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We show that rings of S-integers of a global function field K of
odd characteristic are first-order universally definable in K. This
extends work of Koenigsmann and Park who showed the same for Z
in Q and the ring of integers in a number field, respectively. We also
give another proof of a theorem of Poonen and show that the set
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1. Introduction

Hilbert’s Tenth Problem asks whether there exists an algorithm that decides,
given an arbitrary polynomial equation with integer coefficients, whether it
has a solution in the integers. Matiyasevich answered this in the negative in
[9] using work by Davis, Putnam, and J. Robinson [3]. We say that Hilbert’s
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Tenth Problem is undecidable. The same question can be asked for polyno-
mial equations with coefficients and solutions in other commutative rings R.
We refer to this as Hilbert’s Tenth Problem over R. Hilbert’s Tenth Problem
over Q, and over number fields in general, is still open. The function field
analogue is much better understood, and Hilbert’s Tenth Problem is known
to be undecidable for global function fields ([13], [26], [23], [7]).

One approach to proving that Hilbert’s Tenth Problem for Q is unde-
cidable is to show that Z is diophantine over Q:

Definition 1.1. Let R be a ring. We say that A ⊆ Rm is diophantine over
R if there exists a polynomial

g(x1, . . . , xm, y1, . . . , yn) ∈ R[x1, . . . , xm, y1, . . . , yn]

such that

(a1, . . . , am) ∈ A ⇐⇒ ∃r1, . . . , rn ∈ R s.t. g(a1, . . . , am, r1, . . . , rn) = 0.

If one had a diophantine, i.e. a positive existential definition of Z in
Q, then a reduction argument, together with Matiyasevich’s theorem for
Hilbert’s Tenth Problem over Z, would imply that Hilbert’s Tenth Problem
for Q is undecidable. But it is still open whether Z is positive existentially
definable in Q. In fact, if Mazur’s conjecture holds, then Z is not existentially
definable in Q [10].

It is, however, possible to define the integers inside the rationals with a
first-order formula. This is due to J. Robinson [16] who gave a ∀∃∀∃ definition
of Z in Q. Her result was improved by Poonen [14] who gave a ∀∃ definition
of Z in Q. Koenigsmann [8] further improved on Poonen’s result and gave a
definition of the integers inside Q that uses only universal quantifiers.

Park generalized this and showed that for any number field K, the ring
of integers OK is universally definable in K [12].

Similar definability questions can be asked for subrings of global function
fields. Let q be a power of a prime. While Hilbert’s Tenth Problem for both
Fq[t] and Fq(t) is undecidable ([4], [13], [26]), it is not known whether Fq[t] is
diophantine over Fq(t). Showing this still seems out of reach, but it is possible
to give a universal definition of Fq[t] in Fq(t) which we do in this paper for
odd q. More generally, we prove the natural generalization of Park’s result
for defining rings of integers to global function fields K.

This is the first of three main theorems in this paper, and we prove it in
Section 3:
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Theorem 1.2. Let K be a global function field of odd characteristic and let
S be a finite, nonempty set of primes of K. Then OS is first-order universally
definable in K. Equivalently, K \ OS is diophantine over K.

Here, for a finite set S of primes of K we denote by OS the ring

OS := {x ∈ K : vp(x) ≥ 0 ∀ primes p 6∈ S}.

Our theorem generalizes a result by Rumely [19] who gave a first-order
definition of a polynomial ring inside a global function field K. It also im-
proves one of the results in [24], where it was shown how to define the
S-integers in a global function field using a first-order formula that involves
one change in quantifiers.

One of the main ideas in proving Theorem 1.2 is to use certain diophan-
tine rings, parametrized by K×, to encode integrality at finite sets of primes;
this is based on ideas of Poonen in [14] and Koenigsmann in [8]. Park re-
places the congruence classes that Koenigsmann used for Z in Q with ray
classes of a fixed modulus of K for a fixed biquadratic extension of K.

Some parts of Park’s arguments do not extend to the function field
setting and require a different approach; in [12], a biquadratic extension
of K is chosen so that it is linearly disjoint from the Hilbert class field
of K. Since the Hilbert class field of a global function field is an infinite
extension, we cannot use it in our arguments, but there is another natural
finite extension of the global function field K that we can use instead. We
use a finite extension of K whose Galois group is the ideal class group of the
Dedekind domain OS′ for some carefully chosen set of primes S′. Another
crucial ingredient in the proof of Theorem 1.2 is showing that any class in the
ray class group of a Dedekind domain A contained in K contains infinitely
many primes of A.

We also show that other arithmetic subsets of a global field K are dio-
phantine over K, extending the results in [8]. Given y ∈ K× \K×2, consider
the norm map

Ny : K(
√
y)→ K

a+ b
√
y 7→ a2 − yb2.

In Section 4.2 we show the following new result:
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Theorem 1.3. Let K be a global field with char(K) 6= 2. Then

{(x, y) ∈ K× ×K×|x 6∈ Ny(K(
√
y))}

is diophantine over K.

This generalizes a result of [8] from K = Q to global fields.
We also give a new proof of the following theorem:

Theorem 1.4. Let K be a global field with char(K) 6= 2. Then K× \K×2

is diophantine over K.

This was established by Poonen in [15], using results on the Brauer-
Manin obstruction. For number fields, this was extended to non-nth powers
in [2] and further in [6]. In [8], Koenigsmann gave a more elementary proof
for K = Q. Using results in [12] and their extensions in this paper, together
with Artin Reciprocity and the Chebotarev Density Theorem, we give a
different proof of Poonen’s result.

2. S-integers and class field theory of global function fields

Let K be a global function field. In this section we recall some facts about
rings of S-integers and their class groups.

2.1. Background and definitions

Let K be a global function field, and let SK denote the set of all primes of K.
By a prime of K we mean an equivalence class of nontrivial absolute values
of K. In a global function field, all such absolute values are non-archimedean
and we can represent a prime as a pair (p,Op) where Op is a local ring of K
and p ⊆ Op is its maximal ideal. We will often refer only to the ideal p as a
prime of K. We denote by vp the associated normalized discrete valuation
on K. We now recall some facts about the ring of S-integers OS in K where
S ⊂ SK is a finite set of primes of K. The ring OS is a Dedekind domain
and its prime ideals are in one-to-one correspondence with the primes of K
not in S; this correspondence is given by

p 7→ p ∩ OS .

See [18, Theorem 14.5]. So given q ∈ OS , we can factor qOS uniquely into a
product of prime ideals of OS . The support of the divisor of q contains the
primes in this factorization and some primes of S.
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A modulus m of K is a formal product of primes of K, m =
∏

pm(p), such
that m(p) ≥ 0 for all p and m(p) = 0 for all but finitely many p. The group
of fractional ideals I of K is the free abelian group generated by the primes
of K. We define Im to be the subgroup generated by the primes which do
not appear in m. Given α ∈ K×, it defines a fractional ideal

(α) :=
∏
p

pvp(α).

Define

Km,1 = {x ∈ K× : vp(x− 1) ≥ m(p) for all p dividing m}.

We have a well-defined map i : Km,1 → Im, sending α to the fractional ideal
(α). Define Pm to be the subgroup i(Km,1) of Im. The ray class group modulo
m, Cm, is defined to be the quotient Im/Pm. This group is not finite, but
the degree map (which we can define by viewing these formal products as
divisors) induces an exact sequence

0→ C0
m → Cm → Z→ 0.

The subgroup C0
m of degree-zero divisor classes can be shown to be finite.

Let L be a finite abelian extension of K. Suppose p ∈ SK is unramified
in L. Then we define (p, L/K) ∈ Gal(L/K) to be its associated Frobenius
automorphism. If m is a modulus of K divisible by those primes which ramify
in L, we have the global Artin map

ψL/K : Im → Gal(L/K)∏
peii 7→

∏
(pi, L/K)ei .

Theorem 2.1. (Artin Reciprocity) The Artin map is surjective and there
exists a modulus m containing all the primes of K which ramify in L such
that the kernel is PmNL/K(IL(m′)); here NL/K is the norm map on fractional
ideals and m′ is the modulus of L consisting of primes of L lying above those
of K contained in m.

Remark 2.2. We call any m as in Theorem 2.1 an admissible modulus for
the extension L over K.

We will need the existence theorem of class field theory for function
fields, so we introduce the idele group. We define the idele group of K to be
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the restricted product of K×p for p ∈ SK with respect to the compact groups
R×p , where Rp is the ring of integers in the completion Kp of K at p. We
denote the idele group of K by I. Denote the diagonal embedding of K× in
I again by K× and the idele class group by CK := I/K×, which we endow
with the quotient topology.

An idele of K determines a fractional ideal of K via the surjective map

id : I→ I

(xp) 7→
∏

p∈SK

pvp(xp).

Again let L/K be a finite abelian extension and let Sram be the set of
primes of K ramifying in L. Define

ISram := {(xp) ∈ I : xp = 1 for all p ∈ Sram}.

There is a unique function φL/K : I→ Gal(L/K) which is continuous,
trivial on K×, and satisfies φL/K((xp)) = ψL/K(id((xp))) for all (xp) ∈ ISram ;
see [25]. Hence φL/K induces a map on the idele class group CK , which
we again denote by φL/K . This is the idelic Artin map. The idelic Artin
reciprocity law states that the kernel of φL/K is N(CL) where N is the
norm map on ideles.

Now we state the existence theorem of class field theory; see Theorem 1
of Chapter 8 in [1].

Theorem 2.3 (Existence Theorem). Let K be any global field. Fix an
algebraic closure K of K. Given a finite index open subgroup H ⊂ CK , there
is a unique finite abelian extension L of K in K such that H = N(CL).

2.2. Ray class groups of rings of S-integers

Let S∞ := {∞1, . . . ,∞n} ⊆ SK , and A := OS∞ . The ideal class group Cl(A)
of the Dedekind domain A is finite. Denote by KA the maximal abelian
unramified extension of K in which each prime of S∞ splits completely.
Then Cl(A) ∼= Gal(KA/K) via the Artin map (see [17]), and we will use KA

and Cl(A) in Section 3.2. Set ∞ :=∞1 · · ·∞n. For the rest of this section,
let m be another modulus of K coprime to ∞; we can then view m as
an ideal of A. Below we define Clm(A), the ray class group of A for the
modulus m. One crucial ingredient to the universal definition of S-integers
is Lemma 3.15, where we need that a given class of Clm(A) contains infinitely
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many primes of A. This is Theorem 2.9 at the end of this section, whose
proof uses idelic class field theory. The remainder of this section is devoted
to proving Theorem 2.9. One can think of this as a function field analogue
of Dirichlet’s theorem.

Definition 2.4. Let Im(A) be the group of fractional ideals of A which are
coprime to m. We have a natural injection j : Km,1 → Im(A) whose image
we denote by Pm(A). This image consists of principal fractional ideals αA
with vp(α− 1) ≥ m(p). Define

Clm(A) := Im(A)/Pm(A).

We need the following lemma:

Lemma 2.5 (Kernel-Cokernel sequence). Given a pair of maps be-
tween abelian groups

A
f−→ B

g−→ C

there is an exact sequence

0→ ker f → ker g ◦ f → ker g → coker f → coker g ◦ f → coker g → 0.

Proof. This is Proposition 0.24 in [11]. �

Define

Um,p := {x ∈ K×p : vp(x− 1) ≥ m(p)},

Im :=
∏
p-m

K×p ×
∏
p|m

Um,p ∩ I,

Wm :=
∏
p|∞

K×p ×
∏

p-m·∞

O×p ×
∏
p|m

Um,p.

Proposition 2.6. Let m be a modulus of K coprime to ∞.

1) The ideal map id : Im → Im(A) induces an isomorphism Im/(Km,1Wm)
∼= Clm(A).

2) The inclusion map Im → I induces an isomorphism Im/Km,1
∼= CK .
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1180 K. Eisenträger and T. Morrison

Proof. (1) We have maps

Km,1 → Im → Im(A),

where the first map is the diagonal embedding and the second is the ideal
map. Applying the kernel-cokernel sequence gives us the exact sequence

Wm → Im/Km,1 → Clm(A)→ 0.

This follows because by definition, Clm(A) = Im(A)/Pm(A), Pm(A) =
j(Km,1), and the kernel of the ideal map restricted to Im is Wm. Thus Clm(A)
is isomorphic to Im/Km,1 modulo the image of Wm. Since the first map in
the above sequence is reduction modulo the image of Km,1 in Wm, we get
that

Clm(A) ∼= (Im/Km,1)/(WmKm,1/Km,1) ∼= Im/Km,1Wm.

(2) The injection Im → I gives us an injection Im/Km,1 → CK . Denote
the maximal ideal of Rp by p̂. Let (xp) ∈ I and choose, using weak approxi-
mation, b ∈ K× such that vp(xp − b) > m(p) + vp(xp) for each p|m. Because
vp(xp − b) > vp(xp), we must have that vp(xp) = vp(b). Then

vp(xp/b− 1) = vp(xp − b)− vp(b) > m(p),

implying that xp/b ∈ Um,p for each p|m. Then (xp/b) ∈ Im maps to the image
of (xp) in CK and we see that the map is surjective. �

Proposition 2.7. The group Clm(A) is finite.

Proof. In any ideal class of A, we can find an ideal in it coprime to m, so we
have a surjection Clm(A)→ Cl(A). The kernel of this map is the subgroup
of Clm(A) consisting of the principal ideal classes of the form xA where
vp(x) = 0 for p|m. These classes can be viewed as elements in C0

m. Since C0
m

is finite, we see that Clm(A) is an extension of finite groups and is itself
finite. �

Corollary 2.8. There is a finite abelian extension KA
m of K whose Galois

group is isomorphic to Clm(A) via the Artin map.
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Proof. The injection Im → I, when restricted to Km,1Wm, induces an iso-
morphism

(Km,1Wm)/Km,1 ' (K×Wm)/K×.

Indeed, given c ∈ K× and (xp) ∈Wm we can use weak approximation to find
c′ ∈ K× such that c/c′ ∈ Km,1 as in the proof of part (2) of Theorem 2.6.
Then c

c′ (xp) ∈ Km,1Wm maps to the image of c · (xp) in (K×Wm)/K×. Thus
Clm(A) is a quotient of CK by an open subgroup subgroup, whose index is
finite by Proposition 2.7. The Existence Theorem then guarantees such an
extension KA

m/K as desired. �

Together with an application of the Chebotarev Density Theorem, the
above discussion gives us the following theorem:

Theorem 2.9. Let A and m be as above. Any ideal class in Clm(A) contains
infinitely many prime ideals of A.

3. S-integers are universally definable in global
function fields

In Sections 3.1 and 3.2 we will review facts and results from [12]. The rest
of Park’s argument does not extend to the function field setting, so we use
results of Section 2 on idelic class field theory to finish the proof in Section 3.3
and Section 3.4.

3.1. Notation and facts about quaternion algebras

Throughout this section, let K be a global function field of odd characteris-
tic. Let a, b ∈ K×. We recall the following notation from [12]:

1) Given a prime p ∈ SK , let v := vp be its associated valuation, nor-
malized so that it takes values in Z ∪ {∞}. Define Kp to be the
completion of K at p, Rp the ring of integers in Kp, the maximal
ideal of Rp by p̂, and Fp the residue field of p. Set Up := {s ∈ Fp :
x2 − sx+ 1 is irreducible over Fp} and let redp : Rp → Fp be the re-
duction map. Let Op := Rp ∩K; this is the local ring of the prime p
in K.

2) Ha,b = K ⊕ αK ⊕ βK ⊕ αβK, the quaternion algebra over K with
multiplication given by α2 = a, β2 = b, αβ = −βα.

3) Given x := x1+x2α+x3β+x4αβ, define x := x1−x2α−x3β−x4αβ.
This is the standard involution on Ha,b. Define the (reduced) trace
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of x to be x+ x = 2x1 and the (reduced) norm of x to be x · x =
x2

1 − ax2
2 − bx2

3 + abx2
4.

4) ∆a,b = {p ∈ SK : Ha,b ⊗K Kp 6∼= M2(Kp)}, that is, the set of primes
where Ha,b ramifies.

5) (a, b)p =

{
1 : p 6∈ ∆a,b

−1 : p ∈ ∆a,b

, the Hilbert symbol of Kp.

6) Sa,b = {2x1 ∈ K : ∃x2, x3, x4 such that x2
1 − ax2

2 − bx2
3 + abx2

4 = 1}.
This is the set of traces of norm one elements of Ha,b.

7) Ta,b = Sa,b + Sa,b.

Given a prime p ∈ SK , we similarly define Sa,b(Kp) and Ta,b(Kp) just by
replacing K with Kp in the above definitions.

Lemma 3.1.

1) If p 6∈ ∆a,b, then Sa,b(Kp) = Kp.

2) If p ∈ ∆a,b then red−1
p (Up) ⊆ Sa,b(Kp) ⊆ Op.

3) For any p with |Fp| > 11, we have Fp = Up + Up.

4) For each a, b ∈ K×,

Sa,b = K ∩
⋂

p∈∆a,b

Sa,b(Kp).

Proof. See [12], Lemma 2.2; the arguments work when K is any global field.
�

Proposition 3.2. For any a, b ∈ K×, we have

Ta,b =
⋂

p∈∆a,b

Op.

Proof. See [12, Proposition 2.3]. �

In our setting, we also have the following formula for the Hilbert symbol
from [21, XIV.3.8]:,

(1) (a, b)p =

[
(−1)vp(a)vp(b)

(
avp(b)

bvp(a)

)](|Fp|−1)/2

.
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Hence for a p-adic unit a, (a, p)p = −1 if and only if vp(p) is odd and
redp(a) is not a square in Fp.

3.2. Partitioning the primes of K

Suppose a is not a square in K. Then if p is unramified in K(
√
a), after

possibly multiplying by a square of K×, a is a p-adic unit. We can then

identify ψK(
√
a)/K(p) with the power residue symbol

(
a
p

)
2

(see Proposition

10.5 and 10.6 in [18]). If the images of a, b are distinct in K×/K×2, we can
use the splitting of p in Gal(K(

√
a,
√
b)/K) to study the Hilbert symbols

(a, p)p and (b, p)p, since if vp(p) is odd, (a, p)p =
(
a
p

)
2
. We have the following

lemma:

Lemma 3.3. Take a, b ∈ K× whose images in K×/K×2 are distinct and
let m be an admissible modulus for the extension L := K(

√
a,
√
b)/K and let

ψL/K : Im → {±1} × {±1}

be the Artin map. Suppose that m is divisible also by all primes dividing (ab).
For a prime p ∈ SK such that p - m, p ∈ ∆a,p ∩∆b,p if and only if vp(p) is
odd and ψL/K(p) = (−1,−1).

Proof. See [12], Lemma 3.8. The only change in the argument is that we do
not to worry about total positivity conditions defining Km,1 since there are
no archimedean primes of a global function field. �

As in [12], we partition primes of K coprime to m based on their image
under ψL/K . Choose a, b ∈ K× and L as in Lemma 3.3 and set

P(p) := {p ∈ SK : vp(p) is odd.}.

Also, for (i, j) ∈ Gal(L/K), i, j ∈ {±1}, set

P(i,j) = {p ∈ SK : p ∈ Im and ψL/K(p) = (i, j)}

and set

P(i,j)(p) = P(p) ∩ P(i,j).

Lemma 3.4. Suppose p ∈ K× and let m be a modulus as in Lemma 3.3.
Additionally, suppose (p) and m are coprime. Then we have the following
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identification of sets of primes, where the two sets differ at most by primes
dividing the modulus.

P(−1,−1)(p)↔ ∆a,p ∩∆b,p,

P(−1,1)(p)↔ ∆a,p ∩∆ab,p,

P(1,−1)(p)↔ ∆b,p ∩∆ab,p.

Proof. See [12, Lemma 3.9]. �

Lemma 3.5. Let p ∈ SK with p - m and suppose that ψL/K(p) = (i, j) with

(i, j) 6= (1, 1). Then p ∈ P(i,j)(p) for some p ∈ K×. Hence there exist c, d ∈
K× such that p ∈ ∆c,p ∩∆d,p. If ψL/K(p) = (1, 1) then there exist p, q ∈ K×
so that p ∈ ∆ap,q ∩∆bp,q.

Proof. See [12, Lemmas 3.11, 3.12]. �

Definition 3.6. Let a, b ∈ K×. Let

Ja,b :=
⋂

p∈∆a,b∩(P(a)∪P(b))

pOp.

Proposition 3.7. Ja,b is diophantine over K.

Proof. See [12, Lemmas 3.14, 3.15, 3.17]. �

3.3. Controlling integrality with diophantine sets

The remainder of the argument used to give a universal definition of the S-
integers in K requires a different approach than the one in [12]. In order to
make our proof work, we need to find infinitely many q ∈ K× with prescribed
image under ψL/K and which generate prime ideals in a certain Dedekind
domain contained in K in order to control the poles of q.

Lemma 3.8. Let S be a finite set of primes in SK . We can choose a, b ∈ K×
so that the following hold:

1) The images of a and b in K×/K×2 are distinct.

2) Any admissible modulus m for L := K(
√
a,
√
b)/K is divisible by the

primes of S.
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3) Given a finite set of primes S′ ⊆ SK disjoint from S, an ideal class I
in Cl(OS′), and an element σ ∈ Gal(L/K), there exists a prime q of
K such that q ∩ OS′ is in the ideal class I, q ∈ Im, and ψL/K(q) = σ.

4) As fractional ideals, (a) and (b) are coprime, meaning their supports
are disjoint.

Proof. Set A = OS′ . Let p1 ∈ SK \ S and choose a ∈ K× with vp1
(a) = 0

and vp(a) = 1 for p ∈ S; this is possible by weak approximation.
Now we choose b ∈ K× with vp1

(b) = 1 and vp(b) = 0 for any p in the
support of (a). Then (a) and (b) have disjoint support. They have distinct
images in K×/K×2 as the primes at which a has odd valuation differ from
the primes where b has odd valuation. Thus we have established (1) and (4).
Since the primes in S ramify in K(

√
a), they also ramify in L and hence will

be contained in any admissible modulus for L/K.
We are left with showing that (3) holds. Recall that KA/K is the max-

imal abelian unramified extension of K in which every prime of S′ splits
completely and for which Gal(KA/K) ' Cl(A). We claim that KA and L
are linearly disjoint; this will follow if we can show that none of

√
a,
√
b, and√

ab are in KA. Since the primes in S ramify in K(
√
a),
√
a 6∈ KA. As p1

ramifies in K(
√
b) and the primes of S along with p1 all ramify in K(

√
ab),

we have that
√
b, and

√
ab are not in KA, and the claim follows.

We conclude

Gal(LKA/K) ∼= Gal(L/K)×Gal(KA/K) ∼= {(±1,±1)} × Cl(A).

We then apply the Chebotarev density theorem to find a prime q such
that (q, LKA/K) = (σ, I) ∈ Gal(L/K)×Gal(KA/K). This yields part (c):

σ = (q, LKA/K)|L = (q, L/K) = ψL/K(q) and

I = (q, LKA/K)|KA = (q,KA/K).
�

For the rest of this section, fix a, b ∈ K× as in Lemma 3.8 along with an
admissible modulus m of K for L := K(

√
a,
√
b).

For the rest of this section, fix a, b ∈ K× as in Lemma 3.8 and set L :=
K(
√
a,
√
b). Next, we must fix two additional elements of K×. To construct

them, we need Theorem 3.7 of [12], which we restate below for convenience.
This theorem lets us construct an element of K× with prescribed Hilbert
symbols against finitely many elements of K×.
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Theorem 3.9. [12, Theorem 3.7] Let K be a global field, char(K) 6= 2. Let
Σ denote the set of primes of K, and let Λ be a finite set of indices. Let
(ai)i∈Λ be a finite sequence of elements of K∗ and suppose that (εi,p)i∈Λ,p∈Σ

is a family of elements of {1,−1}. There exists x ∈ K∗ satisfying (ai, x)p =
εi,p for all i ∈ Λ and p ∈ Σ if and only if the following conditions hold:

1) All but finitely many of the εi,p are equal to 1.

2) For all i ∈ Λ, we have
∏

p∈Σ εi,p = 1.

3) For every p ∈ Σ, there exists xp ∈ K∗ such that (ai, xp)p = εi,p.

Lemma 3.10. There exist c, d ∈ K× such that ∆a,c = P(a) or ∆a,c =
P(a) ∪ {pa} where pa is coprime to (a) and (b), and ∆b,d = P(b) or ∆b,d ∪
{pb} where pb is coprime to (a), (b), and pa.

Proof. Assume P(a) has even cardinality. Then by Theorem 3.9, there exists
c in K such that (a, c)p = −1 for each p ∈ P(a), and (a, c)q = 1 if q is not
in P(a). Indeed, there are an even number of primes in P(a), and for a local

element we can take any cp ∈ K× such that
(
cp
p

)
= −1. Then (a, cp)p = −1,

since vp(a) is odd. The proof in the case that P(a) has odd cardinality

is the same by choosing pa coprime to (a) and (b) such that
(
a
pa

)
= −1

and considering the set P(a) ∪ pa. The local element for pa can be taken to
be any element cpa ∈ pa \ p2

a. The proof for the existence of d is a similar
argument. �

We now also fix c, d ∈ K× as in Lemma 3.10, along with a modulus m
of K for L such that m contains all the primes dividing (a), (b), (c), and (d)
and any other primes p such that (a, c)p = −1 or (b, d)p = −1.

Corollary 3.11. Let p ∈ K× such that (p) and m are coprime. We have

P(−1,−1)(p) = ∆a,p ∩∆b,p,

P(−1,1)(p) = ∆a,p ∩∆ab,p ∩∆a,cp,

P(1,−1)(p) = ∆b,p ∩∆ab,p ∩∆b,dp.

Proof. For the first equality, see [12, Corollary 3.20]. We will prove the second
equality. We have

∆a,p ∩∆ab,p = P(−1,1)(p) ∪
{
p ∈ P(a) :

(
a

p

)
= −1

}
,
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by Lemma 3.4. Also, P(−1,1)(p) ⊆ ∆a,cp, since (a, c)p = 1 for any p coprime
to m. Thus we need to compute the intersection ∆a,cp ∩ {p|m}. Suppose
p ∈ P(a). Then (a, c)p = −1 by our choice of c, so (a, cp)p = −1 if and only

if
(
p
p

)
= 1. If p|m but p 6∈ P(a), then (a, p)p = 1 by Equation 1, so (a, cp)p =

−1 if and only if (a, c)p = −1. In any case, we conclude that

∆a,p ∩∆a,cp ∩ {p|m} = ∅,

because whenever (a, p)p = −1 for p|m, we have (a, c)p = −1 as well. Thus
the second equality holds. The proof of the third equality goes the same way
by calculating

∆b,dp ∩ {p|m}.

�

Definition 3.12. For p, q ∈ K×, let

R(−1,−1)
p =

⋂
p∈∆a,p∩∆b,p

Op,

R(1,−1)
p =

⋂
p∈∆ab,p∩∆b,p∩∆a,cp

Op,

R(−1,1)
p =

⋂
p∈∆a,p∩∆ab,p∩∆b,dp

Op,

R(1,1)
p,q =

⋂
p∈∆ap,q∩∆bp,q

Op.

Given a finite set of primes S ⊂ SK , in Section 3 we will express the S-
integers OS in terms of the rings Rσp for σ = (−1,−1), (−1, 1), and (1,−1)

and R
(1,1)
p,q defined above.

Definition 3.13. For each σ ∈ Gal(L/K), let

Φσ = {p ∈ K× : (p) ∈ Im, ψL/K((p)) = σ, and P(p) ⊆ P(1,1) ∪ Pσ}.

Lemma 3.14.

1) For each σ ∈ Gal(L/K), Φσ is diophantine over K.

2) For any p ∈ Φσ and σ ∈ Gal(L/K) with σ 6= (1, 1), we have that P(σ)(p)
is nonempty. Furthermore, the Jacobson radical of Rσp , denoted J(Rσp ),
is diophantine over K.
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3) Let σ ∈ Gal(L/K) with σ 6= (1, 1), and let p0 - m be a prime of K
satisfying ψL/K(p0) = σ. Then there is an element p ∈ Φσ such that
p0 ∈ Pσ(p). In fact, p can be chosen so that Pσ(p) = {p0}.

Proof. To prove (1), we first establish that Km,1 is diophantine over K: this
follows from the fact that Km,1 is defined by the finitely many local condi-
tions vp(a− 1) ≥ m(p) for p|m and that the local rings Op are diophantine
over K for any prime p by [22, Lemma 3.22]. Because a class of principal
ideals in Cm lies in C0

m which is finite, we see there are only finitely many
inequivalent classes of the form (p)Pm for p ∈ K×. Thus {p ∈ K× : (p) ∈ Im}
is diophantine over K as it is a finite union of translates of Km. Observe
that P(p) ⊆ P(1,1) ∪ Pσ is equivalent to one of the following:

• P(1,−1)(p) = P(−1,1)(p) = ∅, if σ = (−1,−1);

• P(−1,−1)(p) = P(−1,1)(p) = ∅, if σ = (1,−1);

• P(−1,−1)(p) = P(1,−1)(p) = ∅, if σ = (−1, 1);

• P(1,−1)(p) = P(−1,1)(p) = P(−1,−1)(p) = ∅, if σ = (1, 1).

For τ 6= (1, 1), we have that Pτ (p) = ∅ if and only if p ∈ K×2 · (Rτp)×,
and this is a diophantine subset of K. Thus for any σ, Φσ is the intersection
of finitely many diophantine sets and is thus diophantine over K.

Now we prove (2). Suppose σ 6= (1, 1) and that p ∈ Φσ. Then because
ψL/K((p)) = σ and P(p) ⊆ P(1,1) ∪ Pσ, there must be some prime p ∈ Pσ(p),
because otherwise we would have ψ((p)) = (1, 1). If σ = (−1,−1), then we

observe that J(R
(−1,−1)
p ) = Ja,p+Jb,p is diophantine over K by Definition 3.6

and Lemma 3.7. Similarly, J(R
(−1,1)
p ) = Ja,p + Jab,p + Ja,cp and J(R

(1,−1)
p ) =

Jb,p + Jab,p + Jb,dp are diophantine over K.
We move on to (3). Suppose that σ ∈ Gal(K(

√
a,
√
b)/K) with σ 6= (1, 1)

and p0 - m is a prime of K satisfying ψL/K(p0) = σ. Let q′ - m be a prime of
K with ψL/K(q′) = (1, 1) and let S′ = {q′}. By Lemma 3.8 we can choose a
prime q of K such that it represents the class of (p0 ∩ OS′)−1 in Cl(OS′) and
ψL/K(q) = (1, 1). Then there is an element p ∈ OS′ such that (p0 ∩ OS′)(q ∩
OS′) = pOS′ .

We claim that p ∈ Φσ. Since vp(p) = 0 if p 6= p0, q, q
′, it follows that

(p) ∈ Im and

ψL/K((p)) = ψL/K(p0)ψL/K(q)ψL/K(q′) = σ.

Additionally, the only primes p with vp(p) odd are p0, q, and possibly q′.
Hence P(p) ⊆ P(1,1) ∪ Pσ and p ∈ Φσ. Finally, we observe that Pσ(p) = {p0}.

�
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Lemma 3.15. Let p0, q0 be primes of K not dividing m with ψL/K(q0) =
(1, 1). Let A := O{q0}. Then there exists infinitely many q ∈ K× satisfying

1) ψL/K((q)) = (−1,−1);

2)
(
q
p0

)
= −1;

3) qA is a prime ideal of A, so there exists a prime q of K such that
q ∩A = qA.

Proof. Set

Km := {α ∈ K× : vp(α) = 0 ∀p|m}.

For a prime p 6= q0 of K, let Ip := A ∩ p be the associated prime ideal in
A. Given x ∈ Km, we can find y, z ∈ A ∩Km such that x = y/z. Then y
and z are p-adic units for each p|m and thus we can map x = y/z to the

image of y/z modulo
∏

p|m I
m(p)
p . The kernel of this map is Km,1 so there is

a well-defined isomorphism

Km/Km,1 '

A/∏
p|m

I
m(p)
p

× .
By the Chinese Remainder Theorem,

Kp0m/Kp0m,1
∼= Km/Km,1 × (A/Ip0

)×.

The group Km/Km,1 surjects onto the ray classes in Cm consisting of prin-
cipal fractional ideals by the map

xKm,1 7→ (x)Pm.

Now we apply Lemma 3.8 part (3) to find a prime q′ of K in the prin-
cipal ideal class of Cl(A) such that ψL/K(q′) = (−1,−1). Then there exists
x1 ∈ K× such that ψL/K((x1)) = (−1,−1) and x1A = q′ ∩A is a prime ideal
of A. Let s be a non-square of (A/Ip0

)×. By the Chinese Remainder The-
orem, the element (x1Km,1, s) in Km/Km,1 × (A/Ip0

)× corresponds to an

element x2Kp0m,1 ∈ Kp0m/Kp0m,1. By construction,
(
x2

p0

)
= −1. The ideal

x2A need not be a prime ideal of A, but by Theorem 2.9, we can find in-
finitely many prime ideals of A in the class generated by x2 in Clmp0

(A);
such a prime ideal is of the form qA = q ∩A. Both qA and x2A generate
the same class in Clmp0

(A) and hence q = x2t for some t ∈ Kmp0,1. Thus
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ψL/K((q)) = ψL/K((x2)) and since q and x2, as elements of A, are congruent
modulo the ideal Ip0

of A,(
q

p0

)
=

(
x2

p0

)
= −1.

Thus the element q satisfies the three requirements of the lemma. �

We now need more definitions from [12].

Definition 3.16. For σ ∈ Gal(K(
√
a,
√
b)/K), and S ⊆ SK the fixed set

of primes from above, define

Φ̃σ := K×2 · Φσ;

ΨK :=

{
(p, q) ∈ Φ̃(1,1) × Φ̃(−1,−1)

∣∣∣∣∣ ∏
p|m

(ap, q)p = −1

and p ∈ a ·K×2 · (1 + J(R(−1,−1)
q ))

}
.

Lemma 3.17.

1) The set ΨK is diophantine over K.

2) For (p, q) ∈ ψL/K , we have ∅ 6= ∆ap,q ∩∆bp,q ⊆ Im, and J(R
(1,1)
p,q ) is

diophantine over K.

3) For each prime ideal p0 satisfying p0 - m and ψL/K(p0) = (1, 1), there
exists (p, q) ∈ ΨK such that ∆ap,q ∩∆bp,q = {p0}.

Proof. By Lemma 3.14 part (1), Φ̃(1,1) × Φ̃(−1,−1) is diophantine over K, and

by Lemma 3.14 part (2), J(R
(−1,−1)
q ) is diophantine over K. By Theorem 4.5,

for any prime p of K,

{(x, y) : (x, y)p = −1} ⊆ K× ×K×

is diophantine over K. Here, (·, ·)p denotes the Hilbert symbol of K at p.
Since only finitely many p divide m, the set ΨK is the intersection of finitely
many sets diophantine over K.

For (2), the proof in [12] of Lemma 3.25 part (2) shows that for (p, q) ∈
ΨK , if p - m then ∆ap,q ∩∆bp,q ∩ Im is nonempty. We only need to show that
if p|m, p 6∈ ∆ap,q ∩∆bp,q. Suppose that p ∈ ∆ap,q. Then (ap, q)p = −1. Since
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p ∈ Φ̃(1,1) and q ∈ Φ̃(−1,−1) we can assume that, possibly after multiplying by
a square of K×, vp(p) = vp(q) = 0. Then (ap, q)p = −1 implies that vp(ap) =
vp(a) is odd, which implies vp(b) must be 0 since the fractional ideals (a)
and (b) have disjoint support. Thus (bp, q)p = 1 and p 6∈ ∆ap,q ∩∆bp,q.

Now we prove (3). Let p0 satisfy p0 - m and ψL/K(p0) = (1, 1); we wish
to construct a pair (p, q) ∈ ΨK such that ∆ap,q ∩∆bp,q = {p0}. We begin
by constructing our candidate for q. Choose a different prime q0 of K not
dividing m with ψL/K(q0) = (1, 1). Using Lemma 3.15, choose q ∈ K× such

that ψL/K((q)) = (−1,−1),
(
q
p0

)
= −1, and q generates a prime ideal of

A := O{q0}. Thus there exists a prime q of K with qA = q ∩A. Observe
that this implies that the support of (q) is {q, q0}. We claim that

∆a,q ∩∆b,q = {q}.

We begin by showing that (a, q)q = (b, q)q = −1. The support of (a) and (b)
is contained in m, so vq(a) = vq(b) = 0. We have that vq(q) is odd, so we
need to show a and b are non-squares in the completion of K at q. This
follows immediately from ψL/K(q) = (−1,−1). From ψL/K(q0) = (1, 1) we
get that q0 6∈ ∆a,q ∩∆b,q. No other prime p in Im can appear in this set
since we have vp(q) = vp(a) = vp(b) = 0. Finally, no prime p|m can occur in
∆a,q ∩∆b,q since we cannot have that vp(a) and vp(b) are both odd as their
supports are disjoint, and vp(q) = 0. This proves the claim.

For each prime p|m, let Ep ⊆ K be a generating set for K×p /K
×2
p chosen

so that for each e ∈ Ep, we have vp0
(e− 1) ≥ 0. Fix e0 ∈ K such that

(
e0
q

)
=

−1 and
(
e0
p0

)
= 1.

Now one can construct p ∈ K× so that (p, q) ∈ ψL/K with ∆ap,q ∩∆bp,q =
{p0} as it is constructed in [12], Lemma 3.25(c). The remainder of the proof
exactly follows Park’s after Equation 3.6 (loc. cit.). The only difference is
that instances of the ideal (q) of the number field K are replaced with the
prime q of K in this proof. �

3.4. Proof of main theorem

Our general strategy in proving Theorem 1.2 follows that of [8].

Definition 3.18. Given some finite set of primes ∆ ⊆ S of K, consider the
semi-local subring R =

⋂
p∈∆Op of K. Set

R̃ = {x ∈ K :6 ∃y ∈ J(R) with xy = 1}.
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Lemma 3.19.

1) If J(R) is diophantine over K, then R̃ is defined by a universal formula
in K.

2) R̃ =
⋃

p∈∆Op, provided that ∆ 6= ∅. In particular, Õp = Op.

Proof. To see (1), observe that

R̃ = {x ∈ K : x = 0 or x−1 ∈ K \ J(R)}.

Since J(R) is diophantine, its complement is defined by a universal formula,
and thus so is R̃.

Now we prove (2). To see that R̃ ⊆
⋃

p∈∆Op, assume x 6∈
⋃

p∈∆Op. This

means that for all p ∈ ∆, vp(x) < 0 and hence vp(x−1) > 0, giving x−1 ∈⋂
p∈∆Op = J(R). Hence x 6∈ R̃. For the reverse inclusion, suppose x ∈ Op

for some p ∈ ∆. Then if y ∈ J(R), we have that vp(x · y) ≥ 1 and hence

x · y 6= 1. Thus x ∈ R̃. �

Given a modulus m, let S(m) := {p : p|m}.

Theorem 3.20. For any global function field K and finite set of primes
S ⊂ SK , with m chosen as before,

OS =
⋂

p∈S(m)\S

Õp ∩

 ⋂
σ 6=(1,1)

⋂
p∈Φσ

R̃σp

 ∩ ⋂
(p,q)∈ΨK

R̃
(1,1)
p,q ,

where Φσ and ΨK are the diophantine sets in the previous section.

Proof. For p ∈ Φσ and (p, q) ∈ ΨK , all of the sets Pσ(p) and ∆ap,q ∩∆bp,q

are nonempty. Thus the right hand side is equal to

RS :=
⋂

p∈S(m)\S

Op ∩

 ⋂
σ 6=(1,1)

⋂
p∈Φσ

⋃
p∈Pσ(p)

Op

 ∩ ⋂
(p,q)∈ΨK

⋃
p∈∆ap,q∩∆bp,q

R(1,1)
p,q .

To show RS is contained in OS , consider a prime p0 6∈ S. We need to
show that any x ∈ RS is integral at p0. If p0|m, this is clear. If not, consider
the image of p0 under ψL/K . First we assume ψL/K(p0) 6= (1, 1). Then we
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claim that we can choose p, p′ ∈ Φσ such that

Op0
=

⋃
p∈Pσ(p)

Op ∩
⋃

p∈Pσ(p′)

Op.

If this claim is true, then x ∈ RS implies that vp0
(x) ≥ 0. Suppose σ =

(−1,−1). Using Lemma 3.14, we find p ∈ Φσ such that {p0} = Pσ(p). Now
let p1 be some other prime of K not dividing m with ψL/K(p1) = (1, 1), set
S′ = {p1} and A := OS′ . Then using Lemma 3.8, we find a prime q of K
such that q ∩A is in the ideal class of (p0 ∩A)−1 in Cl(A) and ψL/K(q) =
(1, 1). There exists an element p′ ∈ A such that (p0 ∩A)(q ∩A) = p′A. Then
p′ ∈ Φ(−1,−1), as p0, p1, and q do not divide m, P(p′) = {p0, p1, q}, and

ψL/K(p′) = ψL/K(p0)ψL/K(p1)ψL/K(q) = (−1,−1).

Thus P(−1,−1)(p) ∩ P(−1,−1)(p) = {p0} and the claim follows; the case of σ =
(−1, 1) and σ = (1,−1) is entirely similar.

If p0 satisfies ψL/K(p0) = (1, 1) then we have seen in Lemma 3.17 that
there exist (p, q) ∈ ΨK such that {p0} = ∆ap,q ∩∆bp,q (and consequently
(p, q) ∈ ΨK), implying

⋃
p∈∆ap,q∩∆bp,q

Op = Op0
.

Thus x is integral at primes outside of S.
To show the reverse inclusion, we claim that membership in RS imposes

no integrality condition at a prime in S. If p0 ∈ S, for any σ ∈ Gal(L/K)
and any p ∈ Φσ, we have p0 6∈ Pσ(p). Additionally, p0 6∈ ∆ap,q ∩∆bp,q for
(p, q) ∈ ΨK as ∆ap,q ∩∆bp,q ⊆ Im by Lemma 3.17 part (2). �

Now we are ready to prove our first main theorem.

Theorem 1.2. For any global function field K with char(K) 6= 2, and any
nonempty, finite set of primes S of K, OS is defined by a first-order universal
formula.
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Proof. Theorem 3.20 shows that for t ∈ K,

t ∈ OS ⇐⇒ t ∈
⋂
p|m

Õp

∧ ∀p
∧

σ 6=(1,1)

(p 6∈ Φσ ∨ t ∈ R̃σp )

∧ ∀p, q (p, q) 6∈ ΨK ∨ t ∈ R̃(1,1)
p,q .

Given σ ∈ Gal(L/K), p ∈ Φσ, and (p, q) ∈ ΨK , we have that J(Rσp ) and

J(R
(1,1)
p,q ) are diophantine by Lemmas 3.14 and 3.17. The sets Φσ and ΨK

are diophantine by the same lemmas, so their complements are defined by
a universal formula. Additionally, membership in R̃σp is given by a universal

formula, along with membership in R̃
(1,1)
p,q . Hence membership in OS can be

given by a universal formula. �

4. Non-squares and non-norms of global fields
are diophantine

Now we letK be a global field with char(K) 6= 2. Throughout this section, fix
a, b, c, d as in Lemmas 3.8 and 3.10 if K is a global function field, and if K is
a number field, choose a, b ∈ K× as in Proposition 3.19 of [12]. Additionally,
we fix c, d ∈ K× satisfying the same assumptions as in Lemma 3.10 but
now in the case that K is a number field. Corollary 3.20 in [12] is incorrect
as stated, and has to be modified as in Corollary 3.11 of our paper. With
this modification, the other results from [12] are correct as stated. Set L :=
K(
√
a,
√
b) and fix an admissible modulus m for L/K where m contains all

the primes dividing (2abcd), and all real places if K is a number field. In
this section we prove Theorems 1.4 and 1.3.

4.1. Non-squares

We begin by proving Theorem 1.4, i.e. that K \K×2 is diophantine over K.
We use the fact that x 6∈ K×2 is equivalent to x being a non-square in a
completion of K at some prime p, where p may be finite or infinite.

Suppose ∞ is a real archimedean prime of K corresponding to an em-
bedding ω : K ↪→ R. For x ∈ K×, we have that x is not a square in K∞ if
and only if ω(x) < 0. Therefore we require the following lemma:
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Lemma 4.1. Suppose K is a number field and that∞ is a real archimedean
prime of K corresponding to an embedding ω : K ↪→ Kp = R. Then the set

K×ω := {x ∈ K× : ω(x) > 0}

is diophantine over K. Moreover, the set

{x ∈ K× : x is not totally positive }

is diophantine over K.

Proof. Let p be a finite prime of K and let B be the quaternion algebra over
K ramified exactly at p and ∞. Let Nrd : B → K denote the reduced norm
map on B. Then by Facts I and II of [20], Nrd(B×) = K×ω . Let b1, b2, b3, b4
be a K-basis of B. Then

q(x1, x2, x3, x4) := Nrd

(
4∑
i=1

xibi

)

is a quadratic form in the variables x1, . . . , x4 with coefficients in K, and

K×ω = {x ∈ K× : ∃a1, . . . , a4 ∈ K s.t. q(a1, a2, a3, a4) = x}.

We conclude that K×ω is diophantine over K. For an alternative proof, see
[5], Lemma 10.

Now we will prove the second statement. Let ω1, . . . , ωr denote a com-
plete set of representatives of the inequivalent embeddings of K into R. The
set of elements which are not totally positive is diophantine over K, since it
is the finite union

⋃
i−K×ωi . �

The main lemma used in proving Theorem 1.4 is the following:

Lemma 4.2. Let K be a global field with char(K) 6= 2. Then

x 6∈ K×2 ⇐⇒


x is not totally positive, or

vp(x) is odd for some p|m0, or

∃p ∈ Φ(−1,1) such that x ∈ a ·K×2 · (1 + J(R
(−1,1)
p )).

Here, m0 denotes the finite primes dividing m, and Φ(−1,1), R
(−1,1)
p , a,

and m are as in Section 3.3. Before proving Lemma 4.2, we will show how
to use it to prove Theorem 1.4.
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Proof of Theorem 1.4 from Lemma 4.2. We begin by showing the right side
of the equivalence in Lemma 4.2 defines a diophantine subset of K. We claim
that, for a prime p of K, the set

{x ∈ K× : vp(x) is odd}

is diophantine over K. To see this, fix p ∈ K× with vp(p) = 1. Then vp(x)
is odd if and only if x ∈ p ·K×2 · O×p . This is diophantine over K since

O×p = Op ∩ {x ∈ K× : x−1 ∈ Op}.

Since only finitely many primes divide m0, the condition that vp(x) is odd for
some p|m0 is diophantine as well. As noted in Lemma 4.1, the condition that
x is not totally positive defines a diophantine set. If K is a global function
field, Lemma 3.14 parts (1) and (2) complete the argument that the right
side of Lemma 4.2 defines a diophantine subset of K. The number field case
follows from parts (a) and (b) of Lemma 3.22 of [12]. Hence Lemma 4.2
shows that K× \K×2 is diophantine. �

We are now left with proving Lemma 4.2, for which we need the following
lemma.

Lemma 4.3. Let Φ(−1,1), R
(−1,1)
p , a, b, and m be defined as in Section 3.3.

Let p ∈ Φ(−1,1). Then x ∈ a ·K×2 · (1 + J(R
(−1,1)
p )) if and only if there exists

an element t ∈ K× such that ∀q ∈ P(−1,1)(p), vq(xt2) = 0 and the image of
xt2 in the residue field of q is not a square.

Proof. Since p ∈ Φ(−1,1), we have that P(−1,1)(p) 6= ∅. In the function field
setting, this follows from Lemma 3.14, and in the number field setting, it
follows from Lemma 3.22 of [12]. We also have that

R(−1,1)
p =

⋂
q∈P(−1,1)(p)

Oq,

J(R(−1,1)
p ) =

⋂
q∈P(−1,1)(p)

qOq.

Suppose there exists t ∈ K× as in the lemma. Let q ∈ P(−1,1)(p). Then xt2 ≡
a in (Oq/q)×/(Oq/q)×2, since by our choice of a and b,((

a

q

)
2

,

(
b

q

)
2

)
= (q,K(

√
a,
√
b)/K) = (−1, 1).
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Here
(
·
q

)
2

is the degree 2 power residue symbol for K. Thus there is some

sq ∈ (Oq)× such that xt2 = as2
q mod q; using the Chinese remainder theo-

rem we find an s so that xt2 = as2 mod q for each q. Since q := xt2 − as2 ∈
q for each q ∈ P(−1,1)(p), it is in their intersection. Thus

x = a · (s/t)2(1 + q/(as2)).

We claim x is in a ·K×2 · (1 +
⋂

q∈P(−1,1)(p) qOq). Let q ∈ P(−1,1)(p). Then
vq(a) = 0 because (a) is only divisible by primes dividing m and q ∈ Im.
Additionally, vq(s) = 0 and vq(q) ≥ 1, because s ∈ O×q and q ∈ q. The claim
follows as

vq(q/as2) ≥ 1− vq(a)− 2vq(s) ≥ 1.

For the other implication, write x = at2(1 + j) with t 6= 0 and j ∈⋂
q∈P(−1,1)(p) qOq. Then

vq(x/t2) = vq(a(1 + j)) = vq(a) = 0

for each q ∈ Pσ(p), and x/t2 ≡ a modulo q for q ∈ P(−1,1)(p). Finally, by
construction, a is a non-square in the completion at any prime q ∈ P(−1,1)(p).

�

We now prove Lemma 4.2:

Proof of Lemma 4.2. For the forward implication, suppose x is not a square.
If x is not totally positive, or vp(x) is odd for some p|m, we are done,
so assume that vp(x) is even for each p|m and that x is totally positive.
Using weak approximation, we may assume that in fact vp(x) = 0 for each
p|m. This does not change the truth value of either side of the implication
in Lemma 4.2, as both statements are invariant under multiplying x by a
square.

What we will now show is that there is a p ∈ Φ(−1,1) such that P(−1,1)(p)
= {q}, vq(x) = 0, and such that x modulo q is not a square. Together with

Lemma 4.3, this will imply that x ∈ a ·K×2 · (1 + J(R
(−1,1)
p )).

As K(
√
x) is a degree 2 extension of K unramified at all p|m, it is linearly

disjoint from L = K(
√
a,
√
b) over K. Let τ be the nontrivial automorphism

of K(
√
x)/K and consider (τ, (−1, 1)) ∈ Gal(K(

√
x)/K)×Gal(L/K). By
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1198 K. Eisenträger and T. Morrison

the Chebotarev Density Theorem, there is a prime q of K so that its asso-
ciated Frobenius automorphism is (τ, (−1, 1)). The restriction of this auto-
morphism to K(

√
x) is

τ = (q,K(
√
x)/K),

implying q does not split completely in K(
√
x). Hence x is not a square in

the completion of K at q. The restriction to L is

(−1, 1) = (q,K(
√
a,
√
b)/K),

so we have that q ∈ P(−1,1). If K is a global function field, Lemma 3.14 im-
plies there exists an element p ∈ K× so that {q} = P(−1,1)(p). In the number
field setting, this follows from Lemma 3.22 in [12]. This is the desired element
p and prime q, and finishes the first half of the proof.

For the reverse implication, suppose that there is an element p ∈ Φ(−1,1)

such that x ∈ a ·K×2 · (1 + J(R
(−1,1)
p )). By Lemma 4.3 there exists t 6= 0

such that xt2 is a non-square in the completion of K at each prime q ∈
P(−1,1)(p). This implies xt2 itself is not a square in K, i.e. x 6∈ K×2. �

4.2. Non-norms

Let K be a global field with char(K) 6= 2. To prove Theorem 1.3, which
states that the set

{(x, y) ∈ K× ×K× : x is not a norm of K(
√
y)}

is diophantine over K, we use the Hasse norm theorem: for a cyclic extension
L/K, an element of K is a (relative) norm of an element of L if and only if
it is a local norm in every completion of K. We will use the fact that

(x, y)p = −1⇔ x is not a local norm of K(
√
y)

⇔ y is not a local norm of K(
√
x).

We begin by establishing that, given a finite or infinite prime p of K,
the collection of pairs (x, y) ∈ K× ×K× such that x is not a local norm in
the completion of K(

√
y) at p is diophantine over K.

First we need the following lemma, which will be used both in the proof
of Theorem 4.5 and later in proving Theorem 1.3.
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Lemma 4.4. Let p be a finite prime of K with |Fp| odd. Fix p, s ∈ K× so
that vp(p) = 1 and vp(s) = 0 so that redp(s) is not a square in the residue
field of p. Then for x, y ∈ K×, (x, y)p = −1 if and only if(

(x ∈ p ·K×2 · O×p ) ∧ (y or − xy ∈ s ·K×2 · (1 + pOp))
)

∨
(
(y ∈ p ·K×2 · O×p ) ∧ (x or − xy ∈ s ·K×2 · (1 + pOp))

)
.

Proof. Assume that (x, y)p = −1. From the formula for the Hilbert sym-
bol in Section 3.1, at least one of x or y must have odd valuation at p,
so without loss of generality, assume vp(x) is odd. As (x, y)p = −1, the
formula for the Hilbert symbol implies ((−1)vp(x)vp(y))(|Fp|−1)/2 = −1 and

redp

(
xvp(y)

yvp(x)

) |Fp|−1

2

= 1 or vice versa. Then vp(x/p) is even and x/p ∈
K×2 · O×p .

Case 1. If vp(y) is even, then using weak approximation, choose t ∈ K×

so that yt2 is a p-adic unit. In this case, redp

(
xvp(y)

yvp(x)

) |Fp|−1

2

= −1 since

(−1)vp(x)vp(y) = 1. We claim that yt2 is a non-square modulo p. This fol-
lows from(

xvp(y)y−vp(x)yt2

p

)
2

=

(
(x(vp(y))/2y(1−vp(x))/2t)2

p

)
2

= 1.

Since yt2 is not a square mod p, an argument similar to the one in the proof
of Lemma 4.3 shows that y ∈ s ·K×2 · (1 + pOp).

Case 2. Suppose vp(y) is odd. We claim that, possibly after multiplying by
a square of K, −xy is not a square modulo p. This would imply that

−xy ∈ s · (K×)2(1 + pOp),

which is what we want to show. To prove the claim, use weak approxima-
tion to find t ∈ K× such that vp(xyt2) = 0. The following calculation shows
xvp(y)/yvp(x) and xyt2 have the same 2-power residue for the prime p:(

xvp(y)y−vp(x)xyt2

p

)
2

=

(
(x(vp(y)+1)/2y(1−vp(x))/2t)2

p

)
2

= 1.

If |Fp| is 1 modulo 4, then −1 is a square in Fp. From the formula for the
Hilbert symbol, we must have that xvp(y)/yvp(x) is not a square in the residue
field of p, and hence neither is −xyt2. If |Fp| is 3 mod 4, then considering the
formula for (x, y)p again, we have (−1)(|Fp|−1)/2 = −1 and thus (x, y)p = −1
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implies xyt2 is a square modulo p. But since −1 is not a square modulo p, this
implies xyt2 is not a square modulo p, and hence −xy ∈ a ·K×2 · (1 + pOp).

Conversely, if x ∈ p ·K×2 · O×p , then vp(x) is odd. If y ∈ s ·K×2 · (1 +
pOp), then for some t ∈ K×, yt2 is a p-adic unit and is a non-square modulo
p. If −xy ∈ s ·K×2 · (1 + pOp), then, possibly after multiplying by a square
of K×, −xy is a p-adic unit and is a non-square modulo p. Hence (x,−xy)p =
−1. Since (x,−x)p = 1,

(x, y)p = (x,−xy)p = −1. �

Theorem 4.5. Let p be a finite or real infinite prime of K. The set {(x, y) ∈
K× ×K× : (x, y)p = −1} is diophantine over K.

Proof. First assume p corresponds to a real archimedean absolute value on
K. Let ω : K ↪→ R be the corresponding embedding of K into Kp = R. Then
(x, y)p = −1 if and only if the equation xs2 + yt2 = 1 has no solutions in
R× R, which holds if and only if ω(x) < 0 and ω(y) < 0. These conditions
are diophantine by Lemma 4.1.

Now suppose p is a finite prime of K. If |Fp| is odd, the lemma fol-
lows from Lemma 4.4 since all the sets appearing are diophantine over K.
Since our statements are only for global fields K with char(K) 6= 2, the only
remaining case is that K is a number field and p|2.

First we show that there are only finitely many elements in K×p /K
×2
p .

Let π be a uniformizer for p̂ and let e be the absolute ramification index,
meaning (π)e = (2). Then if α ∈ R×p is in 1 + p̂2e+1, it is a square in R×p
by Hensel’s Lemma. We conclude that R×2

p is open in the profinite group
R×p since it contains 1 + p̂2e+1, a neighborhood of 1. As open subgroups of
compact groups have finite index, we conclude that R×2

p has finite index
in R×p . To see that [K×p : K×2

p ] is finite, we now just need to observe that

squares of K×p are of the form s · π2k where s ∈ R×2
p .

Let s1, . . . , sn ∈ K be a set of representatives for K×p /K
×2
p and define

Sj := sj ·K×2 · (1 + p2e+1Op). For x ∈ Si, y ∈ Sj we have (x, y)p = (si, sj)p.
Now we define

Sp :=
⋃

i,j:(si,sj)p=−1

Si × Sj .

Then (x, y)p = −1 if and only if (x, y) ∈ Sp. Each set Si is diophantine over
K, and the finite Cartesian product of diophantine sets is again diophantine.
Thus Sp is diophantine over K. �

Now we prove Theorem 1.3 for a global field K with char(K) 6= 2.
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Proof of Theorem 1.3. By the Hasse norm principle, x is not a norm in
K(
√
y) if and only if (x, y)p = −1 for some finite or real infinite prime p

of K. For σ 6= (1, 1) ∈ Gal(K(
√
a,
√
b)/K), let sσ = a if σ = (−1,±1) and

sσ = b if σ = (1,−1). We claim that (x, y)p = −1 if and only if one of the
following conditions holds:

• ∃ p|m such that (x, y)p = −1,

•
∨
σ 6=(1,1) ∃p ∈ Φσ such that

(
(x ∈ p ·K×2 · (Rσp )×) ∧ (y or − xy ∈ sσ ·K×2 · (1 + J(Rσp )))

)
∨
(
(y ∈ p ·K×2 · (Rσp )×) ∧ (x or − xy ∈ sσ ·K×2 · (1 + J(Rσp )))

)
,

• ∃(p, q) ∈ ΨK such that q ∈ (R
(1,1)
p,q )× and

(
(x ∈ p ·K×2 · (R(1,1)

p,q )×) ∧ (y or − xy ∈ q ·K×2 · (1 + J(R(1,1)
p,q )))

)
∨
(
(y ∈ p ·K×2 · (R(1,1)

p,q )×) ∧ (x or − xy ∈ q ·K×2 · (1 + J(R(1,1)
p,q )))

)
.

This will imply the theorem, because we have already shown that the
above conditions define diophantine sets. We will first prove the forward
implication. If x is not a norm in K(

√
y), there is a prime p of K such

that (x, y)p = −1. If p|m we are done; recall that m contains all real infinite
primes if K is a number field.

Now assume p ∈ Im and that ψL/K(p) = σ 6= (1, 1). We claim that the
second condition holds. We can find p ∈ Φσ such that Pσ(p) = {p} as before.
Corollary 3.11 and the definition of Rσp imply Rσp = Op and J(Rσp ) = pOp.
By setting p := p and s := sσ, Lemma 4.4 implies that the second condition
holds because vp(p) is odd and sσ, by construction, is a p-adic unit which
is not a square modulo p. For example, if σ = (1,−1), then sσ = b. The
fractional ideal (b) is coprime to m, and ψL/K(p) = (1,−1) implies that b is
not a square mod p.

Now assume p ∈ Im with ψL/K(p) = (1, 1). We claim that the third con-
dition holds in this case. We will first show that we can find (p, q) ∈ ΨK

with the stated properties if K is a global function field. By Lemma 3.17,
there is a (p, q) ∈ ΨK with ∆ap,q ∩∆bp,q = {p}. In fact, q can be chosen so
that vp(q) = 0, q is not a square modulo p, and such that P(q) = {q, p0}.
Here, q and p0 are primes with ψL/K(q) = (−1,−1) and ψL/K(p0) = (1, 1).

Then q ∈ O×p = (R
(1,1)
p,q )× by Definition 3.12. By the formula for the Hilbert

symbol, vp(ap) is odd, and since p cannot divide (a), we conclude vp(p) is
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odd. As R
(1,1)
p,q = Op and J(R

(1,1)
p,q ) = pOp, we can apply Lemma 4.4 with

s := q.
If K is a number field, then by Lemma 3.25 in [12], we can find (p, q) ∈

ΨK such that (q) is a prime ideal with ψL/K((q)) = (−1,−1), q is not a
square in Kp, and such that ∆ap,q ∩∆bp,q = {p}. A similar argument as
above shows that the second condition holds.

Now we will prove that if one of the three conditions above holds, then
for some prime p, (x, y)p = −1. Suppose the second condition holds for some
σ 6= (1, 1). If K is a global function field, Pσ(p) 6= ∅ by Lemma 3.14 (2), so
Pσ(p) contains some prime p. Assume, without loss of generality, that(

(x ∈ p ·K×2 · (Rσp )×) ∧ (y or − xy ∈ sσ ·K×2 · (1 + J(Rσp )))
)
.

Since vp(p) is odd, vp(x) is odd, too. Also, either y or −xy is, possibly after
multiplying by a square ofK×, a non-square inKp since ψL/K(p) = σ implies
sσ is a non-square in Kp. By Lemma 4.4, this implies that (x, y)p = −1. If
K is a number field, an application of Lemma 3.22 (b) in [12] and a similar
argument show that (x, y)p = −1 for a finite prime p of K.

We now prove that the third condition implies that (x, y)p = −1 for
some p with ψL/K(p) = (1, 1). The argument is similar to the one in the
second condition. If K is a global function field, (p, q) ∈ ΨK implies that
∆ap,q ∩∆bp,q 6= ∅ and contains some prime p by Lemma 3.17 part (2). Then
because q ∈ (Rp,q)

× and (ap, q)p = (bp, q)p = −1, q is not a square mod p
and vp(p) must be odd. Again by Lemma 4.4, this implies that (x, y)p = −1.
If K is a number field, the same argument, along with Lemma 3.25 (b) from
[12], proves the claim. �
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