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Quantum correspondences of affine

Lie superalgebras

Ying Xu and R. B. Zhang

There is a surprising isomorphism between the quantised universal
enveloping algebras of osp(1|2n) and so(2n+ 1). This same iso-
morphism emerged in recent work of Mikhaylov and Witten in
the context of string theory as a T -duality composed with an S-
duality. We construct similar Hopf superalgebra isomorphisms for
families of pairs of quantum affine superalgebras. An immediate
consequence is that the representation categories of the quantum
affine superalgebras in each pair are equivalent as strict tensor cat-
egories.

1. Introduction

In the early 80s, Rittenberg and Scheunert [12] observed a remarkable con-
nection between the orthogonal Lie algebra so(2n+ 1) and the orthosym-
plectic Lie superalgebra osp(1|2n): there is a one-to-one correspondence be-
tween the finite dimensional representations of osp(1|2n) and the tensorial
representations of so(2n+ 1), and the central characters of the two algebras
in the corresponding simple modules are the same. This remained a mys-
tery until quantum supergroups [2, 15, 18, 20, 22] came to the scene. It was
discovered in [17] that the quantised universal enveloping algebras of these
Lie (super)algebras are essentially isomorphic, and the Rittenberg-Scheunert
correspondence is a consequence of this isomorphism in the semiclassical lim-
its.

The isomorphism between the quantum (super)groups of osp(1|2n) and
so(2n+ 1) was used by Lanzmann to great effect [8] in the study of primitive
ideals of U(osp(1|2n)). By relating them to the primitive ideals of U(so(2n+
1)) via the isomorphism, he drastically simplified the proofs of the results
first obtained in [4].

The same isomorphism emerged in recent work of Mikhaylov and Wit-
ten [10] on quantum Chern-Simons theories. The authors gave a description
of Chern-Simons theories with super gauge groups in terms of systems of
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D3-branes ending on 2-sides of an NS5-brane. A T-duality composed with
an S-duality of the brane systems interchanges the corresponding quantum
Chern-Simons theories with gauge groups osp(1|2n) and so(2n+ 1) respec-
tively. The strong-weak coupling transformation procured by the T-duality
corresponds precisely to the interchange q ↔ −q in the quantum group con-
text [17]. Furthermore, a similar duality between quantum Chern-Simons
theories with gauge groups osp(2m+ 1|2n) and osp(2n+ 1|2m) was con-
structed for arbitrary m and n in [10].

The aim of the present paper is to give a catalogue of the isomorphisms
analogous to that between the quantum (super)groups of osp(1|2n) and
so(2n+ 1). The main results are summarised in Theorem 1.2. To explain
the content of the theorem, we need several conceptual constructs.

Let g be a Lie superalgebra or an affine Lie superalgebra in the classical
series. Fixing a fundamental system Π of simple roots (Definition 2.4) corre-
sponding to an arbitrary choice of Borel subalgebra, we let Uq(g,Π) be the
quantised universal enveloping superalgebra of g with respect to this funda-
mental system. We note that in general, the quantised universal enveloping
superalgebras Uq(g,Π) associated with different fundamental systems Π are
not isomorphic as Hopf superalgebras.

Corresponding to each αi in Π, we introduce a Z2 group generated by σi
such that σ2

i = 1, and let G be the direct product of all the Z2 groups, i.e.,
G := Z2 × · · · × Z2 (|Π| copies). There is a natural action of G on Uq(g,Π)
such that there exists an element u ∈ G which implements the Z2-grading.
Let Uq(g,Π) = Uq(g,Π)]CG be the smash product (Definition 2.6), which
has a natural Hopf superalgebra structure by Proposition 2.7.

The following result is a part of Theorem 1.2.

Theorem 1.1. Let (g, g′) be a pair of Lie superalgebras or affine Lie super-
algebras listed in any column of Table 1 below (where m+ n > 0). For any

g osp(2m+ 1|2n) sl(2m+ 1|2n)(2) osp(2m+ 2|2n)(2)

g′ osp(2n+ 1|2m) osp(2n+ 1|2m)(1) osp(2n+ 2|2m)(2)

Table 1: Quantum correspondences.

chosen fundamental system Π of g and the corresponding fundamental sys-
tem Π′ = φ(Π) of g′ (see Lemma 2.2), there exists an isomorphism of asso-
ciative algebras

U−q(g
′,Π′)

∼=−→ Uq(g,Π),
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which is defined explicitly in Theorem 3.1.

For the special pairs (g, g′) with either g or g′ being an ordinary affine
Lie algebra, Theorem 1.1 was proved in [17, 19]. It was quite a surprise that
such isomorphisms exist as the root systems of any pair g and g′ are very
different.

As it stands, the isomorphism in Theorem 1.1 does not preserve the
Z2-gradings, thus can not be a superalgebra isomorphism, let alone a Hopf
superalgebra isomorphism. However, it relates the Hopf superalgebra struc-
tures at a more fundamental level.

As advocated by Majid and others (see e.g., [9, Chapter 10.1] and [1]),
one should place Hopf superalgebras in the context of braided tensor cate-
gories. The category of vector superspaces can be considered as the tensor
category of representations of the group algebra of Z2 regarded as a triangu-
lar Hopf algebra. A Hopf superalgebra is then a Hopf algebra in this category.
Given a Hopf superalgebra, one may change the Z2-action to obtain a new
Hopf superalgebra with the same underlying associative algebra structure,
but a new co-algebra structure and different Z2-grading. We refer to this
process as a picture change (see Definition 4.1), which is also loosely known
as bosonisation in the literature [9] (see Remark 4.2). An important fact is
that the representation category of the new Hopf superalgebra is equivalent
to that of the original Hopf superalgebra as strict tensor category (see [9,
Chapter 10.1] and [1, Theorem 3.1.1]).

Corresponding to any pair (g, g′) of (affine) Lie superalgebras from The-
orem 1.1, we have the Hopf superalgebras Uq(g,Π) and U−q(g

′,Π′) with
the standard Hopf structures. Denote by ∆, ε and S the co-multiplication,
co-unit and antipode of Uq(g,Π) respectively. We apply an appropriate
picture change to (Uq(g,Π),∆, ε, S) to obtain a new Hopf superalgebra
(Uq(g,Π), ∆̃, ε, S̃), where Uq(g,Π) has acquired a new Z2-grading. Relative
to this Z2-grading, the map of Theorem 1.1 becomes an isomorphism of
superalgebras; see Corollary 4.5.

However, U−q(g
′,Π′) and (Uq(g,Π), ∆̃, ε, S̃) as Hopf superalgebras are

still different. To relate them, we introduce another ingredient, Drinfeld
twists [3, 11], which is used for changing the co-algebraic structures. We
construct a Drinfeld twist J for (Uq(g,Π), ∆̃, ε, S̃) in Lemma 4.6, and use it
to twist the Hopf superalgebra in the way described in Section 4.1.2. This
gives rise to another Hopf superalgebra (Uq(g,Π), ∆̃J , ε, S̃J ), see Lemma 4.8.
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Theorem 1.2. Let (g, g′) be a pair of (affine) Lie superalgebras in Theo-
rem 1.1. Then the quantum (affine) superalgebra U−q(g

′,Π′) with the stan-
dard Hopf superalgebra structure is isomorphic to (Uq(g,Π), ∆̃J , ε, S̃J ).

We comment that even though Theorem 1.1 was partially known [17, 19]
before, the Hopf superalgebra isomorphism of Theorem 1.2 is new in all
cases. In general, the quantised universal enveloping superalgebras Uq(g,Π)
corresponding to different fundamental systems are non-isomorphic as Hopf
superalgebras, thus the isomorphism of Theorem 1.2 depends on the funda-
mental systems nontrivially.

Definition 1.3. We call the Hopf superalgebra isomorphism of Theorem 1.2
a quantum correspondence between the (affine) Lie superalgebras g and g′.

The following result is a consequence of the quantum correspondence
and some general facts (see Theorem 4.3) on Hopf superalgebras.

Theorem 1.4. Let (g, g′) be any pair of (affine) Lie superalgebras in The-
orem 1.1. For any fundamental system Π of g and the corresponding fun-
damental system Π′ = φ(Π) of g′, the representation categories of the Hopf
superalgebras Uq(g,Π) and U−q(g

′,Π′) are equivalent as strict tensor cate-
gories.

The remainder of the paper is devoted to the proof of Theorem 1.2.
All notions required, including those used in the discussion above, will be
carefully explained.

Results of the present paper have been applied to construct Drinfeld
realisations, vertex operator representations, and finite dimensional repre-
sentations of classes of quantum affine superalgebras [14].

2. Quantised universal enveloping superalgebras

2.1. Root Systems

We begin with a description of the root data of the classical series of Lie
superalgebras and the related twisted and untwisted affine Lie superalgebras.

For any given pair of nonnegative integers k and l, we let E(k|l) be the
(k + l)-dimensional vector space over R with a basis consisting of elements εi
(i = 1, 2, . . . , k) and δν (ν = 1, 2, . . . , l). We endow E(k|l) with a symmetric
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non-degenerate bi-linear form

(2.1) (εi, εj) = (−1)θδij , (δµ, δν) = −(−1)θδµν , (εi, δµ) = (δµ, εi) = 0,

where θ is 0 or 1, which will be fixed in the following way. Call an order of
the basis elements admissible if εi appears before εi+1 for all i, and δν before
δν+1 for all ν. Fix an admissible order and denote by (E1, E2, . . . , Ek+l) the
ordered basis of E(k|l). Then we choose θ so that (E1, E1) = 1.

Let g be either a special linear or orthosymplectic Lie superalgebra. Then
the set Φ of roots of g can be realized as a subset of E(k|l) for appropriate
k and l, where we will take the k and l to be the smallest possible. We will
call E(k|l) the ambient space of Φ.

Each choice of a Borel subalgebra corresponds to a choice of positive
roots, and hence a fundamental system Π = {α1, α2, . . . , αr} of simple roots,
where r is the rank of g. The Weyl group conjugacy classes of Borel subal-
gebras correspond bijectively to the admissible ordered bases of the ambient
space.

The root data of the classical series of simple Lie superalgebras can be
described as in Table 2, where the ambient space of Φ is E(m|n) in each case.
Now Φ ⊂ E(m|n)Z =

∑m+n
a=1 ZEa. Define a map χ : E(m|n)Z −→ Z such that

χ(v) =
∑n

µ=1 bµ for any v =
∑m

i=1 aiεi +
∑n

µ=1 bµδµ. Then a root β ∈ Φ is
even if χ(β) is even, and odd otherwise.

g simple roots

sl(m|n) αi = Ei − Ei+1, 1 ≤ i < m+ n

osp(2m+ 1|2n) αi = Ei − Ei+1, 1 ≤ i < m+ n, αm+n = Em+n

osp(2m|2n)

αi = Ei − Ei+1, 1 ≤ i < m+ n,

αm+n =

{
Em+n−1 + Em+n, if Em+n = εm,

2Em+n, if Em+n = δn.

Table 2: Classical series of Lie superalgebras.

Remark 2.1. The Lie superalgebras osp(m|n) and sl(m|n) reduce to ordi-
nary Lie algebras if m = 0 or n = 0. Also, sl(m|m) contains the ideal C12m,
and sl(m|m)/C12m is simple.

In order to describe the root data of untwisted and twisted affine Lie
superalgebras of the classical series of Lie superalgebras discussed above, we
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introduce the vector space Eδ(k|l), which has a basis consisting of the basis
elements of E(k|l) and the additional element E0 = δ. We extend the bilinear
form on E(k|l) to Eδ(k|l) by setting

(E0, Ei) = (Ei, E0) = 0, ∀i = 0, 1, . . . , k + l.

The resulting form still has rank k + l, and thus is degenerate. The affine
root data can be described as in Table 3 (see [6, 7, 13]) using the ambient
space Eδ(m|n) in each case.

The vector spaces Eδ(m|n) and Eδ(n|m) are both (m+n+1)-dimensional.
To avoid confusion, we write the basis of Eδ(n|m) as {δ′, ε′1, . . . , ε′n, δ′1, . . . , δ′m}.
Consider the following vector space isomorphism

(2.2) φ : Eδ(m|n) −→ Eδ(n|m), δ 7→ δ′, εi 7→ δ′i, δj 7→ ε′j , ∀i, j.

We will still denote its restriction to E(m|n) by φ.
Clearly φ sends an admissible basis of E(m|n) to an admissible basis of

E(n|m). If E(m|n) or Eδ(m|n) is the ambient space of the root system of a
Lie superalgebra or affine Lie superalgebra g, and Π is a fundamental system
of g, then the set φ(Π) may be a fundamental system of another (affine) Lie
superalgebra with E(n|m) or Eδ(n|m) as the ambient space of roots. This
happens in the following cases.

Lemma 2.2. The map φ induces a one to one correspondence between
fundamental systems of the (affine) Lie superalgebras in each of the following
pairs (g, g′):

(i). those listed in Table 1;

(ii). and

(sl(m|n), sl(n|m)), (sl(m|n)(1), sl(n|m)(1)),

(sl(2m|2n)(2), sl(2n|2m)(2)),

(sl(2m+ 1|2n)(2), sl(2n|2m+ 1)(2)),

(sl(2m+ 1|2n+ 1)(4), sl(2n+ 1|2m+ 1)(4)).

Remark 2.3. (1). The imaginary root E0 = δ is even for all affine Lie su-
peralgebras except sl(2m+ 1|2n+ 1)(4), where it is odd.

(2). Define a map χg : Zδ + E(m|n)Z −→ Z for each g in Table 3 as
follows. For any v = z0δ + v′ with v′ ∈ E(m|n)Z, let χg(v) = z0 + χ(v′) if
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g simple roots

sl(m|n)(1) αi = Ei − Ei+1, 1 ≤ i < m+ n,

α0 = E0 − E1 + Em+n.

osp(2m+ 1|2n)(1)

αi = Ei − Ei+1, 1 ≤ i < m+ n, αm+n = Em+n,

α0 =

{
E0 − E1 − E2, if E1 = ε1,

E0 − 2E1, if E1 = δ1.

osp(2m|2n)(1)

αi = Ei − Ei+1, 1 ≤ i < m+ n,

αm+n =

{
Em+n−1 + Em+n, if Em+n = εm,

2Em+n, if Em+n = δn,

α0 =

{
E0 − E1 − E2, if E1 = ε1,

E0 − 2E1, if E1 = δ1.

sl(2m+ 1|2n)(2)

αi = Ei − Ei+1, 1 ≤ i < m+ n, αm+n = Em+n,

α0 =

{
E0 − 2E1, if E1 = ε1,

E0 − E1 − E2, if E1 = δ1.

sl(2m|2n)(2)

αi = Ei − Ei+1, 1 ≤ i < m+ n,

αm+n =

{
Em+n−1 + Em+n, if Em+n = εm,

2Em+n, if Em+n = δn,

α0 =

{
E0 − 2E1, if E1 = ε1,

E0 − E1 − E2, if E1 = δ1.

osp(2m+ 2|2n)(2) αi = Ei − Ei+1, 1 ≤ i < m+ n,

αm+n = Em+n, α0 = E0 − E1.

sl(2m+ 1|2n+ 1)(4) αi = Ei − Ei+1, 1 ≤ i < m+ n,

αm+n = Em+n, α0 = E0 − E1.

Table 3: Classical series of affine Lie superalgebras.

g = sl(2m+ 1|2n+ 1)(4), and χg(v) = χ(v′) otherwise. Then a simple root
αi is even if χg(αi) is even, and odd otherwise.

(3). For all the pairs in case (ii) of Lemma 2.2, we have g = g′. This is
why we do not consider them when studying quantum correspondences.
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2.2. Quantum affine superalgebras

Hereafter we will only consider the Lie superalgebras in Table 2 and affine
Lie superalgebras in Table 3.

Let g be such a Lie superalgebra or affine Lie superalgebra with a funda-
mental system Π. For g in Table 2, let Π = {αi | i = 1, 2, . . . ,m+ n}, and let
τ ⊂ {1, 2, . . . ,m+ n} be the labelling set of the odd simple roots, i.e., {αs |
s ∈ τ} is the subset of Π consisting of the odd simple roots. Similarly, for g in
Table 3, let Π = {αi | i = 0, 1, 2, . . . ,m+ n}, and let τ ⊂ {0, 1, 2, . . . ,m+ n}
be the labelling set of the odd simple roots. Define bij = (αi, αj) for all i, j.
Then the Cartan matrix of g corresponding to Π is given by

A = (aij) with aij =


2bij
bii

, if bii 6= 0

bij , if bii = 0
.

Note that aii = 0 if and only if αi is an isotropic odd simple root. We will
represent fundamental systems by Dynkin diagrams [6, 7, 13, 21], following
the convention of Kac [6]. In particular, a node ◦ corresponds to an even sim-
ple root; ⊗ to an odd isotropic simple root; • to an odd non-isotropic simple
root, and × stands for ◦ or ⊗, depending on whether the simple root is even

or odd. Note that the sub-diagrams i< ⊗2 >⊗ and i< ⊗2 > i cor-

respond respectively to the sub-matrices

 2 −1 0
−2 0 1
0 1 0

 and

 2 −1 0
−2 0 1
0 −1 2


in Cartan matrices.

For convenience, we take a slight variation of the usual definition [2, 15,
22] of quantised universal enveloping superalgebras (see Remark 2.5 below
for further comments). Let us fix q ∈ C such that q 6= 0,±1, and let q1/2 be
a fixed square root of q. Denote

qi =

{
q

(αi,αi)

2 , if (αi, αi) 6= 0

q, if (αi, αi) = 0,
θi =

{
1, if |(αi, αi)| = 1, 2

2, if |(αi, αi)| = 0, 4.

Note that q
aij
i = q

aj,i
j = q(αi,αj). In what follows, [x, y]v = xy − (−1)[x][y]vyx.

Definition 2.4. The quantised universal enveloping superalgebra Uq(g,Π)
of g with the fundamental system Π is an associative superalgebra over C
with identity, which is defined by the following presentation: The generators
are ei, fi, k

±1
i , where es, fs, (s ∈ τ), are odd and the rest are even, and the

relations are given by
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1)

kik
−1
i = k−1

i ki = 1, kikj = kjki,

kiejk
−1
i = q

aij
i ej , kifjk

−1
i = q

−aij
i fj ,

eifj − (−1)[ei][fj ]fjei = δij
ki − k−1

i

qθi − q−θi
;

2)

if ass = 0, (es)
2 = (fs)

2 = 0,

if aii 6= 0, i 6= j, (Adei)
1−aij (ej) = (Adfi)

1−aij (fj) = 0,

where Adei(x) and Adfi(x) are defined by (2.3);

3) and higher order Serre relations [16] (also see [21]) associated with the
following subdiagrams of Dynkin diagrams

(A) × ⊗ ×
s− 1 s s + 1

with as−1,s = −as,s+1, the associated higher order

Serre relations are

AdesAdes−1
Ades(es+1) = 0, AdfsAdfs−1

Adfs(fs+1) = 0;

(B) × ⊗ > i
s− 1 s s + 1

, the associated higher order Serre elements are

AdesAdes−1
Ades(es+1) = 0, AdfsAdfs−1

Adfs(fs+1) = 0;

(C) × ⊗ > y
s− 1 s s + 1

, the associated higher order Serre relations are

AdesAdes−1
Ades(es+1) = 0, AdfsAdfs−1

Adfs(fs+1) = 0;

(D) i< ⊗2 >⊗
s− 1 s s + 1

, the associated higher order Serre relations are[
Ades+1

(es),
[
Ades+1

(es),Ades(es−1)
]
v1

]
v2

= 0,[
Adfs+1

(es),
[
Adfs+1

(fs),Adfs(fs−1)
]
v1

]
v2

= 0,
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where v1 = q−(αs,αs+1), v2 = q(αs,αs+1);

(E) i< ⊗2
> i ×

s + 2s− 1 s s + 1

, the associated higher order Serre relations

are [
Ades+2

(Ades+1
es),

[
Ades+1

es,Adeses−1

]
v1

]
= 0,[

Adfs+2
(Adfs+1

fs),
[
Adfs+1

fs,Adfsfs−1

]
v1

]
= 0, v1 = q−(αs,αs+1);

(F) ×�
�

@
@

⊗

⊗
s− 1

s

s + 1

, the associated higher order Serre relations are

AdesAdes+1
(es−1)−Ades+1

Ades(es−1) = 0,

AdfsAdfs+1
(fs−1)−Adfs+1

Adfs(fs−1) = 0;

where Adei(x) and Adfi(x) are defined by

(2.3)
Adei(x) = eix− (−1)[ei][x]kixk

−1
i ei,

Adfi(x) = fix− (−1)[fi][x]k−1
i xkifi.

Remark 2.5. We have used
ki − k−1

i

qθi − q−θi
instead of the standard expression

ki − k−1
i

qi − q−1
i

in the third relation of 1). A consequence is that q±1/2 never ap-

pears in our definition of the quantised universal enveloping superalgebras.

Corresponding to each simple root αi ∈ Π of g, we introduce a group Z2

generated by σi such that σ2
i = 1, and let G be the direct product of all such

groups. Then G = Z×|Π|2 , where |Π| denotes the cardinality of Π. We define
a G-action on Uq(g,Π) by

σi · ej = (−1)(αi,αj)ej , σi · fj = (−1)−(αi,αj)fj , σi · kj = kj , i 6= 0,

σ0 · ej = (−1)δj0ej , σ0 · fj = (−1)−δj0fj , σ0 · kj = kj , ∀j,

where the second line is present only when g is an affine superalgebra.

Definition 2.6. Let Uq(g,Π) = Uq(g,Π)]CG be the smash product super-
algebra with Uq(g,Π)0̄ = Uq(g,Π)0̄ ⊗ CG and Uq(g,Π)1̄ = Uq(g,Π)1̄ ⊗ CG,
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where the multiplication is defined by

(x⊗ σ)(x′ ⊗ σ′) = x(σ · x′)⊗ σσ′, ∀x, x′ ∈ Uq(g,Π), σ, σ′ ∈ CG.

To simplify the notation, we write x for x⊗ 1 for any x ∈ Uq(g,Π), and
σ for 1⊗ σ for any σ ∈ CG. Then in Uq(g,Π), we have, for all i, j with i 6= 0,

σiejσ
−1
i = (−1)(αi,αj)ej , σifjσ

−1
i = (−1)−(αi,αj)fj , σikjσ

−1
i = kj ,

σ0ejσ
−1
0 = (−1)δj0ej , σ0fjσ

−1
0 = (−1)−δj0fj , σ0kjσ

−1
0 = kj .

(2.4)

The quantised universal enveloping algebra Uq(g,Π) is a Hopf superal-
gebra, and the group algebra of G has a canonical Hopf algebra structure.
Their smash product inherits a Hopf superalgebra structure.

Proposition 2.7. The quantum superalgebra Uq(g,Π) is a Hopf super-
algebra with comultiplication ∆ : Uq(g,Π)→ Uq(g,Π)⊗ Uq(g,Π), counit ε :
Uq(g,Π)→ C, and antipode S : Uq(g,Π)→ Uq(g,Π) respectively given by

∆(ei) = ei ⊗ 1 + ki ⊗ ei, ∆(fi) = fi ⊗ k−1
i + 1⊗ fi,

∆(ki) = ki ⊗ ki, ∆(σi) = σi ⊗ σi;
ε(ei) = ε(fi) = 0, ε(k±1

i ) = 1, ε(σi) = 1;

S(ei) = −k−1
i ei, S(fi) = −fiki, S(ki) = k−1

i , S(σi) = σ−1
i .

3. Algebraic isomorphisms

We prove Theorem 1.1 in this section. The proof requires detailed consider-
ations of the structures of the relevant quantum superalgebras, thus is very
lengthy as each pair (g, g′) involves numerous cases corresponding to differ-
ent choices of fundamental systems. We will present only the main steps of
the proof, omitting most of the detailed calculations.

Let (g, g′) be a pair of Lie superalgebras or affine Lie superalgebras in
Theorem 1.1. Choose any fundamental system Π for g with τ being the
labelling set for the odd simple roots. By Lemma 2.2, Π′ = φ(Π) is the
corresponding fundamental system of g′ with the labelling set τ ′ for the
odd simple roots. We write α′i = φ(αi) for the simple roots of g′. Note that
α′s ∈ Π′ is isotropic if and only if αs ∈ Π is.

Let {ei, fi, k±1
i , σi} be the set of generators of the quantum superalgebra

Uq(g,Π), and denote by G the group generated by the elements σi. Similarly,
we let {e′i, f ′i , k′

±1
i , σ′i} be the standard generating set of U−q(g

′,Π′), and
denote by G′ the group generated by the elements σ′i.
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For 1 ≤ i ≤ m+ n, we introduce the following elements

Φi =

m+n∏
k=i

σk, Φ̃i =

m+n∏
k=0

σi+2k, in Uq(g,Π);

Φ′i =

m+n∏
k=i

σ′k, Φ̃′i =

m+n∏
k=0

σ′i+2k, in U−q(g
′,Π′),

where σj ∈ G and σ′j ∈ G′ are both 1 if j ≥ m+ n+ 1. Note that

Φm+n = Φ̃m+n = σm+n, Φ′m+n = Φ̃′m+n = σ′m+n.

For i = 1, 2, . . . ,m+ n, we define the following elements

Ei = Φi+1ei, Fi = Φifi, i /∈ τ,
Ei = Φ̃i+2ei, Fi = Φ̃ifi, i ∈ τ,
Ki = σiki, which belong to Uq(g,Π); and

E′i = Φ′i+1e
′
i, F ′i = Φ′if

′
i , i /∈ τ ′,

E′i = Φ̃′i+2e
′
i, F ′i = Φ̃′if

′
i , i ∈ τ ′,

K ′i = σ′ik
′
i, which belong to U−q(g

′,Π′),

(3.1)

where Φm+n+k = Φ̃m+n+k = 1 and Φ′m+n+k = Φ̃′m+n+k = 1 for all k > 0.
If (g, g′) is a pair of affine Lie superalgebras, we will also define elements

E0, F0,K0 ∈ Uq(g,Π), and E′0, F
′
0,K

′
0 ∈ U−q(g

′,Π′),

the explicit expressions of which depend on the affine Lie superalgebras and
fundamental systems, and will be given in the proof of the following result.

Theorem 3.1. The associative algebra isomorphism U−q(g
′,Π′)

∼=−→Uq(g,Π)
of Theorem 1.1 is given by

(3.2) σ′i 7→ σi, e′i 7→ Ei, f ′i 7→ Fi, k′i 7→ Ki, ∀i,

with the inverse map

(3.3) σi 7→ σ′i, ei 7→ E′i, fi 7→ F ′i , ki 7→ K ′i, ∀i.

This is a more explicit version of Theorem 1.1. If we can prove that the
maps (3.2) and (3.3) are algebra homomorphisms, then we immediately see
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that they are inverses of each other since Φ2
i = 1 for all i. It is clear from

equation (2.4) that the maps preserve the action of G on Uq(g,Π) and the
action of G′ on U−q(g

′,Π′). Thus what remains to be shown is that

• Ei, Fi,K±1
i satisfy the defining relations of U−q(g

′,Π′) obeyed by the
standard generators e′i, f

′
i , k
′±1
i (1 ≤ i ≤ m+ n); and

• E′i, F ′i ,K ′
±1
i satisfy the defining relations of Uq(g,Π) obeyed by the

standard generators ei, fi, k
±1
i (1 ≤ i ≤ m+ n).

The proof simply boils down to deducing the desired relations satisfied by
Ei, Fi,K

±1
i (rsep. E′i, F

′
i ,K

′±1
i ), from the defining relations of Uq(g,Π) (resp.

U−q(g
′,Π′)). The proofs for the two statements are exactly the same, thus

we will only present the details for the first one, which will occupy the next
three sections. The following notation will be used,

[k]z =
zk − z−k

z − z−1
, {k}z =

zk − (−z)−k

z + z−1
, for k ∈ Z,

[0]z! = {0}z! = 1, [N ]z! =

N∏
i=1

[i]z, {N}z! =

N∏
i=1

{i}z, for 1 ≤ N ∈ N,[
N
k

]
z

=
[N ]z!

[N − k]z![k]z!
,

{
N
k

}
z

=
{N}z!

{N − k}z!{k}z!
, for k ≤ N ∈ N,

where z ∈ C such that the expressions above are defined.

3.1. The case of osp(2m + 1|2n) and osp(2n + 1|2m)

Recall from Section 2.1 that the ambient space of the roots of g = osp(2m+
1|2n) is E(m|n). Each admissible ordered basis of it leads to a fundamen-
tal system Π = {αi | 1 ≤ i ≤ m+ n} with the αi given in Table 2. Now
g′ = osp(2n+ 1|2m) with the corresponding fundamental system Π′ = {α′i =
φ(αi) | i = 1, 2, . . . ,m+ n}. The ambient space of the roots is E(n|m). In the
case αm+n = δn ∈ Π, which is odd, α′m+n = εn is an even simple root in Π′,
and the Dynkin diagrams of Π and Π′ are the Type (1) diagrams in Table 4.
In this case, τ ′ = τ\{m+ n}. If αm+n = εm ∈ Π, which is even, α′m+n = δm
is an odd simple root in Π′, and the Dynkin diagrams of Π and Π′ are the
Type (2) diagrams in Table 4. In this case, τ = τ ′\{m+ n}.

The quantum superalgebra Uq(osp(2m+ 1|2n),Π) is generated by
Uq(osp(2m+ 1|2n),Π), and the elements σi, which generate a group G =

Z×(m+n)
2 . The commutation relations of the σi with the generators of
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Type g = osp(2m+ 1|2n) g′ = osp(2n+ 1|2m)

(1) ×
α1

×
α2

· · · ×
αm+n−1

> y
αm+n

×
α′1

×
α′2

· · · ×
α′m+n−1

> i
α′m+n

(2) ×
α1

×
α2

· · · ×
αm+n−1

> i
αm+n

×
α′1

×
α′2

· · · ×
α′m+n−1

> y
α′m+n

Table 4: Dynkin diagram of osp(2m+ 1|2n) and osp(2n+ 1|2m).

Uq(osp(2m+ 1|2n),Π) are given by (2.4). The quantum superalgebra
U−q(osp(2n|2m+ 1),Π′) can be described similarly.

Let t = −q, and let t1/2 be a square root for t. Denote ti = t(αi,αi)/2.
Note that relations among Ei, Fi,Ki depend on t±1, but not on t±1/2.

Proof of Theorem 3.1 for (g, g′) = (osp(2m+ 1|2n), osp(2n+ 1|2m)).
Consider first the Type (1) Dynkin diagrams in Table 4. In this case,

αm+n = δn ∈ Π. Let ī = 1 if i ∈ τ ′ and 0 otherwise. Then it is easy to see
that

(3.4) EiFj − (−1)īj̄FjEi = δij
Ki −K−1

i

tθi − t−θi
, 1 ≤ i, j ≤ m+ n.

For example,

Em+nFm+n − Fm+nEm+n = −σm+n(em+nfm+n + fm+nem+n)

=
Km+n −K−1

m+n

t− t−1
,

EkFm+n − Fm+nEk = (−1)δk,m+n−1Φ̃k+2Φ̃m+n(ekfm+n + fm+nek)

= 0, k ∈ τ ′.

The other relations listed in (1) of Definition 2.4 can be proved in exactly
the same way.

We now consider the Serre relations (2) in Definition 2.4, which lead to

E2
i = F 2

i = 0, if αi ∈ Π is isotropic,
1−aij∑
k=0

(−1)k
[

1−aij
k

]
ti
Eki EjE

1−aij−k
i = 0,

1−aij∑
k=0

(−1)k
[

1−aij
k

]
ti
F ki FjF

1−aij−k
i = 0, i 6∈ τ ′, i 6= j.

(3.5)
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To see this, we consider, for example, the case i = m+ n and j = m+ n−
1 6∈ τ . We have

3∑
k=0

(−1)k
[

3
k

]
tm+n

Ekm+nEm+n−1E
3−k
m+n

= Φm+n

3∑
k=0

(−1)
k(k+1)

2

{
3
k

}
qm+n

ekm+nem+n−1e
3−k
m+n = 0,

where we have used

[
3
k

]
tm+n

= (−1)
k(k+1)

2

{
3
k

}
qm+n

for 0 ≤ k ≤ 3. For m+

n− 1 ∈ τ , the above equation remains valid if we replace the expression

between the equality signs by
3∑

k=0

(−1)
k(k−1)

2

{
3
k

}
qm+n

ekm+nem+n−1e
3−k
m+n.

Higher order Serre relations can arise from two types of sub-diagrams
only in the present case. Denote

(3.6)

ei;s;j = ei(esej − (−1)[ej ]q
ajs
j ejes)

− (−1)[ei](1+[ej ])q
ais+aij
i (esej − (−1)[ej ]q

ajs
j ejes)ei,

fi;s;j = fi(fsfj − (−1)[fj ]q
ajs
j fjfs)

− (−1)[fi](1+[fj ])q
ais+aij
i (fsfj − (−1)[fj ]q

ajs
j fjfs)fi.

Case 1. × ⊗ ×,
s− 1 s s + 1

with the associated higher order Serre relations
given by

(3.7)
eses−1;s;s+1 + (−1)[es−1]+[es+1]es−1;s;s+1es = 0,

fsfs−1;s;s+1 + (−1)[fs−1]+[fs+1]fs−1;s;s+1fs = 0.

Let us first assume that s− 1, s+ 1 /∈ τ . In this case, s 6= m+ n− 1,
as−1,s = as+1,s = −1 and qs+1 = q−1

s−1, with qs−1 = q or q−1 depending on
depending on the value of θ in (2.1). Then (3.7) is given by

eses−1;s;s+1 + es−1;s;s+1es = 0, fsfs−1;s;s+1 + fs−1;s;s+1fs = 0, with

es−1;s;s+1 = es−1(eses+1 − q−1
s+1es+1es)− q−1

s−1(eses+1 − q−1
s+1es+1es)es−1,

fs−1;s;s+1 = fs−1(fsfs+1 − q−1
s+1fs+1fs)− q−1

s−1(fsfs+1 − q−1
s+1fs+1fs)fs−1.

Write ts±1 = −qs±1, and let

Es−1;s;s+1 := Es−1(EsEs+1−t−1
s+1Es+1Es)−t−1

s−1(EsEs+1−t−1
s+1Es+1Es)Es−1,

Fs−1;s;s+1 := Fs−1(FsFs+1 − t−1
s+1Fs+1Fs)− t−1

s−1(FsFs+1 − t−1
s+1Fs+1Fs)Fs−1.



i
i

“14-Zhang” — 2018/7/27 — 15:09 — page 1024 — #16 i
i

i
i

i
i

1024 Y. Xu and R. B. Zhang

For any mutually distinct i, j, k not in τ ,

EiEjEk = (−1)δi,k+1+δj,k+1+δi,j+1Φi+1Φj+1Φk+1eiejek.

If any one of i, j, k is in τ , say, j ∈ τ , the identity still holds if we replace
Φj+1 by Φ̃j+2. There are also similar relations for F ’s. Using these facts, we
obtain

Es−1;s;s+1 = ΦsΦ̃s+2Φs+2es−1;s;s+1, Fs−1;s;s+1 = Φs−1Φ̃sΦs+1fs−1;s;s+1.

This immediately leads to

EsEs−1;s;s+1 + Es−1;s;s+1Es = −σsσs+1(eses−1;s;s+1 + es−1;s;s+1es) = 0,

FsFs−1;s;s+1 + Fs−1;s;s+1Fs = −σs−1σs(fsfs−1;s;s+1 + fs−1;s;s+1fs) = 0.

Without assuming s− 1, s+ 1 /∈ τ , we can still show that similar relations
hold.

In summary, for s such that αs is isotropic, we have

(3.8)
EsEs−1;s;s+1 − (−1)1+s−1+s+1Es−1;s;s+1Es = 0,

FsFs−1;s;s+1 − (−1)1+s−1+s+1Fs−1;s;s+1Fs = 0,

where s− 1 and s+ 1 are as in equation (3.4).

Case 2. × ⊗ > y,
s− 1 s s + 1

with the associated higher order Serre relations
given by

(3.9)
eses−1;s;s+1 − (−1)[es−1]es−1;s;s+1es = 0,

fsfs−1;s;s+1 − (−1)[fs−1]fs−1;s;s+1fs = 0;

where s+ 1 = m+ n. By the same method as above, we have

EsEs−1;s;s+1 − (−1)1+s−1Es−1;s;s+1Es = 0,

FsFs−1;s;s+1 − (−1)1+s−1Fs−1;s;s+1Fs = 0.
(3.10)

Note that equations (3.4), (3.5), (3.8) and (3.10) are the same as the
defining relations of U−q(g

′,Π′) satisfied by the generators e′i, f
′
i , k
′
i. Thus we

have shown that the map U−q(g
′,Π′) −→ Uq(g,Π) given by (3.2) is indeed

an algebra homomorphism if αm+n = δn, i.e., in the case of the Type (1)
diagrams in Table 4. Similarly we can prove this for Type (2) diagrams in
Table 4, where αm+n = εm. �
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3.2. The case of sl(2m + 1|2n)(2) and osp(2n + 1|2m)(1)

Given a fundamental system Π = {αi | i = 0, 1, . . . ,m+ n} of g = sl(2m+
1|2n)(2), we obtain a corresponding fundamental system Π′ = {α′i = φ(αi) |
i = 0, 1, . . . ,m+ n} of g′ = osp(2n+ 1|2m)(1) by Lemma 2.2. We draw the
Dynkin diagrams for Π and Π′ in a row of Table 5, with the diagram for
Π on the left. The Dynkin diagrams corresponding to different choices of
fundamental systems are divided into four types in the table.

Proof of Theorem 3.1 for (g, g′) = (sl(2m+ 1|2n)(2), osp(2n+ 1|2m)(1)).
For 1 ≤ i ≤ m+ n, we define Ei, Fi,Ki, E

′
i, F
′
i ,K

′
i by (3.1). Note that

when the nodes of α0 and α′0 are removed, the Dynkin diagrams in Table 5
reduce to the Dynkin diagrams for the finite dimensional Lie superalgebras
osp(2m+ 1|2n) and osp(2n+ 1|2m). Thus by (3.1), the same reasoning in
Section 3.1 can show that the elements Ei, Fi,Ki (resp. E′i, F

′
i ,K

′
i) for 1 ≤

i ≤ m+ n have the desired properties.
What remains to be done, in order to complete the proof of Theorem 3.1,

is to construct elements E0, F0,K0 ∈ Uq(g,Π) (resp. E′0, F
′
0,K

′
0 ∈ Ut(g

′,Π′)),
which satisfy the commutation relations obeyed by e′0, f

′
0, k
′
0 (resp e0, f0, k0).

We do this for each of the four types of diagrams in Table 5. The proofs for
E0, F0,K0 and for E′0, F

′
0,K

′
0 are similar to those in Section 3.1, thus we will

give the constructions for these elements only.

Case 1. Type (1) and Type (2) Dynkin diagrams in Table 5.
(3.11)

E0 = e0, F0 = f0, K0 = k0, and, E′0 = e′0, F ′0 = f ′0, K ′0 = k′0.

Note that for Type (2) Dynkin diagrams with m+ n > 2, the higher
order Serre relations involving e0 or f0 are either of type (D) (for 2 ∈ τ) or
(E) (for 2 /∈ τ) (see Definition 2.4).

Case 2. Type (3) Dynkin diagrams in Table 5. In this case,

E0 = Φ2e0, F0 = Φ1f0, K0 = σ1k0,

E′0 = Φ′2e
′
0, F ′0 = Φ′1f

′
0, K ′0 = σ′1k

′
0.

(3.12)

Case 3. Type (4) Dynkin diagrams in Table 5. This time α0 is an odd
simple root. Define

E0 = Φ̃3e0, F0 = Φ̃1f0, K0 = σ1k0,

E′0 = Φ̃′3e
′
0, F ′0 = Φ̃′1f

′
0, K ′0 = σ′1k

′
0.

(3.13)
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Type g = sl(2m+ 1|2n)(2) g′ = osp(2n+ 1|2m)(1)

(1)

i
α0

> i
α1

× . . . × > y
αm+n

i
α′0

> i
α′1

× . . . × > i
α′m+ni

α0

> i
α1

× . . . × > i
αm+n

i
α′0

> i
α′1

× . . . × > y
α′m+n

(2)

i
α0

<
2 ⊗

α1

> . . . × > y
αm+n

i
α′0

<
2 ⊗

α′1

> . . . × > i
α′m+ni

α0

<
2 ⊗

α1

> . . . × > i
αm+n

i
α′0

<
2 ⊗

α′1

> . . . × > y
α′m+n

(3)

iα0

i
α1

�

@× . . . × > y
αm+n

iα′0
i
α′1

�

@× . . . × > i
α′m+n

iα0

i
α1

�

@× . . . × > i
αm+n

iα′0
i
α′1

�

@× . . . × > y
α′m+n

(4)

⊗
α0

⊗
α1

�

@× . . . × > y
αm+n

⊗
α′0

⊗
α′1

�

@× . . . × > i
α′m+n

⊗
α0

⊗
α1

�

@× . . . × > i
αm+n

⊗
α′0

⊗
α′1

�

@× . . . × > y
α′m+n

Table 5: Dynkin diagrams of sl(2m+ 1|2n)(2) and osp(2n+ 1|2m)(1).

�
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3.3. The case of osp(2m + 2|2n)(2) and osp(2n + 2|2m)(2)

The Dynkin diagrams of g = osp(2m+ 2|2n)(2) and g′ = osp(2n+ 2|2m)(2)

are given in Table 6, where the diagrams for a fundamental system Π of g
and the corresponding fundamental system Π′ of g′ are shown in the same
row.

Type g = osp(2m+ 2|2n)(2) g′ = osp(2n+ 2|2m)(2)

(1)

i
α0

< × . . . × > y
αm+n

y
α′0

< × . . . × > i
α′m+ni

α0

< × . . . × > i
αm+n

y
α′0

< × . . . × > y
α′m+n

(2)

y
α0

< × . . . × > y
αm+n

i
α′0

< × . . . × > i
α′m+ny

α0

< × . . . × > i
αm+n

i
α′0

< × . . . × > y
α′m+n

Table 6: Dynkin diagrams of osp(2m+ 2|2n)(2) and osp(2n+ 2|2m)(2).

Proof of Theorem 3.1 for (g, g′) = (osp(2m+ 2|2n)(2), osp(2n+ 2|2m)(2)).
We will merely construct the elements Ei, Fi,Ki, E

′
i, F
′
i ,K

′
i here, as the

proof of Theorem 3.1 is much the same as in the previous cases. For 1 ≤ i ≤
m+ n, the elements Ei, Fi,Ki, E

′
i, F
′
i ,K

′
i are given by (3.1); and for i = 0,

they are defined as follows.

Case 1. Type (1) Dynkin diagrams in Table 6.
(3.14)

E0 = Φ̃2

∏
j∈τ

(Φ̃1Φ̃j+1) · e0, F0 = Φ̃1

∏
j∈τ

(Φ̃1Φ̃j+1) · f0, K0 = Φ1 · k0;

E′0 = Φ̃′2
∏
j∈τ ′

(Φ̃′1Φ̃′j+1) · e′0, F ′0 = Φ̃′1
∏
j∈τ ′

(Φ̃′1Φ̃′j+1) · f ′0, K ′0 = Φ′1 · k′0.

In this case, 0 /∈ τ,m+ n ∈ τ while 0 ∈ τ ′,m+ n /∈ τ ′.
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Case 2. Type (2) Dynkin diagrams in Table 6.

(3.15)

E0 = Φ1

∏
j∈τ

(Φ̃1Φ̃j+1) · e0, F0 =
∏
j∈τ

(Φ̃1Φ̃j+1) · f0, K0 = Φ1 · k0;

E′0 = Φ̃′1
∏
j∈τ ′

(Φ̃′1Φ̃′j+1) · e′0, F ′0 =
∏
j∈τ ′

(Φ̃′1Φ̃′j+1) · f ′0, K ′0 = Φ′1 · k′0.

In this case, 0 ∈ τ and 0 /∈ τ ′. �

4. Hopf superalgebra isomorphisms

We will prove Theorem 1.2 in this section. We begin by discussing some facts
on Hopf superalgebras, which are needed presently, but are not expected to
be widely known.

4.1. Picture changes and Drinfeld twists for Hopf superalgebras

4.1.1. Picture changes. The category of vector superspaces can be re-
garded as the category of representations of the group algebra of Z2 := {1, u}
where u2 = 1, which is a triangular Hopf algebra with the universal R-matrix

R :=
1

2
(1⊗ 1 + 1⊗ u+ u⊗ 1− u⊗ u) ∈ C[Z2]⊗ C[Z2].

A Hopf superalgebra H is then a Hopf algebra in this category. The grading
of H is given by the Z2-action such that

u.a = (−1)[a]a,

for any homogeneous a ∈H . For any a, b ∈H , if we write their co-products
as ∆(a) =

∑
a(1) ⊗ a(2) and ∆(b) =

∑
b(1) ⊗ b(2) respectively, then ∆(ab) is

given by

∆(ab) = (m⊗m)
(∑

a(1) ⊗ τR(a(2) ⊗ b(1))⊗ b(2)

)
,

where m is the multiplication of H , and τ : v ⊗ w 7→ w ⊗ v is the usual
permutation map (without signs). Then clearly

∆(ab) =
∑

(−1)[b(1))][a(2)]a(1)b(1) ⊗ a(2)b(2).

By changing the category of Z2-representations one obtains a non-
isomorphic Hopf superalgebra from any given one, such that its category
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of representations is equivalent to that of the original Hopf superalgebra as
tensor category, see [1, Theorem 3.1.1] and [9, Chapter 10.1]. Let us describe
this more explicitly.

PC1 ([1, Theorem 3.1.1]). Let (H,∆, ε, S) be an ordinary Hopf algebra
with a group like element u such that u2 = 1. Using u, we decompose H as
a vector space into H = H0 ⊕H1 with

Hi =
{
x ∈ H | uxu−1 = (−1)ix

}
.(4.1)

This clearly defines a Z2-grading for H as an associative algebra, thus turn-
ing it into an superalgebra. We set [x] = i for x ∈ Hi. For any x ∈ H, write
∆(x) = ∆0(x) + ∆1(x) with ∆0(x) ∈ H ⊗H0 and ∆1(x) ∈ H ⊗H1. Define
maps

(4.2)
∆u : H −→ H ⊗H, ∆u(x) = ∆0(x) + ∆1(x)(u⊗ 1),

Su : H −→ H, Su(x) = u[x]S(x).

Then (H,∆u, ε, Su) is a Hopf superalgebra. The element u acts as the parity
operator (PO) of this Hopf superalgebra in the sense of (4.1).

PC2 ([1, Theorem 3.1.1]). Let (H ,∆, ε, S) be a Hopf superalgebra with
a group like element g satisfying g2 = 1, which acts as the parity operator
in the sense that gxg−1 = (−1)[x]x for all homogeneous x ∈H . We define
maps ∆g : H −→H ⊗H and Sg : H −→H in exactly the same way as
in (4.2). Then (H ,∆g, ε, Sg) is an ordinary Hopf algebra.

PC. Let (H ,∆, ε, S) be a Hopf superalgebra. Suppose that it has two
group like elements g and u such that

g2 = 1 = u2, gu = ug, and g acts as the parity operator.

We apply PC2 to obtain an ordinary Hopf algebra, and then apply PC1
with u to the ordinary Hopf algebra to obtain a new Hopf superalgebra with
parity operator u:

Hopf superalgebra
(H ,∆, ε, S)
with PO g

PC2 //
Hopf algebra
(H ,∆g, ε, Sg)

with u

PC1 //
Hopf superalgebra

(H , (∆g)u, ε, (Sg)u)
with PO u.

Definition 4.1. Call the operation of constructing the new Hopf super-
algebra (H , (∆g)u, ε, (Sg)u) with parity operator u from a given Hopf su-
peralgebra (H ,∆, ε, S) with parity operator g a picture change (PC) with
respect to g and u.
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Remark 4.2. This is loosely called “bosonisation” in the literature (see [9]
in particular). As bosonisation means something very different in quantum
field theory, we prefer the term “picture change”.

Representation categories of Hopf algebras and Hopf superalgebras are
strict tensor categories. For any H -modules M and N , the Z2-graded action
of ∆(x) and the ordinary action of ∆g(x) on M ⊗N coincide for all x ∈H .
This in essence implies the tensor equivalence of the representation cate-
gories of the Hopf superalgebra (H ,∆, ε, S) and the ordinary Hopf algebra
(H ,∆g, ε, Sg) related by PC2. Similarly one can show the tensor equiva-
lence of the representation categories of the Hopf algebra (H,∆, ε, S) and
Hopf superalgebra (H,∆u, ε, Su) related by PC1. See [1, Theorem 3.1.1].

We summarise the above into the following

Theorem 4.3. Let (H ,∆, ε, S) be a Hopf superalgebra with group like el-
ements g and u as described above such that g acts as the parity opera-
tor. Then a picture change turns this Hopf superalgebra into a new Hopf
superalgebra (H , (∆g)u, ε, (Sg)u) with parity operator u. The categories of
representations of the two Hopf superalgebras are equivalent as strict tensor
categories.

4.1.2. Twisting the coalgebra structure. Recall the following fact
[3, 11]. Let (H ,∆, ε, S) be a Hopf superalgebra. Given an invertible even
element J ∈H ⊗H satisfying the conditions

(∆⊗ id)(J )(J ⊗ 1) = (id⊗∆)(J )(1⊗ J ),

(ε⊗ id)(J ) = (id⊗ ε)(J ) = 1,
(4.3)

one can twist the coalgebra structure to obtain a new Hopf superalgebra
(H ,∆J , ε, SJ ) with the same underlying associative superalgebraic struc-
ture on H . The new comultiplication ∆J and antipode SJ are given by

∆J (x) = J −1∆(x)J , SJ (x) = G−1S(x)G, ∀x ∈H ,

with G = m ◦ (S ⊗ id)(J ), where m is the multiplication of H . The element
J is called a Drinfeld twist for H . Note that twisting does not change the
counit.

4.2. Quantum correspondences

Keep the notation in Section 3. Let g be a Lie superalgebra or affine Lie
superalgebra in Table 2 or Table 3 with a fundamental system Π. Then
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there exists a corresponding g′ such that (g, g′) is a pair in Theorem 1.1.
Now Π′ = φ(Π) is a fundamental system of g′.

Consider Uq(g,Π) as a Hopf superalgebra with the standard grading. As
before, we denote its comultiplication, counit and antipode by ∆, ε and S
respectively. Let

u1 :=
∏
i∈τ

(Φ̃1Φ̃i+1), u2 := Φ̃1u1.(4.4)

Note that Φ̃1Φ̃i+1X
±
j (Φ̃1Φ̃i+1)−1 = (−1)δijX±j for all i, j, where X+

j = ej
and X−j = fj . [Recall that Φ̃k = 1 if k > m+ n by convention.] Thus u1 is
the parity operator of Uq(g,Π).

Applying a picture change with respect to u1 and u2 to (Uq(g,Π),∆, ε, S),
we obtain the Hopf superalgebra (Uq(g,Π), (∆u1

)u2
, ε, (Su1

)u2
) with parity

operator u2. The new Z2-grading of Uq(g,Π), induced by u2, is given by

(4.5)
Uq(g,Π) = Uq(g,Π)′0 ⊕ Uq(g,Π)′1 with

Uq(g,Π)′θ =
{
x ∈ Uq(g,Π) | u2xu

−1
2 = (−1)θx

}
, θ = 0, 1.

Write ∆̃ = (∆u1
)u2

and S̃ = (Su1
)u2

, and use (Uq(g,Π), ∆̃, ε, S̃) to denote
this new Hopf superalgebra with the Z2-grading given by (4.5).

Recall the elements Ei, Fi,K
±1
i of Uq(g,Π) introduced in Section 3. They

together with the elements σi generate Uq(g,Π). We have the following easy
observation.

Lemma 4.4. For any fixed i, the elements Ei, Fi belong to Uq(g,Π)′0 (resp.
Uq(g,Π)′1) if and only if φ(αi) is an even (resp. odd) simple root in Π′.

This immediately implies

Corollary 4.5. The associative algebra isomorphism U−q(g
′,Π′)

∼=−→Uq(g,Π)
of Theorem 1.1 defined by (3.2) is an isomorphism of superalgebras if Uq(g,Π)
is given the Z2-grading (4.5) induced by u2, while U−q(g

′,Π′) has the usual
Z2-grading.

Recall that |Π| denotes the cardinality of Π. Define

J :=
1

2|Π|
T , T := T (0)T (1),(4.6)
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where

T (0) :=
∏
i/∈τ

T
(0)
i , T (1) :=

∏
i∈τ

T
(1)
i ,

T
(0)
i :=(1 + Φ̃1Φ̃i+1)⊗ 1 + (1− Φ̃1Φ̃i+1)⊗ Φi+1, i /∈ τ,

T
(1)
i :=(1 + Φ̃1Φ̃i+1)⊗ 1 + (1− Φ̃1Φ̃i+1)⊗ Φ̃i+2, i ∈ τ.

Lemma 4.6. The element J defined by (4.6) satisfies the relations

(∆̃⊗ id)(J )(J ⊗ 1) = (id⊗ ∆̃)(J )(1⊗ J ),

(ε⊗ id)(J ) = (id⊗ ε)(J ) = 1.

Proof. The second relation is clear since ε(Φi) = ε(Φ̃i) = 1 for all i.
To prove the first relation, note that J , u1 and u2 involve only the even

elements σi of Uq(g,Π), which commute among themselves. Thus the first
relation is equivalent to that obtained by replacing ∆̃ by ∆.

For any elements σ, σ′ in G, denote x = (1 + σ)⊗ 1 + (1− σ)⊗ σ′. It can
be proven by direct computations that (∆⊗ id)(x)(x⊗ 1) = (id⊗∆)(x)(1⊗
x), and hence (∆̃⊗ id)(x)(x⊗ 1) = (id⊗ ∆̃)(x)(1⊗ x). As T is the product
of elements of the form x, this immediately leads to the first relation. �

Remark 4.7. We have J −1 = J because x2 = 4 for the x in the proof of
the above lemma.

By Lemma 4.6, we can twist the Hopf superalgebra (Uq(g,Π), ∆̃, ε, S̃)
using the element J given in (4.6) to obtain a new Hopf superalgebra
(Uq(g,Π), ∆̃J , ε, S̃J ). We emphasize that the Z2-grading is given by (4.5).

Lemma 4.8. The comultiplication, cunit and antipode of the Hopf superale-
bra (Uq(g,Π), ∆̃J , ε, S̃J ) are given by

∆̃J (σi) = σi ⊗ σi, ∆̃J (Ki) = Ki ⊗Ki,

∆̃J (Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆̃J (Fi) = Fi ⊗K−1
i + 1⊗ Fi,

ε(Ei) = 0, ε(Fi) = 0, ε(Ki) = 1, ε(σi) = 1

S̃J (Ei) = −K−1
i Ei, S̃J (Fi) = −FiKi,

S̃J (Ki) = K−1
i , S̃J (σi) = σ−1

i , ∀i.

Proof. The relations for the counit are clear, and the antipode relations
can be easily obtained from the comultiplication and the counit. Note that
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J depends only on σi. Since Ki and σi are all even and commute among
themselves, we immediately have

∆̃J (σi) = ∆̃(σi) = ∆(σi) = σi ⊗ σi,
∆̃J (Ki) = ∆̃(Ki) = ∆(Ki) = Ki ⊗Ki.

Thus what remains to be proven are the formulae for ∆̃J (Ei) and ∆̃J (Fi).
In the Hopf superalgebra (Uq(g,Π), ∆̃, ε, S̃), we have, for i, j > 0,

∆̃(Ei) = Ei ⊗ Φi+1 + ΦiKi ⊗ Ei, m+ n 6= i /∈ τ,
∆̃(Ej) = Ej ⊗ Φ̃j+2 + Φ̃1Φ̃jKj ⊗ Ej , m+ n 6= j ∈ τ
∆̃(Em+n) = Em+n ⊗ 1 + uΦm+nKm+n ⊗ Em+n,

where u = Φ̃1
∏
j∈τ,j 6=m+n(Φ̃1Φ̃j+1), which is u1 if m+ n ∈ τ , and is u2 if

m+ n /∈ τ , and

(i) for the Dynkin diagrams of Types (1), (2) and (3) in Table 5,

∆̃(E0) = E0 ⊗ Φ2 + Φ1K0 ⊗ E0;

(ii) for type (4) Dynkin diagrams in Table 5,

∆̃(E0) = E0 ⊗ Φ̃3 +K0 ⊗ E0;

(iii) for all Dynkin diagrams in Table 6,

∆̃(E0) = E0 ⊗ Φ̃2

∏
j∈τ

(Φ̃1Φ̃j+1) +K0 ⊗ E0,

Using the above formulae, we can easily show that

∆̃J (Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∀i.

We can similarly prove the formula for ∆̃J (Fi). �

Proof of Theorem 1.2. By Corollary 4.5, the map (3.2) is an isomorphism
of associative superalgebras, and by Lemma 4.8, it is a Hopf superalgebra
map. Hence follows the theorem. �

Proof of Theorem 1.4. This easily follows from Theorem 1.2 by using The-
orem 4.3. �
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Remark 4.9. We expect that for any pair (g, g′) in Theorem 1.1, the repre-
sentation categories of Uq(g,Π) and of U−q(g

′,Π′) are equivalent as braided
strict tensor categories. One should be able to prove this following [9, Chap-
ter 10.1].

Remark 4.10. Another possible approach to the proof of Theorem 1.2 is
to consider Hopf superalgebras in the category of Yetter-Drinfeld modules.
The Hopf superalgebras Uq(g,Π) and U−q(g

′,Π′) are then expected to be
quantum doubles of the same Nichols algebra of diagonal type [5]. However,
such a proof will necessarily be much more involved.
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