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We bound the degrees of generators and relations of section rings
associated to arbitrary Q-divisors on projective spaces of all di-
mensions and Hirzebruch surfaces. For section rings of effective
Q-divisors on projective spaces, we find the best possible bound
on the degrees of generators and relations.
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1. Introduction

For any Weil Q-divisor D on a rational surface X, the graded section ring
is R(X,D) :=

⊕
d≥0H

0(X, bdDc). In the case that D = KX , where KX is
the canonical divisor, the graded section ring is referred to as “the canonical
ring” and is a classical object of study. For example, if C is a curve of genus
g ≥ 4, Petri’s theorem relates the geometry of the curve C to the canonical
ring: R(C,KC) is generated in degree 1 with relations in degree 2 unless C is
hyperelliptic, trigonal, or a plane quintic (see [9, p. 157] and [1, Section 3.3]).
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1330 A. Landesman, P. Ruhm, and R. Zhang

In this way, explicit descriptions of generators and relations of section rings
yield geometric information about the underlying variety.

One natural way to generalize the classical result of Petri mentioned
above is to examine the section rings of stacky curves (i.e., smooth proper
geometrically connected 1-dimensional Deligne-Mumford stacks over a field
with a dense open subscheme). These were studied by Voight–Zureick-Brown
[12] and Landesman–Ruhm–Zhang [7], which provide tight bounds on the
degree of generators and relations of log canonical rings and log spin canon-
ical rings on arbitrary stacky curves. All rings of modular forms associated
to Fuchsian groups can be realized as canonical rings of such curves, so
the above work also yields insight into such rings of modular forms. Fur-
ther, O’Dorney [8] gives similar descriptions of section rings for arbitrary
Q-divisors on P1 (as opposed to just log canonical Q-divisors and log spin
canonical Q-divisors).

Beyond section rings of curves, section rings of certain higher dimen-
sional stacks have also been studied. For example, the Hassett-Keel program
[5] studies log canonical rings on Mg of the form

M g(α) :=
⊕
d≥0

H0
(
M g, bdKM g

+ αδc
)

in terms of certain moduli spaces, where Mg is the moduli space of stable
genus g curves.

Moreover, Q-divisors on surfaces not only appear in the context of stacks,
but also naturally appear when considering the canonical ring of surfaces of
Kodaira dimension 1. In characteristic 0, every surface of Kodaira dimension
1 is an elliptic surface [2, p. 244], and the canonical rings of elliptic surfaces
are most naturally described in the setting of Q-divisors [2, Chapter V,
Theorem 12.1].

In this paper, we continue the study of section rings of surfaces and
higher dimensional varieties, examining section rings of projective spaces Pm
and Hirzebruch surfaces Fm. When D is a general Q-divisor on Pm or Fm,
we give bounds on the generators and relations of R(X,D). In particular,
we give a presentation of the section ring when D is any effective Q-divisor
on Pm.

Throughout, for ease of notation, we work over a fixed algebraically
closed field k. This is nonessential, see Remark 2.1.1
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1.1. Main results and outline

After briefly stating our notation in Section 2, in Section 3, we prove the fol-
lowing two results bounding the degree of generators and relations of section
rings on Pm. The first applies to effective Q-divisors and the second applies
to arbitrary Q-divisors. Note that here we allow coefficients of divisors to be
0, see Section 3.2.

Theorem 1.1.1. Let D =
∑n

i=0 αiDi ∈ DivPm ⊗Z Q, with αi = ci
ki
∈ Q>0

in reduced form and each Di ∈ DivPm an integral divisor. Then the section
ring R(Pm, D) is generated in degrees at most max0≤i≤n ki with relations
generated in degrees at most 2 max0≤i≤n ki.

Theorem 1.1.2. Let D =
∑n

i=0 αiDi ∈ DivPm ⊗Z Q with αi = ci
ki
∈ Q in

reduced form. Write `i := lcm0≤j≤n,j 6=i(kj) and ai := degDi. Let Pm ∼=
Projk[x0, . . . , xm] and let fi ∈ k[x0, . . . , xm] such that Di = V (fi). Suppose
that {f0, . . . , fn} contains a basis for H0(Pm,OPm(1)), (i.e. m+ 1 indepen-
dent polynomials with corresponding ai = 1).

Then R(Pm, D) is generated in degrees at most ω :=
∑n

i=0 `iai with re-
lations generated in degrees at most

max

(
2ω,

max0≤i≤n(ai)

deg(D)
+ ω

)
.

Remark 1.1.3. The bounds given in Theorem 1.1.1 are tight and are typ-
ically attained, as explained in Remark 3.1.6. Similarly, the bounds given in
Theorem 1.1.2 are asymptotically tight to within a factor of two for a class
of divisors described in Remark 3.2.10.

Note that the assumption given in Theorem 1.1.2 that {f0, . . . , fn} con-
tains a basis for H0(Pm,OPm(1)) is not a serious assumption: If D is an
arbitrary divisor, then D + 0 · V (x0) + · · ·+ 0 · V (xm) is a divisor satisfying
this assumption. Plugging this divisor into the statement of Theorem 1.1.2,
we obtain the following bounds for an arbitrary divisor:

Corollary 1.1.4. Let D =
∑n

i=0 αiDi ∈ DivPm ⊗Z Q with αi = ci
ki
∈ Q in

reduced form. Write ` := lcm0≤j≤n(kj), `i := lcm0≤j≤n,j 6=i(kj) and ai :=
degDi. Let Pm∼=Projk[x0, . . . , xm] and let fi∈k[x0, . . . , xm] such that Di=
V (fi).
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Then R(Pm, D) is generated in degrees at most ω′ :=(m+ 1)`+
∑n

i=0 `iai
with relations generated in degrees at most

max

(
2ω′,

max0≤i≤n(ai)

deg(D)
+ ω′

)
.

In Section 4, we shift our attention to Hirzebruch surfaces. Recall that
for each m ≥ 0 we define the Hirzebruch surface Fm := Proj Sym(OP1 ⊕
OP1(m)), viewed as a projective bundle over P1. Let u, v the projective co-
ordinates on the base P1 and let z, w be the projective coordinates on the
fiber, as defined more precisely at the beginning of 4.

Theorem 1.1.5. Let D =
∑n

i=1 αiDi ∈ DivFm ⊗Z Q where αi = ci
ki
∈ Q

is written in reduced form. Let each Di = V (fi), where fi ∈ O(ai, bi). Let
u, v, z, w be the coordinates for the Hirzebruch surface Fm, and suppose that
{f1, . . . , fn} contains bases for OFm(1, 0) and OFm(0, 1) (i.e., two indepen-
dent linear polynomials in u, v and two independent linear polynomials in
w, z ).

Then R(Fm, D) is generated in degrees at most

ρ′ := lcm1≤i≤n(ki) ·

 ∑
1≤i≤j≤n

aibi


with relations generated in degrees at most 2ρ′.

Remark 1.1.6. Theorem 1.1.5 is restated with a more precise bound in
Theorem 4.1.4.

Remark 1.1.7. As in Theorem 1.1.2, the condition of Theorem 1.1.5 that
D contain independent polynomials in u, v and w, z is easily removed by
replacing D with D′ := D + 0 · u+ 0 · v + 0 · w + 0 · z, and computing the
resulting bound for D′ using either the simpler (but slightly weaker) bound
from Theorem 1.1.5 or the more precise bound given in Theorem 4.1.4.

By the classification of minimal rational surfaces as either P2 or a Hirze-
bruch surface [4], Theorems 1.1.2 and 1.1.5 provide bounds on generators
and relations for the section ring of any Q-divisor on any minimal rational
surface. Section 5 discusses further questions.
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1.2. Modular forms

The work in this paper was motivated by potential applications to calcu-
lating a presentation of certain rings of Hilbert modular forms and Siegel
modular forms. Recall that Hilbert and Siegel modular forms are two gen-
eralizations of modular forms to higher dimensions, as described in [10] and
[3]. If the bounds given in Theorem 1.1.2 and Theorem 1.1.5 could be ex-
tended to all rational surfaces, instead of just minimal ones, they would give
a bound on generators and relations for rings of Hilbert and Siegel modu-
lar forms parametrized by rational Hilbert and Siegel modular surfaces. See
Section 5 for a potential approach for generalizing our results to arbitrary
rational surfaces. This would be interesting because such modular surfaces
tend to be immensely complicated.

Since our results only apply to minimal rational surfaces, and because
the rings of Hilbert and Siegel modular forms are so complex, we were un-
able to use our work to compute the section ring of an explicit modular
surface. Although we did not obtain a bound on the degree of generators
and relations for general rational surfaces, the restricted class of rational
varieties we consider still required significant work.

2. Notation

In this section, we now collect various notation used throughout the paper.
Throughout, we work over a fixed algebraically closed field k for ease of
notation, but our results hold equally well over arbitrary fields.

Remark 2.1.1. Because cohomology commutes with flat base change (in
particular with field extensions) the dimensions of the graded pieces of the
section ring will be preserved under base change from k to k. Therefore
generators and relations are preserved under arbitrary base field extension,
and so their minimal degrees are preserved. Consequently, there is no harm
in assuming k = k for our proofs. The bounds we give hold equally well over
arbitrary fields.

Note that if L/k is an inseparable extension and X is a scheme over
k, then the base change of the canonical divisor (KX)L may be different
than the canonical divisor of the base change KXL . Therefore, the canonical
ring may not be preserved under base change along inseparable extensions.
Nonetheless, the results we give are not affected because given a divisor on
a scheme over some base field, the structure of that particular section ring
is unchanged upon base change to the algebraic closure.
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Let D be a (Weil) Q-divisor on a rational surface X of the form

D =

n∑
i=1

αiDi ∈ DivX ⊗Z Q.

where n ∈ Z≥0 indexes the number of irreducible divisors in the above ex-
pansion of D, αi ∈ Q, and Di ∈ DivX is an integral codimension 1 closed
subscheme of X. When it is convenient to do so, we shall sometimes start
the indexing at 0, so that i runs from 0 to n. In the case X = Pm, define the
degree of D by degD :=

∑n
i=1 αi · degDi. The floor of a Q-divisor D is the

divisor bDc :=
∑n

i=1bαicDi.
Let R(X,D) :=

⊕
d≥0H

0(X, bdDc) denote the section ring associated
to the Q-divisor D. We often alternatively write

R(X,D) :=
⊕
d≥0

udH0(X, bdDc),

where u is a dummy variable to keep track of the degree. When X is under-
stood from context, we use RD as notation for R(X,D).

We use m ∈ Z≥0 to index the dimension of a given projective space Pm
and the type of the Hirzebruch surface Fm. If S is a graded ring, we denote
the dth graded component of S by Sd. If r is a rational number, we let
frac(r) := r − brc denote the fractional part of r. If D ∈ DivX ⊗Z Q is an
arbitrary divisor, we denote h0(X,D) := dimkH

0(X,D).

3. Section rings of projective space

Let k be a field and let Pm denote m-dimensional projective space over k. In
this section, we prove Theorem 1.1.2, which bounds the degrees of generators
and relations of the section ring of any Q-divisor on X = Pm for all m ≥ 1.
We also prove Theorem 1.1.1 to give an explicit description of the generators
of the section ring RD when D is an effective divisor.

If degD < 0, the section ring is concentrated in degree 0, and if degD =
0, then the section ring has a single generator. Therefore, for the remainder of
this section, we shall assume degD > 0. Note that the P1 case, in particular,
restricts to the results of [8].

For the remainder of this section, we shall fix m ≥ 1 and choose an
isomorphism Pm ∼= Projk[x0, . . . , xm].
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3.1. Effective divisors on projective space

In this subsection, we restrict attention to the case of effective fractional
divisors D ∈ DivPm ⊗Z Q. We give an explicit presentation of the section
ring when D is an effective divisor.

Convention 3.1.1. Let Pm ∼= Projk[x0, . . . , xm]. Let ~v = (v0, . . . , vm) ∈
Zm+1. Then write

x~v :=

m∏
i=0

xvii .

Definition 3.1.2. For ~v ∈ Zn, denote deg~v :=
∑n

i=0 vi. For a given se-
quence of numbers c0, . . . , cr, let

Si :=
{
~v ∈ Zm+1

≥0 : deg~v = ci

}
.

Next, we define an ordering on these vectors, which will be used to give
a presentation for RD.

Definition 3.1.3. Let ~v, ~w ∈ Zm+1. Let i ∈ {0, . . . ,m} be the biggest index
such that vi is nonzero and j ∈ {0, . . . ,m} be the smallest index such that
wj is nonzero. Define a partial ordering on Zm+1 by ~v ≺ ~w if i ≤ j.

We are now ready to give an inductive method for computing the gen-
erators and relations of RD in terms of RD′ in the case that D′ = RD + αH
for H a hyperplane and α positive. The statement and proofs are natural
generalizations of [8, Theorem 6].

Theorem 3.1.4. Let Pm ∼= Projk[x0, . . . , xm]. Let D′ ∈ DivPm ⊗Z Q and
D = D′ + αH, with α = p

q ∈ Q>0, H := V (xk) a hyperplane of Pm, and H /∈
Supp(D′). Let

0 =
c0
d0

<
c1
d1

< · · · < cr
dr

=
p

q

be the convergents of the Hirzebruch-Jung continued fraction of α (q.v. [11,
Section 2] and [6, Section 3]). Then, the section ring

RD :=
⊕
d≥0

udH0(Pm, bdDc)

has a presentation over RD′ consisting of the
∑r

i=0

(
m+ci
ci

)
generators F~vi :=

udix~v

x
ci
k

where 0 ≤ i ≤ r and ~v ∈ Zm+1
≥0 with deg~v = ci. Furthermore, the ideal

of relations I is generated by the following two classes of elements.
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1) For each (i, j) with j ≥ i+ 2 and each ~v ∈ Si, ~w ∈ Sj, there is either
a relation of the form

G~v,~wi,j := F~vi F
~w
j −

∏
~y∈Shi,j

(F ~yhi,j )
g~y ∈ I,

with i < hi,j < j, or there is a relation of the form

G~v,~wi,j := F~vi F
~w
j −

 ∏
~y∈Shi,j

(F ~yhi,j )
g~y

 ∏
~z∈Shi,j+1

(F ~zhi,j+1)
g′~z

 ∈ I,
with i < hi,j < hi,j + 1 < j.

2) For each (i, j) with j = i or j = i+ 1 and each ~v ∈ Si, ~w ∈ Sj with
~v 6≺ ~w (see Definition 3.1.3) there is a relation of the form

L~v,~wi,j := F~vi F
~w
j − F

~y
i F

~z
j ∈ I

where ~y and ~z are the unique vectors in Si and Sj, respectively, such that
~y + ~z = ~v + ~w and ~y ≺ ~z.

Idea of Proof. The proof follows in three steps. First, since the F~vi gener-

ate all of RD over RD′ , and the leading terms of G~v,~wi,j lies in RD′ , we obtain

the relations G~v,~wi,j . Then, we derive the relations L~v,~wi,j by considering when
products of generators in neighboring degrees are equal. Finally, we demon-
strate that G~v,~wi,j ’s and L~v,~wi,j ’s generate all of the relations by using them to
reduce arbitrary elements of RD to a canonical form.

Proof. As a first step, we reduce to the case D′ = 0. Using that D is effec-
tive, we can write RD = RD′ +RαH (where the sum is nearly a direct sum,
except the (RD′)d ∩ (RαH)d is the one dimensional subspace generated by
ud). Then, to give a presentation of RD over R′D, it suffices to give a presen-
tation of RαH : generators of RαH map to generators of RD over RD′ under
the inclusion ι : RαH → RD and relations map to a full set of relations for
RD over RD′ . Hence, for the remainder of the proof, we can assume D′ = 0.

Next we show that F~vi generate all ofRD. In the casem = 1, O’Dorney [8,
Theorem 6] demonstrates that each lattice point (β, γ) ∈ Z2

≥0 with γ ≤ βα
lies in the Z≥0 span of (dh, ch) and (dh+1, ch+1) for some h ∈ {0, . . . , r}. A
similar strategy works in the case m>1. Let (β, γ)=λ(dh, ch)+κ(dh+1, ch+1)
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for λ, κ ∈ Z≥0. Any element uβx~v

xγk
∈ RD is expressible as

uβx~v

xγk
=

(
udh

xchk

)λ(
udh+1

x
ch+1

k

)κ
x~v.

We can then write ~v =
∑λ

τ=1 ~w(τ) +
∑κ

η=1 ~z(η) with ~w(τ) ∈ Sh and ~z(η) ∈
Sh+1 to give a decomposition

uβx~v

xγk
=

λ∏
τ=1

udhx~w(τ)

xchk

κ∏
η=1

udh+1x~z(η)

x
ch+1

k

(3.1)

consisting of products of generators F
~w(λ)

h and F
~z(η)
h+1 which are in the form

prescribed in the theorem statement. Since we wrote an arbitrary monomial
uβx~v

xγk
∈ RD as a product of generators, this shows that the F~vi generate RD.

Next, we show that the relations given in the statement of the theorem
generate all relations. In particular, if j ≥ i+ 2 then F~vi F

~w
j has a decompo-

sition of the form (3.1) of products of generators in adjacent degrees where
h depends on i and j, so we denote hi,j := h ∈ {1, . . . , r}. We also have
that i ≤ hi,j < j since (di + dj , ci + cj) is in the Z≥0-span of (dhi,j , chi,j ) and
(dhi,j+1, chi,j+1). Furthermore, hi,j 6= i and hi,j 6= j − 1 as follows from an
analogous proof to that given by O’Dorney [8, Theorem 6] for the case of

P1. This gives the relations G~v,~wi,j .

One can use the relations G~v,~wi,j to transform any monomial in the F~vi ’s

involving indices that differ by more than 1 to a monomial in the F~vi ’s
involving indices that differ by at most 1.

We also have relations involving generators in consecutive indices. Sup-
pose F~vi and F ~w

j are generators with j = i or j = i+ 1 and ~v ∈ Si, ~w ∈ Sj

with ~v 6≺ ~w. Let ~y and ~z be the unique vectors in Si and Sj , respectively,
such that ~y + ~z = ~v + ~w and ~y ≺ ~z (i.e. the nonzero indices of ~y followed by
those of ~z give an increasing sequence). Then we see that

F~vi F
~w
j = x~v+~w

(
udi

xcik

)(
udj

x
cj
k

)
= x~y+~z

(
udi

xcik

)(
udj

x
cj
k

)
= F ~yi F

~z
j ,

which give the relations L~v,~wi,j .
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Now, we may apply the relations L~v,~wi,j to any monomial in the F~vi ’s
involving indices that differ by at most 1 to produce the canonical form

λ∏
τ=1

(F
~v(τ)
i )g~v(τ)

κ∏
η=1

(F
~v(η)
i+1 )g~v(η)

where ~v(1) ≺ ~v(2) ≺ . . . ≺ ~v(λ) ≺ ~w(1) ≺ . . . ≺ ~w(κ). Consequently, the rela-

tions of form G~v,~wi,j and the relations of form L~v,~wi,j generate all the relations

among the F~v,~wi . �

Remark 3.1.5. In the case that D = α0D0 is supported on a single hyper-
surface and D′ = 0, the relations in Theorem 3.1.4 form a reduced Gröbner
basis with respect to the ordering given in Definition 3.1.3.

Theorem 3.1.4 gives an inductive procedure to compute presentations of
effective divisors which are supported on hyperplanes. However, for m ≥ 2,
there are hypersurfaces which are not unions of hyperplanes. We now address
this general case, giving an inductive presentation of section rings of effective
divisors, and a tight bound on the degrees of their generators and relations.

Proof of Theorem 1.1.1. We proceed by induction on n. If n = 0, i.e. D =
0, then we are done. Now, we inductively add hypersurfaces. Let D′ =∑n

i=0 αiDi ∈ DivPm ⊗Z Q, and assume the theorem holds for D′. It suf-
fices to show the theorem holds for D ∈ DivPm ⊗Z Q, where D = D′ + αC
for some degree δ hypersurface C. If C were a hyperplane, we would then
be done, by Theorem 3.1.4.

To complete the theorem, we reduce the case that C is a general hyper-
surface to the case that C is a hyperplane, by using the Veronese embedding.

If C is of degree δ, consider the Veronese embedding νmδ : Pm → P(m+δ

δ )−1

so that the image of C is the intersection of a hyperplane in P(m+δ

δ )−1 with
νmδ (Pm). Now, the ring RαC is isomorphic to the δ Veronese subring of

RαV (x0) =
⊕
d≥0

udH0(Pm, dαV (x0)).

Therefore, we can bound the degree of generators and relations of RD over
RD′ by the degree of generators and relations for RC ∼= RH . This reduces
the case of a hypersurface C to a hyperplane H, completing the proof by
Theorem 3.1.4. �
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Remark 3.1.6. The proof of Theorem 1.1.1 not only gives bounds on the
degrees of the generators and relations, but actually gives an explicit method
for computing the presentation. Also, a minimal generating set of RD over
RD′ in Theorem 3.1.4 can be given as a subset of the generating set given in
Theorem 3.1.4. Further, one can verify a minimal generating set necessar-
ily contains generators in each of the degrees d0, . . . , dr using the definition
of Hirzebruch-Jung continued fractions. In particular, the bounds of Theo-
rem 1.1.1 are tight. The generator bound is always achieved and the bound
on the relations is achieved if m ≥ 2.

Before giving bounds for arbitrary divisors on projective space in Sub-
section 3.2, we give a detailed example of the generators and relations for a
section ring associated to an effective divisor on projective space.

Example 3.1.7. In this example, we work out generators and relations for
the section ring R(P2, D) with

D :=
1

6
V (x2 + y2 + z2) +

2

5
V (x).

We loosely follow the algorithm described in the course of the proof of The-
orem 1.1.1 and use notation from the statement of Theorem 1.1.1.

For ease of notation, let h := x2 + y2 + z2 and let D′ := 1
6V (h). We first

compute generators and relations for RD′ , then compute generators and
relations for RD over RD′ , and finally put them together to obtain generators
and relations for RD.

To start, we compute generators and relations for RD′ . Indeed, apply-
ing 3.1.4 and scaling the degrees by 2, we see that 1

6 has convergents given
by

0 =
0

1
<

1

6
,

and so the generators are given by

F
′(0,0,0)
0 = u1 F

′(2,0,0)
1 =

u6x2

h
, F

′(1,1,0)
1 =

u6xy

h
,

F
′(1,0,1)
1 =

u6xz

h
, F

′(0,2,0)
1 =

u6y2

h
,

F
′(0,1,1)
1 =

u6yz

h
, F

′(0,0,2)
1 =

u6z2

h
.

(3.2)
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Further, the relations in RD′ are given by

L
′(1,1,0),(1,0,1)
1,1 =

u6xy

h

u6xz

h
− u6x2

h

u6yz

h
,

L
′(1,0,1),(0,1,1)
1,1 =

u6xz

h

u6yz

h
− u6xy

h

u6z2

h
,

L
′(1,0,1),(0,2,0)
1,1 =

u6xz

h

u6y2

h
− u6xy

h

u6yz

h
,

L
′(1,1,0),(1,1,0)
1,1 =

u6xy

h

u6xy

h
− u6x2

h

u6y2

h
,

L
′(1,0,1),(1,0,1)
1,1 =

u6xz

h

u6xz

h
− u6x2

h

u6z2

h
,

L
′(0,1,1),(0,1,1)
1,1 =

u6yz

h

u6yz

h
− u6y2

h

u6z2

h
.

(3.3)

Next, we describe generators and relations for RD over RD′ . Indeed, in
this case, 2

5 has convergents given by

0 =
0

1
<

1

3
<

2

5
.

Therefore, the generators of RD over RD′ are given by

F
(0,0,0)
0 = u1,

F
(0,1,0)
1 =

u3y

x
, F

(0,0,1)
1 =

u3z

x
,

F
(0,2,0)
2 =

u5y2

x2
, F

(0,1,1)
2 =

u5yz

x2
, F

(0,0,2)
2 =

u5z2

x2
.

(3.4)

Note that the generator F
(1,0,0)
3 = u3x

x could be included, but it is redun-

dant as it is equal to (u1)3. Similarly, the generators u5x2

x2 ,
u5xy
x2 , u

5xz
x2 are

redundant. Furthermore, we have relations given by
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G
(0,0,0),(0,2,0)
0,2 = u · u

5y2

x2
−
(
u3y

x

)2

G
(0,0,0),(0,1,1)
0,2 = u · u

5yz

x2
− u3y

x

u3z

x

G
(0,0,0),(0,0,2)
0,2 = u · u

5z2

x2
−
(
u3z

x

)2

L
(0,0,1),(0,2,0)
1,2 =

u3z

x
· u

5y2

x2
− u3y

x

u5yz

x2

L
(0,0,1),(0,1,1)
1,2 =

u3z

x
· u

5yz

x2
− u3y

x

u5z2

x2

L
(0,1,1),(0,1,1)
2,2 =

u5yz

x2
· u

5yz

x2
− u5y2

x2
u5z2

x2
.

(3.5)

Then, combining the above, generators for the ring RD are given by (3.2)
together with (3.4) and relations are given by (3.3) together with (3.5).

3.2. Bounds for arbitrary divisors on projective space

We now offer bounds on generators and relations of RD for a general Q-
divisor D ∈ DivPm ⊗Z Q. Write

D =

n∑
i=0

αiDi ∈ DivPm ⊗Z Q

For the remainder of this section, we shall make the additional assumption
that

f0, . . . , fm are independent linear forms.(3.6)

This may necessitate the inclusion of “ghost divisors” Di with coefficients
αi = 0.

The main aim of this section is to prove Theorem 1.1.2. Having justi-
fied the necessity of adding ghost divisors, we proceed to bound the number
of generators and relations of arbitrary Q-divisors in projective space. In
Proposition 3.2.4, we record a general proposition describing a basis for
H0(Pm, dD). We bound the generators in Lemma 3.2.6, and we use Lem-
mas 3.2.7, 3.2.8, and 3.2.9 to bound the degree of relations in the proof of
Theorem 1.1.2. Proposition 3.2.5, Lemma 3.2.7, and Lemma 3.2.8 are quite
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general and will also be used in Section 4 to bound the degree of genera-
tors and relations on Hirzebruch surfaces. However, before moving on to the
proof of 1.1.2, we justify the importance of assumption (3.6) with several
illustrative examples.

The importance of ghost divisors.

Example 3.2.1. In this example, we show that the naive generalization
of [8, Theorem 8] of generation in degree at most

∑n
i=0 `i cannot possibly

hold. The reason for this is that the divisors may be expressible as functions
in m of the m+ 1 variables on Pm.

Concretely, take D = 1
2H0 − 1

3H1 where H0 = V (x0), H1 = V (x1) are
two coordinate hyperplanes in P2. Then, RD has generators in degree 2
and 3 which can be written as u2 x1

x0
, u3 x1

x0
. In fact, for all degrees less than

5, the elements of RD can all be expressed as rational functions in x0, x1.
However, in degree 6, there is u6 · x

2
1x2

x3
0

. Since this involves x2, it must be a
generator.

This example generalizes slightly to any divisor of the form D = 1
kH0 −

1
k+1H1 ∈ DivP2 ⊗Z Q, with k ∈ N, showing that there will always exist a
generator in degree k(k + 1).

This example further generalizes to the following situation: Suppose

D =

n∑
i=0

pi
qi
Di ∈ DivPm ⊗Z Q,

where degDi = ai and degD = 1
lcm0≤i≤n(qi ·ai)

. Then, if Di = V (fi) where all
fi can be written as a polynomial function in x0, . . . , xm−1, it follows that
RD always has a generator in degree lcm(qi ·ai).

As illustrated in Example 3.2.1, when all components in the support
of divisor can be written in terms of m of the m+ 1 variables on Pm, we
cannot hope to bound the degree of generation by anything less than the
sum of the least common multiples of the denominators. This issue can
easily be circumvented by adding in “ghost divisors.” That is, we may add
divisors of the form 0 ·Hi to D, and reorder so that if D =

∑n
i=0 αiV (fi),

then f0, . . . , fm are independent linear functions in x0, . . . , xm.

Remark 3.2.2. We cannot extend Theorem 3.1.4 to the case when D is
supported at two hypersurfaces with arbitrary rational (non-effective) coeffi-
cients in the same manner that O’Dorney does for the P1 case [8, Section 4].
As shown in Example 3.2.1, the degrees of generation of the section ring
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of a general Q-divisor supported on two hyperplanes cannot be bounded so
tightly. The two-point P1 result leverages the fact that P1 has precisely two
independent coordinates, so that two distinct integral subschemes cannot
represent equations of only m of the m+ 1 coordinates.

In Example 3.2.3, we show that it is still, in general, necessary to add
ghost divisors, even when the irreducible components of a divisor are not all
expressible as functions in m of the m+ 1 variables on Pm.

Example 3.2.3. Consider D := −1
5 V (x20 + x21 + x22) + 1

7V (x20 + x21 + x23) +
1
17V (x20 + x22 + x23)− 1

596V (x21 + x22 + x23). In degree 355216 = 5 · 7 · 17 · 596,
RD has dimension 6. However, for all d ≤ 355216, h0(P3, dD) ≤ 1 and
h0(P3, dD) = 1 precisely when bdDc = 0 (so in this case, H0(P3, dD) cor-
responds to the constant functions). Therefore RD has a generator in degree
355216. Hence, we cannot hope to bound the degree of generation of RD as
a linear combination of `i, in analogy to [8, Theorem 8] unless we require
that D includes ghost divisors. That is, unless D0, . . . , Dm are taken to be
linearly independent hyperplanes.

A basis for sections on projective space. In order to prepare ourselves
to prove Theorem 1.1.2, we will need the following simple description of a
basis for H0(Pm, dD).

Proposition 3.2.4. Assuming Equation 3.6, the functions ud ·
∏n
i=0 f

ci
i ∈

(RD)d (recall u is a dummy variable keeping track of the degree) satisfying
both of the following conditions

1)
∑n

i=0 ci · ai = 0

2) ci ≥ −bdαic

for c0, . . . , cn ∈ Z span H0(Pm, dD) over k. Furthermore, such functions that
also satisfy

3) ci = −bdαic for all i > m

form a basis for H0(Pm, dD) over k.

Proof. By definition of H0(Pm, dD), functions satisfying conditions (1) and
(2) lie in H0(Pm, dD). Conditions (1) and (2) are also necessary for some
monomial in the fi to lie in H0(Pm, dD). Since the monomials in the fi
span RD, it follows the monomials satisfying (1) and (2) span (RD)d =
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H0(Pm, dD). To complete the proof, it suffices to check functions satisfy-
ing conditions (1)–(3) form a basis of H0(Pm, dD). There are

(
m+degbdDc

m

)
functions satisfying conditions (1)–(3). However we know h0(Pm, dD) =(
m+degbdDc

m

)
, so it suffices to show that those monomials satisfying condi-

tions (1)–(3) are independent. To see why these are independent, observe
that monomials satisfying (1)–(3) are all of the form f c00 · · · f cmm · g for the

fixed monomial g = f
−bdαm+1c
m+1 · · · f−bdαm+1c

n . For any fixed N ∈ Z, the set{
f c00 · · · f

cm
m : (c0, . . . , cm) ∈ Zm+1,

m∑
i=0

ci = N

}

forms an independent set over k. Therefore, multiplying the monomials in
the above set with the g also forms an independent set, and these are pre-
cisely the monomials satisfying (1)–(3) with N = −deg g. �

Bounding the generators. We now develop the tools to bound the de-
grees of generators for RD for D an arbitrary divisor on Pm.

Recall that for a semigroup Σ ⊂ Zm we say e0, . . . , en ∈ Σ are a set of
extremal rays for Σ if Σ is contained in the Q≥0 span of e0, . . . , en.

Proposition 3.2.5. Let n ∈ Z, let α0, . . . , αn ∈ Q, and let ai, bi ∈ Z with
0 ≤ i ≤ n. Define

Σ :=

{
(d, c0, . . . , cn) ∈ Zn+2 : ci ≥ −dαi, 0 ≤ i ≤ n and

n∑
i=0

ai =

n∑
i=0

bi = 0

}
.

Suppose e0, . . . , et ∈ Σ with ei = (δi, c
i
0, . . . , c

i
n) are a set of extremal rays of

Σ.
Then, as a semigroup, Σ is generated by elements whose first coordinate

is less than
∑t

i=0 δi. Furthermore, every element σ ∈ Σ can be written in a
canonical form

(3.7) σ = λ+

t∑
i=0

ζiei

with ζ1, . . . , ζt ∈ Z≥0, 0 ≤ si < 1, and λ =
∑r

i=0 siei so that the first coordi-
nate of λ is less than

∑t
i=0 δi.

Proof. By assumption, σ ∈ Σ can be written as σ =
∑t

i=0 riei with ri ∈ Q.
Let frac(r) := r − brc denote the fractional part of r. Let λ =

∑t
i=0 frac(ri).
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Whence, we can write σ = λ+
∑t

i=0bricei. Consequently, σ lies in the Z≥0
span of λ, e0, . . . , et, which all have first coordinate less than

∑t
i=0 δi. Ergo,

Σ is generated by elements whose first coordinate is less than
∑t

i=0 δi. �

By Proposition 3.2.5, in order to bound the degree of generation of RD,
we only need bound the degrees of extremal rays of an associated cone. We
now carry out this strategy.

Lemma 3.2.6. Let D =
∑n

i=0 αiDi ∈ DivPm ⊗Z Q, where degDi = ai,
αi = ci

ki
∈ Q, and `i = lcmj 6=i(kj). Then, RD is generated in degrees at most∑n

i=0 `iai.

Proof. Let

Σ =

{
(d, c0, . . . , cn) ∈ Zn+2 : ci ≥ −dαi, 0 ≤ i ≤ n, and

n∑
i=0

`iai = 0

}
.

(3.8)

Observe that Σ has extremal rays given by the lattice points
(3.9)

ei =

`iai,−α0`iai, . . .− αi−1`iai, `i
∑
j 6=i

αjaj ,−αi+1`iai, . . . ,−αn, `iai


for each i ∈ {0, . . . , n}. Therefore, applying Proposition 3.2.5, we see RD is
generated in degrees less than

n∑
i=0

`iai.

�

Let w1, . . . , wr be the generators in degrees at most
∑n

i=0 `iai (given by
Lemma 3.2.6), and let φ : k[w1, . . . , wr]→ RD be the natural surjection. For
the remainder of the section, we aim to bound the degree of relations of RD,
or equivalently, the degree of generation of kerφ. We can factor φ through
the semigroup ring

k[Σ] =

〈
udzc00 · · · z

cn
n : ci ∈ Z, ci ≥ −dαi, and

n∑
i=0

aici =

n∑
i=0

bici

〉
.
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by

(3.10)
k[w1, . . . , wr] k[Σ] RD

wi udizci00 · · · zcinn udif ci00 · · · f cinn .

χ ψ

Bounding the relations. We now move on to bounding the degree of
relations of a section ring RD for D a divisor on Pm. In Lemma 3.2.7 we
show that the degree of the generators for kerφ, which is the same as the
degree of relations of RD, is bounded by the maximum of the degree of
generators for kerχ and for kerψ. In Lemma 3.2.8, we bound the degree
of generation of kerχ, and we bound the degree of generation of kerψ in
Lemma 3.2.9

Lemma 3.2.7. Let X be a k variety and let D =
∑n

i=0 αiDi ∈ DivX ⊗Z
Q where Di = V (fi). Suppose we have a surjection φ : k[w1, . . . , wr]→ RD
given by wi 7→ pi(f0, . . . , fn), where pi is a monomial in f0, . . . , fn. Let
a0, . . . , an, b0, . . . , bn ∈ Z≥0. Then, define

Σ =

〈
udzc00 · · · z

cn
n : ci ≥ −dαi,

n∑
i=0

aici =

n∑
i=0

bici = 0

〉
.

In this case, we can factor φ as a composition of χ and ψ defined by

k[w1, . . . , wr] k[Σ] RD

wi udizci00 · · · zcinn udif ci00 · · · f cinn .

χ ψ

Assuming χ is surjective, the minimal degree of generation of kerφ is at
most the maximum of the minimal degree of generation of kerχ and the
minimal degree of generation of kerψ.

Proof. First, surjectivity of χ implies we have an exact sequence

0 kerχ kerφ kerψ 0.

This shows that lifts of generators of kerψ together with images of generators
of kerχ generate all of kerφ, as desired. �

Lemma 3.2.8. Retaining the notation of Lemma 3.2.7, if Σ has extremal
rays e0, . . . , et in degrees d0, . . . , dt then kerχ is generated in degrees at most
2(
∑t

i=0 di − 1).
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Proof. Since e0, . . . , et are extremal rays, Proposition 3.2.5 implies every el-
ement σ ∈ Σ can be written in a canonical form λ+

∑t
i=0 ζiei where all

ζi ∈ Z≥0. Let λ0 := 0, λ1, . . . , λr be all elements of Σ which can be written
in the form λj =

∑t
i=0 siei with 0 ≤ si < 1. Then, for any 1 ≤ j ≤ k ≤ r,

we can write λj + λk in the above canonical form, yielding a (possibly triv-
ial) relation in degree at most deg λj + deg λk ≤ 2 ·

(∑t
i=0 di − 1

)
. Further-

more, these relations generate all relations, as one can apply a sequence of
these relations to put any σ ∈ Σ into canonical form σ = λ+

∑t
i=0 ζiei from

Proposition 3.2.5. �

Lemma 3.2.9. Let D =
∑n

i=0 αiDi ∈ DivPm ⊗Z Q, where degDi = ai,
αi = ci

ki
∈ Q, and `i = lcmj 6=i(kj). Define Σ as in Equation (3.8) and ψ as

in Equation (3.10). Then, kerψ is generated in degrees at most

max0≤i≤n(ai)

deg(D)
+

n∑
i=0

`iai.(3.11)

Proof. We claim there exist β0, . . . , βn ∈ k[Σ] such that kerψ is generated
by

(3.12) ud(zi − βi)
n∏
j=0

zj
cj

for all d ∈ N and ci ≥ −αid satisfying ai +
∑n

j=0 ajcj = 0.
Indeed, define the βi as a polynomial in z0, . . . , zm such that ψ(βi) =

ψ(zi) = fi ∈ RD. This is possible by Proposition 3.2.4. Furthermore, the
relations given in Equation (3.12) generate all relations, since they allow us
to reduce any ud

∏n
j=0 z

ci
j to a canonical form, with ci = −bdαic whenever

i > m.
For the remainder of the proof, fix i ∈ {0, . . . , n}. To complete the proof,

it suffices to bound the degree of generation of the relations of the form
ud(zi − βi)

∏n
j=0 z

cj
j , by Equation (3.11). For a given monomial

ud(zi − βi)
n∏
j=0

z
cj
j ∈ k[Σ],

we associate it with the corresponding element (d, c0, . . . , cn) ∈ Σ. Let Σi ⊆
Zn+2 be the set of points of the form (d, c0, . . . , cn) satisfying cj ≥ −dαj for
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all j and
∑n

j=0 cjaj = −ai. Let

δi :=

(
ai

deg(D)
,− α0a0

deg(D)
, . . . ,− αnan

deg(D)

)
.

Then we see Σi = {σ ∈ Σ|σ − δi ∈ spanQ≥0
(e0, . . . , en)} with ei as defined in

Equation 3.9. Therefore, we can write any element of Σi uniquely as

δi +

n∑
j=0

cjej

where cj ∈ R for each j.
Whenever some there is some j for which cj ≥ 1, we can write the relation

ud(zi − βi)
∏n
j=0 z

cj
j = ejh, for some h ∈ Σi. Therefore, for a fixed i, relations

of the form ud(zi − βi)
∏n
j=0 z

cj
j ∈ k[Σ] are generated by those in degrees less

than

ai
deg(D)

+

n∑
i=0

`iai,

as deg δi = ai
deg(D) . Hence, kerψ is generated in degrees less than

max0≤i≤n ai
deg(D)

+

n∑
i=0

`iai.
�

Proving Theorem 1.1.2. By combining the above results, we get our
main theorem bounding the generator and relation degrees of the section
ring of any Q-divisor on projective space.

Proof of Theorem 1.1.2. The bound on degree of generation is precisely the
content of Lemma 3.2.6. It only remains to bound the degree of relations.

By 3.2.8, kerχ is generated in degrees at most 2
∑n

i=0 `iai and by Lemma
3.2.9, kerψ, is generated in degrees up to

max0≤i≤n ai
deg(D) +

∑n
i=0 `iai. Conse-

quently, Lemma 3.2.7 implies that kerφ is generated in degrees less than

max

(
2

n∑
i=0

`iai,
max0≤i≤n(ai)

deg(D)
+

n∑
i=0

`iai

)
.

�

Remark 3.2.10. The bounds given in Theorem 1.1.2 are asymptotically
tight to within a factor of two for the following class of divisors. Consider
a divisor D =

∑n
i=0

pi
2qi
Hi ∈ DivPm ⊗Z Q such that Hi are hyperplanes, qi
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are pairwise coprime integers, and pi are chosen so that degD = 1
2
∏n
i=0 qi

.

Further, choose a linear subspace π : P1 → Pm generically so that π∗D =∑n
i=0

pi
2qi
Pi, where Pi are distinct points in P1. To choose such a map π, we

may need to assume that the base field is infinite. By [8, Remark, p. 9],
the given bounds on the generators and relations of Rπ∗D are within a
factor of two of the degree of generation and relations of Rπ∗D. Finally,
since restriction map RD → Rπ∗D induced by the restriction maps on coho-
mology H0(Pm, dD)→ H0(P1, π∗(dD)) ∼= H0(P1, dπ∗D) are surjective, we
obtain that the bounds for the generators and relations of RD given in The-
orem 1.1.2 also agree with the degree of generation and relations to within
a factor of two.

4. Section rings of Hirzebruch surfaces

Let Fm denote the m-th Hirzebruch surface. The aim of this section is to
prove Theorem 1.1.5, which bounds the degree of generators and relations
of the section ring of any Q-divisor on X = Fm, for all m ≥ 0.

One way to describe the Hirzebruch surface Fm is as a quotient,

Fm ∼= (A2 \ {0})× (A2 \ {0})/Gm ×Gm

where Gm is the multiplicative subgroup of A1, and the action of Gm ×Gm

is given by (λ, µ) · (u : v; z : w) 7→ (λu : λv;µz : λ−mµw), as described in [13,
p. 6]. Hence, one can think of Fm as a P1 bundle where u, v are the co-
ordinates on P1 and z, w are the coordinates on the fiber. Sections of a
line bundle L on Fm can be written as rational functions in z, w, u, v.
Furthermore we define the bi-degree of a monomial uavbzcwd on Fn to be
(a+ b+mc, c+ d). Rational sections of Fm can be written as rational func-
tions with numerators and denominators of the same bi-degrees. To see this,
observe Pic(Fm) ∼= Z× Z, where the class of a line bundle in Pic(Fm) is
determined by its bi-degree, as follows from the excision exact sequence for
class groups.

Furthermore, we will restrict to the case that D is a divisor for which
both of its bi-degrees are positive. We now justify this restriction. If either
of the bi-degrees of D are negative, then the section ring is concentrated
in degree 0. If one of the bi-degrees is 0, say the first one is 0, then RD is
isomorphic to RD′ , where D′ ∈ DivP1 ⊗Z Q, where D′ can be written as a
sum of divisors whose degrees are multiples of the second bi-degree of D.
Since the case of P1 has already been analyzed in [8], we are justified in
assuming that both bi-degrees of D are positive.
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For the remainder of this section we will assume D1, D2, D3, and D4 are
distinct divisors with bi-degrees (1, 0) , (1, 0), (0, 1), and (0, 1) respectively
with Di = V (fi) for 1 ≤ i ≤ 4 with fi ∈ O(ai, bi). In order to achieve the
above condition on the bi-degrees of D1, . . . , D4, it may be necessary to add
in “ghost divisors” (i.e. divisors with of the desired form with a coefficient
0). Also, f1 and f2 are independent linear polynomials in u and v and f3 and
f4 are independent linear polynomials in z and w. Analogously to Propo-
sition 3.2.4 for the case of Pm, all rational functions on Fm can be written
uniquely in a form where their numerator is a function of only f1, f2, f3,
and f4.

Definition 4.1.1. Define

T=(D) =

{
i ∈ {1, . . . , n} : ai

n∑
k=1

bkαk = bi

n∑
k=1

akαk

}
,

T+(D) =

{
i ∈ {1, . . . , n} : ai

n∑
k=1

αkbk > bi

n∑
k=1

αkak

}
,

and

T-(D) =

{
i ∈ {1, . . . , n} : ai

n∑
k=1

αkbk < bi

n∑
k=1

αkak

}
.

Lemma 4.1.2. For D =
∑n

i=1
ci
ki
Di ∈ DivFm ⊗Z Q, with degDi = (ai, bi),

`i = lcmj 6=i(kj), `i,j = lcmh6=i,j(kh). Then, the section ring RD is generated
in degrees at most

(4.1) ρ :=
∑

i∈T=(D)

gcd(ai, bi)`i +
∑

i∈T+(D)
j∈T-(D)

(aibj − ajbi)`i,j .

Proof. Suppose g ∈ (RD)d is a monomial. Then

g = ud
n∏
i=1

fi
ci

for some ci ≥ −αid such that
∑n

i=1 ciai = 0 and
∑n

i=1 cibi = 0. We can view
g as an element (d, c1, . . . , cn) of the lattice

Σ =

{
(d′, c′1, . . . , c

′
n) ∈ Zn+1

≥0 : c′i ≥ −dαi for all i and

n∑
i=1

c′iai =

n∑
i=1

c′ibi = 0

}
.
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In order to determine a generating set for (RD)d, it suffices to find the
extremal rays of Σ. To do this, we extend the method of O’Dorney [8, The-
orem 8]. We first consider the sub-cone Σ1 ⊂ Σ given by

Σ1 =

{
(d, c1, . . . , cn) ∈ Zn+1

≥0 : ci ≥ −dαi for all i and

n∑
i=1

ci(ai + bi) = 0

}
,

which has extremal rays given by

εi :=

(
1,−α1, . . . ,−αi−1,

∑
j 6=i αj(aj + bj)

ai + bi
,−αi+1, . . . ,−αn

)
.

for 1 ≤ i ≤ n.
Let Σ1 ⊗Z Q be the Q≥0 span of ε1, . . . , εn. We can intersect Σ1 ⊗Z Q

with the hyperplane H := V (
∑n

i=1 aixi) to get the subspace Σ⊗Z Q = H ∩
(Σ1 ⊗Z Q). Then, the extremal rays of Σ are precisely the extremal rays of
Σ⊗Z Q.

The extremal rays of Σ⊗Z Q can be represented by points lying only
on the edges eiej . The extremal rays are given by multiples of those εi’s
which are contained in H together with intersection points ei,j which can be
expressed as H ∩ eiej , where i 6= j and ei, ej /∈ H. In this case, ei,j is only
defined when #{H ∩ ei, ej} = 1.

From this geometric description of the extremal rays, we can write the
extremal rays algebraically as follows. For i ∈ T=(D), define ei ∈ k[Σ] in
degree

di = `i gcd(ai, bi)

by

ei := diεi.

For i ∈ T+(D) and j ∈ T-(D), with i < j, define ei,j ∈ k[Σ] in degree

di,j = `i,j(aibj − ajbi)

by

ei,j :=
aj
∑

k 6=i,j di,jαkbk − bj
∑

k 6=i,j di,jαkak

aibj − biaj
εi

+
ai
∑

k 6=i,j di,jαkbk − bi
∑

k 6=i,j di,jαkak

ajbi − bjai
εj .
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Since these ei are multiples of εi and these ei,j are points of intersection
of H with eiej such that neither ei nor ej are contained in H, these form a
set of extremal rays of Σ.

Thus, Proposition 3.2.5 implies that RD is generated in degrees less than
the sum of the degrees of the ei and ei,j , which is

ρ =
∑

i∈T=(D)

gcd(ai, bi)`i +
∑

i∈T+(D)
j∈T-(D)

(aibj − ajbi)`i,j .

�

Let w1, . . . , wr be the generators of RD in degrees less than ρ (as given
by Lemma 4.1.2), and let φ be the surjection k[w1, . . . wr]→ RD. As in
Section 3, we can factor φ through the semigroup ring

k[Σ] =

〈
udzc11 · · · z

cn
n : ci ≥ −dαi,

n∑
i=1

aici =

n∑
i=1

bici

〉

by

k[w1, . . . , wr] k[Σ] RD

wi udizci11 · · · zcinn udif ci11 · · · f cinn .

χ ψ

By Lemma 3.2.8, we can bound the degree of generation of kerχ below
2ρ. Finally, we calculate the degree of generation of ψ:

Lemma 4.1.3. Let ρ be as in Equation (4.1). Then, kerψ is generated in
degrees less than

τ := ρ+ max

max
i∈T=

(`i gcd(ai, bi)),max
i∈T+

j∈T-

(`i,j(aibj − ajbi))

 .

Proof. We first claim that there exist

udeg z1β1, . . . , u
deg znβn ∈ k[uz1, uz2, uz3, uz4]

such that kerψ has relations of the form

ud(zi − βi)
n∏
j=1

zj
cj

lying in some degree d∈N with cj≥−αjd (for all j) satisfying ai+
∑n

j=1 ajcj
= 0 and bi +

∑n
j=1 bjcj = 0. Specifically, βi, is the polynomial βi(z1, z2, z3, z4)
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so that βi(z1, z2, z3, z4)− zi ∈ kerψ. Such an element β exists and is unique
because rational functions whose numerators are polynomials in f1, f2, f3, f4
form a basis of all rational functions in RD. Furthermore, these generate all
relations, since they allow us to reduce any monomial ud

∏n
j=1 z

rj
j to the

canonical form where rj = −bdαic whenever j > 4. To bound the degree of
generation of these relations, we bound the degree of generation of the ideal
(βi − zi) ∩ ker(ψ) for each i.

For the remainder of this proof: we fix i ∈ {1, . . . , n} and fix a relation of
the form ud(zi − βi)

∏n
j=1 z

cj
j as we seek to bound the degree of generation of

the ideal (βi − zi) ∩ ker(ψ). There are no relations for i ∈ {1, 2, 3, 4} as then
βi − zi = 0 ∈ k[Σ]. Thus we restrict attention to i ≥ 5. Our goal is to show
that if ud(zi − βi)

∏n
j=1 z

cj
j has sufficiently high degree, then there is another

relation dividing it. We do so by considering the lattice points corresponding
to the monomials appearing in the relation ud(zi − βi)

∏n
j=1 z

cj
j , and finding

a fixed λ ∈ Σ that we can simultaneously factor out of all monomials.
Consider a relation ud(zi − βi)

∏n
j=1 z

cj
j and let it correspond to the lat-

tice point σ := (d, c1, . . . , ci−1, ci + 1, ci+1, . . . , cn) ∈ Σ. Then we can write
σ as a sum of sjej ’s for j ∈ T= and sj,kej,k for j ∈ T+, k ∈ T-. For conve-
nience, define dj := deg ej (when it exists) and let the jth component of ej
be −αjdj + κj for some κj ∈ Q. Also, let dj,k := deg ej,k (when it exists) and
let the jth component of ej,k be −αjdj,k + κ′j,k and the kth component be
−αkdj,k + κ′′j,k for κ′j,k, κ

′′
j,k ∈ Q.

Since ud(zi − βi)
∏n
j=1 z

cj
j is a relation, each monomial of it must be an

element of Σ. This implies that siκi≥1,
∑

j∈T-
si,jκ

′
i,j≥1, and

∑
j∈T+

si,jκ
′′
j,i

≥ 1 if i ∈ T=, i ∈ T+, and i ∈ T- respectively.
If i ∈ T= define ri := 1

κi
. If i ∈ T+ choose ri,j ∈ Q≥0 for all j ∈ T- such

that
∑

j∈T-
ri,jκ

′
i,j = 1; similarly, if i ∈ T- choose rj,i ∈ Q≥0 for all j ∈ T+

such that
∑

j∈T-
rj,iκ

′′
j,i = 1. For j 6= i, define rj := 0. For all pairs (j, k) so

that j 6= i and k 6= i define rj,k := 0. Define E by

(4.2) E :=
∑
j∈T=

(sj − bsj − rjc)ej +
∑
j∈T+

k∈T-

(sj,k − bsj,k − rj,kc)ej,k.

Then,

deg(E) ≤ ρ+


`i gcd(ai, bi) if i ∈ T=

maxj∈T-

(
`i,j(aibj − ajbi)

)
if i ∈ T+

maxj∈T+

(
`j,i(ajbi − aibj)

)
if i ∈ T- .

(4.3)
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where ρ is as in Equation (4.1). To obtain the bound given in Equation (4.3),
the ρ term corresponds to the sums of fractional parts of sj − rj ’s and sj,k −
rj,k’s whereas the second term corresponds to the sums of rj ’s and rj,k’s
(noting that in Equation 4.2, sj − bsj − rjc = rj + frac(sj − rj)).

Define

λ := σ − E =
∑
j∈T=

(bsj − rjc)ej +
∑
j∈T+

k∈T-

(bsj,k − rj,kc)ej,k ∈ Σ.

LetMi be the set of monomials terms of βi = βi(z1, . . . , z4). Let µ =
∏4
j=1 zj

hj

∈Mi and consider the lattice point

σµ = (d, c1 + h1, . . . , c4 + h4, c5, . . . , cn).

where d = deg σ. Define

Eµ = σµ − λ.

From the definitions, Eµ lies in Σ and has the same degree as E.
By construction, E −

∑
µ∈Mi

Eµ ∈ kerψ and divides ud(zi − βi)
∏n
j=1 z

cj
j .

Furthermore, we have already bounded deg(E) in Equation (4.3). Finally,
recall kerψ is generated by relations of the form ud(zi − βi)

∏n
j=1 z

cj
j as i

ranges between 1 and n. Thus, taking the maximum over all i of our bound
in Equation (4.3), we see kerψ is generated in degrees at most

τ = ρ+ max

max
i∈T=

(
`i gcd(ai, bi)

)
, max
i∈T+

j∈T-

(
`i,j(aibj − ajbi)

) ≤ 2ρ.

�

By combining the above results, we get our main theorem bounding the
generator and relation degrees of the section ring of Q-divisors on Hirzebruch
surfaces.

Theorem 4.1.4. Let D =
∑n

i=1 αiDi ∈ DivFm ⊗Z Q where αi = ci
ki
∈ Q is

written in reduced form. Write `i,j := lcmh6=i,j(kh). Let u, v, z, w be the co-
ordinates for the Hirzebruch surface Fm, as described at the beginning of
Section 4 and suppose that {f1, . . . , fn} contains two independent linear
polynomials in u, v and two independent linear polynomials in w, x (with
corresponding αj possibly zero). Recall T=,T+, and T- as given in Defini-
tion 4.1.1 and let each Di = V (fi) where fi ∈ O(ai, bi).
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Then RD is generated in degrees at most

ρ =
∑

i∈T=(D)

gcd(ai, bi)`i +
∑

i∈T+(D)
j∈T-(D)

(aibj − ajbi)`i,j

with relations generated in degrees at most 2ρ.

Proof. The generation degree bound is as stated in Lemma 4.1.2. By Propo-
sition 3.2.7, the degree of generation of kerφ is at most the maximum of
the generation degrees of kerχ and kerψ, giving us the desired relations
bound. The bound on kerχ follows from Lemma 3.2.8 and the bound on
kerψ follows from Lemma 4.1.3. �

5. Further questions

Recall that every minimal rational surface is either isomorphic to P2 or
Fm for some m ≥ 0,m 6= 1 [4]. By Theorems 1.1.2 and 1.1.5, we have given
bounds for the generators and relations of arbitrary section rings on any
minimal rational surface. A natural extension of our results is the following.

Question 5.1.1. Can we describe generators and relations of RD for a
divisor D on an arbitrary rational surface X?

Every rational surface can be obtained from a minimal rational surface
by a sequence of blow-ups [4]. Therefore, to answer Question 5.1.1 affir-
matively, it suffices to bound the degree of generators and relations of the
section ring of a divisor on a blow-up of a given surface in terms of the
section rings of some associated divisors on that given surface.

Another direction to generalize the work in this paper would be to try
to express section rings of Q-divisors on X × Y in terms of those on X and
Y . In this paper, we bounded the degrees of presentations on section rings
on P1 × P1 ∼= F0. Perhaps similar techniques can be used to bound degrees
of presentations on section rings on (P1)k or more generally on (P1)i1 ×
· · · (Pk)ik . One might further try to generalize this to bounding degrees of
presentations on bundles over Pm or on more general products of schemes.
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tiger analytischer Funktionen von zwei komplexen Veränderlichen,
Mathematische Annalen 126 (1953), no. 1, 1–22.

[7] A. Landesman, P. Ruhm, and R. Zhang, Spin canonical rings of log
stacky curves, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2339–
2383.

[8] E. O’Dorney, Canonical rings of Q divisors on P1, Annals of Combina-
torics 19 (2015), no. 4, 765–784.



i
i

“13-Zhang” — 2018/11/7 — 17:46 — page 1357 — #29 i
i

i
i

i
i

Section rings of Q-divisors 1357

[9] B. Saint-Donat, On Petri’s analysis of the linear system of quadrics
through a canonical curve, Math. Ann. 206 (1973), 157–175.

[10] G. van der Geer, Siegel Modular Forms and Their Applications, in:
K. Ranestad, editor, The 1-2-3 of Modular Forms: Lectures at a Summer
School in Nordfjordeid, Norway, 181–245, Springer Berlin Heidelberg,
Berlin, Heidelberg (2008), ISBN 978-3-540-74119-0.

[11] J. Voight, Toric surfaces and continued fractions (2000). Available at
https://math.dartmouth.edu/~jvoight/notes/cfrac.pdf.

[12] J. Voight and D. Zureick-Brown, The canonical ring of a stacky curve,
arXiv:1501.04657, (2015).

[13] Y. Zhao, On sieve methods for varieties over finite fields, Ph.D. the-
sis, University of Wisconsin–Madison (2013). Available at http://

gradworks.umi.com/35/93/3593347.html.

Department of Mathematics, Stanford University

Stanford, CA 94305, USA

E-mail address: aaronlandesman@stanford.edu

Department of Mathematics, Stanford University

Stanford, CA 94305, USA

E-mail address: pruhm@stanford.edu

Department of Mathematics, Columbia University

2990 Broadway, New York, NY 10027, USA

E-mail address: rzhang@math.columbia.edu

Received August 27, 2015

https://math.dartmouth.edu/~jvoight/notes/cfrac.pdf
http://gradworks.umi.com/35/93/3593347.html
http://gradworks.umi.com/35/93/3593347.html


i
i

“13-Zhang” — 2018/11/7 — 17:46 — page 1358 — #30 i
i

i
i

i
i


	Introduction
	Notation
	Section rings of projective space
	Section rings of Hirzebruch surfaces
	Further questions
	Acknowledgments
	References

