-
groupG of U(n) is fixed-point-free if the only element inG with an eigenvalue
of 1 is the identity. Thus the origin is the only fixed point in Cn under the
action of G. Equivalently, G is fixed point free if each element of the group
other than the identity has no fixed points on the unit sphere. The next
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result appears in [Li1]. In the language of this paper, it shows that a bound-
ary regularity assumption on f puts restrictions on Ker(Φ). We sketch the
proof.

Proposition 3.4. Let f : Bn → BN be a holomorphic proper map that is
continuously differentiable on the closed ball. Then Ker(Φ) is conjugate to a
fixed-point-free finite subgroup of U(n).

Proof. After composing f with a source automorphism, we can assume that
Ker(Φ) is contained in U(n). Suppose γ ∈ Ker(Φ) and that γ is not the
identity. We show that 1 cannot be an eigenvalue of γ.

Since f is C1-smooth to the boundary, by a classical Hopf lemma argu-
ment, f is of full rank at each boundary point and thus is a local embedding
there. Assume for some γ ∈ Ker(Φ) that 1 is an eigenvalue of γ. Let E be
the corresponding eigenspace. If γ is not the identity, then E is a proper
subspace. Then γ maps any point q close to but not on E to a different
point nearby. Since f ◦ γ = f , the map f cannot be injective near E. But E
intersects the sphere, contradicting f being a local embedding there. �

When f is C∞−smooth up to the boundary, Ker(Φ) is quite restricted.
The following result gives a complete list of the possible groups that can
arise. See [D] for a proof and for the corresponding maps. See also [G] for
related results when the target is a generalized ball.

Proposition 3.5. Let f : Bn → BN be a rational holomorphic proper map.
Then Ker(Φ) is cyclic. Furthermore Ker(Φ) is conjugate to one of the fol-
lowing:

• G is the cyclic group generated by ηIn, where η is a primitive m-th
root of unity. (Each m is possible.)

• G is the cyclic group generated by ηIj ⊕ η2Ik, where η is a primitive odd
root of unity. Here j + k = n. (Each odd natural number is possible.)

• G is the cyclic group of order 7 generated by ηIj ⊕ η2Ik ⊕ η4Il. Here
j + k + l = n.

Remark 3.2. The map z 7→ z⊗m provides an example of the first type.
When n = 2, maps of the second type have the largest possible degree given
the target dimension. See [DKR]. The simplest example of the third type
maps B3 to B17 and appears in [D].
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When f : Bn → Bm, one can artificially increase the target dimension by
considering the map 0⊕ f . This map is not minimal. Lemma 3.2 shows how
this construction impacts the group Hf . We close this section with a simple
result showing that this construction does not change Γf .

Proposition 3.6. Let f : Bn → Bm be minimal. For N > m, put g = 0⊕
f . Then Γf = Γg.

Proof. Put k = N −m. We may assume that f(0) = 0. If (γ, ψ) ∈ Af , then

(2) 0⊕ (f ◦ γ) = ψ(0⊕ f).

Let φ ∈ Aut(Bn) be such that (φ ◦ f ◦ γ)(0) = 0. We may regard (Ik, φ) as
an element ϕ of Aut(BN ). Then ϕ(0⊕ (f ◦ γ)) = 0⊕ (φ ◦ f ◦ γ). Hence ϕ
maps 0 to 0. By (2),

(3) 0⊕ (φ ◦ f ◦ γ) = (ϕ ◦ ψ)(0⊕ f) = (ϕ ◦ ψ)(g).

Evaluating at 0 shows that the automorphism ϕ ◦ ψ maps 0 to 0 and hence is
unitary. Since f is minimal, SpanC{g} = 0⊕ Cm. As in the proof of Lemma
3.2, we conclude that ϕ ◦ ψ lies in U(k)⊕ Im. Now (3) implies φ ◦ f ◦ γ = f .
Thus γ ∈ Γf if and only if γ ∈ Γg. �

4. Groups and regularity

We develop the tools to prove Theorem 4.1. The next lemma illustrates how
group invariance allows one to prove that certain power series are in fact
polynomials. We establish Theorem 4.1 by generalizing the proof of this
lemma.

Lemma 4.1. Let Ω be an open ball about 0 ∈ Cn and suppose that H :
Ω→ CN is holomorphic. Assume for each γ ∈ U(1)⊕ · · · ⊕U(1) that ||H ◦
γ||2 = ||H||2. Then there is a monomial map G and a unitary U such that
H = U ◦G.

Proof. Since H is holomorphic and Ω is a ball about 0, we can expand H in
a convergent power series about 0. Put

H(z) =
∑
α

Cαz
α.
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Then we have

||H(z)||2 =
∑
α,β

〈Cα, Cβ〉zαzβ.

Let γ be a diagonal unitary matrix with eigenvalues eiθj . Then the assump-
tion ||H ◦ γ||2 = ||H||2 implies

(4)
∑
α,β

〈Cα, Cβ〉zαzβ =
∑
α,β

〈Cα, Cβ〉zαzβeiθ(α−β).

By assumption, equation (4) holds for all choices of the θj . Equating Taylor
coefficients then shows, whenever α 6= β, that 〈Cα, Cβ〉 = 0. Since each coef-
ficient Cα lies in the finite-dimensional space CN , they are linearly dependent
and orthogonal. Hence there are only finitely many non-zero coefficient vec-
tors. Thus H is a polynomial. Since the coefficient vectors are orthogonal,
there is a unitary map U such that H = U ◦G, where G is the monomial
map whose components are the monomials arising in H. �

The idea of using circular symmetries to study power series appears
already in [BM]. We next establish Theorem 4.1 from the introduction.

Definition 4.1. Let C = C(n) denote the collection of continuously differ-
entiable maps γ : (−π, π)→ U(1)⊕ · · · ⊕U(1) such that γ(0) = In.

For γ ∈ C, we note that γ′(0) = iL, where i2 = −1 and L = L∗ is real
and diagonal. (The Lie algebra of the unitary group is the skew-Hermitian
matrices.) The eigenvalues of L are real. When they all have the same sign,
we obtain a criterion guaranteeing that a holomorphic map is in fact a
polynomial.

Proposition 4.1. Let Ω be a ball about 0 in Cn and suppose f : Ω→ CN
is holomorphic. For some γ ∈ C, assume that ||f ◦ γ||2 = ||f ||2. Put L =
−iγ′(0). If all the eigenvalues of L have the same sign, then f is a polyno-
mial. More generally, if L has k eigenvalues of the same sign, then there is
a k-dimensional vector subspace V such that the restriction of f to V is a
polynomial.

Proof. Put θ(t) = (θ1(t), . . . , θn(t)), where γ(t) is diagonal with eigenvalues
eiθj(t). We expand f in a (vector-valued) power series convergent in Ω:

f(z) =
∑
α

cαz
α.



i
i

“2-DAngelo” — 2019/1/2 — 10:33 — page 1400 — #12 i
i

i
i

i
i

1400 J. P. D’Angelo and M. Xiao

We are given that ||f(z)||2 = ||f(γ(t)z)||2 for all t ∈ (−π, π) and all z ∈ Ω.
Equating Taylor coefficients yields, for each pair α, β of multi-indices, that

〈cα, cβ〉 = eiθ(t)·(α−β)〈cα, cβ〉

and hence we have

(5) 0 = 〈cα, cβ〉
(

1− eiθ(t)·(α−β)
)
.

Write m = (m1, . . . ,mn), where the mj are the eigenvalues of L. Differenti-
ate (5) and evaluate at t = 0 to obtain

(6) 0 = 〈cα, cβ〉 (m · (α− β)) .

We will show that cα = 0 for all but finitely many α.
Suppose first that the eigenvalues are L have the same sign. After re-

placing t by −t we may assume they are all positive. Let K1 = min(mj) and
K2 = max(mj). Thus K2 ≥ K1 > 0. Let α and β be multi-indices for which
m · (α− β) = 0; then

(7) K1|α| = K1

∑
αj ≤

∑
mjαj =

∑
mjβj ≤ K2

∑
βj = K2|β|.

Let W be the (finite-dimensional) span of the coefficients cα. Choose
α1, . . . , αν such that the cαj span W . Choose a multi-index η with |η| >
K2

K1
|αj | for 1 ≤ j ≤ ν. By (7), m · (η − αj) 6= 0 for all j. Since 〈cα, cβ〉 m ·

(α− β) = 0 for all α, β, we conclude that 〈cη, cαj 〉 = 0 for all j. Therefore
cη = 0 and hence there are only finitely many non-vanishing coefficient vec-
tors. Thus f is a polynomial.

Next suppose that L has k eigenvalues of the same sign. After renum-
bering the coordinates and replacing t by −t if necessary, we may assume
that these are positive and correspond to the first k coordinates. Setting the
remainder of the variables equal to 0 puts us in the situation above. The
conclusion follows. �

Remark 4.1. One can draw stronger conclusions. For example, when n =
1, equation (6) implies that the vectors cα are mutually orthogonal and
hence that f is an orthogonal sum of monomials.

Remark 4.2. When L has N+ positive and N− negative eigenvalues we
can conclude (with obvious notation) that f(z′, 0) and f(0, z′′) are both
polynomials. When L has eigenvalues of both signs, however, f need not be
a polynomial.
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Example 4.1. Let γ(t) be the diagonal unitary matrix with eigenvalues eit

and e−it. The eigenvalues of L are then ±1. Assume f is a function of the
product z1z2. Then f(γ(t)z) = f(z) but f need not even be rational.

The following results are corollaries of Proposition 4.1.

Theorem 4.1. Let f : Bn → BN be holomorphic with f(0) = 0. If the Lie
algebra g of Γf ∩U(n) contains a matrix M such that L = −iM has k pos-
itive eigenvalues, then there is a k-dimensional linear subspace V such that
the restriction of f to V is a polynomial.

Proof. Write M = iPDP ∗ where P is unitary and D is diagonal with k
positive eigenvalues. Let W be the linear subspace of g spanned over R by M .
Since W is a Lie subalgebra, there is a unique Lie subgroup G ⊆ Γf ∩U(n)
whose Lie algebra is W . We regard G as the group of transformations of
the form PeiDtP ∗ for t ∈ R. Put h = f ◦ P . By Proposition 2.2, the curve
γ = eiDt lies in Γh. We wish to apply Proposition 4.1. The condition on γ′(0)
holds by construction. Since h(0) = 0, Lemma 2.1 implies that ||h ◦ γ||2 =
||h||2. Thus both conditions in Proposition 4.1 apply, and we conclude that
the restriction of f to some k-dimensional subspace is a polynomial. �

The corollaries from the introduction follow easily. First, if Γf contains
the center of U(n), then the Lie algebra g of Γf ∩U(n) contains iIn. The
subspace W in Theorem 4.1 is Cn and hence f is equivalent to a polynomial.
The statements in Corollary 1.2 follow as well. In each case the hypotheses
imply the hypotheses of Theorem 4.1 with k = n. Hence f is rational. The
results from [DX] then yield the conclusions about spherical equivalence.

Huang (See [Hu1]) established a linearity result for proper maps in low
codimension without assuming rationality. Instead, the maps are assumed
to have two continuous derivatives at the boundary sphere. By contrast,
we make no regularity assumption; instead we assume that the Hermitian
invariant group is large.

We note also the following result from [DX]. Each finite subgroup of
Aut(Bn) is the Hermitian group of some rational proper map with source Bn.

5. Completely non-rational proper maps

A proper holomorphic map f : Bn → BN is completely non-rational if,
for each positive-dimensional affine linear subspace V of Cn, the restriction
of f to V is not rational.
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Example 5.1. Completely non-rational proper maps between balls exist.
Begin with an arbitrary bounded holomorphic map g that is completely
non-rational but continuous on the closed ball. After dividing by a constant,
we may assume 1− ||g||2 > 0 on the unit sphere. By the work of Løw [Lw],
there is a holomorphic map h such that 1− ||g||2 = ||h||2 on the sphere.
Hence g ⊕ h maps the sphere to the sphere, and hence defines a proper map
between balls. It is completely non-rational because g is. One subtlety here
involves the regularity of h. In general one cannot conclude that h is any
smoother than continuous.

We prove the following result.

Theorem 5.1. Let f : Bn → BN be a minimal completely non-rational
proper mapping. Then Γf and Tf are either both finite or both noncompact.

Proof. By Proposition 2.3, it suffices to prove the conclusion for Γf . Assume
f(0) = 0. Let g be the Lie algebra of Γf ∩U(n). If Γf ∩U(n) is not finite,
then its dimension as a Lie group is at least 1. Then g contains a non-
zero skew-Hermitian matrix M . Put L = −iM . After possibly replacing M
with −M we may assume that L has a positive eigenvalue. By Theorem
4.1, f is rational on some linear subspace of dimension 1, contradicting the
assumption that f is completely non-rational. Hence Γf ∩U(n) is finite.

Next let γ be an arbitrary element of Aut(Bn). Put G = f ◦ γ. Propo-
sition 2.2 implies that Γg = γ−1 ◦ f ◦ γ. Thus both Γg ∩U(n) and Γf ∩ γ ◦
U(n) ◦ γ−1 are finite. By Proposition 2.3, Γf is a Lie subgroup. Hence it
is either noncompact or contained in a maximal compact Lie subgroup of
Aut(Bn). In the second case, for some automorphism φ, we have

(8) Γf ⊆ φ ◦U(n) ◦ φ−1.

By the previous argument, the intersection of the group on the right-hand
side of (8) with Γf is Γf and must be finite. �

We close the paper by mentioning a rigidity problem for holomorphic
mappings between compact hyperbolic spaces raised by Siu in [S]. See also
[Hu2] for a CR-geometric formulation. Cao and Mok ([CM]) established the
following result: Let (X, g) be a compact n-dimensional complex hyperbolic
space form and (Y, h) an m-dimensional hyperbolic space form with m ≤
2n− 1. Then a holomorphic immersion f : X → Y is necessarily a totally
geodesic isometric immersion. The conclusion is not known for larger target
dimensions. The hyperbolic space form X is the quotient of the unit ball by
a lattice.
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Siu’s question has the following formulation in the language of this paper.
Let f : Bn → BN be a proper holomorphic map, and suppose Γf contains a
(co-compact) lattice. Must f be a totally geodesic embedding in the Poincaré
metric? The third part of Corollary 1.2 from the introduction draws this
conclusion when the group Γf is non-compact and contains the center of
U(n).
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[F1] F. Forstnerič, Extending proper holomorphic maps of positive codi-
mension, Inventiones Math. 95 (1989), 31–62.
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