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Divisibilities among nodal curves

Matthias Schütt

We prove that there are no effective or anti-effective classes of
square −1 or −2 arising from nodal curves on smooth algebraic
surfaces by way of divisibility. This general fact has interesting ap-
plications to Enriques and K3 surfaces. The proof relies on specific
properties of root lattices and their duals.

1. Introduction

Nodal curves are among the most intriguing objects on algebraic surfaces.
The terminology refers to smooth rational curves C with self-intersection
C2 = −2. By the adjunction formula, nodal curves can be contracted to
rational double point singularities without affecting the dualizing sheaf; this
offers one explanation for our interest in configurations of nodal curves.

Consider the classes of the nodal curves, or more generally (−2)-curves,
in the Néron–Severi lattice

Num(S) = Div(S)/ ≡

of divisors modulo numerical equivalence (this equals the Néron–Severi group
modulo the torsion). Then divisibilities can lead to the existence of certain
coverings of S which are often interesting in their own right. Classically this
problem has been studied for K3 surfaces (which we shall come back to mo-
mentarily — think of Kummer surfaces, for instance). Here we will develop
a general result which we hope to be of independent relevance:

Theorem 1.1. Let R ⊂ Num(S) be a root lattice generated by (−2)-curves
on a smooth algebraic surface S. Denote the primitive closure by

R′ = (R⊗Q) ∩Num(S) and let D ∈ R′ \R.

If D2 = −2 or −1, then D is neither effective nor anti-effective.

The proof of Theorem 1.1 largely builds on basic properties of root lat-
tices and their duals, especially in relation with reflections, which we will

1359



i
i

“14-Schutt” — 2018/11/14 — 16:15 — page 1360 — #2 i
i

i
i

i
i

1360 Matthias Schütt

discuss in the subsequent sections before the proof is completed in Section 5.
Here we would like to point out two interesting applications to K3 surfaces
and Enriques surfaces — where (−2)-curves are automatically smooth ra-
tional (i.e. nodal) by adjunction.

Corollary 1.2. Let S be a K3 surface and R ⊂ Num(S) be a root lattice
generated by nodal curves on S. Its primitive closure R′ contains no vectors
outside R with square −2:

D ∈ R′, D2 > −4 =⇒ D ∈ R.

The corollary follows immediately from Theorem 1.1 as a consequence of
Riemann–Roch (and the evenness of Num(S)). It has received some atten-
tion before in special cases, for instance for R decomposing into orthogonal
copies of the root lattice A2 (see [1], [2], [5]), or for Kummer surfaces.

Theorem 1.1 also has a big impact on possible configurations of nodal
curves on Enriques surfaces: here the configuration often forces divisibili-
ties (since Num(S) is unimodular), so Theorem 1.1 provides some severe
restrictions — without appeal to any K3 surfaces, so that this holds for all
Enriques surfaces, even in characteristic two. For detailed applications, the
reader is referred to [6], [7], [8].

Convention 1.3. Throughout this paper, we take root lattices to be nega-
tive-definite (in agreement with the geometric picture from Theorem 1.1).

2. Basics on Root lattices

We start by reviewing basic properties of root lattices. Standard references
include [3], [4].

Any root lattice R admits an orthogonal decomposition into irreducible
root lattices Ri of ADE-type, unique up to order:

R =

m⊕
j=1

Rj .(1)

Given an embedding into some integral lattice L,

R ↪→ L

(where we will later take L = Num(S)), the primitive closure

R′ = (R⊗Q) ∩ L
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naturally sits inside the dual of R:

R′ ↪→ R∨ =
⊕
i

R∨i .

For ease of notation, assume for the moment that R is irreducible of rank n.
We can thus interpret the elements in R′ \R as elements of R∨ \R, classified
modulo R by the non-zero elements of the discriminant group

AR = R∨/R.

This is a finite abelian group whose shape depends on R as detailed in the
Table 1. The values modulo 2Z which the quadratic form assumes on R∨

only depend on the representatives of AR. These can easily be worked out,
for instance in terms of certain dual vectors for the standard basis of R
corresponding to the associated Dynkin diagram:r r r r r

a1 a2 . . . an
(An)

r r r r r���HHH

r
rd1 d2 dn−2

dn−1

dn

(Dn)

r r r r r r r
e2 e3 e4 e5

r e1
. . . en

(En)

Figure 1: Dynkin diagrams of type Ar, Dr, Er.

R An Dn(n ≥ 4 even) Dn(n > 4 odd) E6 E7 E8

AR Z/(n+ 1)Z Z/2Z× Z/2Z Z/4Z Z/3Z Z/2Z 0
generators a∨1 d∨1 , d

∨
n d∨n e∨6 e∨7 0

squares − n
n+1 −1,−n

4 −n
4 −4

3 −3
2 0

Table 1: Discriminant group data.
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Since E8 is unimodular, in particular E8 = E∨8 , we will not have to con-
sider E8 for our purposes and thus omit this lattice for the rest of this paper
without further mention.

3. Dual vectors

We continue by elaborating on some important properties of the dual vectors
of R. Here we shall mostly be concerned with very specific ones which relate
to the appearance of R in the singular fibers of elliptic fibrations (as classified
by Kodaira over C) minus any simple component.

Definition 3.1. We call a vertex v of R simple if the corresponding fiber
component in the resulting singular fiber is simple.

Equivalently v has multiplicity 1 in the primitive isotropic divisor in the
extended Dynkin diagram R̃. Concretely, all vertices of root lattices of type
An are simple, but only

d1, dn−1, dn for Dn and e2, e6 for E6, e7 for E7.

The meaning of simple vertices is illustrated by the following interrelated
classical facts:

Lemma 3.2. The non-zero elements of AR are exactly represented by the
dual vectors v∨ for the simple vertices v ∈ R.

Since R∨ ⊂ R⊗Q, we can express each vector v ∈ R∨ in terms of the
standard basis vi as a sum

v =

n∑
i=1

αivi, αi ∈ Q.(2)

Lemma 3.3. If v ∈ R is a simple vertex, then the dual vector v∨ has all
αi < 0.

Moreover the simple vertices feature an intriguing relation to the roots
of R:

Lemma 3.4. Let x ∈ R be a root, expressed in terms of the standard basis
vi as x =

∑n
i=1 αivi. Then αi ∈ {−1, 0, 1} for all simple vertices vi.
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We note an important consequence which will be instrumental for our
considerations to follow.

Corollary 3.5. If v is a simple vertex and x a root in R, then v∨.x ∈
{−1, 0, 1}.

Remark 3.6. The statement of Corollary 3.5 does no longer hold true if
v is not a simple vertex. Indeed, then there is some root x ∈ R such that
v∨.x ≥ 2.

The statement of Corollary 3.5 does, however, generalize to certain other
elements in R∨ as we shall see and utilize crucially in Lemma 4.2.

4. Small vectors

Recall that in the end we are determined to study vectors of square −1 or
−2 in R′ ⊂ R∨. Necessarily these are composed of small (or zero) vectors
from the dual lattices R∨i of the orthogonal summands which we shall thus
study in a little more detail here.

Convention 4.1. Following the standard terminology inspired from the
positive-definite case, we let ’small’ refer to the absolute value.

4.1. Smallest vectors

If R denotes an irreducible root lattice as before, then the value of the
smallest non-zero vectors in R∨ is exactly given in the Table 1. — except
for Dn for odd n > 4 where (d∨1 )2 = −1 attains the minimum.

It is well known that the smallest vectors form exactly one, two or three
orbits under the action of the Weyl group W (R), and that each orbit is
generated by the dual vector of some simple vertex. In detail, we have:

R A1 An (n > 1) D4 Dn (n > 4) E6 E7

# orbits 1 2 3 1 2 1
generators a∨1 a∨1 , a

∨
n d∨1 , d

∨
2 , d
∨
3 d∨1 e∨2 , e

∨
6 e∨7

4.2. 2nd smallest vectors

For the second smallest non-zero vectors in the dual R∨ of an irreducible root
lattice, we did not find a proper reference, but all claims in this paragraph
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(and in 4.3, 4.4) can be verified directly (for instance, utilizing the standard
model of An as trace zero hypersurface inside euclidean Zn+1, up to sign,
with Weyl group W (An) ∼= Sn+1 acting by permutation of coordinates).

The second smallest non-zero vectors in R∨ have square

• (a∨2 )2 = −2(n−1)
n+1 for An (n > 2),

• (d∨n)2 = −n
4 for Dn (4 < n ≤ 8), and

• v2 = −2, attained by any root v ∈ R, but by no element in R∨ \R, for
all other irreducible root lattices R.

Obviously, the third case cannot contribute to our problem, so we simply
analyse the first two settings.

R A3 An (n > 3) Dn (4 < n ≤ 7) D8

# orbits of 2nd smallest vectors 1 2 2 3
generators a∨2 a∨2 , a

∨
n−1 d∨n−1, d

∨
n d∨n−1, d

∨
n , any root

4.3. 3rd smallest vectors

With the third smallest vectors, the problem becomes even easier because
there are only a finite number of cases left with value ≥ −2 attained by
some vector in R∨ \R. Indeed, all Dn and En lattices are excluded anyway,
same for A1, . . . , A4, and for An (n > 4), the 3rd smallest value in A∨n \An

is attained by

(a∨3 )2 = −3(n− 2)

n+ 1

which exceeds −2 already starting from n = 9. For the remaining root lat-
tices, we compute:

R A5 An (n = 6, 7) A8

# orbits of 3rd smallest vectors 1 2 3
generators a∨3 a∨3 , a

∨
n−2 a∨3 , a

∨
6 , any root

4.4. 4th smallest vectors

Along the same lines, the case of the 4th smallest non-zero vector boils down
to the root lattice A7 right away (as far as our problem is concerned), with
value −2 and two orbits generated by a∨4 and any root of A7.

For the record, we point out that the fifth smallest non-zero vectors w
in R∨ (and beyond) always fulfill w2 < −2.
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4.5. Applications to intersection numbers

We note an innocent, but very useful consequence of our above findings for
intersection numbers with roots in R:

Lemma 4.2. Let w ∈ R∨ \R be a small vector in the range of 4.1–4.4.
Then for any root x ∈ R we have

w.x ∈ {−1, 0, 1}.

Proof. By our previous considerations, there is some element g ∈W (R),
with action extended to R∨ ⊂ R⊗Q, mapping w to the dual vector v∨ of
some simple vertex v ∈ R. Hence

w.x = g(w).g(x) = v∨.g(x) ∈ {−1, 0, 1}

by Corollary 3.5 since g(x) is, of course, again a root in R. �

Applied to the standard basis v1, . . . , vn of R, this has an interesting
consequence which will become important in the next section:

Lemma 4.3. Let w ∈ R∨ \R be a small non-zero vector in the range of
4.1–4.4. Then

• either there is some i ∈ {1, . . . , n} such that w.vi = −1

• or there is some simple vertex v ∈ R such that w = v∨.

Proof. By Lemma 4.2, we have w.vi ∈ {−1, 0, 1} for all i = 1, . . . , n. Assume
that w.vi ≥ 0 for all i. Since R is non-degenerate and w 6= 0, there is some i
such that w.vi = 1. Assume that there is j 6= i with w.vj = 1 as well. Then
consider the root x = v1 + . . .+ vn. By assumption, w.x ≥ 2, contradicting
Lemma 4.2. Hence w.vj = 0 for all j 6= i, and thus w = v∨i . Here vi is a
simple vertex since by Lemma 4.2, w.x ∈ {−1, 0, 1} for any root in R which
does not hold for any other vertex by Remark 3.6. �

5. Proof of Theorem 1.1

We return to the situation from (1) where R is no longer assumed to be
irreducible. Recall that in view of Theorem 1.1, we are interested in vectors

w ∈ R′ \R with w2 = −1,−2.(3)
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Writing w = (w1, . . . , wm), we infer that each wi is either zero or a small
vector in R∨i \Ri. For the record, we note the following observation:

Lemma 5.1. Assume that wi 6= 0. Then wi is in one of the orbits listed in
4.1–4.4.

Remark 5.2. We will not need this in the sequel, but the second smallest
vectors in An for n ≥ 8 can also be excluded as follows: we have

−2 < (a∨2 )2 = −2(n− 1)

n+ 1
< −3

2
.

Since v2 ≤ −1
2 for any non-zero v ∈ R∨, we infer that a∨2 cannot be com-

plemented by any vector from some dual of a root lattice to have square
−2.

We are now in the position to attack the proof of Theorem 1.1. This
puts us in the situation of (3) with the crucial addition that the vertices vj
of R ⊂ Num(S) are classes of (−2)-curves Cj ⊂ S. Our argument is inspired
by discussions with S. Rams on the case of R = 4A2 on Enriques surfaces
(see [5]) which themselves received crucial input from [2, Lem. 1.1].

Assume that w ≥ 0 as a divisor on S. We argue componentwise using
the expression w = (w1, . . . , wm), so let us fix the ith component and assume
that R∨i 3 wi 6= 0, so that wi is a small vector in the range of 4.1–4.4 by
Lemma 5.1. Numbering the vertices of Ri by v1, . . . , vn as before, there are
two cases by Lemma 4.3:

• either wi.vj ≥ 0 for each j = 1, . . . , n, so wi = v∨ for some simple ver-
tex v ∈ Ri;

• or there is some vertex vj such wi.vj = −1.

We shall now show how the second case successively leads to the first. Since
wi.Cj = −1 and w ≥ 0, we infer that Cj is contained in the support of wi,
so wi − Cj is still effective. On the other hand, incidentally, wi − Cj is the
reflection of wi in Cj , so the two vectors have the same square. Thus we
can iterate the above process. Necessarily this procedure terminates since
at each step, the sum of the Q-coefficients of the small vector, expressed in
the vj as in (2), drops by one while there are only finitely many vectors of
given square, of course. In the end, we obtain a vector w′i ∈ R∨i of the same
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square as wi (equivalent under reflections, in fact), such that

w′i.vj ≥ 0 for all j = 1, . . . , n.

As we have seen, the construction preserves effectivity:

w′i ≥ 0.(4)

On the other hand, w′i equals the dual vector of some simple vertex v ∈
Ri by Lemma 4.3. But then all Q coefficients of w′i = v∨ are negative by
Lemma 3.3.

Since the irreducible root lattices Ri are orthogonal, we can carry out the
above procedure for all wi separately. Ultimately, we arrive at an effective
divisor w′ = (w′1, . . . , w

′
m) all whose components have zero or negative Q-

coefficients in terms of the given basis of R consisting of (−2)-curves. Hence
there is some integral multiple

Mw′ ≤ 0 (M ∈ N),

giving the required contradiction since w′ was still shown to be effective (as
a consequence of (4)), and clearly non-zero.

If w ≤ 0, then reverse the sign and proceed as above. This completes the
proof of Theorem 1.1. �
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