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Central leaves in loop groups

Eva Viehmann and Han Wu

We analyse the finer structure of Newton strata in loop groups.
These can be decomposed into so-called central leaves. We define
them, and determine their global geometric structure. We then
study the closure of central leaves, both by proving some general
properties and by considering an illustrative example.

1. Introduction

Let F = Fq((ε)) be a local field of characteristic p, and let OF be its ring
of integers. Let G be a connected reductive group over OF . Let T ⊂ B be
a maximal torus and a Borel subgroup of G. Let L be the completion of
the maximal unramified extension of F , let OL be its ring of integers, and
k its residue field. Then k is an algebraic closure of Fp. Let σ denote the
Frobenius of L over F and also of k over Fq.

Let LG denote the loop group of G. Let K be the subgroup of LG with
K(R) = G(R[[ε]]). By abuse of notation we also write K for K(k) = G(OL).
We have the Cartan decomposition G(L) =

∐
µ∈X∗(T )dom

KεµK where the
union runs over the set of cocharacters which are dominant with respect to
B.

For b ∈ G(L) denote by [b] its σ-conjugacy class. As usual, B(G) denotes
the set of σ-conjugacy classes in G(L). For G = GLn the elements of B(GLn)
are classified by their Newton polygons. This classification is extended to
all reductive groups by Kottwitz [Ko]. The set B(G) has a partial ordering
� generalizing the natural ordering (of ‘lying above’) on the set of Newton
polygons. For a given µ ∈ X∗(T )dom let B(G,µ) denote the finite set of
[b] ∈ B(G) with [b] ∩KεµK 6= ∅. For [b] ∈ B(G,µ) let N[b],µ = [b] ∩KεµK.
It is called the Newton stratum of [b] in KεµK.

The double coset KεµK has a structure of an infinite-dimensional sub-
scheme of the loop group of G, and each N[b],µ is a locally closed subscheme.
In order to study the geometry of a Newton stratum more closely, a natural
tool is to decompose it into central leaves. Here the central leaf of an element
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y ∈ N[b],µ is the set

Cy = {g−1yσ(g) | g ∈ K}.

In Section 2 we show that this defines a smooth locally closed subscheme of
LG that is closed in N[b],µ.

This definition of central leaves is a natural group-theoretic analogue of
the theory of central leaves in moduli spaces of abelian varieties considered
by Oort in [O], and later also by several other people, for example Chai and
Oort [CO], and Harashita [Har].

Note that using the usual notion of dimension, all of these schemes (dou-
ble cosets, Newton strata, and central leaves) are infinite-dimensional. How-
ever, using that they are invariant under a sufficiently small open subgroup
of K and that the corresponding quotient is finite-dimensional we define a
notion of dimension for these schemes that is finite in all three cases, and
allows to compare them. In Theorem 2.11 we compute the dimensions of
central leaves Cy. We show in particular that their dimension only depends
on the class [y] ∈ B(G), and neither on µ, nor on the specific element within
the Newton stratum. These dimensions also agree with the dimension of
similarly defined central leaves in (finite-dimensional) deformation spaces of
local G-shtukas, and of the corresponding leaves in moduli spaces of abelian
varieties.

Another foundational question on the decomposition of KεµK into cen-
tral leaves is to determine the closure of a given central leaf. Central leaves
are closed within their Newton stratum. However, only the basic Newton
strata are closed within KεµK (see [V4] for a complete description of the
closure in the case that G is split, or Proposition 1.3 below which implies
that non-basic Newton strata can never be closed). Surprisingly, the ques-
tion for the closure in KεµK of a given central leaf Cx ⊂ N[b],µ seems to
not have been studied before except for the very particular case explained
in Proposition 1.3 below. Even in the context of central leaves in moduli
spaces of abelian varieties one does not know more about these closures. Us-
ing essentially the same arguments, one can prove an analog of our results
on closures also in this arithmetic context.

A first rough answer on the shape of the closure is the following.

Remark 1.1. By definition the closure of a central leaf is invariant under
K-σ-conjugation, and is thus again a union of central leaves. As every central
leaf C in someN[b],µ is closed in that same Newton stratum by Corollary 2.12,
its closure consists of C and a union of central leaves in Newton strata for
[b′] ≺ [b].
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Lemma 1.2 and Proposition 1.3 are two cases of closures of central leaves
that can be easily shown or deduced from the literature. To state them we
need some notation. For µ ∈ X∗(T )dom and b ∈ G(L) with [b] ∈ B(G,µ) let

Xµ(b) = {g ∈ LG/K | g−1bσ(g) ∈ KεµK}.

This defines a locally closed reduced subscheme of the affine Grassmannian
LG/K called the affine Deligne-Lusztig variety. It carries a natural action
by multiplication on the left by the group

Jb(F ) = {g ∈ G(L) | g−1bσ(g) = b}.

Lemma 1.2. Assume that [b] ∈ B(G,µ) and dimXµ(b) = 0. Then N[b],µ

consists of a single central leaf. In particular, the closure of this central leaf
coincides with N[b],µ.

Proof. As dimXµ(b) = 0 and Xµ(b) is a closed subscheme of the affine
Grassmannian that is locally of finite type, we have Xµ(b) = π0(Xµ(b)). Let
X�µ(b) =

⋃
µ′�µXµ′(b). Then Xµ(b) is open in X�µ(b). As it is also a closed

scheme, we have π0(Xµ(b)) ⊂ π0(X�µ(b)). By [N2], Theorem 1.2, the group
Jb(F ) acts transitively on π0(X�µ(b)). As it also stabilizes the non-empty
subset π0(Xµ(b)), we have π0(Xµ(b)) = π0(X�µ(b)). Thus Jb(F ) acts transi-
tively on Xµ(b). In other words, the subset of KεµK of elements of the form
g−1bσ(g) with gK ∈ Xµ(b) is a single K-σ-conjugacy class. This shows the
first assertion. The second is a direct consequence. �

Note that the converse of this lemma also holds: If a Newton stratum con-
sists of a single central leaf, then the dimension of the corresponding affine
Deligne-Lusztig variety is 0. This lemma applies in particular to the generic
Newton stratum in KεµK, also called the µ-ordinary locus. For a different
proof of the statement in that case compare [Wo], Proposition 6.9. We will
also use this lemma for several specific examples in Section 3.

Let I be the Iwahori subgroup in K whose image under the projection
to G(k) is B. We have the Cartan decomposition G(L) =

∐
x∈W̃ IxI where

W̃ is the extended affine Weyl group of G. A fundamental alcove of a σ-
conjugacy class [b] is an element xb ∈ W̃ such that IxbI is I-σ-conjugate
to a single element, which lies in [b]. For further properties of fundamental
alcoves compare Nie [N1]. There, Nie also proves that for minuscule µ every
[b] ∈ B(G,µ) has a fundamental alcove that in addition is contained inWµW
where W is the finite Weyl group of G (see [N1], Prop. 1.5, or [V3], Thm 5.6
for a general existence theorem without boundedness by µ). Fundamental
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alcoves for a given [b] are in general not unique. However, if G is split, all
fundamental alcoves for a given [b] lie in the same K-σ-conjugacy class ([V3],
Lemma 6.11, or [N1], Theorem 1.4).

A special case of [V3], Prop. 5.7 yields

Proposition 1.3. Let µ be minuscule, [b] ∈ B(G,µ), and let xb be a fun-
damental alcove of [b] in WµW . Let [b′] � [b]. Then there is a fundamental
alcove xb′ in WµW such that Cxb′ is contained in the closure of Cxb

. �

In Section 3 we consider the first example of a group of type A where
not all closures of central leaves for minuscule µ can be explained by the
above lemma, which is the group GL5. Our main result for this example is

Theorem 1.4. Let G = GL5, T ⊂ B the diagonal torus and upper trian-
gular Borel, and let µ ∈ X∗(T )dom be minuscule. Let Cb be the central leaf of
any b ∈ KεµK. Then Cb contains every central leaf Cx where x is a funda-
mental alcove in WµW of some [b′] ≺ [b].

This theorem shows (to our surprise, compare Remark 3.3 for a more
detailed comment) that closures of central leaves seem to not give a good
correspondence between points in the corresponding affine Deligne-Lusztig
varieties. It is rather the case that also from the point of view of these closure
relations the fundamental alcoves play a very particular role in the sense that
their central leaves are contained in the closure of all central leaves for larger
σ-conjugacy classes.

2. The global structure of central leaves in loop groups

Definition 2.1. Let B be a subscheme of the loop group LG.

1) Let µ ∈ X∗(T )dom. Then B is bounded by µ if it is contained in the
closure of KεµK. It is bounded if it is contained in a finite union of
double cosets KεµK.

2) Let Kn be the kernel of the projection map K → G(OF /(tn)). Then
B is admissible if there is an n ∈ N with BKn = B.

3) For a bounded and admissible algebraic set with XKn = X let

dimX := dim (X/Kn)− n · dim (G).
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Remark 2.2. 1) Let B be bounded. Then one easily sees that B is ad-
missible iff there is an n′ ∈ N with Kn′B = B. Here n′ can be given in
terms of the bound for B and the n in the definition of admissibility.

2) Let B be bounded and admissible. Then B is smooth, locally closed,
closed, irreducible etc. iff for some n as above the quotient B/Kn ⊂
LG/Kn has the corresponding property.

3) The dimension of a bounded and admissible subscheme of LG is inde-
pendent of the choice of n.

4) Similarly, one can define the codimension of a closed irreducible ad-
missible subscheme B′ of some bounded and admissible scheme B. If
B is also equidimensional, one easily sees that this codimension agrees
with dimB − dimB′.

Proposition 2.3. Let B be a bounded subset of LG(k). Then there is a
c ∈ N such that for each d ∈ N, each g ∈ B and h ∈ Kd+c(k) there is an
l ∈ Kd(k) with gh = l−1gσ∗(l).

The proof is along the same lines as the proof of [HV1] Theorem 10.1
where the same statement is shown for split groups. Thus we mainly indicate
what changes one has to make to generalize to our situation. We also explain
how to replace part of the proof by a reference to the main theorem of [RZ]
and to the theory of fundamental alcoves. The last claim we give below is a
better estimate than the corresponding claim in [HV1] Lemma 10.2, due to
the fact that in the meantime the theory of fundamental alcoves has been
developed. One could also use essentially the same claim and proof as in
[HV1].

Proof. We write B as a disjoint union of its intersections with the different
K-double cosets and Newton strata. As by boundedness of B only finitely
many of these intersections are non-empty, we may consider each of them
separately and thus assume that B = N[b],µ for some µ and [b] ∈ B(G,µ).

Let x be a fundamental alcove for [b]. Then Rapoport and Zink [RZ]
show that there is a bounded subset C of LG such that each element of B
is σ-conjugate via an element of C to (a fixed chosen representative in LG
of) x.

The same estimates as in the last paragraph of the proof of [HV1] Theo-
rem 10.1 then show that it is enough to prove the following claim: For every
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d ∈ N and g ∈ Id there is a k ∈ Id with xg = k−1xσ(k). Here Id is the sub-
group of Kd of elements which reduce to 1 modulo εd and whose reduction
modulo εd+1 is in B.

This claim in its turn is shown by the same arguments as the claim
for d = 0. By [N1], Thm 1.3 every fundamental alcove is a so-called P -
fundamental alcove for some P . For P -fundamental alcoves one can then
follow the proof of [GHKR2], Proposition 6.3.1 to also prove our claim. One
needs two replacements: Their statement is the claim for d = 0, and they
assume that G is split, thus in our case we cannot assume x or P to be fixed
by σ. Both lead to some obvious modifications that one has to make. �

Corollary 2.4. Let b ∈ KεµK. Then the K-σ-conjugacy class Cb is con-
tained in KεµK, admissible, and a smooth and locally closed subscheme of
LG. Further, N[b],µ is admissible.

Proof. In both cases, admissibility follows from the previous proposition. As
Cb is one K-orbit, it is smooth and locally closed. �

The assertion on Newton strata also follows from a corresponding assertion
on Newton strata in the whole loop group by He [He], Thm. A.1.

Our next goal is to compute the dimension of central leaves. We do so by
relating them to analogously defined leaves in suitable deformation spaces,
which can then be computed explicitly.

Definition 2.5. Let n ∈ N and let b ∈ LG(k) be bounded by some µ ∈
X∗(T )dom. We consider the following functor on the category (Art/k) of
Artinian local k-algebras with residue field k.

Def(b)n : (Art/k)→ (Sets),

A 7→ {b̃ ∈ (KεµK)(A) with b̃k = b}/∼=n
.

Here b̃ ∼=n b̃
′ if there exists a g ∈ Kn(A) with gk = 1 such that b̃′ = g−1b̃σ(g).

We call Def(b)n the deformation functor of level n of b.

Proposition 2.6. The functor Def(b)n is pro-represented by the formal
completion of Kn\KεµK at Knb, which we denote by Db,n.

Here KεµK =
⋃
µ′�µKε

µ′K denotes the closure of KεµK in LG.

Proof. We follow the proof of the corresponding statement for n = 0 and
split G in [HV1], Theorem 5.6. Let p : KεµK → Kn\KεµK be the projection
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morphism. LetDb,n be the formal completion ofKn\KεµK atKnb. By [HV2]
Lemma 2.3 (or rather its generalization to unramified, not necessarily split
G, which holds by the same proof), we have a section bn : Db,n → KεµK ↪→
LG of p over Db,n which maps the closed point to b. Composition with
bn yields a map of functors Db,n → Def(b)n. We want to show that it is
bijective. Let b̃ ∈ LG(A) be a representative of a class in Def(b)n(A) for
some A as above. We have to show that there is a unique homomorphism
u : SpecA→ Db,n such that b̃ ∼=n bn ◦ u, which also does not depend on the
choice of b̃ within its class in Def(b)n(A).

Let m ⊂ A be the maximal ideal. We use induction on i to show that the
same is true over Ai = A/mqi , for some homomorphism ui : SpecAi → Db,n

with ui ≡ ui−1 (mod mqi−1

) and g−1
i b̃σ(gi) = bn ◦ ui (mod mqi) for some gi ∈

Kn(Ai) with gi ≡ gi−1 (mod mqi−1

) and g0 = 1. Furthermore, we want to
show that ui does not depend on the choice of b̃ within its class in Def(b)n(A).

For i = 0 this is true by our choice of bn. Let b̃i denote the restric-
tion of b̃ to SpecAi. Assume that we have constructed ui−1 : SpecAi−1 →
Db,n and gi−1 ∈ Kn(Ai−1) with g−1

i−1b̃i−1σ(gi−1) = bn ◦ ui−1 (mod mqi−1

). As
Kn is smooth, we can choose a lift g′i ∈ Kn(Ai) of gi−1. The morphism
(gi
′)−1b̃iσ(g′i) factors through the formal completion of KεµK in b. We

thus obtain a morphism ui : SpecAi → Db,n with ui|SpecAi−1
= ui−1 and

δ(g′i)
−1b̃iσ(g′i) = bn ◦ ui for some δ ∈ Kn(Ai). As δ|SpecAi−1

= 1, we have

σ(δ) = 1 and thus δ(g′i)
−1b̃iσ(g′i) = (g′iδ

−1)−1b̃iσ(g′iδ
−1) have the same class

in Def(b)n(Ai). Thus ui and gi = g′iδ
−1 are as required. The same proof also

shows uniqueness of the ui, and independence of the choice of b̃. �

We have a natural projection morphism Db,n → Db,0 for every n. Using
the universal object b0 over Db,0 we can define a section s : Db,0 → Db,n

which of course depends on the choice of the universal object. Let (Db,0 ×
(Kn\K))∧ denote the completion of Db,0 × (Kn\K) at (b, 1). Then s induces
a morphism

φ : (Db,0 × (Kn\K))∧ → Db,n

given by g−1bn(s)σ(g). Here g is a local section of the projection K → Kn\K
at 1 and bn is the universal object Db,n → LG. Note that g−1bn(s)σ(g) yields
an element of Db,n independent of the choice of bn. Indeed, different choices
of bn lead to bn(s) differing by Kn-σ-conjugation and Kn is normal in K.
Furthermore, the morphism φ is independent the choice of the local section
g. It does, however, depend on the choice of b0.

Lemma 2.7. The morphism φ : (Db,0 × (Kn\K))∧ → Db,n given above is
an isomorphism.
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Proof. We construct an inverse of φ. Let b̃ ∈ Db,n(A) for some A. From
the natural projection pr : Db,n → Db,0, we obtain a g ∈ K(A) such that
b̃ = g(b0 ◦ pr(b̃))σ(g−1) and g|k = 1. This g is uniquely defined as an element
of the completion at 1 of Kn\K. Thus the g for varying A glue to give a
morphism Db,n → (Kn\K)∧1 . Together with pr we obtain a morphism ψ :
Db,n → (Db,0 × (Kn\K))∧. It is easy to see that ψ is an inverse of φ. �

Lemma 2.8. Let R be an admissible Fq-algebra with filtered index poset N0.
Then pullback by the natural morphism SpfR→ SpecR induces a bijection
between SpecR-valued points and SpfR-valued points of KµK.

Proof. This is the direct analog of [HV1], Prop. 3.16 (except that in the
language of loc. cit. we are only considering trivial local G-shtukas here). It
follows from the second half of the proof of loc. cit. �

Using the lemma we can associate with the formal scheme Db,n a scheme
D′b,n, and the universal object induces a morphism D′b,n → LG. In particular
we can study the Newton stratification and central leaves on D′b,n.

We now generalize [HV2],Theorem 6.5 from the case that G is split to
our case of unramified groups G. The proofs are almost the same in this more
general context. Therefore, we limit the proof we give here to only giving
the references for new results we need from other papers, and to explaining
the modifications that one needs to make.

We need the following notation from [V3] Def. 6.1. Let x be a fun-
damental alcove. We define φx : LG→ LG with g 7→ σ(xgx−1). By [N1],
Theorem 1.3 every fundamental alcove is P -fundamental for some semistan-
dard parabolic subgroup P . Let N be the unipotent radical of the opposite
parabolic and let IN = I ∩ LN . Then by definition of P -fundamental alcoves
we have φx(IN ) ⊇ IN , i.e. φ−1

x (IN ) = x−1Iσ−1(N̄)x ⊆ IN̄ .

Theorem 2.9. Let b ∈ KεµK. Let N[b] be the Newton stratum of [b] in
SpecD′b,0. Let x be a P -fundamental alcove associated with [b] where P is
chosen such that the Levi subgroup M of P equals the centralizer of the M -
dominant Newton point of x. Then there is a reduced scheme S and a finite
surjective morphism S → N[b] which factors into finite surjective morphisms

S → ((X≤µ,K(b)×k IN̄/x−1Iσ−1(N̄)x)∧)′ → N[b].

Here again, the (·)′ denotes the scheme associated with the formal scheme
obtained by completion. Furthermore, the central leaf Cb of b in SpecD′b,0 is

smooth and equal to the image of ({1}×̂kIN̄/x−1Iσ−1(N̄)x)∧)′ in N[b].
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Proof. This follows from essentially the same proof as [HV2], Theorem 6.5,
making the following modification. As the fundamental alcove and the asso-
ciated parabolic subgroup P are in general no longer fixed by σ, one has to
replace conjugation by x with the morphism φx defined above. For example,
the frequently occurring subgroups x−nIN̄x

n are replaced by φ−nx (IN̄ ). To
make sense of the right hand side we use that σ acts on the root system and
fixes I, so σ−1(IN̄ ) = Iσ−1(N̄) where σ−1(N̄) is again the unipotent radical
of a semistandard parabolic subgroup. �

Together with Lemma 2.7 this implies the following corollary.

Corollary 2.10. Let b ∈ LG(k) be bounded by a dominant µ and let n ∈ N.
Let N[b],n be the Newton stratum of [b] in D′b,n. Let x be a P -fundamental
alcove in [b] such that the Levi subgroup M of P equals the centralizer of
the M -dominant Newton point of x. Then there is a reduced scheme S and
a finite surjective morphism S → N[b],n which factors into finite surjective
morphisms

S → (X≤µ,K(b)×k K/Kn ×k (IN̄/x
−1Iσ−1(N̄)x)∧)′ → N[b],n.

Furthermore, Cb,N[b],n
is smooth and equal to the image of ({1} ×k K/Kn ×k

IN̄/x
−1Iσ−1(N̄)x)∧)′ in N[b],n.

Theorem 2.11. Let µ ∈ X∗(T )dom and [b] ∈ B(G,µ) with fundamental al-
cove x. For y ∈ N[b],µ we denote again by Cy the K-σ-conjugacy class of y.
Then

dim Cy = `(x),

only depending on [b], and not on y or µ.

Note that as x is fundamental for [b] we have `(x) = 〈2ρ, ν〉 where ν is
the Newton point of [b].

Proof. Let n be big enough such that all central leaves in KεµK are left and
right Kn-invariant, cf. Proposition 2.3. Then the codimension of Cy in KεµK
coincides with the codimension of its image in Kn\KεµK. Let Cy,Dy,n

⊆ Dy,n

be the pullback of the leaf of y in D′y,n to Dy,n. Going through the proof of
Proposition 2.6 (and using our choice of n) one sees that the completion of
this image in y coincides with Cy,Dy,n

under the isomorphism of Dy,n with the
completion of Kn\KεµK in y. Hence the codimension of Cy ⊂ KεµK is equal
to the codimension of the leaf of y in D′y,n. Furthermore, the dimension of the
ambient schemes KεµK and Dy,n are `(µ) resp. `(µ) + dimK/Kn (for the
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respective notions of dimension). Thus dim Cy = dim Cy,Dy,n
− dimK/Kn.

By the preceeding corollary dim Cy,Dy,n
= dim (IN̄/x

−1IN̄x)) + dimK/Kn,
hence dim Cy = dim (IN̄/xIσ−1(N̄)x)) = `(x). �

Corollary 2.12. For y ∈ N[b],µ, the central leaf Cy is closed in N[b],µ.

Proof. As Cy is bounded and admissible, the same holds for its closure in
N[b],µ. The closure is invariant under K-σ-conjugation, hence it is a union of
central leaves. Thus it has to be a union of Cy with central leaves of strictly
smaller dimension. But as the dimension of all central leaves in this Newton
stratum is the same, Cy has to be closed in N[b],µ. �

3. The minuscule case for GL5

In this section we prove Theorem 1.4. Let G = GL5, B the Borel subgroup
of upper triangular matrices and T the diagonal torus.

3.1. Reduction to two particular cases

Let µ be minuscule. Identifying X∗(T ) with Z5, this implies that µ ∈
X∗(T )dom is of the form (i, . . . , i, i− 1, . . . , i− 1) for some i ∈ Z and with
multiplicities n and 5− n for some n. Modifying µ by a central cocharacter
does not change our question. Thus we may assume that i = 1.

A direct calculation using the dimension formula of [GHKR] and [V2]
shows that dimXµ(b) = 0 for all pairs ([b], µ) unless n = 2 or 3. Thus the
theorem holds for n = 0, 1, 4, 5 by Lemma 1.2.

The cases n = 2 or 3 are analogous to each other as (1, 1, 1, 0, 0) differs
from (1, 1, 0, 0, 0) by a central cocharacter together with inverting µ. Thus
from now on we assume that n = 2. For this case, the set B(G,µ) has eight
elements [bi], with the following Newton points νi ∈ Q5.

ν1 =
(

2
5

(5))
ν2 =

(
1
2

(2)
, 1

3

(3))
ν3 =

(
1
2

(4)
, 0
)

ν4 =
(
1, 1

4

(4))

ν5 =
(

2
3

(3)
, 0(2)

)
ν6 =

(
1, 1

3

(3)
, 0
)

ν7 =
(
1, 1

2

(2)
, 0(2)

)
ν8 =

(
1(2), 0(3)

)
.
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Here exponents in brackets denote the multiplicity of the corresponding
entry.

The dimension formula of [GHKR] and [V2] implies

dimXµ(bi) =

{
1 if i ≤ 3

0 otherwise.

Thus, Lemma 1.2 shows that the theorem is true for every central leaf in a
Newton stratum for [bi] with i ≥ 4. The Newton stratum for ν1 is the unique
closed Newton stratum. Thus there is nothing to show in that case. Using
that the ordering between [b1], [b2], [b3] is total and [b1] ≺ [b2] ≺ [b3], we see
that it remains to show the following two assertions.

Lemma 3.1. In the above situation let Cb be a central leaf for any b ∈
[b3] ∩KεµK. Then Cb contains the central leaf Cx where x is a fundamental
alcove in WµW of [b2].

Lemma 3.2. In the above situation let Cb be a central leaf for any b ∈
[b2] ∩KεµK. Then Cb contains the central leaf Cx where x is a fundamental
alcove in WµW of [b1].

Recall that as G is split, the central leaf Cx is uniquely determined by [bi].
The proof of these lemmas is the content of the following two subsections.

Remark 3.3. Note that for [bi] with i ≤ 3 one can show that Jbi(F ) is
acting transitively on the set of irreducible components of Xµ(bi) and that
each irreducible component is isomorphic to P1 in each of these cases.

Furthermore, the dimensions of the central leaves for bi, bi−1 differ by
1, so the closure of Cbi contains a finite number of leaves of [bi−1]. Naively,
one might hope that these two observations are related in the sense that the
closure of Cbi contains exactly one leaf in [bi−1], and that in this way we ob-
tain a bijection (or at least a finite correspondence) between the irreducible
components of affine Deligne-Lusztig varieties. However, Theorem 1.4 shows
that this expectation is not correct. In fact quite the contrary is true in the
sense that there is one leaf for [bi−1] (for the fundamental alcove) that is in
the closure of every leaf of [bi].

3.2. Proof of Lemma 3.1

Notice that in this case the two relevant Newton polygons have the slope
1/2 (with multiplicity 2) in common. Thus as a preparation for the proof
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we will first consider the situation where G = GL3 and µ′ = (1, 0, 0), [b′2] the
σ-conjugacy class of slope 1/3 and [b′3] of slopes (1/2, 1/2, 0). Then Xµ′(b

′
i) is

0-dimensional (for b′i any representative of [b′i] and i = 2, 3). By Lemma 1.2
this implies that the Newton strata Nµ′,[b′i] consist of a single central leaf,
and their closure is known. However, for later use we need more explicit
information.

Let k′ = k((π)) be an algebraic closure of k((π)) for a variable π. Com-
puting Newton polygons we see that

 0 1 0
0 π 1
ε 0 0

 and

 1 0 0
0 0 1
0 ε 0



are in the central leaf for [b′3], and hence G(k′[[ε]])-σ-conjugate. In other
words, there exists a g ∈ G(k′[[ε]]) such that

(1)

 0 1 0
0 π 1
ε 0 0

σ(g) = g

 1 0 0
0 0 1
0 ε 0

 .

Let us calculate g explicitly. Let g =
∑∞

i=0 ε
i(gijk)1≤j,k≤3. Then (1) reads

∞∑
i=0

εi

 σ(gi21) σ(gi22) σ(gi23)
πσ(gi21) + σ(gi31) πσ(gi22) + σ(gi32) πσ(gi23) + σ(gi33)

σ(gi−1
11 ) σ(gi−1

12 ) σ(gi−1
13 )


=

∞∑
i=0

εi

 gi11 gi−1
13 gi12

gi21 gi−1
23 gi22

gi31 gi−1
33 gi32



where we put g−1
jk = 0 for all j, k. We solve these equations by comparing

the summands on the two sides and using induction on i. We will express
all variables gijk in terms of those for (j, k) = (2, 1), (1, 3) and (2, 3) and
then give the relations for those variables. In the following we refer to the
equation we get from comparing the (j, k)th entries at step i by (jki). We
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obtain

gi11 = σ(gi21)(11i)

gi31 = σ(gi−1
11 ) = σ2(gi−1

21 )(31i)

gi21 = πσ(gi21) + σ(gi31) = πσ(gi21) + σ3(gi−1
21 )(21i)

σ(gi22) = gi−1
13(12i)

σ(gi32) = gi−1
23 − πσ(gi22) = gi−1

23 − πg
i−1
13(22i)

gi12 = σ(gi23)(13i)

gi33 = σ(gi12) = σ2(gi23)(32i+1)

gi22 = πσ(gi23) + σ(gi33) = πσ(gi23) + σ3(gi23)(23i)

gi32 = σ(gi−1
13 ).(33i)

From (12i) and (23i) resp. from (22i) and (33i) we obtain

σ(π)σ2(gi23) + σ4(gi23) = gi−1
13(∗i)

σ2(gi13) + πgi13 = gi23.(∗∗i)

Thus all of these equations can be solved: The variables gi23, gi13 satisfy
equations (∗i) and (∗∗i), all others satisfy one of the recursive equations
(jki) above. For example, for i = 0 we obtain

g0 = (g0
jk) =

 σ(g0
21) σ(g0

23) g0
13

g0
21 0 g0

23

0 0 σ2(g0
23)

 .

Here g0
23 is a solution of πσ(g0

23) + σ3(g0
23) = 0. We choose it to be non-zero,

as this condition is needed for g0 to be invertible. In other words, g0
23 is a

q3 − qth root of −π. Further, g0
21 is a non-zero solution of (210), i.e. a q − 1st

root of 1/π. Finally, g0
13 satisfies (∗∗0). One can then easily check that g0

is invertible. In particular, the element g defined in this way is indeed in
G(k′[[ε]]).

Consider on k((π)) the valuation defined by π, and let R be the valuation
ring. Using induction and (∗i) and (∗∗i), one obtains v(gi23) = 1

q6i+1(q2−1) and

v(gi13) = 1
q6i+3(q2−1) .

We now return to the situation where G = GL5.
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Lemma 3.4. Every central leaf in N[b3],µ has a representative of the form

xt =


1 0 0 0 0
0 0 1 t 0
0 ε 0 0 0
0 0 0 0 1
0 0 0 ε 0

 .

Proof. We have to show that every x ∈ Xµ(b3) has a representative g such
that g−1b3σ(g) is of the above form. By the Hodge-Newton decomposition
[Kat], one first shows that there always is a representative with g in the Levi
subgroup Gm ×GL4. The remaining argument is a standard calculation, for
example along the same lines as in [Kai], 3 where the analogous case for
G = GSp4 is considered, or in [V1], where a generic subscheme of any affine
Deligne-Lusztig variety for GLn and minuscule µ is described. We therefore
leave the details to the reader. �

Remark 3.5. A representative of the central leaf of a fundamental alcove
of [b2] is given by the matrix

b2 :=


0 1 0 0 0
0 0 1 0 0
ε 0 0 0 0
0 0 0 0 1
0 0 0 ε 0

 ,

as can be seen from an elementary calculation or using [HV2], Example 4.4.

Proof of Lemma 3.1. By the above lemma and remark it remains to show
that for every t, the element b2 is contained in the closure of Cxt

.
We use the element g ∈ GL3(k′[[ε]]) constructed above, and compute

 g
1 0
0 1




1 0 0 0 0
0 0 1 t 0
0 ε 0 0 0
0 0 0 0 1
0 0 0 ε 0


 σ(g−1)

1 0
0 1



=


0 1 0 t1 0
0 π 1 t2 0
ε 0 0 t3 0
0 0 0 0 1
0 0 0 ε 0

 .
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Here  t1
t2
t3

 = g

 0
t
0

 = t
∑
i≥0

εi

 gi12

gi22

gi32

 = t
∑
i≥0

εi

 (gi23)q

(gi−1
13 )

1

q

(gi−1
13 )q

.
As v(gi13), v(gi23) > 0, this implies that

0 1 0 t1 0
0 π 1 t2 0
ε 0 0 t3 0
0 0 0 0 1
0 0 0 ε 0

 ∈ LG(R)

is an R-valued point of Cxt
. Note that we could even consider t as a variable,

and in this way produce a point in LG(R[t]). Putting π = 0 we get b2 ∈
Cxt

. �

3.3. Proof of Lemma 3.2

To prove Lemma 3.2 we proceed in a similar way as in the preceeding sub-
section. We choose representatives

b2 =


0 1 0 0 0
0 0 1 0 0
ε 0 0 0 0
0 0 0 0 1
0 0 0 ε 0

 , b1 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
ε 0 0 0 0
0 ε 0 0 0

 .

Then b1, b2 are representatives of the central leaf of the fundamental alcove
for [b1] resp. of [b2].

Lemma 3.6. For k′ = k((π)) as above we have

xπ =


0 0 1 0 0
0 0 0 1 0
0 0 0 π 1
ε 0 0 0 0
0 ε 0 0 0

 ∈ Cb2 .
Proof. The element b2 is K-σ-conjugate to the fundamental alcove of [b2].
In particular, its truncation of level 1 is equal to the truncation of level 1 of
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that element. The definition of fundamental alcoves y implies that the set
of elements in the truncation stratum of y agrees with the central leaf of y.

For xπ a direct calculation using the algorithm in the proof of [V3],
Theorem 1.1 shows that it has the same truncation of level 1 as b2. Hence
also the corresponding central leaves agree. �

We need again some information about the explicit element g ∈ G(k′[[ε]])

with g−1b2σ(g) = xπ. Let g =
∞∑
i=0

εi(gijk)1≤j,k≤5. Then b2σ(g) = gxπ is equiv-

alent to 
σ(gi21) σ(gi22) σ(gi23) σ(gi24) σ(gi25)
σ(gi31) σ(gi32) σ(gi33) σ(gi34) σ(gi35)

σ(gi−1
11 ) σ(gi−1

12 ) σ(gi−1
13 ) σ(gi−1

14 ) σ(gi−1
15 )

σ(gi51) σ(gi52) σ(gi53) σ(gi54) σ(gi55)

σ(gi−1
41 ) σ(gi−1

42 ) σ(gi−1
43 ) σ(gi−1

44 ) σ(gi−1
45 )



=


gi−1

14 gi−1
15 gi11 gi12 + πgi13 gi13

gi−1
24 gi−1

25 gi21 gi22 + πgi23 gi23

gi−1
34 gi−1

35 gi31 gi32 + πgi33 gi33

gi−1
44 gi−1

45 gi41 gi42 + πgi43 gi43

gi−1
54 gi−1

55 gi51 gi52 + πgi53 gi53


for every i ≥ 0, again using the convention that entries with negative upper
indices are 0. Comparing coefficients and expressing everything in terms of
the second column we get

(gijk)j,k =


σ3(gi12) gi12 σ2(gi+1

32 ) σ4(gi+1
22 ) σ(gi+1

22 )

σ3(gi22) gi22 σ2(gi12) σ4(gi+1
32 ) σ(gi+1

32 )
σ3(gi32) gi32 σ2(gi22) σ4(gi12) σ(gi12)

σ3(gi52) gi42 σ2(gi42) σ4(gi42) σ(gi+1
52 )

σ3(gi−1
42 ) gi52 σ2(gi52) σ4(gi52) σ(gi42)


satisfying

σ5(gi12) = gi22 + πσ2(gi12)(2)

σ5(gi22) = gi32 + πσ2(gi22)(3)

σ5(gi+1
32 ) = gi12 + πσ2(gi+1

32 )(4)

σ5(gi42) = gi+1
52 + πσ2(gi+1

52 )

σ5(gi52) = gi42 + πσ2(gi42).
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We consider again on k′ = k((π)) the valuation defined by π. Using induc-
tion and (2)–(4) we get v(gi12) = 1

q15i+12(q3−1) , v(gi22) = 1
q15i+7(q3−1) , v(gi32) =

1
q15i+2(q3−1) .

Using an analogous calculation one can compute g−1. We are mainly
interested in the last two columns. Put g−1 =

∑∞
i=0 ε

i(hijk)1≤j,k≤5. Then
one obtains

g−1 =

∞∑
i=0

εi


∗ ∗ ∗ σ(hi35) σ(hi+1

34 )

∗ ∗ ∗ σ3(hi35) σ3(hi+1
34 )

∗ ∗ ∗ hi34 hi35

∗ ∗ ∗ σ2(hi34) σ2(hi35)
∗ ∗ ∗ σ4(hi34) σ4(hi35)


satisfying

hi34 = πσ(hi45) + σ(hi55) = πσ3(hi35) + σ5(hi35)

hi−1
35 = πσ(hi44) + σ(hi54) = πσ3(hi34) + σ5(hi34).

Using induction and these two relations one obtains

v(hi34) =
1

q10i(q5 − q3)
, v(hi35) =

1

q10i+5(q5 − q3)
.

Lemma 3.7. Every central leaf in N[b2],µ has a representative of the form

xt =


0 1 0 0 0
0 0 1 0 0
ε 0 0 0 0
t 0 0 0 1
0 0 0 ε 0

 .

Proof. We have to show that every x ∈ Xµ(b2) has a representative g such
that g−1b2σ(g) is of the above form. As for Lemma 3.4 this is a standard
calculation (and very similar to the one in that lemma). We therefore omit
the details. �

Proof of Lemma 3.2. By the previous lemma it is enough to show that b1 is
contained in the closure of the central leaf Cxt

for any given t.
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We compute

g−1xtσ(g) =


0 0 1 0 0
0 0 0 1 0
0 0 0 π 1
ε 0 0 0 0
0 ε 0 0 0

+ g−1


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
t 0 0 0 0
0 0 0 0 0

σ(g).

The entries of the second summand are products of t with the entries of
the fourth column of g−1 and the first row of σ(g). All of these entries are
in R[[ε]] (compare the calculations of the corresponding valuations above).
Hence this summand, and thus also the whole right hand side, are indeed
in LG(R). Setting π = 0 we get b1 ∈ Cxt

. Note that again, it would have
been possible to do the same construction with a family parametrized by
the variable t instead of with a fixed t. �
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