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Remarks on automorphy of residually

dihedral representations

Sudesh Kalyanswamy

We prove automorphy lifting results for geometric representations
ρ : GF → GL2(O), with F a totally real field, and O the ring of
integers of a finite extension of Qp with p an odd prime, such that
the residual representation ρ is totally odd and induced from a
character of the absolute Galois group of the quadratic subfield K
of F (ζp)/F . Such representations fail the Taylor-Wiles hypothesis
and the patching techniques to prove automorphy do not work. We
apply this to automorphy of elliptic curves E over F , when E has
no F rational 7-isogeny and such that the image of GF acting on
E[7] normalizes a split Cartan subgroup of GL2(F7).

1. Introduction

1.1. The main theorem

Let F be a totally real field, p be an odd prime, and O the ring of integers of
a finite extension of Qp. In proving automorphy of geometric representations
ρ : GF → GL2(O) which are residually automorphic, there is an assumption
made (the Taylor-Wiles hypothesis) that the residual representation ρ is
irreducible when restricted to GF (ζp). In [5], Thorne has recently weakened
this assumption in many cases to simply asking that ρ itself is irreducible
but making the auxiliary assumption that the quadratic subfield of F (ζp)/F
is totally real.

Under other assumptions on ρ, but still allowing that ρ|GF (ζp)
is reducible,

we prove automorphy lifting results wherein we do not assume that the
quadratic subfield K of F (ζp)/F is totally real. The assumption on ρ is that
there is a (“level raising”) place v of F that splits in K, such that the ratio
of the eigenvalues of ρ(Frobv) is qv with qv not 1 modulo p. This assumption
is automatic when K/F is totally real, as exploiting the oddness of ρ we
can take any v such that ρ(Frobv) is conjugate to the image of complex
conjugation.
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The main theorem we prove is the following:

Theorem 1.1. Let F be a totally real number field, let p be an odd prime,
and let ρ : GF → GL2(Qp) be a continuous representation satisfying the fol-
lowing:

(1) The representation ρ is almost everywhere unramified.

(2) For each v|p of F , the local representation ρ|GFv is de Rham. For each
embedding τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(3) For each complex conjugation c ∈ GF , we have det ρ(c) = −1.

(4) The residual representation ρ̄ is absolutely irreducible, but ρ̄|GF (ζp)
is a

direct sum of two distinct characters. If K denotes the unique quadratic
subfield of F (ζp)/F and γ̄ : GK → k× is the ratio of the two characters,
then further suppose F (ζp) 6⊂ K(γ̄ε̄−1) ∩K(γ̄ε̄).

Then ρ is automorphic: there exists a cuspidal automorphic representation
π of GL2(AF ) of weight 2, an isomorphism ι : Qp → C, and an isomorphism
ρ ∼= rι(π).

The hypothesis that F (ζp) 6⊂ K(γ̄ε̄−1) ∩K(γ̄ε̄) is equivalent to the exis-
tence of a place v of F such that qv is not 1 modulo p, v splits in K, and
ρ(Frobv) has eigenvalues with ratio qv. Furthermore, as remarked above,
this hypothesis is automatic when K is totally real as one may, using the
oddness of ρ, take any v such that ρ(Frobv) is conjugate to ρ(c) and qv is
−1 modulo p. Thus the theorem generalizes the main theorem of [5], and in
fact its proof is essentially the same as [5]. In loc. cit., the author synthesizes
two methods:

– the patching method of Taylor-Wiles, which relies on using places v of
F such that qv is 1 modulo pN and ρ(Frobv) has distinct eigenvalues to kill
certain elements of the mod p dual Selmer group, and

– a method due to Khare, which proves automorphy of ρ by “p-adic
approximation” using Ramakrishna places v, such that qv is not 1 mod-
ulo p and ρN (Frobv) has eigenvalues with ratio qv, to perform the task of
killing certain elements of the mod p dual Selmer group which cannot be
killed with Taylor-Wiles primes. Here ρN denotes the mod pN reduction of ρ.

The Ramakrishna places v that Thorne used were such that ρN (Frobv) is
conjugate to the image of complex conjugation. To ensure that these places
could effectively kill the troublesome part of the mod p dual Selmer group,
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he had to impose that the quadratic subfield of F (ζp)/F be totally real,
which implies p ≡ 1 mod 4.

The central new remark of this paper is that if we assume there is a place
v of F that splits in K, such that the ratio of the eigenvalues of ρ(Frobv)
is qv with qv not 1 modulo p, then by choosing “Teichmuller liftings” one
may find, for each N , places v such that qv is not 1 modulo p, ρN (Frobv)
has eigenvalues with ratio qv, and the v’s perform the task of killing the
troublesome elements of the mod p dual Selmer group which cannot be
killed with Taylor-Wiles primes. We present the proof of this remark in
Proposition 3.11, and it serves as a replacement for Proposition 5.20 in [5]
which needed that K be totally real. Note that this assumption we make is
automatic when K is totally real, which explains why our result generalizes
the main theorem of loc. cit.

After this remark the proof of our theorem is identical to that of loc. cit.
where patching arguments followed by level raising and lowering arguments
are used to conclude the automorphy of ρ.

The case when there is no place v of F that splits in K such that the
ratio of the eigenvalues of ρ(Frobv) is qv with qv not 1 modulo p cannot be
addressed by the methods of [5] nor by the modifications that we carry out
in this paper. In a forthcoming work [3] of Khare and Thorne, this case is
addressed. Instead of patching and p-adic approximation, the authors use
patching together with Wiles’ numerical isomorphism criterion and calcula-
tion of η-invariants using monodromy arguments.

1.2. Automorphy of elliptic curves

We get a modest application to automorphy of elliptic curves over totally
real fields. Current automorphy lifting theorems prove the modularity of
elliptic curves E over F which satisfy the “Taylor-Wiles” hypothesis at some
prime p ∈ {3, 5, 7}, i.e., ρ̄E,p(GF (ζp)) is absolutely irreducible for at least one
p ∈ {3, 5, 7}. Recently, in [2], the authors prove the modularity of all elliptic
curves over real quadratic fields. Moreover, they show that over any totally
real field F , there are only finitely many potentially non-modular elliptic
curves over F , which necessarily do not satisfy the Taylor-Wiles hypothesis
at any prime p ∈ {3, 5, 7}.

In [5], Thorne was able to cut down on this list of potentially non-
modular elliptic curves by proving a new automorphy lifting theorem and
applying it to the above situation of elliptic curves with p = 5. However, the
results in that paper do not deal with the case p = 7 because the requirement
was that the quadratic subfield of F (ζp)/F be totally real (which implies
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that p is 1 modulo 4). In this note, we try to deal with the cases when this
quadratic subfield is not totally real by examining different sorts of auxiliary
primes. We use this theorem to prove:

Theorem 1.2. Let F be a totally real field, and let E be an elliptic curve
over F . Suppose:

(1) F ∩Q(ζ7) = Q.

(2) E has no F -rational 7-isogeny.

(3) Either ρ̄E,7(GF (ζ7)) is absolutely irreducible, or it is reducible and is
conjugate to a subgroup of a split Cartan subgroup of GL2(F7).

Then E is modular.

We further note that one may also deduce by similar arguments the
automorphy of elliptic curves E defined over a totally real field F , with a
prime p such that E has no F -rational p-isogeny, ρE,p(GF ) normalizes a
split Cartan subgroup of GL2(Fp), and E has bad semistable reduction at a
place v such that qv is not 1 mod p and v splits in the quadratic subfield of
F (ζp)/F .

Acknowledgements
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invaluable guidance regarding the methods used in this paper. I also want
to thank the referee for their useful suggestions.

2. Notation

We now introduce the notation we will use throughout. The notation and
conventions will be the same as in [5].

Let F be a number field, and let F denote a choice of algebraic closure. If
v is a place of F , then Fv will denote the completion of F at v and F v will be
a choice of algebraic closure (with the algebraic closure of R being C). If p is
a rational prime, then we use Sp to denote the place of F above p. The p-adic
valuation valp on Qp is normalized so that valp(p) = 1. With all these choices
having been made, we define the absolute Galois groups GF = Gal(F/F )
and GFv = Gal(F v/Fv), and IFv ⊂ GFv will denote the inertia subgroup.
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If v is a finite place of F , then we can fix embeddings F ↪→ F v which
extend the standard embeddings F ↪→ Fv. These determine embeddings
GFv → GF . We will use qv to denote the size of the residue field of F at v.

If S is a finite set of finite places of F , then FS ⊂ F will denote the
maximal extension of F unramified outside S, and GF,S = Gal(FS/F ) its
Galois group, naturally a quotient of GF . If v /∈ S is a finite place of F ,
then the map GFv → GF,S factors through GFv/IFv , and Frobv ∈ GF,S will
denote the image of a geometric Frobenius element. We will use ε : GF → Z×p
for the p-adic cyclotomic character, and ε̄ : GF → F×p its reduction mod p.
If v /∈ Sp is a finite place of F , then ε(Frobv) = q−1

v .
Suppose K/F is a finite extension (inside F ) and k is a finite field. If

χ : GK → k× is a character, then we will let K(χ) denote the extension of

K given by F
kerχ

, and k(χ) will be k endowed with a GK-module structure
given by σ · a = χ(σ)a ∈ k. We write k(m) for k(ε̄m). If ρ : GK → GLn(k)
is a continuous representation, then ad ρ will denote the space of n× n
matrices over k with a k[GK ]-module structure whose GK-action is given by
conjugation by ρ, i.e. σ ·A = ρ(σ)Aρ(σ)−1. We will use ad0 ρ to denote the
k[GK ]-submodule of trace zero matrices.

Let ρ : GF → GLn(Qp) denote a continuous representation. Then ρ is de
Rham if for each v ∈ Sp, ρ|GFv is de Rham. In this case, for each embedding
τ : F ↪→ Qp, we can associate to ρ an n-element multiset HTτ (ρ) of Hodge-
Tate weights. We normalize HTτ (ρ) by declaring that HTτ (ε) = {−1} for
all embeddings τ .

The automorphic side of our arguments are unchanged from [5], but for
completeness, we will introduce the notation necessary for the statements
of the theorems in Section 4. Let AF =

∏′
v Fv denote the adele ring of F ,

and A∞F =
∏′
v-∞ Fv the finite part. If v is a finite place of F , then we write

recFv for the local Langlands correspondence for GL2(Fv), normalized as in
[5]. If π is an irreducible, admissible representation of GL2(Fv) over C, then
we define

recTFv(π) = recFv(π ⊗ | · |−1/2).

Let Ω be any field isomorphic to C, and χ : WFv → Ω× a character with
open kernel. We can consider the Weil-Deligne representation(

χ⊕ χ| · |−1,

(
0 1
0 0

))
.

Define St2(χ ◦ArtFv) to be the inverse image under recTFv of this Weil-
Deligne representation (here ArtFv denotes the local Artin map). If (r,N)
is a Weil-Deligne representation, then (r,N)F-ss will denote its Frobenius
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semi-simplification. If v is a finite place of F and ρ : GFv → GLn(Qp) is a
continuous representation, de Rham if v|p, then we write WD(ρ) for the
associated Weil-Deligne representation, uniquely determined up to isomor-
phism.

Finally, the automorphic representations we consider are those cuspidal
automorphic representations π =

⊗′
v πv of GL2(AF ) such that for v|∞, the

representation πv is the lowest discrete series representation of GL2(R) with
trivial central character, and such a representation will be called a cuspidal
automorphic representation of GL2(AF ) of weight 2. With such a represen-
tation π, for every isomorphism ι : Qp → C, there is an associated Galois
representation rι(π) : GF → GL2(Qp) such that:

(1) The representation rι(π) is de Rham, and for every embedding τ :
F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(2) If v is a finite place of F , then

WD(rι(π)|GFv )F-ss ∼= recTFv(ι
−1πv).

(3) If ωπ : F×\A×F → C× denotes the central character of π, then

det rι(π) = ε−1ι−1(ωπ ◦Art−1
F ),

where ArtF is the global Artin map.

See [5] for the details of the local-global compatibility at the unramified
places.

3. Galois theory

3.1. Global deformation problem

Let F be a totally real number field. Let p be an odd prime, and let E be
a finite extension of Qp with integer ring O and maximal ideal λ. Write
k for the residue field of O, i.e. k = O/λ. If A is a complete Noetherian
local O-algebra with residue field k, then we write CNLA for the category
of complete Noetherian local A-algebras with residue field k.

Fix a continuous, absolutely irreducible representation ρ̄ : GF → GL2(k)
and a continuous character µ : GF → O× lifting det ρ̄. We assume k contains
the eigenvalues of all elements in the image of ρ̄. Let S be a finite set of finite
places of F , containing the places dividing p and the places at which ρ̄ and µ
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are ramified. For v ∈ S, fix a ring Λv ∈ CNLO. Define Λ = ⊗̂v∈SΛv, so that
Λ ∈ CNLO.

If v ∈ S, we write D�
v : CNLΛv → Sets for the functor which takes R ∈

CNLΛv to the set of continuous homomorphisms r : GFv → GL2(R) such
that r mod mR = ρ̄|GFv and det r agrees with the composite

GFv
µ|GFv−→ O× −→ R×.

This functor D�
v is represented by an object R�

v ∈ CNLΛv .

Definition 3.1. Let v ∈ S. A local deformation problem for ρ̄|GFv is a
subfunctor Dv ⊂ D�

v satisfying:

(i) The subfunctor Dv is represented by a quotient Rv of R�
v ,

(ii) For all R ∈ CNLΛv , a ∈ ker(GL2(R)→ GL2(k)) and r ∈ Dv(R), we
have ara−1 ∈ Dv(R).

Definition 3.2. A global deformation problem is a tuple

S = (ρ̄, µ, S, {Λv}v∈S , {Dv}v∈S),

where all the notation is as above, and Dv is a local deformation problem
for ρ̄|GFv for v ∈ S.

3.2. Galois cohomology

Given a finite place v of F and a local deformation problem Dv, we denote
by Lv the tangent space of the local deformation problem as a subspace
Lv ⊂ H1(Fv, ad0 ρ̄). We also let L⊥v ⊂ H1(Fv, ad0 ρ̄(1)) be the annihilator of
Lv induced by the perfect pairing of Galois modules:

ad0 ρ̄× ad0 ρ̄(1)→ k(1), (X,Y ) 7→ tr(XY ).

Definition 3.3. Given a global deformation problem

S = (ρ̄, µ, S, {Λv}v∈S , {Dv}v∈S),

we define the dual Selmer group

H1
S,T (ad0 ρ̄(1)) = ker

(
H1(FS/F, ad0 ρ̄(1))→

∏
v∈S−T

H1(Fv, ad0 ρ̄(1))/L⊥v

)
.
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Let us now take a look at the specific deformation problem we want to
consider.

3.3. Special deformations, case qv 6≡ 1 mod p

Let v ∈ S be a prime not dividing p, and suppose that qv 6≡ 1 mod p. Sup-
pose further that ρ̄|GFv is unramified, and that ρ̄(Frobv) has two distinct
eigenvalues αv, βv ∈ k such that βv/αv = qv. Let Λv = O. We define a sub-

functor DSt(αv)
v ⊂ D�

v directly. Let R ∈ CNLO and let r : GFv → GL2(R)
be an element of D�

v (R). If φv ∈ GFv is a choice of geometric Frobenius,
then by Hensel’s lemma the characteristic polynomial of r(φv) factors as
(X −Av)(X −Bv), where Av, Bv ∈ R× with Av lifting αv and Bv lifting βv.

We will say r ∈ DSt(αv)
v (R) if Bv = qvAv and IFv acts trivially on (r(φv)−

Bv)R
2, which is a direct summand R-submodule of R2. One checks that this

condition is independent of the choice of φv.

Proposition 3.4. The functor DSt(αv)
v is a local deformation problem. The

representing object R
St(αv)
v is formally smooth over O of dimension 4.

Proof. That DSt(αv)
v is a local deformation problem is easy. Let R

St(αv)
v de-

note the representing object. To see that the dimension of R
St(αv)
v is 4,

consider the unframed deformations of this type and its representing ob-
ject Sv. Then Sv is smooth of relative dimension 1 over O. There is a map

Sv → R
St(αv)
v which is formally smooth, and R

St(αv)
v is a power series ring

over Sv in

dimk ad ρ̄− dimkH
0(Fv, ad ρ̄) = 4− 2 = 2

variables. Thus R
St(αv)
v has relative dimension 3 over O, as desired. �

3.4. Existence of auxiliary primes

Continue with the notation from the previous section, and assume further
that ρ̄ is totally odd, i.e. that µ(c) = −1 for all choices of complex conjuga-
tion c ∈ GF . Write ζp ∈ F for a primitive p-th root of unity, and now fix a
choice of complex conjugation c ∈ GF .

We will assume that ρ̄|GF (ζp)
is the direct sum of two distinct characters.

By Clifford theory, we know that ρ̄ is induced from a continuous character
χ̄ : GK → k×, where K is the unique quadratic subfield of F (ζp)/F . That
is, ρ̄ ∼= IndGFGK χ̄. Write w ∈ GF for a fixed choice of element with nontrivial
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image in Gal(K/F ). We can assume that, possibly after conjugation, that ρ̄
has the form:

ρ̄(σ) =

(
χ̄(σ) 0

0 χ̄w(σ)

)
, for σ ∈ GK ,

ρ̄(w) =

(
0 χ̄(w2)
1 0

)
.

Now let γ̄ = χ̄/χ̄w. By assumption, γ̄ is nontrivial, even after restriction
to GF (ζp). We have the following:

Lemma 3.5. We have that ad0 ρ̄ decomposes as ad0 ρ̄ ∼= k(δK/F )⊕ IndGFGK γ̄
as a GF -module, where δK/F : Gal(K/F )→ k× is the unique nontrivial char-
acter.

From now on, we will let M0 = k(δK/F ) and M1 = IndGFGK γ̄. Fix the

standard basis for ad0 ρ̄:

E =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
.

If M ∈ ad0 ρ̄, we write kM ⊂ ad0 ρ̄ for the line that it spans.
We have the following easy lemma:

Lemma 3.6. Let v - p be a finite place of F which splits in K, and suppose

that the local deformation problem Dv = DSt(αv)
v is defined.

(1) The subspace Lv ⊂ H1(Fv, ad0 ρ̄) respects the decomposition ad0 ρ̄ =
M0 ⊕M1. That is,

Lv = (Lv ∩H1(Fv,M0))⊕ (Lv ∩H1(Fv,M1)).

(2) The subspace L⊥v ⊂H1(Fv, ad0 ρ̄(1)) respects the decomposition ad0 ρ̄(1)
= M0(1)⊕M1(1).

Proof. The second part is dual to the first, so we only prove the first part.

The fact that DSt(αv)
v is defined means qv 6≡ 1 mod p, that ρ̄|GFv is un-

ramified, and that ρ̄(Frobv) takes two distinct eigenvalues αv, βv ∈ k with
βv/αv = qv. The fact that v splits in K means M0 = kH and M1 = kE(1)⊕
kF (−1) as k[GFv ]-modules. The case qv ≡ −1 mod p was proved in [5]. If
qv 6≡ ±1 mod p, then Lv is 1-dimensional, and is contained in H1(Fv,M1),
being spanned by H1(Fv, kE(1)). �
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Remark 3.7. The difference between this lemma and the corresponding
Lemma 5.18 from [5] is that we do not make the assumption that the induc-
ing field K is totally real. However, we do need to make sure that we choose
primes of F which split in K for the rest of the method to work.

Let S = (ρ̄, µ, S, {Λv}v∈S , {Dv}v∈S) be a global deformation problem, and let
T ⊂ S be a subset containing Sp (the set of places above p). Suppose that for

v ∈ S − T , the local deformation problem Dv = DSt(αv)
v . The lemma implies

we can decompose

H1
S,T (ad0 ρ̄(1)) = H1

S,T (M0(1))⊕H1
S,T (M1(1)).

We now show that we can kill the M1(1) portion of dual Selmer using the
special deformation problem we defined in the previous section, and then
kill the M0(1) portion using traditional Taylor-Wiles primes.

3.5. Killing the M1(1) portion

First, we show that lemmas 5.21, 5.22, and 5.23 of [5] continue to hold even if
K is not totally real. Indeed, the only one which requires proof is the second,
since this is the only place where Thorne used this assumption. However, we
will need to impose an additional restriction. We state the other two lemmas
here for convenience.

Lemma 3.8. Let Γ be a group, and α : Γ→ k× a character. Let k′ ⊂ k
be the subfield generated by the values of α. Then k′(α) is a simple Fp[Γ]-
module. If β : Γ→ k× is another character, then k′(α) is isomorphic to a
Fp[Γ]-submodule of k(β) if and only if there is an automorphism τ of k such
that β = τ ◦ α.

Proof. See the proof of Lemma 5.21 in [5]. �

Lemma 3.9. Let K(γ) be the fixed field of ker γ̄, let L = F (ζp) ∩K(γ) and
assume that #ε̄(GL) > 1. Then the Fp[GK ]-module k(ε̄γ) has no Jordan-
Holder factors in common with k, k(γ), or k(γ−1). The characters ε̄γ and
γ are nontrivial.

Proof. The second claim follows from the fact that γ|GF (ζp)
is nontrivial. For

the first claim, we show there are no Fp[GK ]-module homomorphisms from
k(ε̄γ) to k(γ) or k(γ−1). Let f : k(ε̄γ)→ k(γ) be such a homomorphism,
choose a ∈ k(ε̄γ), and assume f(a) = b . By the hypothesis of the lemma,
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there is an element τ ∈ GL ⊂ GK such that ε̄(τ) 6= 1 and γ̄(τ) = 1. Since f
is a Fp[GK ]-module homomorphism and ε̄(τ) ∈ F×p , we know

f(ε̄(τ)γ(τ)a) = ε̄(τ)f(a).

On the other hand,

f(ε̄(τ)γ(τ)a) = γ(τ)b = b.

Thus, ε̄(τ)b = b, which implies b = 0. Since a ∈ k(ε̄γ) was arbitrary, this
implies f = 0. Thus, there are no nontrivial homomorphisms between k(ε̄γ)
and k(γ).

The same proof shows there are no nontrivial homomorphisms between
k(ε̄γ) and k(γ−1) or k. �

Lemma 3.10. Let N ≥ 1 and let KN = F (ζpN , ρN ), i.e. KN is the splitting
field of ρN |F (ζpN ). Then H1(KN/F,M1(1)) = 0.

Proof. When K is totally real, this is proved in Lemma 5.23 of [5]. The same
proof proves the lemma in the case K is CM using the preceding lemma. �

The following proposition is the analog of Proposition 5.20 of [5] and is the
only place where we argue differently from Thorne because of not having (in
the case that K is not totally real) the luxury to choose places v such that
ρN (Frobv) is the image of complex conjugation under ρN . The proof relies
on the simple observation that given an element g in GL2(O/pM ), then for
N >> 0, the element gq

N

has (ratio of) eigenvalues that are the Teichmüller
lift of the (ratio of) the eigenvalues of the reduction of g.

Proposition 3.11. Let S = (ρ̄, µ, S, {Λv}v∈S , {Dv}v∈S) be a global defor-
mation problem, and let T = S. Let N0 ≥ 1 be an integer. Let ρ : GF →
GL2(O) be a lifting of type S. Let K(γε̄) (resp. K(γε̄−1)) be the fixed field
of ker γ̄ε̄ (resp. ker γ̄ε̄−1), and assume that F (ζp) 6⊂ K(γε̄) ∩K(γε̄−1). Then
for any m ≥ h1

S,T (M1(1)), there exists a set Q0 of primes, disjoint from S,
and elements αv ∈ k×, satisfying the following:

(1) #Q0 = m

(2) For each v ∈ Q0, the local deformation problem DSt(αv)
v is defined. We

define the augmented deformation problem

SQ0
= (ρ̄, µ, S ∪Q0, {Λv}v∈S ∪ {O}v∈Q0

, {Dv}v∈S ∪ {DSt(αv)
v }v∈Q0

).
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(3) Let ρN0
= ρ mod λN0 : GF → GL2(O/λN0O). Then ρN0

(Frobv) has
distinct eigenvalues whose ratio is qv for each v ∈ Q0.

(4) H1
SQ0 ,T

(M1(1)) = 0.

Proof. We wish to find a set Q0 of primes such that h1
SQ0 ,T

(M1(1)) = 0.

Suppose r = h1
S,T (M1(1)) ≥ 0. Using induction, it suffices to find a single

prime v satisfying the conditions of the theorem such that h1
S{v},T (M1(1)) =

max(r − 1, 0). The case r = 0 is easy, so assume r ≥ 1.
Let 0 6= [ϕ] ∈ H1

S,T (M1(1)) be a nonzero class. We wish to find a place
v /∈ S such that:

(i) v splits in K

(ii) ρN0
(Frobv) has distinct eigenvalues with ratio qv mod λN0 .

(iii) qv 6≡ 1 mod λN0

(iv) ϕ(Frobv) 6= 0 (∈M1(1)).

Indeed, the first three conditions imply that DSt(αv)
v is defined for the ap-

propriate choice of αv. We also have an exact sequence

0→ H1
S{v},T (M1(1))→ H1

S,T (M1(1))→ k.

If qv 6≡ ±1 mod λ, then the last map in the sequence comes from the re-
striction map H1

S,T (M1(1))→ H1(GFv ,M1(1)) ∼= k. If qv ≡ −1 mod λ, then
this last map is either φ 7→ 〈E, φ(Frobv)〉 (if αv = 1) or φ 7→ 〈F, φ(Frobv)〉
(if αv = −1). By choosing αv appropriately, we can ensure the sequence is
exact on the right. Condition (iv) implies the final map is surjective, which
gives h1

S{v},T (M1(1)) < h1
S,T (M1(1)), as desired.

By the Cebotarev density theorem, it suffices to find an element σ ∈ GK
such that:

(a) ρN0
(σ) has distinct eigenvalues with ratio ε(σ) mod λN0 .

(b) ε(σ) 6≡ 1 mod λN0

(c) ϕ(σ) 6= 0.

If N0 = 1, then the assumption in the Proposition ensures we can find
σ1 in GK such that γ(σ1) = ε(σ1) mod λ. Indeed, the assumption F (ζp) 6⊂
K(γε̄) ∩K(γε̄−1) ensures that either GK(γε̄) or GK(γε̄−1) is not contained in
GF (ζp). This means there exists σ1 in either GK(γε̄) or GK(γε̄−1) such that
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ε(σ1) 6≡ 1 mod p. In the latter case, we find our desired σ1. In the former
case, by exchanging the roles of the eigenvalues, we get our desired σ1.

If ϕ(σ1) 6= 0, then take σ = σ1, so suppose ϕ(σ1) = 0. We have the
inflation-restriction sequence:

0→ H1(K1/F,M1(1)GK1 )→ H1(F,M1(1))→ H1(K1,M1(1))Gal(K1/F ).

By the previous lemma, the first group is zero, so the image of ϕ in
H1(K1,M1(1)) is nonzero. This restriction is a nonzero homomorphism
ϕ|GK1

: GK1
→M1(1). Thus, we can find τ ∈ GK1

such that ϕ(τ) 6= 0. Then
take σ = τσ1. Then

ρ(σ) = ρ(τ)ρ(σ1) = ρ(σ1)

as τ ∈ ker(ρ). We also find

ε(σ) = ε(τ)ε(σ1) ≡ ε(σ1) mod λ

as ε(τ) ≡ 1 mod λ. Thus, γ(σ) ≡ ε(σ) mod λ. Moreover,

ϕ(σ) = ϕ(τ) + ϕ(σ1),

meaning ϕ(σ) 6= 0, as required.
If N0 > 1, then consider the element σ1 defined above. Then ρN0

(σ1) has
distinct eigenvalues by Hensel’s lemma, and we know this ratio modulo λ is

γ(σ1) ≡ ε(σ1) mod λ. Consider σN0
= σq

M

1 for some M to be determined and
q = #k. For some sufficiently high power of M , ε(σN0

) mod λN0 will be the
Teichmuller lifting of ε(σ1) mod λ to the mod λN0 ring (indeed, M = qN0−1

should do). But since γ(σ1) ≡ ε(σ1) mod λ, we deduce that the ratio of the
eigenvalues of ρN0

(σN0
) will be equivalent to ε(σN0

) mod λN0 .
We still need to make sure ϕ(σ) 6= 0. If ϕ(σN0

) 6= 0, then we can take
σ = σN0

. If ϕ(σN0
) = 0, consider τ ∈ GKN with ϕ(τ) 6= 0 as before. Let σ =

τσN0
. By the same reasoning as in theN0 = 1 case, the ratio of the eigenvalue

of ρN (σ) will still be equivalent to ε(σ) mod λN0 , and moreover ϕ(σ) =
ϕ(τ) + ϕ(σN0

) 6= 0 by construction. This concludes the proof. �

Remark 3.12. Note that the assumption F (ζp) 6⊂ K(γε̄) ∩K(γε̄−1) is im-
plied by the more checkable condition that (#ε̄(GL),#γ(GL)) > 1, where
L = F (ζp) ∩K(γ). Indeed, the condition implies that there exist σ, τ ∈ GL
such that ε̄(σ) = γ̄(τ). Since ε̄ and γ̄ induce maps on Gal(F (ζp)/L) and
Gal(K(γ̄)/L), respectively, we can project σ and τ to the quotient groups,
yielding (non-identity) elements σ̄ ∈ Gal(F (ζp)/L) and τ̄ ∈ Gal(K(γ̄)/L)
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such that ε̄(σ̄) = γ̄(τ̄) ∈ k×. Letting M = K(γ̄)F (ζp), we can find an ele-
ment ν̄ ∈ Gal(M/L) such that ν̄|K(γ̄) = τ̄ and ν̄|F (ζp) = σ̄. Lifting ν̄ to GL
produces an element ν ∈ GL such that γ̄(ν) = ε̄(ν), meaning ν ∈ GK(γ̄ε̄−1).
However, ν /∈ GF (ζp) since σ̄ was not the identity element in Gal(F (ζp)/F ),
and the claim follows.

3.6. Killing the M0(1) portion

Having killed the M1(1) portion of dual Selmer, we can try and get auxiliary
primes that take care of the remaining part of the group. Indeed, we have
the following proposition:

Proposition 3.13. Let S = (ρ̄, µ, S, {Λv}v∈S , {Dv}v∈S) be a global defor-

mation problem. Let T ⊂ S, and suppose for v ∈ S − T we have Dv = DSt(αv)
v .

Suppose further that h1
S,T (M1(1)) = 0, and let N1 ≥ 1 be an integer. Then

there exists a finite set Q1 of finite places of F , disjoint from S, satisfying:

(1) We have #Q1 = h1
S,T (M0(1)), and for each v ∈ Q1, the norm qv ≡

1 mod pN1 and ρ̄(Frobv) has distinct eigenvalues.

(2) Define the augmented deformation problem

SQ1
= (ρ̄, µ, S ∪Q1, {Λv}v∈S ∪ {O}v∈Q1

, {Dv}v∈S ∪ {D�
v }v∈Q1

).

Then h1
SQ1 ,T

(ad0 ρ̄(1)) = 0.

Proof. See the proof of Proposition 5.24 in [5]. �

4. The main theorem

From this point, everything from sections 6 of [5] carries over. We can now
work towards proving the main theorem. We proceed as in the aforemen-
tioned paper, making the necessary modifications. First, some preliminary
results.

Lemma 4.1. Let F be a totally real number field, and let F ′/F be a to-
tally real, soluble extension. Let p be a prime and let ι : Qp

∼→ C be a fixed
isomorphism.

(1) Let π be a cuspidal automorphic representaion of GL2(AF ) of weight 2,
and suppose that rι(π)|GF ′ is irreducible. Then there exists a cuspidal
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automorphic representation πF ′ of GL2(AF ′) of weight 2, called the
base change of π, such that rι(πF ′) ∼= rι(π)|GF ′ .

(2) Let ρ : GF → GL2(Qp) be a continuous representation such that ρ|GF ′
is irreducible. Let π′ be a cuspidal automorphic representation of
GL2(AF ′) of weight 2 with ρ|GF ′ ∼= rι(π

′). Then there exists a cusp-
idal automorphic representation π of GL2(AF ) of weight 2 such that
ρ ∼= rι(π).

Proof. This is stated in [5], Lemma 5.1. The proof follows from results of
[4], using arguments of [1], Lemma 1.3. �

Theorem 4.2. Let F be a totally real field, and let p be an odd prime. Let
ρ : GF → GL2(Qp) be a continuous representation. Suppose that:

(1) [F : Q] is even.

(2) Letting K be the quadratic subfield of F (ζp)/F , there exists a contin-

uous character χ̄ : GK → F×p such that ρ̄ ∼= IndGFGK χ.

(3) Letting w ∈ Gal(K/F ) be the nontrivial element, the character γ̄ =
χ̄/χ̄w remains nontrivial even after restriction to GF (ζp) (in particular,
ρ̄ is irreducible).

(4) We have F (ζp) 6⊂ K(γ̄ε̄−1) ∩K(γ̄ε̄).

(5) The character ψ = εdet ρ is everywhere unramified.

(6) The representation ρ is almost everywhere unramified.

(7) For each place v|p, ρ|GFv is semi-stable, and ρ̄|GFv is trivial. For each
embedding τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(8) If v - p is a finite place of F at which ρ is ramified, then qv ≡ 1 mod p,
WD(ρ|GFv )F−ss ∼= recTFv(St2(χv)) for some unramified character χv :

F×v → Q×p , and ρ̄|GFv is trivial. The number of such places is even.

(9) There exists a cuspidal automorphic representation π of GL2(AF ) of
weight 2 and an isomorphism ι : Qp → C satisfying:

(a) There is an isomorphism rι(π) ∼= ρ.

(b) If v|p and ρ is ordinary, then πv is ι-ordinary and π
U0(v)
v 6= 0. If

v|p and ρ is non-ordinary, then πv is not ι-ordinary and πv is
unramified.
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(c) If v - p∞ and ρ|GFv is unramified, then πv is unramified. If v - p∞
and ρ|GFv is ramified, then πv is an unramified twist of the Steinberg
representation.

Then ρ is automorphic: there exists a cuspidal automorphic representation
π′ of GL2(AF ) of weight 2 and an isomorphism ρ ∼= rι(π

′).

Remark 4.3. Here, U0(v) is the set of matrices in GL2(OFv) whose reduc-
tion modulo a fixed uniformizer of OFv is upper triangular.

Proof. This is Theorem 7.2 [5] with the necessary modifications (namely, the
addition of condition (4) instead of the condition that K be totally real).
One can just repeat the proof the author gives in that paper, replacing
Proposition 5.20 of loc. cit. with Proposition 2.11 from the previous section.

�

Using this theorem, we arrive at the main theorem.

Theorem 4.4. Let F be a totally real number field, let p be an odd prime,
and let ρ : GF → GL2(Qp) be a continuous representation satisfying the fol-
lowing:

(1) The representation ρ is almost everywhere unramified.

(2) For each v|p of F , the local representation ρ|GFv is de Rham. For each
embedding τ : F ↪→ Qp, we have HTτ (ρ) = {0, 1}.

(3) For each complex conjugation c ∈ GF , we have det ρ(c) = −1.

(4) The residual representation ρ̄ is absolutely irreducible, but ρ̄|GF (ζp)
is a

direct sum of two distinct characters. Further suppose that if K is the
unique quadratic subfield of F (ζp)/F and γ̄ : GK → k× is the ratio of
the two characters, then we have F (ζp) 6⊂ K(γ̄ε̄−1) ∩K(γ̄ε̄).

Then ρ is automorphic: there exists a cuspidal automorphic representation
π of GL2(AF ) of weight 2, an isomorphism ι : Qp → C, and an isomorphism
ρ ∼= rι(π).

Proof. The proof is exactly the same as Theorem 7.4 of [5], replacing Theo-
rem 7.2 of loc. cit. with Theorem 4.2 above. The idea is to construct a sol-
uble extension F ′/F such that ρ̄|GF ′ satisfies the conditions of Theorem 4.2
above. We then apply Lemma 4.1 to deduce the automorphy of ρ. We should
note that in [5], the author makes use of Corollary 7.4 in loc. cit., but that
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goes unchanged for us because that corollary made no assumptions on the
quadratic subfield K. �

5. Application to elliptic curves

We can apply this theorem to elliptic curves. In a paper of Freitas, Le Hung,
and Siksek (see [2]) the authors prove there are only finitely many non-
automorphic elliptic curves over any given totally real field. We can use the
theorem above to prove automorphy of elliptic curves E defined over totally
real fields F in some cases not covered in the existing literature. This comes
about by applying our theorem to the 7-adic representations arising from E.
Note that the assumptions of [5] imply that the theorem in that paper can
be applied only to p-adic representations of elliptic curves with p congruent
to 1 modulo 4.

The following theorem is [2], Theorems 3 and 4.

Theorem 5.1. Let p ∈ {3, 5, 7}. Let E be an elliptic field over a totally
real field F and let ρ̄E,p : GF → GL2(Fp) be the representation given by the
action on the p-torsion of E. If ρ̄E,p(GF (ζp)) is absolutely irreducible, then
E is modular.

We will call an elliptic curve p-bad if E[p] is an absolutely reducible
Fp[GF (ζp)]-module. Otherwise E is p-good. The theorem tells us the only
elliptic curves E which are potentially non-modular are those which are p-
bad for p = 3, 5, and 7. In [5], the author deals with some of these remaining
cases:

Theorem 5.2. Let E be an elliptic curve over a totally real field F . Sup-
pose:

(1) 5 is not a square in F .

(2) E has no F -rational 5-isogeny.

Then E is modular.

We can prove a similar theorem, but before doing so we recall [2], Propo-
sition 9.1.

Proposition 5.3. Let F be a totally real number field and let E be an
elliptic curve over F . Suppose F ∩Q(ζ7) = Q and write ρ̄ = ρ̄E,7. Suppose ρ̄
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is irreducible but ρ̄(GF (ζ7)) is absolutely reducible. Then ρ̄(GF ) is conjugate
in GL2(F7) to one of the groups

H1 =

〈(
3 0
0 5

)
,

(
0 2
2 0

)〉
, H2 =

〈(
0 5
3 0

)
,

(
5 0
3 2

)〉
.

The group H1 has order 36 and is contained as a subgroup of index 2 in the
normalizer of a split Cartan subgroup. The group H2 has order 48 and is
contained as a subgroup of index 2 in the normalizer of a non-split Cartan
subgroup. The images of H1 and H2 in PGL2(F7) are isomorphic to D3

∼= S3

and D4, respectively.

Theorem 5.4. Let F be a totally real field, and let E be an elliptic curve
over F . Suppose:

(1) F ∩Q(ζ7) = Q.

(2) E has no F -rational 7-isogeny.

(3) Either ρ̄E,7(GF (ζ7)) is absolutely irreducible, or it is reducible and
ρ̄E,7(GF ) is conjugate to the group H1 from the previous proposition.

Then E is modular.

We can extend Theorem 5.4 to primes other than p = 7, and we prove
this more general version.

Theorem 5.5. Let F be a totally real field, and let E be an elliptic curve
over F . Let p ≥ 7 be a prime such that (p− 1)/2 = qn for some odd prime
q and n ≥ 1. Suppose:

(1) F ∩Q(ζp) = Q.

(2) E has no F -rational p-isogeny.

(3) ρ̄E,p(GF ) normalizes a split Cartan subgroup of GL2(Fp).

Then E is modular.

Proof. Let ρ : GF → GL2(Qp) be the representation given by the action of
GF on the étale cohomology H1(EF ,Zp), after a choice of basis. The goal
is to show ρ is automorphic. Hypothesis (2) is equivalent to ρ̄ = ρ̄E,p being
irreducible, hence absolutely irreducible because of complex conjugation.
Hypothesis (3) says ρ̄(GF ) is contained in the normalizer of a split Cartan
subgroup. Note that the absolute irreducibility of ρ̄ implies the projective
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image is non-cyclic, for if it were cyclic, the image of ρ̄ would be abelian.
Thus, ρ̄(GF (ζp)) cannot be scalar, since Gal(F (ζp)/F ) is cyclic, and hence
cannot surject onto a non-cylic group.

Let K be the quadratic subfield of F (ζp)/F , so that [F (ζp) : K] = qn =
(p− 1)/2 by hypothesis (1). Let γ̄ : GK → F×p be the character which gives
the ratio of eigenvalues of ρ̄|GK . We want to examine [K(γ̄) : K], where
K(γ̄) = F̄ ker(γ̄) as always. In particular, we will show that K(γ̄) ∩ F (ζp) is a
field L which satisfies (#ε̄(GL),#γ̄(GL)) > 1, which implies hypothesis (4)
of the main theorem. Note that hypothesis (1) implies that, as a character
of GK , that ε̄ takes values in (F×p )2.

Using the fact that det ρ̄ is the mod p cyclotomic character, we find
that χ̄χ̄w = ε̄, so that γ̄ = χ̄/χ̄w = χ̄2ε̄−1, which is a character GK → (F×p )2.
Thus, the order of γ̄ divides (p− 1)/2 = qn, and moreover cannot equal 1 as γ̄
is a nontrivial character of GK . Thus, 1 < [K(γ̄) : K]

∣∣qn. Moreover, [F (ζp) :
K] = qn by hypothesis (1) of the theorem. Lastly, we know K(γ̄) 6⊆ F (ζp)
since γ̄ is nontrivial upon restriction to GF (ζp), and thus K(γ̄) ∩ F (ζp) is
neither K(γ̄) nor F (ζp). This intersection is therefore a field L which satisfies
(#ε̄(GL),#γ̄(GL)) > 1 as q divides both quantities. Thus, hypothesis (4) of
the main theorem is satisfied, and therefore E is modular. �

References

[1] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of
Calabi-Yau varieties and potential automorphy II, Publications of the
Research Institute for Mathematical Sciences 47 (2011), no. 1, 29–98.

[2] N. Freitas, B. V. L. Hung, and S. Sikek, Elliptic curves over real quadratic
fields are modular, Invent. Math. 201 (2015), 521–567.

[3] C. Khare and J. Thorne, Automorphy of some residually dihedral Galois
representations, II, preprint (2015).

[4] R. P. Langlands, Base change for GL(2), Annals of Mathematics Studies
96 (1980).

[5] J. Thorne, Automorphy of some residually dihedral Galois representa-
tions, to appear in Math. Annalen. (2015).



i
i

“11-Kalyanswamy” — 2018/11/14 — 21:44 — page 1304 — #20 i
i

i
i

i
i

1304 Sudesh Kalyanswamy

Department of Mathematics, UCLA

520 Portola Plaza, Los Angeles, CA 90095, USA

E-mail address: skalyanswamy@math.ucla.edu

Current address:

Mathematics Department, Yale University

10 Hillhouse Avenue, New Haven, CT 06511, USA

E-mail address: sudesh.kalyanswamy@yale.edu

Received July 26, 2016


	Introduction
	Acknowledgements
	Notation
	Galois theory
	The main theorem
	Application to elliptic curves
	References

