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On the existence of ghost classes in the

cohomology of the Shimura variety

associated to GU(2, 2)

Matias Victor Moya Giusti

In this paper we study the existence of ghost classes in the cohomo-
logy of the Shimura variety attached to the group of unitary simil-
itudes of signature (2, 2), denoted by GU(2, 2). We use considera-
tions on the weights of the mixed Hodge structures attached to the
cohomology spaces involved in their definition. The non-existence
of ghost classes is known in the cases in which the highest weight
of the irreducible representation is regular. We prove that for most
irreducible representations with irregular highest weight there are
no ghost classes and for the other cases we show that the possible
weights in the mixed Hodge structure on the space of ghost classes
belong always to the set consisting of the middle weight and the
middle weight plus one.

1. Introduction

Let (G,X) be a Shimura pair, (ρ, V ) an irreducible algebraic representation
of G and Af the ring of finite adeles of Q, then for each compact open
subgroup K ⊂ G(Af ), V induces a local system Ṽ on the corresponding level
variety SK = ShK(G,X) which is in fact a variation of Hodge structure of
a given weight wt(V ). We denote by SK the Borel-Serre compactification of
SK and by ∂SK its boundary, then taking projective limits over the set of
open compact subgroups K ⊂ G(Af ) we obtain the Shimura variety S, its
Borel-Serre compactification S and its boundary ∂S. Assume we have chosen
a maximal torus T on G, a maximal Q-split torus on G contained in T and
a system of positive roots in the respective associated root systems such
that they are compatible. By these choices in the Q-root system we have
an induced set P(G) of Q-parabolic subgroups of G, the set of standard
Q-parabolic subgroups. Then ∂S can be written as a union of faces indexed
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by the standard Q-parabolic subgroups of G, and for each P ∈ P(G) we will
denote by ∂P its corresponding face in ∂S.

Ṽ can be extended to the Borel-Serre compactification in a canonical
way and we have an isomorphism in cohomology Hq(S, Ṽ ) ∼= Hq(S, Ṽ ) for
each q. Considering its corresponding restriction to the boundary of the
Borel-Serre compactification we have the following long exact sequence in
cohomology

· · · → Hq
c (S, Ṽ )→ Hq(S, Ṽ )→ Hq(∂S, Ṽ )→ · · ·

where H∗c (S, Ṽ ) denotes the cohomology with compact support.
On the other hand, the covering of ∂S given by the faces attached to

the standard Q-parabolic subgroups induces a spectral sequence abutting to
the cohomology of the boundary H∗(∂S, Ṽ ).

If G has semisimple Q-rank 2 then P(G) consists of three elements,
one minimal standard Q-parabolic subgroup denoted by P0 and two max-
imal ones denoted by P1 and P2, this reduces the aforementioned spectral
sequence to a long exact sequence in cohomology given by

· · · → Hq(∂S, Ṽ )→ Hq(∂P1
, Ṽ )⊕Hq(∂P2

, Ṽ )→ Hq(∂P0
, Ṽ )→ · · ·

The space of q-ghost classes Ghq(V ) is the subspace of Hq(∂S, Ṽ ) given
by the intersection of the image of the morphism

Hq(S, Ṽ )→ Hq(∂S, Ṽ )

with the kernel of the morphisms

Hq(∂S, Ṽ )→ Hq(∂P , Ṽ )

corresponding to each standard Q-parabolic subgroup P of G, which is the
same as the intersection of the image of the first map with the kernel of

Hq(∂S, Ṽ )→ Hq(∂P1
, Ṽ )⊕Hq(∂P2

, Ṽ )

Ghost classes have been first considered by A. Borel and have been
treated by many mathematicians as G. Harder, J. Schwermer, J. Franke,
C. Moeglin. The definition makes sense for any reductive group over Q and
does not depend on the existence of a Hermitian structure. Ghost classes
have been found, for example for GLn by G. Harder in [5], using the combi-
natorics of Eisenstein series, and J. Franke developed a topological method
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to obtain such classes in [3], but few examples are known for Shimura vari-
eties.

In this paper we study the existence, or not, of ghost classes for the
Shimura variety associated to GU(2, 2).

By Saito’s theory of mixed Hodge modules and by the results in [7], each
term in the last two long exact sequences is endowed with a mixed Hodge
structure and the given morphisms are morphisms of mixed Hodge struc-
tures, so the space of ghost classes has an induced mixed Hodge structure.
By using information on the cohomology spaces appearing in the aforemen-
tioned long exact sequences we can obtain information on the possible types
in the mixed Hodge structure on the spaces of ghost classes.

The information on the space Ghq(V ) will be obtained by the study of
the morphisms Hq(S, Ṽ )→ Hq(∂S, Ṽ ), Hq−1(∂P1

, Ṽ )→ Hq−1(∂P0
, Ṽ ) and

Hq−1(∂P2
, Ṽ )→ Hq−1(∂P0

, Ṽ ) as well as by considerations on the mixed
Hodge structures of the given cohomology spaces. The arguments for study-
ing the first two morphisms come from weight considerations. The same
method does not give much information on the morphism Hq−1(∂P2

, Ṽ )→
Hq−1(∂P0

, Ṽ ), so its study will be based on the results in [4].
One knows that the weights in the mixed Hodge structure associated

to Hq(S, Ṽ ) are greater than or equal to q + wt(V ), where wt(V ) is the
weight of the variation of (complex) Hodge structure defined by Ṽ , while
the weights in Hq+1

c (S, Ṽ ) are less than or equal to (q + 1) + wt(V ). We call
q + wt(V ) the middle weight. One interesting question is the study of the
possible weights in the space of q-ghost classes, and in particular whether
the only weights appearing are the middle weight and/or the middle weight
plus one. In the case when Ghq(V ) satisfies this property for every natural
number q we will say that the representation V satisfies the ‘weak middle
weight property’ and moreover we say that it satisfies the ‘middle weight
property’ if in addition the only possible weight in such a mixed Hodge
structure is the middle weight.

We present the main results of this paper. If the highest weight of the
irreducible representation is regular then it is known, by combining Theorem
4.11 in [12] and Theorem 19 in [2], that there are no ghost classes. Then the
new results of this paper come from the non regular highest weights. The ir-
reducible algebraic representations of GU(2, 2) are parametrized by 5-tuples
(a1, a2, a3, a4, c) where a1 ≥ a2 ≥ a3 ≥ a4 and c is congruent to

∑4
i=1 ai mod-

ule 2. With this notation we prove in Theorem 8 that in the cases in which
a1 6= a2 or a3 6= a4, these includes most of the irregular highest weights,
there are no ghost classes and for the cases a1 = a2 and a3 = a4 we deter-
mine in Theorem 9 the weights and degree in cohomology of the possible
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ghost classes, obtaining that the corresponding local system satisfies the
weak middle weight property.

2. Preliminaries

2.1. Hodge theory and Shimura varieties

A real Hodge structure is a finite dimensional real vector space V together
with a decomposition V ⊗R C = ⊕p,q∈ZV p,q such that V p,q = V q,p ∀p, q.

By the characterization of the representations of an algebraic torus, to
give a real Hodge structure on a real vector space V is the same as to give
an algebraic homomorphism defined over R from the real algebraic group
S = ResC/RGm to GL(V ), where ResC/R denotes Weil restriction of scalars.

The main spaces that we are going to study are endowed with mixed
Hodge structures, a more general structure defined as follows.

Definition 1. Let HZ be a finitely generated abelian group, a mixed Hodge
structure on HZ consists of a finite decreasing filtration F •H of HZ ⊗Z C,
called the Hodge filtration, and a finite increasing filtrationW•H of the space
HZ ⊗Z Q, called the weight filtration, such that for each k ∈ Z the Hodge
filtration induces a Hodge structure of weight k on the quotient space

GrWk = WkH/Wk−1H.

We will analyze certain local systems, most of them defining variations
of Hodge structures (see [11] for this notion). In fact, all the local systems
considered will define a complex variation of Hodge structure. These objects
consist of families of complex Hodge structures satisfying certain conditions.

Definition 2. A complex Hodge structure is a finite dimensional C-vector
space E together with a decomposition E =

⊕
p,q∈ZE

p,q into a direct sum
of C-vector subspaces.

One can see that to give a complex Hodge structure is equivalent to give
an algebraic representation of SC.

We refer to [14] for the notion of a complex variation of Hodge structure.
We consider a Shimura pair (G,X), where G is a connected reductive

algebraic group defined over Q and X is a complex space whose underlying
set can be identified with a G(R)-conjugacy class of homomorphisms of real
algebraic groups from S to GR. If i : Gm,R → S is the canonical homomor-
phism of real algebraic groups and h ∈ X then one can see that the image
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of the morphism h ◦ i : Gm,R → GR is central, hence it does not depend on
the element h ∈ X chosen. We call h ◦ i the weight homomorphism of the
Shimura pair and we denote it by wX .

The following proposition can be found in [10].

Proposition 3. Let (G,X) be a Shimura datum and let ρ : GR → GL(V ) be
an algebraic representation of G defined over R. Then X has a unique com-
plex structure such that for every algebraic representation ρ : GR → GL(V )
defined over R, the assignment h ∈ X 7→ ρ ◦ h defines a variation of Hodge
structure.

Moreover if we have an algebraic representation ρ : G→ GL(V ) on a
complex vector space V , not necessarily defined over R, then we obtain by
the same procedure a complex variation of Hodge structure, i.e. to h ∈ X
corresponds the complex Hodge structure defined by ρ ◦ h.

We define the level varieties as follows.

Definition 4. Let (G,X) be a Shimura datum and let K ⊂ G(Af ) be a
compact open subgroup, the level variety associated to K is given by

ShK(G,X) = G(Q)\ (X × (G(Af )/K)) .

For sufficiently small K the space ShK(G,X) is a finite disjoint union
of locally symmetric spaces given by arithmetic quotients of a hermitian
symmetric domain.

As a conclusion, for sufficiently small K, the level variety ShK(G,X)
admits the structure of a complex quasi-projective variety.

IfK ′ ⊂ K then we have a canonical morphism ShK′(G,X)→ShK(G,X),
moreover this morphism is regular.

Definition 5. Let (G,X) be a Shimura datum, we define the Shimura
variety associated to the Shimura pair (G,X) by

Sh(G,X) = lim
←−
K

ShK(G,X).

If (ρ, V ) is an irreducible algebraic representation of G then we can
define local systems on the spaces ShK(G,X) and also on the Shimura
variety Sh(G,X) as follows. For K ⊂ G(Af ) let Ṽ be the local system on
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ShK(G,X) defined by

G(Q)\X × V ×G(Af )/K

while the local system on Sh(G,X) is defined by

lim
←−
K

G(Q)\X × V ×G(Af )/K

which will also be denoted by Ṽ .
We denote by SK the level variety associated to K and by S the Shimura

variety Sh(G,X).
Thus, given an irreducible algebraic representation of G we obtain local

systems Ṽ on S and on each level variety SK ; we will be interested in the
cohomology spaces H∗(S, Ṽ ) and H∗(SK , Ṽ ).

2.2. Q-structure and Borel-Serre compactification

Let (G,X) be a Shimura datum and let K ⊂ G(Af ) be an open compact
subgroup. When the semisimple Q-rank of G is not zero the level variety
SK will not be compact and we consider its Borel-Serre compactification
denoted by SK (see [1]). The inclusion SK ↪→ SK is a homotopy equivalence,
the local system Ṽ can be naturally extended to a local system Ṽ on SK
and we have an isomorphism

H∗(SK , Ṽ ) ∼= H∗(SK , Ṽ )

(see for example [4] or [13]). We denote the boundary of the Borel-Serre
compactification by ∂SK .

At this point we can consider the long exact sequence in cohomology

(1) · · · → Hq
c (SK , Ṽ )→ Hq(SK , Ṽ )→ Hq(∂SK , Ṽ )→ · · ·

where Hq
c (SK , Ṽ ) denotes cohomology with compact support.

To describe the Borel-Serre compactification we need to understand the
Q-structure of G. We fix a maximal torus T and a maximal Q-split torus
T̃ of G such that T̃ ⊂ T . We fix a set of positive roots on the root system
Φ(G,T ) and we denote by ∆ the corresponding set of simple roots. We have
a system of positive roots on the root system Φ(G, T̃ ) that is compatible with
the system of positive roots for Φ(G,T ). We denote by ∆Q its corresponding
set of simple roots.
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Associated to these choices we have the set P(G) of standard Q-parabolic
subgroups of G. P(G) can be identified with the set of subsets of ∆Q where
to each maximal standard Q-parabolic subgroup corresponds a 1-element
subset of ∆Q. The boundary ∂SK of the Borel-Serre compactification of
SK can be written as a union of faces indexed by the proper standard Q-
parabolic subgroups, and given I ⊂ ∆Q we denote by ∂I,K the corresponding
face of ∂SK . This induces a spectral sequence in cohomology

Ep,q1 =
⊕
|I|=p+1

Hq(∂I,K , Ṽ )⇒ Hp+q(∂SK , Ṽ )

abutting to the cohomology of the boundary.
We assume from now on that G has semisimple Q-rank two. So ∆Q

has just two elements and we will have two standard maximal Q-parabolic
subgroups, to be denoted by P1, P2, together with a minimal one, denoted
by P0. Denote the corresponding faces in the boundary of the Borel-Serre
compactification of SK by ∂1,K , ∂2,K and ∂0,K respectively. In this special
case the aforementioned spectral sequence becomes a long exact sequence in
cohomology, given by

(2) · · · → Hq(∂SK , Ṽ )→ Hq(∂1,K , Ṽ )⊕Hq(∂2,K , Ṽ )→ Hq(∂0,K , Ṽ )→ · · ·

By Saito’s theory of mixed Hodge modules and by [7], each term in the
long exact sequences (1) and (2) admits a natural mixed Hodge structure.
Moreover, (1) and (2) are long exact sequences of mixed Hodge structures.
This will be one of the main tools in the study of the spaces of ghost classes.

If we work in the infinite level, we can write

H∗(S, Ṽ ) = lim
−→
K

H∗(SK , Ṽ )

and, by taking the same direct limits, we can define the analogous objects
at the infinite level H∗(∂S, Ṽ ), H∗c (S, Ṽ ) and H∗(∂i, Ṽ ) for i ∈ {0, 1, 2} cor-
responding to the cohomology spaces in the long exact sequences (1) and
(2). In this setting it is verified that the following sequences are exact:

· · · → Hq
c (S, Ṽ )→ Hq(S, Ṽ )

rq−→ Hq(∂S, Ṽ )→ · · ·

and

· · · → Hq(∂S, Ṽ )
pq−→ Hq(∂1, Ṽ )⊕Hq(∂2, Ṽ )→ Hq(∂0, Ṽ )→ · · · .



i
i

“9-Giusti” — 2018/11/7 — 17:36 — page 1234 — #8 i
i

i
i

i
i

1234 M. V. Moya Giusti

The two morphisms pq and rq in these sequences will be used in the next
section to give the definition of ghost classes.

2.3. Ghost classes and mixed Hodge theory on cohomology

In the notation of the last subsection we define the space of q-ghost classes
of the Shimura datum (G,X) with coefficients in the local system defined
by the irreducible representation V by

Ghq(Ṽ ) = Im(rq) ∩Ker(pq).

In other words, Ghq(Ṽ ) is the space of cohomology classes in the coho-
mology of the boundary of the Borel-Serre compactification that lie in the
image of Hq(S, Ṽ ) by the canonical projection and also in the kernel of each
projection to the cohomology of each face of the boundary of the Borel-
Serre compactification Hq(∂i, Ṽ ) corresponding to a standard Q-parabolic
subgroup.

Our approach is based on the facts that all the cohomology spaces consid-
ered are endowed with mixed Hodge structures (by Saito’s theory of mixed
Hodge modules and by [7]) and the long exact sequences in cohomology are
exact sequences of mixed Hodge structures, which induces a mixed Hodge
structure on the space of ghost classes.

The weight morphism ωX of the Shimura datum defines the weight in the
variation of Hodge structure defined by Ṽ and all of this remains true for an
algebraic representation not necessarily defined over R inducing a complex
variation of Hodge structure. We denote by wt(V ) this weight and we say
that wt(V ) is the weight of the representation V of G. By Saito’s theory, we
know that the weights in the mixed Hodge structure attached to Hq(S, Ṽ )
are greater than or equal to wt(V ) + q and the weights in the mixed Hodge
structure attached to Hq

c (S, Ṽ ) are less than or equal to wt(V ) + q. This
gives the first implications on the mixed Hodge structure on the space of
ghost classes since it implies that the weights in the mixed Hodge structure
attached to Ghq(Ṽ ) are greater than or equal to wt(V ) + q.

Here we introduce a question to be studied in what follows, that is
whether the possible weights in the space of ghost classes Ghq(Ṽ ) belong
to the set {q + wt(V ), q + 1 + wt(V )}, in the case that this holds for the
representation V we say that V satisfies the weak middle weight property.
On the other hand, if V is such that the space of ghost classes Ghq(Ṽ ) has
weight q + wt(V ) we say that V satisfies the middle weight property.
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Another restriction can be obtained by studying the mixed Hodge struc-
tures on the spaces Hq(∂0, Ṽ ) and the kernel of Hq(∂0, Ṽ )→ Hq+1(∂S, Ṽ ),
but this kernel is the image of the morphism

Hq(∂1, Ṽ )⊕Hq(∂2, Ṽ )→ Hq(∂0, Ṽ ).

To study this image we restrict the morphism to each term and study each
map Hq(∂i, Ṽ )→ Hq(∂0, Ṽ ) separately.

For this we use the decomposition given by any standard Q-parabolic
subgroup P of G

Hq(∂P , Ṽ ) =
⊕
i+j=q

Ind
G(Af )×π0(G(R))
P (Af )×π0(P (R))H

i(SMP , ˜Hj(uP , V ))

where uP denotes the Lie algebra of the unipotent radical of P , MP is a Levi
subgroup of P , SMP is an inverse limit of locally symmetric spaces associated
to MP and π0(P (R)), π0(G(R)) denote the groups of connected components
of P (R) and G(R) respectively (see for example [4] or [13]). From now on

we will abbreviate IndGP = Ind
G(Af )×π0(G(R))
P (Af )×π0(P (R)) for each standard parabolic Q-

subgroup P of G.
By Kostant’s theorem ([9]) we have a decomposition of Hj(uP , V ) as a

direct sum of irreducible representations of MP indexed by elements of the
Weyl group.

Indeed, given the root system Φ(G,T ), denote by Φ+ the set of positive
roots and by Φ− the set of negative roots, then for each w ∈ W we define

Φw = w(Φ−) ∩ Φ+.

Given a root α ∈ Φ we denote by Eα ⊂ gC the corresponding root space. If
pC = Lie(P )C ⊂ gC, then we have the decomposition pC = m⊕ u correspon-
ding to the Levi decomposition of P and we define ∆(u) = {α ∈ Φ | Eα ⊂ u}.

We define the subset WP ⊂ W by

(3) WP = {w ∈ W | Φw ⊂ ∆(u)}

Assume that the algebraic representation V of G is irreducible with
highest weight λ, then we obtain a decomposition as representations of MP

Hq(uP , V ) =
⊕

w∈WP (q)

Ww∗(λ).
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In this decomposition,WP (q) ⊂ WP is the subset ofWP consisting of the el-
ements of length q, w∗(λ) = w(λ+ δ)− δ where δ = 1

2

∑
α∈Φ+ α and Ww∗(λ)

is the irreducible representation of MP with highest weight w∗(λ).
Thus we obtain the decomposition

Hq(∂P , Ṽλ) =
⊕
w∈WP

`(w)≤q

IndGPH
q−`(w)(SMP , W̃w∗(λ))

where Vλ denotes the irreducible algebraic representation of G with highest
weight λ.

There are uniquely determined subsets W0
i of the Weyl group W (for

i = 1 or 2) such that WP0 =W0
iWPi and for each w ∈ WPi the restriction

of the morphism Hq(∂i, Ṽ )→ Hq(∂0, Ṽ ) to IndGPiH
q−`(w)(SMPi , W̃w∗(λ)) has

image in ⊕
w̃∈W0

i

IndGP0
Hq−`(w)−`(w̃)(SMP0 , W̃w̃∗(w∗(λ))).

Moreover, for w ∈ WP0 , w̃ ∈ W0
i and wi ∈ WPi (for i = 1 or 2) such that

w = w̃wi we have `(w) = `(w̃) + `(wi).
The study of the above morphism, since parabolic induction is exact,

reduces to the study of the following morphism, for each i ∈ {1, 2} and each
w ∈ WPi ,

Hq−`(w)(SMPi , W̃w∗(λ))→
⊕
w̃∈W0

i

Ind
MPi

P i0
Hq−`(w)−`(w̃)(SMP0 , W̃w̃∗(w∗(λ)))

where P i0 denotes the Q-parabolic subgroup (P0 ∩MPi) of MPi . In order to
apply similar strategies as in the case of the Shimura variety, we have to
calculate the weights on the cohomology spaces Hq(SMPi , W̃w∗(λ)). This will
be done following Section 5 of [7] and [8].

For i = 1 or 2, Pi is a maximal standard Q-parabolic subgroup. We have
a decomposition of the Levi subgroup of Pi of the form MPi = GPi,hGPi,l
which is the product of the hermitian and the linear part, whose intersection
is the subgroup APi of MPi given by the product of the maximal Q-split
torus in the center of MPi and the center of G. GPi,h is part of a Shimura
datum and we denote by hPi : S→ GPi,h the corresponding morphism, which
is determined up to GPi,h(R)-conjugation. The types of the mixed Hodge

structure associated to H∗(SMPi , W̃w∗(λ)) are determined by hPi and Ww∗(λ),
as one can see in (5.6.10) of [7].

For the minimal parabolic P0 we take its hermitian part to be the hermi-
tian part of P2, in the more general case we have an association of a maximal
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standard Q-parabolic subgroup to each standard Q-parabolic subgroup of
G (see for example [7]) and the hermitian part of a standard Q-parabolic
subgroup of G is that of the maximal standard Q-parabolic associated. Fi-
nally, with these correspondences, the types of the mixed Hodge structure
attached to the cohomology space Hq(SMP0 , W̃w∗(λ)) are determined by hP2

and Ww∗(λ), as one can see again in (5.6.10) of [7].

3. The case GU(2, 2)

3.1. The Shimura variety involved

In this subsection we describe the Shimura variety to be studied in this
paper. Let K be an imaginary quadratic field, let ι be the only nontrivial
element of Gal(K/Q), I(2,2) = I2 × (−I2) ∈ GL4(Q) and let GU(I(2,2)) be
the connected reductive algebraic group defined over Q given by

GU(I(2,2))(A) =
{
g ∈ GLn(A⊗Q K) | g∗I(2,2)g = ν(g)I(2,2), ν(g) ∈ A×

}
for every Q-algebra A, where g denotes ι(g) and g∗ denotes the transpose
of g.

If h : S→ GU(I(2,2))R is the algebraic homomorphism given by

h(z) = zI2 × (zI2) ∀z ∈ S(R)

andX is theGU(I(2,2))(R)-conjugacy class of h, then the pair (GU(I(2,2)), X)
is a Shimura datum.

For the calculations, it turns out to be more convenient to work with
the algebraic group GU(A(2,2)), that is isomorphic to GU(I(2,2)), given by

GU(A(2,2))(A) =
{
g ∈ GLn(A⊗Q K) | g∗A(2,2)g = ν(g)A(2,2), ν(g) ∈ A×

}
for a given Q-algebra A, where

A(2,2) =

[
0 S
S 0

]
, with S =

[
0 1
1 0

]
.

In what follows we will denote the group GU(A(2,2)) by G. The complex
points of G is the group G(C) = GL4(C)× C× where the map G(R)→ G(C)
is given by g 7→ (g, ν(g)).
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3.2. Maximal torus, root system and parabolic subgroups

Let H ⊂ G(C) be the 5-dimensional complex torus consisting of the diagonal
matrices, clearly a maximal torus for G which defines a root system of type
A3. We denote by W the corresponding Weyl group.

Let h = Lie(H) be the complex Lie subalgebra of gC = gl4(C)⊕ C corres-
ponding to H. We define for each i ∈ {1, 2, 3, 4} the element εi ∈ h∗ given
by εi(h) = hi for h = (diag(h1, h2, h3, h4), x) ∈ h.

Then the root system for these choices is given by

Φ(gC, h) = {εi − εj | i 6= j}

and taking the positive roots to be Φ+ = {εi − εj | i < j} we have the system
of simple roots given by ∆ = {ε1 − ε2, ε2 − ε3, ε3 − ε4}.

To give an irreducible algebraic representation of G is the same as giving
a 5-tuple (a1, a2, a3, a4, c) with a1 ≥ a2 ≥ a3 ≥ a4 and c ≡

∑4
i=1 ai mod(2).

We fix an irreducible algebraic representation (ρλ, Vλ) with highest weight
given by λ = (a1, a2, a3, a4, c) and we denote by Ṽλ the corresponding local
system.

The given maximal torus on G gives a specific maximal Q-split subtorus
consisting of the subgroup of matrices of the form


aa1

aa2

a−1
2

a−1
1

 : a, a1, a2 ∈ Gm

 ⊂ G
This Q-split torus has rank 3 and it induces a Q-root system of rank 2,

of type C2.
From the given maximal Q-split torus and the corresponding system of

positive Q-roots induced by Φ+ we have the associated standard Q-parabolic
subgroups, which in this case are given by

P1 =

 ResK/QGL1 ∗ ∗
0 GU(A(1,1)) ∗
0 0 ResK/QGL1

 ∩G,

P2 =

[
ResK/QGL2 ∗

0 ResK/QGL2

]
∩G,
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and

P0 =


ResK/QGL1 ∗ ∗ ∗

0 ResK/QGL1 ∗ ∗
0 0 ResK/QGL1 ∗
0 0 0 ResK/QGL1

 ∩G
3.3. Weyl group and the subsets WP0, WP1 and WP2

The Weyl group W can be identified with the permutation group S4, where
σ ∈ S4 corresponds to the element wσ satisfying

wσ(εi) = εσ−1(i) ∀i ∈ {1, 2, 3, 4} .

We give a description of the subsetsWPi ⊂ W, i = 0, 1, 2, in the following
proposition, which follows from the characterization (3) in Subsection 2.3.

Proposition 6. We have that

WP0 =W, WP1 = {wσ ∈ W | σ(2) < σ(3)} and

WP2 = {wσ ∈ W | σ(1) < σ(2) and σ(3) < σ(4)}

We have to keep in mind that in this notation wσwτ = wτσ ∀σ, τ ∈ S4.

3.4. Weights on Ww∗(λ)

The aim of this section is to give a description of the weights of the mixed
Hodge structure associated to the spaces of the form
Hq(SMPi , W̃w∗(λ)), for i ∈ {0, 1, 2}.

We start with the case i = 1. We need to calculate the subgroup AP1

of MP1
, which is the maximal Q-split torus in the center of MP1

times the
center of G. In this case this is given bya

 a1

I2

a−1
1

 : a ∈ ResK/QGm, a1 ∈ Gm


For the calculation of the homomorphism hP1

: S→ GP1,h defining the
Shimura datum attached to the hermitian part GP1,h of MP1

we follow Sec-
tion 5 of [6].

We now calculate the unique admissible Cayley morphism to be denoted
by ω1. ω1 : Gm → AP1

can be determined by the properties stated in the
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aforementioned paper, specially considering the filtration it induces in the
Lie algebra gC by its composition with the adjoint representation. Also we
use the fact that for every rational representation (σ,W ) of G and for every
h ∈ X, the Hodge filtration associated to the Hodge structure defined by
the composition σ ◦ h, together with the increasing filtration induced by the
graduation of W given by the composition σ ◦ ω1 defines a mixed Hodge
structure on W .

By the first property one can see that ω1 is given by

ω1(z) =


 zk

zk+1Id2

zk+2

 : z ∈ Gm


with k ∈ Z. By the second property we take the inclusionG ↪→ ResK/QGL4 ⊂
GL8 as an 8-dimensional rational representation of G, and one can see that
k = −2 and hP1

: ResC/RGm → (GP1,h)R is given by

hP1
(z) =

 zz
h(1,1)(z)

1

 ∈ (GP1,h)R ∀z ∈ C×.

where h(1,1) : S→ GU(1, 1)R is the map described in a way similar to h
defining the Shimura variety for GU(1, 1).

By the same procedure we obtain the morphism hP2
: ResC/RGm →

(GP2,h)R, given by

hP2
(z) =

[
zzId2

Id2

]
∈ (GP2,h)R ∀z ∈ C×.

To finalize this section we calculate the weight of the representations
Vλ of G and Ww∗(λ) of MP for w ∈ WP for each P standard Q-parabolic
subgroup of G (see 2.3 for this notion).

Let i ∈ {0, 1, 2}. For each w ∈ WPi , we have w∗(λ) = w(λ+ δ)− δ.
If we abbreviate by writing (a1, a2, a3, a4) the weight λ = a1ε1 + a2ε2 +

a3ε3 + a4ε4, then we have that (wσ)∗(λ) is given by

(aσ(1) + 1− σ(1), aσ(2) + 2− σ(2), aσ(3) + 3− σ(3), aσ(4) + 4− σ(4)).

From the description of h we have that the weight homomorphism of the
Shimura variety defined by (G, h) is given by

R× → G(R), t 7→ tId4
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so, by the description of λ, the weight of the representation Vλ is given by
wt(Vλ) = −c.

On the other hand, from the definition of hP1
we have that the weight

homomorphism of the Shimura datum defined by GP1,h and hP1
is given by

t 7→

 t2

tId2

1

 =

 t
tId2

t

 t
Id2

t−1

 ∈ GP1,h(R)

and the weight of the representation of GP1,h determined by W(wσ)∗(λ), for
wσ ∈ WP1 , is

wt(wσ, P1) = −c+ ((aσ(4) + 4− σ(4))− (aσ(1) + 1− σ(1)))

By the same procedure we can verify that for a given wσ ∈ WP2 the
weight wt(wσ, P2) of the representation of GP2,h defined by W(wσ)∗(λ) is
given by the formula

−c+ (aσ(4) + 4− σ(4)) + (aσ(3) + 3− σ(3))

−(aσ(1) + 1− σ(1))− (aσ(2) + 2− σ(2))

By [7] the weight wt(wσ, P0) of the representation on the hermitian part
of P0 defined by the representation W(wσ)∗(λ) of MP0

, for wσ ∈ WP0 , is given
by

−c+ (aσ(4) + 4− σ(4)) + (aσ(3) + 3− σ(3))

−(aσ(1) + 1− σ(1))− (aσ(2) + 2− σ(2))

3.5. The decompositions WP0 = W0
1WP1 and WP0 = W0

2WP2

We have the decompositionsWP0 =W0
1WP1 andWP0 =W0

2WP2 , whereW0
i

(for i = 1 or 2) is the set of Weyl representatives for the unique standard
Q-parabolic subgroup of MPi defined by the root system induced from that
of G. Using the fact that wσwσ̃ = wσ̃σ one can see, by the same arguments as
in Proposition 6 in section 3.3, thatW0

1 = {wσ ∈ W | σ ∈ {1, s2,3}} and that
W0

2 = {wσ ∈ W | σ ∈ {1, s1,2, s3,4, s1,2 ◦ s3,4}},
where si,j denotes the transposition (ij).
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3.6. The image of the morphism r∗1,0 : H∗(∂1, Ṽλ) → H∗(∂0, Ṽλ)

As explained in the preliminaries, this morphism respects the direct sum
decomposition indexed by the set of Weyl representatives WP1 and WP0 . In
other words, we can study the image of r∗1,0 by restricting this morphism to

each factor corresponding to a given w ∈ WP1 , obtaining a morphism from
the space

IndGP1
Hq−`(w)(SMP1 , W̃w∗(λ))

to the space ⊕
w′∈W0

1

`(w′)≤q−`(w)

IndGP0
Hq−`(w)−`(w′)(SMP0 , W̃(w′w)∗(λ)).

One observation here is that Hk(SMP0 , W̃(w′w)∗(λ)) = 0 for all k > 0, so in
the right hand side we only have to consider the elements w′ ∈ W0

1 satisfying
q − `(w)− `(w′) = 0.

In this case we have that MP1
coincides with its hermitian part GP1,h.

Fix w ∈ WP1 , then we have the long exact sequence in cohomology

· · · → Hq−`(w)(SMP1 , W̃w∗(λ))→
⊕
w′∈W0

1

`(w′)=q−`(w)

Ind
MP1

P 1
0
H0(SMP0 , W̃(w′w)∗(λ))

→ Hq−`(w)+1
c (SMP1 , W̃w∗(λ))→ · · ·

where P 1
0 denotes the Q-parabolic subgroup P0 ∩MP1

of MP1
, Ind

MP1

P 1
0

de-

notes Ind
MP1 (Af )×π0(MP1 (R))

P 1
0 (Af )×π0(P 1

0 (R)) and the term involving the direct sum corres-
ponds to the cohomology of the boundary of the Borel-Serre compactification
of the Shimura variety attached to the Levi subgroup MP1

of the Q-parabolic
subgroup P1.

We have the following list of facts that will be useful for describing the
image of r∗1,0 : Hq(∂1,, Ṽλ)→ Hq(∂0, Ṽλ),

• The weights in the mixed Hodge structure on Hq−`(w)(SMP1 , W̃w∗(λ))
are greater than or equal to q − `(w) + wt(w,P1).

• The weights in the mixed Hodge structure on H
q−`(w)+1
c (SMP1 , W̃w∗(λ))

are less than or equal to q − `(w) + 1 + wt(w,P1)

• The weight on Ind
MP1

P 1
0
H0(SMP0 , W̃(w′w)∗(λ)) is wt(w′w,P0).



i
i

“9-Giusti” — 2018/11/7 — 17:36 — page 1243 — #17 i
i

i
i

i
i

Ghost classes, the case GU(2, 2) 1243

In particular, if the weight in Ind
MP1

P 1
0
H0(SMP0 , W̃(w′w)∗(λ)) is greater

than q − `(w) + 1 + wt(w,P1) then such space is in the image of r∗1,0.
To make the calculations, let σ, σ′ be the elements in S4 such that w = wσ

and w′ = wσ′ . Then we know that

wt(wσ, P1) = −c+ (aσ(4) + 4− σ(4))− (aσ(1) + 1− σ(1))

while

wt(wσσ′ , P0) = −c+ (aσσ′(4) + 4− σσ′(4)) + (aσσ′(3) + 3− σσ′(3))

− (aσσ′(1) + 1− σσ′(1))− (aσσ′(2) + 2− σσ′(2))

but as wσ′ ∈ W0
1 , we have that σσ′(n) = σ(n) and σσ′(1) = σ(1), thus

wt(w′w,P0) = wt(w,P1) + (aσσ′(3) + 3− σσ′(3))− (aσσ′(2) + 2− σσ′(2)).

As a consequence we have that the weight on H0(SMP0 , W̃(w′w)∗(λ)) is
greater than q − `(w) + 1 + wt(w,P1) if and only if (aσσ′(3) + 3− σσ′(3))−
(aσσ′(2) + 2− σσ′(2)) > `(w′) + 1, from this we can say that if wσ ∈ WP1 ,
wσ′ ∈ W0

1 and

(aσσ′(3) + 3− σσ′(3))− (aσσ′(2) + 2− σσ′(2)) > `(wσ′) + 1

then IndGP0
H0(SMP0 , W̃(wσσ′ )∗(λ)) is in the image of the morphism r∗1,0. Tak-

ing all this into account we have the following proposition.

Proposition 7. Let wσ ∈ W such that σ(2) > σ(3). If

(aσ(3) − aσ(2)) + (σ(2)− σ(3)) > 1

then IndGP0
H0(SMP0 , W̃(wσ)∗(λ)) lies in the image of r∗1,0.

Proof. If σ(2) > σ(3) and wσ satisfies the hypotheses in the proposition, then
we write wσ = wσ̃wσ1

with respect to the decompositionW =W0
1WP1 . Thus

one can see that

(aσ(3) + 3− σ(3))− (aσ(2) + 2− σ(2)) > 1 + l(wσ̃).

and by the previous observations we obtain the desired result. �

A notation we will use from now on is the following, a permutation
σ ∈ S4 will be denoted by the 4-tuple (σ(1), σ(2), σ(3), σ(4)).
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3.7. Case a1 > a2 or a3 > a4

By a case by case treatment we arrive at the following result.

Theorem 8. If the highest weight λ = (a1, a2, a3, a4, c) of the irreducible
representation Vλ of G satisfies a1 > a2 or a3 > a4, then there are no ghost
classes in the cohomology space of the local system defined by Vλ.

Although the nonexistence of ghost classes is known for regular highest
weights, most of the irregular highest weights satisfy the hypothesis of this
theorem, the original part of this result is then the nonexistence of ghost
classes for these irregular highest weights.

Proof. We prove the result assuming a1 > a2. We can use almost the same
arguments to prove the statement in the case a3 > a4.

A direct use of the previous proposition and the assumption a1 > a2,
gives as a result that for σ in the set{

(2, 3, 1, 4), (2, 4, 1, 3), (3, 2, 1, 4), (3, 4, 1, 2),

(4, 2, 1, 3), (4, 3, 1, 2), (1, 4, 2, 3), (3, 4, 2, 1)
}

the space IndGP0
H0(SMP0 , W̃(wσ)∗(λ)) does not contribute to a ghost class

because all these spaces are in the image of r∗1,0 : H∗(∂1, Ṽλ)→ H∗(∂0, Ṽλ).

If we consider σ = (1, 2, 3, 4) then the weight of H0(SMP0 , W̃(wσ)∗(λ)) is

−c+ (a4 + a3)− (a1 + a2), while IndGP0
H0(SMP0 , W̃(wσ)∗(λ)) is a direct sum-

mand of H0(∂0, Ṽλ) and so in order to contribute to a ghost class in the image
of the morphism H0(∂0, Ṽλ)→ H1(∂S, Ṽλ), its weight must be greater than
or equal to the middle weight which in this case is −c+ 1. We conclude that
H0(SMP0 , W̃(wσ)∗(λ)) does not contribute to a ghost class. By a similar argu-

ment one can see that H0(SMP0 , W̃(wσ)∗(λ)) does not contribute to a ghost
class for σ in the set{

(1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2),

(3, 1, 2, 4), (3, 1, 4, 2), (1, 4, 3, 2), (4, 1, 2, 3), (4, 1, 3, 2)
}
.

We will use the results in [4] in order to analyze the image of the mor-
phism r∗2,0 : H∗(∂2, Ṽλ)→ H∗(∂0, Ṽλ).

For the case σ = (3, 2, 4, 1), we consider the expression wσ = wσ̃wσ2
given

by the decompositionWP0 =W0
2WP2 , then in the notation of Subsection 3.5

we have σ̃ = s1,2 ◦ s3,4 and σ2 = (2, 3, 1, 4).
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We have to analyse the restriction of the morphism r∗2,0 to the subspace

IndGP2
H2(SMP2 , W̃(wσ2 )∗(λ)) of H4(∂2, Ṽλ) and we just need to consider the

morphism

H2(SMP2 , W̃(wσ2 )∗(λ))→ Ind
MP2

P 2
0
H0(SMP0 , W̃(wσ)∗(λ))

where P 2
0 denotes the Q-parabolic subgroup P0 ∩MP2

of MP2
.

By [4], as we are in the unbalanced case, Ind
MP2

P 2
0
H0(SMP0 , W̃(wσ)∗(λ)) is

in the image of r∗2,0 unless W(wσ2 )∗(λ) is one dimensional and, on the other
hand, one can see that this representation is not one dimensional. As a
result H0(SMP0 , W̃(wσ)∗(λ)) does not contribute to a ghost class. The same
procedure proves this result for

σ ∈ {(4, 2, 3, 1), (4, 3, 2, 1)} .

In the case σ = (2, 3, 4, 1), if we write wσ = wσ̃wσ2
with respect to the

decomposition WP0 =W0
2WP2 , one can see that, in the notation of Subsec-

tion 3.5, we have σ̃ = s2 and σ2 = (2, 3, 1, 4).
We consider the restriction of the morphism H3(∂2, Ṽλ)→ H3(∂0, Ṽλ) to

the corresponding subspace IndGP2
H1(SMP2 , W̃(wσ2 )∗(λ)). Its image is inside

the space

IndGP0
(H0(SMP0 , W̃(wσ)∗(λ))⊕H0(SMP0 , W̃(wσ′ )∗(λ)))

where σ′ = (3, 2, 1, 4). As we know, we just need to consider the morphism

H1(SMP2 , W̃wσ2∗(λ))→ Ind
MP2

P 2
0

(H0(SMP0 , W̃wσ∗(λ))⊕H0(SMP0 , W̃wσ′ ∗(λ))).

By Theorem 2 in [4], for the balanced case one can see that the image

of the aforementioned morphism plus Ind
MP2

P 2
0
H0(SMP0 , W̃(wσ′ )∗(λ)) is all of

Ind
MP2

P 2
0

(H0(SMP0 , W̃(wσ)∗(λ))⊕H0(SMP0 , W̃(wσ′ )∗(λ)))

because σ is in the fundamental chamber (with respect to [4]). Finally, as
IndGP0

H0(SMP0 , W̃(wσ′ )∗(λ)) is in the image of the cohomology space of ∂1,

we have that IndGP0
(H0(SMP0 , W̃(wσ)∗(λ))) is in the image of the morphism

H∗(∂1, Ṽλ)⊕H∗(∂2, Ṽλ)→ H∗(∂0, Ṽλ) and therefore it does not contribute
to a ghost class. By the same arguments one can see that in the case
σ = (2, 4, 3, 1), the corresponding space IndGP0

(H0(SMP0 , W̃(wσ)∗(λ))) does
not contribute to a ghost class.
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So we have proved the stated result assuming a1 > a2. By the same
procedure one can prove this statement assuming a3 > a4. �

3.8. Case a1 = a2 and a3 = a4

Theorem 9. If the highest weight λ = (a1, a2, a3, a4, c) of the irreducible
representation Ṽλ satisfies a1 = a2 and a3 = a4, the only possible ghost classes
in the cohomology space of the local system defined by Vλ are in H2(∂S, Ṽλ)
(this case is only possible if a1 = a2 = a3 = a4) with weight −c+ 2, in the
space H4(∂S, Ṽλ) with weight −c+ 4 and H5(∂S, Ṽλ) with weight −c+ 6. In
particular the weak middle weight property is always satisfied for GU(2, 2).

Proof. By Proposition 7 one can see that for σ in the set

{(1, 4, 2, 3), (2, 3, 1, 4), (2, 4, 1, 3), (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2)}

the space H0(SMP0 , W̃(wσ)∗(λ)) does not contribute to a ghost class. By the
same proposition we have that for σ = (1, 3, 2, 4), if a2 > a3 then the corre-
sponding space does not contribute to a ghost class.

On the other hand, if σ = (1, 2, 3, 4) we have `(wσ) = 0, and then the
space IndGP0

H0(SMP0 , W̃(wσ)∗(λ)) is a direct summand of H0(∂0, Ṽλ) and we
conclude that this space does not contribute to a ghost class under the
morphism H0(∂0, Ṽλ)→ H1(∂S, Ṽλ) because its weight is lower than the
middle weight. By the same argument we can show that H0(SMP0 , W̃(wσ)∗(λ))
does not contribute to a ghost class for

σ ∈ {(1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (1, 3, 4, 2), (3, 1, 2, 4), (3, 1, 4, 2)} .

By Theorem 2 in [4] for the unbalanced case and using the same pro-
cedure as in the last subsection, we have that IndGP0

H0(SMP0 , W̃(wσ)∗(λ))
doesn’t contribute to a ghost class for σ in the set

{(3, 2, 4, 1), (4, 1, 3, 2), (4, 2, 3, 1)}

because these spaces are included in the image of H∗(∂2, Ṽλ)→ H∗(∂0, Ṽλ).
The same conclusion is obtained if we apply this procedure to (4, 3, 2, 1)
unless a1 = a2 = a3 = a4.

On the other hand, if a1 = a2 = a3 = a4, let σ be the permutation de-
fined by (4, 3, 2, 1), then wσ has length 6 and the space

IndGP0
H0(SMP0 , W̃(wσ)∗(λ))
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is a direct summand of H6(∂0, Ṽλ). By applying Poincaré duality we can
show that the morphism H7(S, Ṽλ)→ H7(∂S, Ṽλ) is zero and then the space
H0(SMP0 , W̃(wσ)∗(λ)) does not contribute to ghost classes.

There are seven other elements in the Weyl group, namely:

• wσ and wσ′ for σ = (1, 4, 3, 2) and σ′ = (4, 1, 2, 3). They have length 3 and
so the spaces IndGP0

H0(SMP0 , W̃(wσ)∗(λ)) and IndGP0
H0(SMP0 , W̃(wσ′ )∗(λ))

are summands of the space H3(∂0, Ṽλ) and they both have weight −c+ 4
which is the middle weight of H4(S, Ṽλ).

• wσ and wσ′ for σ = (2, 3, 4, 1) and σ′ = (3, 2, 1, 4). They have length 3 and
so the spaces IndGP0

H0(SMP0 , W̃(wσ)∗(λ)) and IndGP0
H0(SMP0 , W̃(wσ′ )∗(λ))

are summands of the space H3(∂0, Ṽλ) and they both have weight −c+ 4
which is the middle weight of H4(S, Ṽλ).

• wσ and wσ′ for σ = (2, 4, 3, 1) and σ′ = (4, 2, 1, 3). They have length 4 and
so the spaces IndGP0

H0(SMP0 , W̃(wσ)∗(λ)) and IndGP0
H0(SMP0 , W̃(wσ′ )∗(λ))

are summands of the space H4(∂0, Ṽλ) and they both have weight −c+ 6
which is the middle weight of H5(S, Ṽλ) plus 1.

• wσ for σ = (1, 3, 2, 4) (when a2 = a3). Its length is 1 and so the space
IndGP0

H0(SM0 , W̃(wσ)∗(λ)) is a summand of the space H1(∂0, Ṽλ) and its

weight is −c+ 2 which is the middle weight of H2(S, Ṽλ). �
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