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Frobenius–Seshadri constants and

characterizations of projective space

Takumi Murayama

We introduce higher-order variants of the Frobenius–Seshadri con-
stant due to Mustaţă and Schwede, which are defined for ample
line bundles in positive characteristic. These constants are used to
show that Demailly’s criterion for separation of higher-order jets by
adjoint bundles also holds in positive characteristic. As an applica-
tion, we give a characterization of projective space using Seshadri
constants in positive characteristic, which was proved in charac-
teristic zero by Bauer and Szemberg. We also discuss connections
with other characterizations of projective space.

1. Introduction

Let L be an ample line bundle on a smooth projective variety X defined over
an algebraically closed field k. Demailly in [6, §6] introduced the Seshadri
constant ε(L;x), which measures the local positivity of L at a closed point
x ∈ X. If µ : X ′ → X is the blow-up of X at x with exceptional divisor E,
then the Seshadri constant is

ε(L;x) := sup
{
t ∈ R≥0

∣∣ µ∗(L)(−tE) is nef
}
.

Seshadri constants have received much attention since their inception: see
[2] and [17, Ch. 5].

Part of this interest in Seshadri constants stems from the fact that they
give effective positivity statements for adjoint bundles. We will be particu-
larly interested in how Seshadri constants can determine when adjoint bun-
dles separate higher-order jets. Recall that we say L separates `-jets if the
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906 Takumi Murayama

restriction map

(1) H0(X,L) −→ H0(X,L⊗OX/m`+1
x )

is surjective, where mx ⊂ OX is the ideal defining x. Algebraically, this says
`th-order Taylor polynomials at x are restrictions of global sections, and
geometrically, this says L separates `th-order tangent directions at x.

We can now state our first main result. Let ωX denote the canonical
bundle on X.

Theorem A. Let L be an ample line bundle on a smooth projective variety
X of dimension n defined over an algebraically closed field of positive char-
acteristic. If ε(L;x) > n+ ` at a closed point x ∈ X, then ωX ⊗ L separates
`-jets at x.

Demailly showed this result in characteristic zero using the Kawamata–
Viehweg vanishing theorem [6, Prop. 6.8(a)]. Our contribution is that the
same result holds in positive characteristic.

As an application of this result, we prove the following:

Theorem B. Let X be a smooth Fano variety of dimension n defined
over an algebraically closed field of positive characteristic. If there exists
a closed point x ∈ X with ε(ω−1X ;x) ≥ n+ 1, then X is isomorphic to the
n-dimensional projective space Pn.

Bauer and Szemberg showed the analogous statement in characteristic
zero as an application of the proof of Demailly’s result [3, Thm. 2]. One in-
teresting feature of this theorem is that it only requires a positivity condition
on the anti-canonical bundle ω−1X at one point x ∈ X. In characteristic zero,
Liu and Zhuang in [18, Thm. 2] generalized [3, Thm. 2] to Q-Fano varieties;
see Remark 4.10 for a comparison between their result and Theorem B.

There is an interesting connection between Theorem B and the Mori–
Mukai conjecture, which states that if X is a smooth Fano variety of di-
mension n such that the canonical divisor KX satisfies (−KX · C) ≥ n+ 1
for all rational curves C ⊆ X, then X is isomorphic to Pn. In characteristic
zero, Cho, Miyaoka, and Shepherd-Barron’s proof of the conjecture [5, Cor.
0.4] implies [3, Thm. 2]; see Proposition 4.6(i). In positive characteristic,
the conjecture is still open, so instead one must assume the lower bound in
Theorem B holds at all closed points in order to use a weaker result due to
Kachi and Kollár [13, Cor. 3]; see Proposition 4.6(ii).
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On the other hand, this connection raises the question of whether the
opposite relationship holds. More precisely, we ask the following:

Question. Let X be a smooth Fano variety of dimension n defined over an
algebraically closed field. If (−KX · C) ≥ n+ 1 for every rational curve C ⊆
X, then is there a closed point x ∈ X with (−KX · C) ≥ (multxC) · (n+ 1)
for all reduced and irreducible curves C ⊆ X passing through x?

This latter condition is equivalent to having ε(ω−1X ;x) ≥ n+ 1 by [17,
Prop. 5.1.5]. In characteristic zero, [5, Cor. 0.4] answers this question affir-
matively. If one could do this independently of their result, then [3, Thm. 2]
would give an alternative proof of the Mori–Mukai conjecture in character-
istic zero, and Theorem B would resolve the conjecture in positive charac-
teristic. See §4.1 for further discussion.

The proofs of Theorems A and B use a new variant of the Seshadri
constant. To motivate our definition, we recall the following alternative
characterization of the Seshadri constant in terms of separation of jets [17,
Prop. 5.1.17]: if for each integer m, we denote by s(Lm;x) the largest integer
` such that Lm separates `-jets, then we have the equalities

ε(L;x) = sup
m≥1

s(Lm;x)

m
= lim

m→∞

s(Lm;x)

m
.

In positive characteristic, Mustaţă and Schwede [19] defined the Frobenius–
Seshadri constant essentially by replacing ordinary powers of mx in the def-
inition of separation of jets (1) with Frobenius powers, in order to take
advantage of the Frobenius morphism. Using their definition, Mustaţă and
Schwede were able to recover Theorem A when ` = 0, and deduce global
generation and very ampleness results for adjoint bundles [19, Thm. 3.1].
However, the full statement of Theorem A remained out of reach; see Re-
mark 3.1.

Our solution is to introduce higher-order variants of the Frobenius–
Seshadri constant, which mix both ordinary and Frobenius powers of mx.
This allows us to more directly deduce separation of higher-order jets. For
each integer ` ≥ 0 and m ≥ 1, let s`F (Lm;x) be the largest integer e ≥ 0 such
that the restriction map

H0(X,Lm) −→ H0
(
X,Lm ⊗OX/(m`+1

x )[p
e]
)
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is surjective, where (m`+1
x )[p

e] denotes the eth Frobenius power of m`+1
x .

Then, the `th Frobenius–Seshadri constant of L at x is

ε`F (L;x) := sup
m≥1

ps
`
F (Lm;x) − 1

m/(`+ 1)
= lim sup

m→∞

ps
`
F (Lm;x) − 1

m/(`+ 1)
.

These constants are related to the ordinary Seshadri constant in the follow-
ing manner (Proposition 2.9):

(2)
`+ 1

`+ n
· ε(L;x) ≤ ε`F (L;x) ≤ ε(L;x).

Note that the `th Frobenius–Seshadri constant ε`F (L;x) converges to the
ordinary Seshadri constant ε(L;x) as `→∞.

Using the `th Frobenius–Seshadri constant, we prove the following state-
ment en route to proving Theorem A:

Theorem C. Let L be an ample line bundle on a smooth projective vari-
ety X defined over an algebraically closed field of positive characteristic. If
ε`F (L;x) > `+ 1 at a closed point x ∈ X, then ωX ⊗ L separates `-jets at x.

By the comparison (2), Theorem C immediately implies Theorem A. Our
proof of Theorem C also works for singular varieties that are F -injective;
see Remark 3.3. F -injective varieties are related to varieties with Du Bois
singularities in characteristic zero [22].

Given Theorem C, it would be very interesting to have non-trivial lower
bounds for any of the aforementioned versions of the Seshadri constant
at very general points of X. In characteristic zero, it is conjectured that
ε(L;x) ≥ 1 at all very general x ∈ X. This is known if n = dimX = 2 [9];
if n ≥ 3, then only the lower bound 1/n is known [8, Thm. 1]. However,
the proofs of both results rely heavily on the characteristic zero assump-
tion, and in arbitrary characteristic, we are only aware of the lower bound
ε(L;x) ≥ 2/

(
1 +

√
4σ(L) + 13

)
for arbitrary points on surfaces, where

σ(L) := inf
{
s ∈ R

∣∣ sL−KX is nef
}

is the canonical slope of L [1, Thm. 3.1].

Outline

Our paper is structured as follows: In §2, we define the `th Frobenius–
Seshadri constant, and prove its basic properties. Most of what we prove is
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modeled after [19, §2], which studies what would be the zeroth Frobenius–
Seshadri constant in our notation. In §3, we prove Theorem C. The main
technical tool is the trace map T : F∗ωX → ωX associated to the (absolute)
Frobenius morphism. Finally, in §4, we prove Theorem B, following [3].

Notation

A variety is a reduced and irreducible separated scheme of finite type defined
over an algebraically closed field k of characteristic p > 0, unless stated
otherwise. We denote by X a positive-dimensional projective variety, and
denote by F : X → X the (absolute) Frobenius morphism, which is given by
the identity map on points, and the p-power map

OX(U) F∗OX(U)

f fp

on structure sheaves, where U ⊆ X is an open set. If a ⊆ OX is a coherent
ideal sheaf, we define the eth Frobenius power a[p

e] to be the inverse image
of a via the eth iterate of the Frobenius morphism. Locally, if a is generated
by (hi)i∈I , then a[p

e] is generated by (hp
e

i )i∈I . If X is smooth, we denote by
ωX the canonical bundle on X and KX the canonical divisor on X.

2. Definitions and preliminaries

We start by recalling the definition of the (ordinary) Seshadri constant of
a line bundle L at a point. We adopt the “separation of jets” description
of the Seshadri constant as our definition, which is equivalent to the other
definitions when the line bundle L is ample and the closed point x is smooth
[17, Prop. 5.1.17].

Definition 2.1. Let L be a line bundle on a projective variety X, and let
x ∈ X be a closed point with defining ideal mx ⊂ OX . For all integers ` ≥ 0
and m ≥ 1, we say that Lm separates `-jets at x if the restriction map

ρ`,0Lm : H0(X,Lm) −→ H0(X,Lm ⊗OX/m`+1
x )

is surjective. Let s(Lm;x) be the largest integer ` ≥ 0 such that Lm separates
`-jets at x; if no such ` exists, set s(Lm;x) = −∞. The Seshadri constant of
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L at x is

(3) ε(L;x) := sup
m≥1

s(Lm;x)

m
.

We now give our main definition, which is modeled after the above in-
terpretation of the Seshadri constant in terms of separation of jets. This
definition combines both ordinary and Frobenius powers of the ideal mx.
Compared to the Frobenius–Seshadri constant defined in [19, Def. 2.4], our
definition has the advantage of directly encoding information about higher-
order jets; see Remark 3.1.

Definition 2.2. Let L be a line bundle on a projective variety X, and
let x ∈ X be a closed point with defining ideal mx ⊂ OX . For all integers
`, e ≥ 0 and m ≥ 1, we say that Lm separates pe-Frobenius `-jets at x if the
restriction map

ρ`,eLm : H0(X,Lm) −→ H0
(
X,Lm ⊗OX/(m`+1

x )[p
e]
)

is surjective. Let s`F (Lm;x) be the largest integer e ≥ 0 such that Lm sepa-
rates pe-Frobenius `-jets at x; if no such e exists, set s`F (Lm;x) = −∞. The
`th Frobenius–Seshadri constant of L at x is

(4) ε`F (L;x) := sup
m≥1

ps
`
F (Lm;x) − 1

m/(`+ 1)
.

We refer to the constants ε`F (L;x) as Frobenius–Seshadri constants. Note
that the zeroth Frobenius–Seshadri constant ε0F (L;x) is the Frobenius–
Seshadri constant defined in [19, Def. 2.4].

In the rest of this section, we will prove basic formal properties about
Frobenius–Seshadri constants, following [19, §2]. The only statements used
explicitly in later sections are Lemmas 2.4 and 2.7, and Propositions 2.5(i)
and 2.9.

2.1. Separation of Frobenius jets under tensor powers

For the ordinary Seshadri constant, the supremum in (3) is actually a limit
when L is ample [6, p. 97]. This property follows from Fekete’s lemma [20,
Pt. I, no 98], since for all positive integers m and n, the sequence s(Lm;x)



i
i

“9-Murayama” — 2018/7/23 — 17:30 — page 911 — #7 i
i

i
i

i
i

Frobenius–Seshadri constants 911

satisfies the superadditivity property (see, e.g., [12, Lem. 3.7] for a proof)

(5) s(Lm+n;x) ≥ s(Lm;x) + s(Ln;x).

For Frobenius–Seshadri constants, we cannot have an analogous property,
since the supremum in (4) may not be a limit; see Example 2.6. Our first
goal is to find a replacement for this superadditivity property. This will allow
us to show that the supremum in (4) is actually a limit supremum.

We start with the following observation about ideals in a ring of char-
acteristic p > 0, which will also be useful later. Note that the first inclusion
in (6) is a slight improvement on [21, Lem. 4.6].

Lemma 2.3. Let R be a commutative ring of characteristic p > 0. Then,
for any ideal a generated by n elements and for any non-negative integers e
and `, we have the sequence of inclusions

(6) a`p
e+n(pe−1)+1 ⊆ (a`+1)[p

e] ⊆ a(`+1)pe .

Moreover, if R is a regular local ring of dimension n, and a is the maximal
ideal of R, then

a`p
e+n(pe−1) 6⊆ (a`+1)[p

e].

Proof. The second inclusion in (6) is clear; we want to show the first inclu-
sion. Let y1, y2, . . . , yn be a set of generators for a. The ideal a`p

e+n(pe−1)+1

is generated by all elements of the form

n∏
i=1

yai

i such that

n∑
i=1

ai = `pe + n(pe − 1) + 1,(7)

and the ideal (a`+1)[p
e] is generated by all elements of the form

n∏
i=1

yp
ebi
i such that

n∑
i=1

bi = `+ 1.(8)

We want to show that the elements (7) are divisible by some elements of the
form (8). By the division algorithm, we may write ai = ai,0 + pea′i for some
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non-negative integers ai,0 and a′i such that 0 ≤ ai,0 ≤ pe − 1. Then,

n∏
i=1

yai

i =

n∏
i=1

y
ai,0

i ·
n∏
i=1

y
pea′i
i ,

and since ai,0 ≤ pe − 1, we have that
∑n

i=1 ai,0 ≤ n(pe − 1). Thus, we have
the inequality

`pe + n(pe − 1) + 1 =

n∑
i=1

ai ≤ n(pe − 1) +

n∑
i=1

pea′i,

which implies `+ p−e ≤
∑n

i=1 a
′
i. Since the right-hand side of this inequality

is an integer, we have that `+ 1 ≤
∑n

i=1 a
′
i, i.e., the element

∏n
i=1 y

pea′i
i is

divisible by one of the form (8). Thus, each element of the form in (7) is
divisible by one of the form in (8).

Now suppose R is a regular local ring of dimension n, and a is the
maximal ideal of R. Let y1, y2, . . . , yn be a regular system of parameters.
Then, we have

y`p
e

i0
·
n∏
i=1

yp
e−1
i ∈ a`p

e+n(pe−1)

for any i0 ∈ {1, 2, . . . , n}. This monomial does not lie in (a`+1)[p
e] since its

image is not in the extension of (a`+1)[p
e] in the completion of R at a, which

is isomorphic to a formal power series ring with variables y1, y2, . . . , yn by
the Cohen structure theorem. �

Lemma 2.4 (cf. [19, Lem. 2.5]). Let L be a line bundle on a projective va-
riety X, and let x ∈ X be a closed point. Suppose Lm separates pe-Frobenius
`-jets at x for some integers m ≥ 1, e ≥ 1, and ` ≥ 0, and denote

dr =
pre − 1

pe − 1

for each positive integer r. Then, Lmdr separates pre-Frobenius `-jets at x
for all r ≥ 1.

Proof. We want to show the restriction maps

ϕr : H0(X,Lmdr) −→ H0
(
X,Lmdr ⊗OX/(m`+1

x )[p
re]
)

are surjective for all positive integers r. We prove this by induction on r.
The case r = 1 is true by assumption, so we consider the case when r ≥ 2.
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Let ỹ1, ỹ2, . . . , ỹn generate mx · OX,x. After choosing an isomorphism
Lmx ' OX,x, we can make the identification

Lmdr ⊗OX/(m`+1
x )[p

re] ' OX/(m`+1
x )[p

re].

Then, Lmdr ⊗OX/(m`+1
x )[p

re] is generated as a vector space over k by the
residue classes

(9) ya1

1 y
a2

2 · · · y
an
n ∈ Lmdr ⊗OX/(m`+1

x )[p
re]

of the monomials ỹa1

1 ỹ
a2

2 · · · ỹan
n ∈ Lmdrx , where the ai can be any non-negative

integers. As in the proof of Lemma 2.3, write ai = ai,0 + pea′i for each i,
where 0 ≤ ai,0 ≤ pe − 1, so that

ya1

1 y
a2

2 · · · y
an
n =

n∏
i=1

y
ai,0

i ·
n∏
i=1

y
pea′i
i .

We will show that the elements in (9) lie in the image of ϕr by descend-
ing induction on S :=

∑n
i=1 a

′
i. By Lemma 2.3, if S ≥ (`+ n)p(r−1)e, then

ya1

1 y
a2

2 · · · yan
n ≡ 0 mod (m`+1

x )[p
re], and so there is nothing to show. It there-

fore suffices to consider the inductive case, when S ≤ (`+ n)p(r−1)e − 1.
By the assumption that ϕ1 is surjective, we know that there exists t1 ∈

H0(X,Lm) such that its germ t1,x ∈ Lmx satisfies

(10)

n∏
i=1

ỹ
ai,0

i − t1,x ∈ (m`+1
x )[p

e] ⊗ Lmx .

By the inductive hypothesis with respect to r, we know that ϕr−1 is sur-
jective, so there exists t2 ∈ H0(X,Lmdr−1) such that its germ t2,x ∈ Lmdr−1

x

satisfies
n∏
i=1

ỹ
a′i
i − t2,x ∈ (m`+1

x )[p
(r−1)e] ⊗ Lmdr−1

x .

Now consider the composition below:

H0(X,Lm)⊗H0(X,Lmdr−1) H0(X,Lm)⊗H0(X,Lmp
edr−1) H0(X,Lmdr)

t1 ⊗ t2 t1 ⊗ tp
e

2 t1t
pe

2

1⊗(F e)∗ mult
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Note that t1t
pe

2 restricts to t1,xt
pe

2,x in the stalk Lmdrx , and that

(11)

n∏
i=1

ỹ
pea′i
i − tp

e

2,x ∈ (m`+1
x )[p

re] ⊗ Lmpedr−1
x .

Then, after passing to the stalk Lmdrx , we have

n∏
i=1

ỹai

i − t1,xt
pe

2,x =

n∏
i=1

ỹai

i − t1,x
n∏
i=1

ỹ
pea′i
i + t1,x

n∏
i=1

ỹ
pea′i
i − t1,xtp

e

2,x

=

(
n∏
i=1

ỹ
ai,0

i − t1,x

)
·
n∏
i=1

ỹ
pea′i
i + t1,x

(
n∏
i=1

ỹ
pea′i
i − tp

e

2,x

)
.

To show that
∏n
i=1 y

ai

i is in the image of ϕr, it suffices to show that the
right-hand side of this equation is in the image of ϕr modulo (m`+1

x )[p
re]. By

(11), we know the second term is congruent to zero modulo (m`+1
x )[p

re], and
so it remains to show the first term is in the image of ϕr modulo (m`+1

x )[p
re].

First, for each monomial µ in the ỹi that appears in the difference∏n
i=1 ỹ

ai,0

i − t1,x, there exists some n-tuple (bi)1≤i≤n where
∑n

i=1 bi = `+ 1

such that
∏n
i=1 ỹ

pebi
i divides µ by (10). Thus, the corresponding monomial

that appears in the product

(12)

(
n∏
i=1

ỹ
ai,0

i − t1,x

)
·
n∏
i=1

ỹ
pea′i
i

is divisible by the product
∏n
i=1 ỹ

pe(a′i+bi)
i . Since

n∑
i=1

(a′i + bi) = S + `+ 1 > S,

each monomial that appears in the product (12) is therefore in the image of
ϕr modulo (m`+1

x )[p
re] by the inductive hypothesis on S. �

This allows us to show that the supremum in (4) can actually be com-
puted as a limit supremum.

Proposition 2.5 (cf. [19, Prop. 2.6]). Let ` ≥ 0 be fixed, and let L be
an ample line bundle on a projective variety X. Let x ∈ X be a closed point.

(i) The line bundle Lm separates pe-Frobenius `-jets at x for some positive
integers m and e.
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(ii) We have

ε`F (L;x) = sup
m,e

pe − 1

m/(`+ 1)
,

where the supremum is taken over all positive integers m and e such
that Lm separates pe-Frobenius `-jets at x.

(iii) Given any δ > 0, there is a positive integer e0 such that for every
positive integer e divisible by e0, there is a positive integer m such that
Lm separates pe-Frobenius `-jets at x and

(13)
pe − 1

m/(`+ 1)
> ε`F (L;x)− δ.

(iv) We have

ε`F (L;x) = lim sup
m→∞

ps
`
F (Lm;x) − 1

m/(`+ 1)
.

Proof. For (i), let m ≥ 1 be such that Lm is very ample, and let n be the
number of generators of mx · OX,x. Then, Lm separates tangent directions
(i.e., 1-jets) and so Lm(`pe+n(pe−1)) separates (`pe + n(pe − 1))-jets by the
superadditivity property (5). Thus, Lm(`pe+n(pe−1)) separates pe-Frobenius

`-jets at x by the inclusion m
`pe+n(pe−1)+1
x ⊆ (m`+1

x )[p
e] in Lemma 2.3.

Assertion (ii) follows by (i) and the definition of the `th Frobenius–
Seshadri constant, since s`F (Lm;x) is defined as the maximum e ≥ 0 such
that Lm separates pe-Frobenius `-jets at x.

For (iii), there exist positive integers m0 and e0 such that the inequality
(13) holds by (i) and the definition of ε`F (L;x). For each multiple e = re0
of e0, let m = m0

pe−1
pe0−1 . Then, by Lemma 2.4, we have that Lm separates

pe-Frobenius `-jets at x. The inequality (13) then follows, since

pe − 1

m/(`+ 1)
=

pe0 − 1

m0/(`+ 1)
> ε`F (L;x)− δ.

For (iv), let m0 and e0 be as in (iii) for δ = 1. We inductively choose
an increasing sequence of positive integers (mr)r≥0 as follows: having chosen
mr, we choose mr+1 such that (13) holds with δ = 1/(r + 1), and such that
mr < mr+1. Note that this increasing property can be ensured by the fact
that the m’s in (iii) increase as e increases. Then, we have

ε`F (L;x) = lim
r→∞

ps
`
F (Lmr ;x) − 1

mr/(`+ 1)
,

which implies (iv). �
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We now give a calculation of both the ordinary Seshadri constant and
the `th Frobenius–Seshadri constants on projective space, which shows that
the limit supremum in Proposition 2.5(iv) cannot be computed as a limit.

Example 2.6. Let X = Pn
k , and let L = OX(1) be the line bundle asso-

ciated to a hyperplane. For every closed point x ∈ Pn
k , we claim that the

restriction map

ρ`,eOX(m) : H0(X,OX(m)) −→ H0
(
X,OX(m)⊗OX/(m`+1

x )[p
e]
)

is surjective if and only if m ≥ `pe + n(pe − 1). This claim follows from
Lemma 2.3 after choosing local affine coordinates in OX,x, and observing
that H0(X,OX(m)) maps onto all monomials of degree ≤ m in OX,x. Note
that the inequality m ≥ `pe + n(pe − 1) is equivalent to

m+ n

`+ n
≥ pe.

Letting e = 0 gives ε(OX(m);x) = 1. For Frobenius–Seshadri constants, the
equality in Proposition 2.5(iv) implies

ε`F (OX(1);x) ≤ lim sup
m→∞

m+n
`+n − 1

m/(`+ 1)
=
`+ 1

`+ n
· lim sup
m→∞

m− `
m

=
`+ 1

`+ n
,

and the reverse inequality holds by computing a lower bound for the limit
supremum using the sequence me = `pe + n(pe − 1). On the other hand,
we see that the limit supremum is not a limit, since the sequence m′e =
`pe + n(pe − 1)− 1 gives the limit

lim sup
e→∞

ps
`
F (Lm′e ;x) − 1

m′e/(`+ 1)
=
`+ 1

`+ n
· lim
e→∞

pe−1 − 1

pe − n+1
n+`

=
`+ 1

(`+ n)p
.

Note that in this example, we have the equality `+1
`+n · ε(L;x) = ε`F (L;x). We

will see in Proposition 2.9 that in fact, the inequality ≤ always holds.

We can use Lemma 2.4 and Proposition 2.5(iv) to prove that Frobenius–
Seshadri constants are also well-behaved with respect to taking tensor pow-
ers. While we will not need this result in the sequel, the proof will use the
following lemma, which will also be useful in the proof of Theorem C.

Lemma 2.7 (cf. [19, Rem. 2.3]). Let X be a projectivty variety, and let
x ∈ X be a closed point. Let L be a line bundle on X, and let M be another
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line bundle that is globally generated at x. If for some integers e ≥ 1 and
` ≥ 0, we have that L separates pe-Frobenius `-jets at x, then L⊗M also
separates pe-Frobenius `-jets at x.

Proof. Since M is globally generated at x, there is a global section t ∈
H0(X,M) that does not vanish at x. The commutative diagram

H0(X,L) H0
(
X,L⊗OX/(m`+1

x )[p
e]
)

H0(X,L⊗M) H0
(
X,L⊗M ⊗OX/(m`+1

x )[p
e]
)t⊗−

ρ`,eL

tx⊗−
∼

ρ`,eL⊗M

shows that the restriction map ρ`,eL⊗M is surjective, i.e., we have that L⊗M
separates pe-Frobenius `-jets. �

Proposition 2.8 (cf. [19, Prop. 2.8]). Let L be an ample line bundle on
a projective variety X, and let x ∈ X be a closed point. Then, for all integers
` ≥ 0 and s > 0, we have ε`F (Lr;x) = r · ε`F (L;x).

Proof. First, we have

ε`F (Lr;x) = r · sup
m≥1

ps
`
F (Lrm;x)−1

rm/(`+ 1)
≤ r · sup

m′≥1

ps
`
F (Lm′ ;x)−1

m′/(`+ 1)
= r · ε`F (L;x)

by running through all tensor powers of L instead of just the powers that
are divisible by r. It therefore remains to show the opposite inequality. We
will fix an integer j > 0 such that Lj is globally generated.

Let δ > 0 be given, and letm be a positive integer such that Lm separates
pe-Frobenius `-jets for some integers e, ` ≥ 0 such that

pe − 1

m/(`+ 1)
> ε`F (L;x)− δ

r
.

Now let i be a positive integer. Denoting di = pie−1
pe−1 , we have

(14) sF (Lmdi+j ;x) ≥ sF (Lmdi ;x) ≥ ie

by Lemmas 2.4 and 2.7. Now denoting

ai =

⌈
mdi + j

r

⌉
,
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we have that rai ≥ mdi + j, hence

ps
`
F (Lrai ;x) − 1

ai/(`+ 1)
≥ ps

`
F (Lmdi+j ;x) − 1

ai/(`+ 1)

≥ pie − 1

ai/(`+ 1)
=

pe − 1

m/(`+ 1)
· dim⌈

(mdi + j)/r
⌉ ,

where the second inequality is by (14). Taking limit suprema as i→∞ and
using Proposition 2.5(iv) gives

ε`F (Lr;x) ≥ lim sup
i→∞

ps
`
F (Lrai ;x) − 1

ai/(`+ 1)
≥ r · ε`F (L;x)− δ.

Since δ > 0 was arbitrary, we have the inequality ε`F (Lr;x) ≥ r · ε`F (L;x).
�

2.2. A comparison with the ordinary Seshadri constant

In order to use the `th Frobenius–Seshadri constant to prove Theorem A, we
require a comparison with the ordinary Seshadri constant. This will allow
us to deduce positivity properties of adjoint bundles in §3.

Proposition 2.9 (cf. [19, Prop. 2.12]). If L is an ample line bundle on
a projective variety X of dimension n, then for every smooth point x ∈ X
and integer ` ≥ 0, we have the sequence of inequalities

(15)
`+ 1

`+ n
· ε(L;x) ≤ ε`F (L;x) ≤ ε(L;x).

In particular, ε`F (L;x)→ ε(L;x) as `→∞.

Proof. Since mx · OX,x is generated by n elements, we have the sequence of
inclusions

(16) m`pe+n(pe−1)+1
x ⊆ (m`+1

x )[p
e] ⊆ m(`+1)pe

x

by Lemma 2.3. The right inclusion in (16) implies

s(Lm;x) ≥ (`+ 1)ps
`
F (Lm;x) − 1 ≥ (`+ 1)(ps

`
F (Lm;x) − 1),

and so the right inequality in (15) follows after dividing by m throughout,
and taking limit suprema as m→∞.
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For the left inequality in (15), let δ > 0 be given, and let m0 be a positive
integer such that

s(Lm0 ;x)

m0
> ε(L;x)− `+ n

`+ 1
· δ.

Given any non-negative integer e, denote

de =

⌈
`pe + n(pe − 1)

s(Lm0 ;x)

⌉
=

⌈
(`+ n)pe − n
s(Lm0 ;x)

⌉
.

By the superadditivity property (5), we have

s(Lm0de ;x) ≥ de · s(Lm0 ;x) ≥ `pe + n(pe − 1).

By the left inclusion in (16), this inequality implies

s`F (Lm0de ;x) ≥ e,

and therefore

ε`F (L;x) ≥ ps
`
F (Lm0de ;x) − 1

m0de/(`+ 1)
≥ (`+ 1)(pe − 1)

m0

⌈(
(`+ n)pe − n

)
/s(Lm0 ;x)

⌉ .
As e→∞, the right-hand side converges to

`+ 1

`+ n
· s(L

m0 ;x)

m0
>
`+ 1

`+ n
· ε(L;x)− δ,

hence we have the inequality

ε`F (L;x) >
`+ 1

`+ n
· ε(L;x)− δ

for all δ > 0. Since δ > 0 was arbitrary, we obtain the left inequality in
(15). �

In light of Example 2.6 and Theorems A and C, it seems more accurate to
think of the `th Frobenius–Seshadri constant as being closer to `+1

`+n · ε(L;x)
than to ε(L;x), just as for the zeroth Frobenius–Seshadri constant [19, p.
869]. We also observe that Example 2.6 shows that the lower bound in (15)
is optimal.

We can also compare different Frobenius–Seshadri constants:
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Corollary 2.10. If L is a line bundle on an n-dimensional projective vari-
ety X, then for every smooth point x ∈ X and integers ` > m ≥ 0, we have

`+ 1

`+ n
· εmF (L;x) ≤ ε`F (L;x) ≤ `+ 1

m+ 1
· εmF (L;x)

Proof. If Lr separates pe-Frobenius `-jets at x, then it separates pe-Frobenius
m-jets at x, giving the right inequality. The left inequality follows by using
Proposition 2.9 for different values of `. �

2.3. Numerical invariance

We now prove that Frobenius–Seshadri constants only depend on the nu-
merical equivalence class of a line bundle. This fact will not be used in the
sequel. Regularity in the proof below is in the sense of Castelnuovo and
Mumford; see [17, Def. 1.8.4] for the definition.

Proposition 2.11 (cf. [19, Prop. 2.14]). Let X be a projective variety,
and let x ∈ X be a closed point. If L1 and L2 are numerically equivalent
ample line bundles on X, then ε`F (L1;x) = ε`F (L2;x) for all integers ` ≥ 0.

Proof. We first claim that if A is a globally generated ample line bundle,
then there exists m0 such that Am ⊗N is globally generated for all integers
m ≥ m0 and nef line bundles N . First, by Fujita’s vanishing theorem [10,
Thm. 5.1], there exists an integer m1 such that for all integers m ≥ m1

and nef line bundles N , we have H i(X,Am ⊗N) = 0 for all i > 0. Thus, if
m ≥ m1 + dimX, then the line bundle Am ⊗N is 0-regular with respect to
A, hence is globally generated by [17, Thm. 1.8.5(i)]. It therefore suffices to
set m0 = m1 + dimX.

We now prove the proposition. By hypothesis, there exists a numerically
trivial line bundle P such that L2 ' L1 ⊗ P . Applying the result of the
previous paragraph where A is a large enough power of L1, we see that
there exists a positive integer j such that Lj1 ⊗N is globally generated for

all nef line bundles N , hence in particular, Lj1 ⊗ P i is globally generated for
all integers i. Now by Proposition 2.5(iv), there exists an increasing sequence
(mr)r≥0 of positive integers such that

ε`F (L1;x) = lim
r→∞

ps
`
F (Lmr

1 ;x) − 1

mr/(`+ 1)
.
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For each integer r ≥ 0, since Lmr+j
2 ' Lmr

1 ⊗ L
j
1 ⊗ Pmr+j and Lj1 ⊗ Pmr+j

is globally generated, we see that

s`F (Lmr

1 ;x) ≤ s`F (Lmr+j
2 ;x)

by Lemma 2.7. We therefore have that

ps
`
F (Lmr

1 ;x) − 1

mr/(`+ 1)
≤ ps

`
F (Lmr+j

2 ;x) − 1

mr/(`+ 1)
=

ps
`
F (Lmr+j

2 ;x) − 1

(mr + j)/(`+ 1)
· mr + j

mr
.

Since the limit of the left-hand side is ε`F (L1;x) by choice of the sequence
(mr)r≥0, taking limit suprema as r →∞ throughout this inequality yields
the inequality ε`F (L1;x) ≤ ε`F (L2;x) by Proposition 2.5(iv). Finally, repeat-
ing the argument above after switching the roles of L1 and L2, we have the
equality ε`F (L1;x) = ε`F (L2;x). �

3. Frobenius–Seshadri constants and adjoint bundles

We now turn to the proofs of Theorems A and C, which we restate below.
Recall our standing assumption that our ground field k is algebraically closed
and of characteristic p > 0.

Theorem A. Let L be an ample line bundle on a smooth projective variety
X of dimension n. Let x ∈ X be a closed point. If the inequality

ε(L;x) > n+ `

holds, then ωX ⊗ L separates `-jets at x.

Theorem C. Let L be an ample line bundle on a smooth projective variety
X. Let x ∈ X be a closed point. If the inequality

ε`F (L;x) > `+ 1

holds, then ωX ⊗ L separates `-jets at x.

As we mentioned in §1, Theorem A is an immediate consequence of
Theorem C:

Proof of Theorem A. The inequality ε(L;x) > n+ ` implies the inequality
ε`F (L;x) > `+ 1 by Proposition 2.9, hence the assertion immediately follows
from Theorem C. �
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Demailly proved the analogue of Theorem A in characteristic zero by using
the Kawamata–Viehweg vanishing theorem, but only assuming that L is
big and nef [6, Prop. 6.8(a)]. We do not know if this assumption suffices in
positive characteristic.

Remark 3.1. It is possible to obtain a version of Theorem A using only the
zeroth Frobenius–Seshadri constant by näıvely inducing on the order of jets
in the proof of [19, Lem. 3.3]. However, the hypothesis needed for separation
of `-jets using this method is the stronger lower bound ε(L;x) > n+ n`. The
proof is also more technical and relies on Castelnuovo–Mumford regularity.

There are two main ingredients in the proof of Theorem C. The first is
the following reformulation of our results from §2.

Proposition 3.2. Let L be an ample line bundle on a projective variety
X, and let x ∈ X be a closed point. If ε`F (L;x) > α for some real number
α > 0, then we can find positive integers m and e satisfying

(17)
pe − 1

m
>

α

`+ 1

such that Lm separates pe-Frobenius `-jets at x. Furthermore, we may take
m and e so that the quantity

(18) pe − 1− α

`+ 1
m

is arbitrarily large.

Proof. By Proposition 2.5(i) and the definition of ε`F (L;x), we know there
exist m, e ≥ 1 such that the inequality (17) is satisfied and Lm separates
pe-Frobenius `-jets at x. Moreover, by applying Lemma 2.4, we may make
the replacements

e 7−→ re and m 7−→ m(pre − 1)

pe − 1

and not change the inequality (17) or the condition on separation of jets.
Thus, by applying these replacements for integers r ≥ 1, the quantity in (18)
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satisfies

pre − 1− α

`+ 1
· m(pre − 1)

pe − 1
= (pre − 1)

(
1− α

`+ 1
· m

pe − 1

)
−→∞

as r →∞ by the inequality (17). We can therefore assume that the quantity
(18) is arbitrarily large. �

As in the proof of [19, Thm. 3.1], the other main ingredient in the proof
of Theorem C is the Cartier operator or the trace map

T : F∗(ωX) −→ ωX ,

which is a morphism of OX -modules. Here, F : X → X denotes the (abso-
lute) Frobenius morphism. See [4, §1.3] for the definition and basic properties
of the map T . Briefly, it can be defined as the trace map for relative duality
for the finite flat morphism F as in [11, Ch. III, §6]. We note that F is finite
since k is perfect, and F is flat by Kunz’s theorem [4, Lem. 1.1.1] since X is
smooth. The trace map satisfies the following key properties needed for our
proof:

(a) The trace map T and its iterates T e : F e∗ (ωX)→ ωX are surjective [4,
Thm. 1.3.4];

(b) If a ⊆ OX is a coherent ideal sheaf, then T e satisfies the equality

(19) T e
(
F e∗ (a[p

e] · ωX)
)

= a · T e
(
F e∗ (ωX)

)
= a · ωX .

This follows from (a) by considering the OX -module structure on
F e∗ (ωX).

Remark 3.3. The surjectivity of the trace map in (a) is part of the defini-
tion for what are called F -injective varieties [23, Def. 2.10(iv)], as long as we
interpret ωX as the cohomology sheaf h−dimXω•X of the dualizing complex
ω•X . F -injective varieties are related to varieties with Du Bois singularities
in characteristic zero [22]. Since the justification for (19) still works in this
generality, our proof of Theorem C still works for F -injective varieties.

We are now ready to prove Theorem C. The proof closely follows that
of [19, Thm. 3.1(i)]. The idea is the following: We can increase powers on
L freely so that Lm separates pe-Frobenius `-jets, and then tensor by an
appropriate product of the form ωX ⊗ Lp

e−m that is globally generated.
Then, ωX ⊗ Lp

e

separates pe-Frobenius `-jets. The eth iterate T e of the
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trace map T allows us to take out these factors of pe, and thereby deduce
that ωX ⊗ L separates `-jets.

Proof of Theorem C. Let mx denote the defining ideal of x. By Proposi-
tion 3.2, we can find m and e such that m < pe − 1 and the restriction map

ρ`,eLm : H0(X,Lm) −→ H0
(
X,Lm ⊗OX/(m`+1

x )[p
e]
)

is surjective; moreover, we may assume that pe − 1−m is arbitrarily large.
In particular, we may assume that pe −m is arbitrarily large, so that ωX ⊗
Lp

e−m is globally generated. By Lemma 2.7, we then have that ωX ⊗ Lp
e

separates pe-Frobenius `-jets, i.e., the restriction map

(20) ϕ : H0(X,ωX ⊗ Lp
e

) −→ H0
(
X,ωX ⊗ Lp

e ⊗OX/(m`+1
x )[p

e]
)

is surjective.
We now use the surjectivity of the eth iterate T e : F e∗ (ωX)→ ωX of the

trace map T . By (19), the map T e induces a surjective morphism

F e∗
(
(m`+1

x )[p
e] · ωX

)
m`+1
x · ωX .

Tensoring this by L and applying the projection formula yields a surjective
morphism

F e∗
(
(m`+1

x )[p
e] · ωX ⊗ Lp

e)
m`+1
x · ωX ⊗ L.(21)

Since the Frobenius morphism F is affine, the pushforward functor F e∗ is
exact, hence we obtain the exactness of the left column in the following
commutative diagram:

0 0

F e∗
(
(m`+1

x )[p
e] · ωX ⊗ Lp

e)
m`+1
x · ωX ⊗ L

F e∗ (ωX ⊗ Lp
e

) ωX ⊗ L

F e∗
(
ωX ⊗ Lp

e ⊗OX/(m`+1
x )[p

e]
)

ωX ⊗ L⊗OX/m`+1
x

0 0
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The top horizontal arrow is the map in (21); the middle horizontal arrow is
obtained analogously from T e by tensoring with L, and is therefore surjec-
tive. The surjectivity of the middle horizontal arrow also implies the bottom
horizontal arrow is surjective. Finally, by taking global sections in the bot-
tom square, we obtain the following commutative square:

H0(X,ωX ⊗ Lp
e

) H0(X,ωX ⊗ L)

H0
(
X,ωX ⊗ Lp

e ⊗OX/(m`+1
x )[p

e]
)

H0(X,ωX ⊗ L⊗OX/m`+1
x )

ϕ ρ`,0ωX⊗L

ψ

Note that ψ is surjective because the kernel of the corresponding morphism
of sheaves is a skyscraper sheaf supported at x. We have already shown
that the restriction map ϕ is surjective in (20), hence ρ`,0ωX⊗L is necessarily
surjective. This shows ωX ⊗ L indeed separates `-jets at x. �

Remark 3.4. It is possible to define a multi-point version of ε`F (L;x)
following [19], which would capture how ωX ⊗ L simultaneously separates
higher-order jets at different points. This method does not improve the result
of [19, Thm. 3.1(iii),(iv)], which says the following:

(a) If ε0F (L;x) > 2 at some closed point x ∈ X, then ωX ⊗ L is very big,
i.e., the rational map defined by ωX ⊗ L is birational onto its image;

(b) If ε0F (L;x) > 2 at all closed points x ∈ X, then ωX ⊗ L is very ample.

4. Characterizations of projective space

We now give an application of our result on separation of jets. As far as we
know, this is the first application of the methods of [19].

Recall that a Fano variety is a projective variety whose anti-canonical
bundle ω−1X is ample. Using Seshadri constants, Bauer and Szemberg showed
the following characterization of projective space amongst smooth Fano va-
rieties:

Theorem 4.1 [3, Thm. 2]. Let X be a smooth Fano variety of dimension
n defined over an algebraically closed field of characteristic zero. If there
exists a closed point x ∈ X with

ε(ω−1X ;x) ≥ n+ 1,

then X is isomorphic to the n-dimensional projective space Pn.
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Our goal in this section is to prove the following positive characteristic
version of this result.

Theorem B. Let X be a smooth Fano variety of dimension n defined over
an algebraically closed field of positive characteristic. If there exists a closed
point x ∈ X with

ε(ω−1X ;x) ≥ n+ 1,

then X is isomorphic to the n-dimensional projective space Pn.

4.1. Comparison with other results and a weaker statement

Before moving on to the proof of Theorem B, we compare our result to
other characterizations of projective space. As a consequence of these other
characterizations, we also prove a weaker statement (Proposition 4.6) to
illustrate why we might expect lower bounds on Seshadri constants to give
characterizations of projective space.

Let KX denote the canonical divisor on X. Theorem B can be restated
as follows:

Theorem 4.2. Let X be a smooth Fano variety of dimension n defined
over an algebraically closed field of positive characteristic. If there exists a
closed point x ∈ X with

(−KX · C) ≥ (multxC) · (n+ 1)

for all reduced and irreducible curves C ⊆ X passing through x, then X is
isomorphic to the n-dimensional projective space Pn.

Proof. This follows from Theorem B by using [17, Props. 5.1.5, 5.1.17], which
say

(22) ε(ω−1X ;x) = inf
x∈C⊆X

{
(−KX · C)

multxC

}
,

where the infimum is taken over all reduced and irreducible curves C ⊆ X
passing through x. �

This formulation is reminiscent of the following conjecture due to Mori
and Mukai, which we mentioned in §1:
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Conjecture 4.3 [15, Conj. V.1.7]. Let X be a smooth Fano variety of
dimension n defined over an algebraically closed field. If the inequality

(−KX · C) ≥ n+ 1

holds for every rational curve C ⊆ X, then X is isomorphic to the n-dimen-
sional projective space Pn.

By using results of Kebekus [14] on families of singular rational curves,
Cho, Miyaoka, and Shepherd-Barron proved this conjecture in characteristic
zero. More precisely, they showed the following stronger statement:

Theorem 4.4 [5, Cor. 0.4]. Let X be a smooth projective variety of di-
mension n defined over an algebraically closed field of characteristic zero. If
X is uniruled, and the inequality

(−KX · C) ≥ n+ 1

holds for every rational curve C ⊆ X passing through a general point x0,
then X is isomorphic to the n-dimensional projective space Pn.

In arbitrary characteristic, as far as we know the only result in this
direction is the following:

Theorem 4.5 [13, Cor. 3]. Let X be a smooth projective variety of dimen-
sion n defined over an algebraically closed field of arbitrary characteristic.
Suppose KX is not nef. If

(a) (−KX · C) ≥ n+ 1 for every rational curve C ⊆ X; and

(b) (−KX)n ≥ (n+ 1)n,

then X is isomorphic to the n-dimensional projective space Pn.

Given the similarity between the Mori–Mukai conjecture 4.3 and Theo-
rem 4.2, we asked the following question in §1:

Question. Let X be a smooth Fano variety of dimension n defined over
an algebraically closed field of arbitrary characteristic. If the inequality

(−KX · C) ≥ n+ 1
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holds for every rational curve C ⊆ X, then does there exist a closed point
x ∈ X with

(−KX · C) ≥ (multxC) · (n+ 1)

for all reduced and irreducible curves C ⊆ X passing through x?

As mentioned in §1, the answer to this question is “yes” in characteristic
zero by using Theorem 4.4, since Theorem 4.4 implies X ' Pn, and therefore
ε(ω−1X ;x) ≥ n+ 1 for all closed points x ∈ X by Example 2.6. If one could
answer this question affirmatively independently of Theorem 4.4, then The-
orem 4.1 would give an alternative proof of the Mori–Mukai conjecture 4.3
in characteristic zero, and Theorem 4.2 would resolve their conjecture in
positive characteristic.

Returning to Seshadri constants, we can show the following statement
as a consequence of the characterizations of projective space given above.
The statement in characteristic zero gives a different proof of [3, Thm. 2].

Proposition 4.6. Let X be a smooth Fano variety of dimension n defined
over an algebraically closed field k. Consider the inequality

(23) ε(ω−1X ;x) ≥ n+ 1

for each closed point x ∈ X. Suppose one of the following is satisfied:

(i) We have char k = 0 and the inequality (23) holds for a single closed
point x ∈ X; or

(ii) We have char k = p > 0 and the inequality (23) holds for all closed
points x ∈ X.

Then, X is isomorphic to the n-dimensional projective space Pn over k.

Proof. For (i), we use Theorem 4.4. Since Fano varieties are uniruled [15,
Cor. IV.1.15], it suffices to verify the condition (−KX · C) ≥ n+ 1. First,
note that ε(ω−1X ;x) > n at the given point x ∈ X, and since the locus

{
x ∈

X | ε(ω−1X ;x) > n
}

is open [19, Rem. 2.15], we have ε(ω−1X ;x0) > n at a gen-
eral point x0 ∈ X. By the alternative characterization of Seshadri constants
in terms of curves in (22), we have the chain of inequalities

n < ε(ω−1X ;x0) ≤
(−KX · C)

multx0
C
≤ (−KX · C)

for any rational curve C containing x0. Since (−KX · C) is an integer, we
have (−KX · C) ≥ n+ 1.
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For (ii), we use Theorem 4.5. The verification of condition (a) proceeds
as in (i) by applying (22) to a closed point x ∈ C contained in a given
rational curve C ⊆ X. For condition (b), we use the inequality

ε(ω−1X ;x) ≤ n
√

(−KX)n,

which is [17, eq. 5.2]. The inequality ε(ω−1X ;x) ≥ n+ 1 then implies condition
(b). �

4.2. Proof of Theorem B

We now turn to the proof of Theorem B. The main technical tool is the
notion of bundles of principal parts, which are also known as jet bundles in
the literature. See [16, §4] for a detailed discussion.

Definition 4.7. Let X be a variety defined over an algebraically closed
field k of arbitrary characteristic. Denote by p and q the projections

X ×X

X X

p q

Let I ⊂ OX×X be the ideal defining the diagonal, and let L be a line bundle
on X. For each integer ` ≥ 0, the `th bundle of principal parts associated to
L is the sheaf

P`(L) := p∗(q
∗L⊗OX×X/I `+1).

Note that P0(L) ' L, since the diagonal in X ×X is isomorphic to X.

We will use the following facts about these sheaves from [16, §4], assum-
ing X is smooth:

(a) There exists a short exact sequence [16, no 4.2]

(24) 0 −→ Sym`(ΩX)⊗ L −→P`(L) −→P`−1(L) −→ 0,

where ΩX denotes the cotangent bundle on X. By using induction and
this short exact sequence, it follows that the sheaf P`(L) is a vector
bundle for all integers ` ≥ 0.
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(b) There exists an identification P`(L) ' q∗(q∗L⊗OX×X/I `+1), and
by applying adjunction to the map q∗L→ q∗L⊗OX×X/I `+1, there
is a morphism

d` : L −→P`(L)

of sheaves [16, no 4.1], such that the diagram

H0(X,L) H0
(
X,P`(L)

)
H0(X,L⊗OX/m`+1

x ) H0
(
X,P`(L)⊗OX/mx

)
H0(d`)

ρ`,0L
ρ0,0

P`(L)

∼

commutes for all closed points x ∈ X [16, Lem. 4.5(1)]. Thus, if L
separates `-jets at x, then P`(L) is globally generated at x.

We will also use the following description of the determinant of the `th
bundle of principal parts. This description is stated in [7, p. 1660].

Lemma 4.8. Let X be a smooth variety of dimension n, and let L be a
line bundle. Then, for each ` ≥ 0, we have an isomorphism

det(P`(L)) '
(
ω`X ⊗ Ln+1

) 1

n+1(n+`

n ).

Proof. We proceed by induction on ` ≥ 0. If ` = 0, then P0(L) ' L, so we
are done.

Now suppose ` > 0. Since X is smooth, the cotangent bundle ΩX has
rank n, and we have isomorphisms

det
(
Sym`(ΩX)⊗ L

)
' det

(
Sym`(ΩX)

)
⊗ L(n+`−1

n−1 )

' ω(n+`−1

n )
X ⊗ L(n+`−1

n−1 )
.

By induction and taking top exterior powers in the short exact sequence
(24), we obtain

det(P`(L)) ' ω(n+`−1

n )
X ⊗ L(n+`−1

n−1 ) ⊗ det(P`−1(L))

' ω(n+`−1

n )
X ⊗ L(n+`−1

n−1 ) ⊗
(
ω`−1X ⊗ Ln+1

) 1

n+1(n+`−1

n )

'
(
ω`X ⊗ Ln+1

) 1

n+1(n+`

n ).
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Note that the last isomorphism holds because of the identities(
n+ `− 1

n

)
+
`− 1

n+ 1

(
n+ `− 1

n

)
=
n+ `

n+ 1

(
n+ `− 1

n

)
=

`

n+ 1

(
n+ `

n

)
,(

n+ `− 1

n− 1

)
+

(
n+ `− 1

n

)
=

(
n+ `

n

)
involving binomial coefficients. �

We now return to the setting where our ground field k is an algebraically
closed field of characteristic p > 0. We begin with the following key chain
of inequalities. Note that our statement is weaker than [3, Prop. 1.1], but it
still suffices for our purposes.

Lemma 4.9. Let X be a smooth Fano variety of dimension n, and let
x ∈ X be a closed point. Denote ε = ε(ω−1X ;x). For every integer m ≥ 1, we
have the chain of inequalities

(25) (m+ 1)ε− (n+ 1) ≤ s(ω−mX ;x) ≤ mε.

In particular, ε(ω−1X ;x) ≤ n+ 1.

Proof. We have the inequality

s(ω−mX ;x)

m
≤ ε

by the definition of the ordinary Seshadri constant in (3). We can then
multiply by m throughout to obtain the right inequality in (25).

For the left inequality in (25), we know that if ω−mX does not separate
`-jets, then

(26) ε(ω
−(m+1)
X ;x) = (m+ 1) · ε(ω−1X ;x) ≤ n+ `

by the contrapositive of Theorem A applied to L = ω
−(m+1)
X . Note that the

equality in (26) holds by [17, Ex. 5.1.4]. By the definition of s(ω−mX ;x), the
inequality in (26) holds for ` = s(ω−mX ;x) + 1, hence the left inequality in
(25) follows. The last assertion follows by rearranging (25) for m = 1. �

We now prove Theorem B. Our proof follows that of [3, Thm. 1.7],
although we must be more careful with tensor operations in positive char-
acteristic.



i
i

“9-Murayama” — 2018/7/23 — 17:30 — page 932 — #28 i
i

i
i

i
i

932 Takumi Murayama

Proof of Theorem B. We first claim that Pn+1(ω−1X ) is a trivial bundle. By
Lemma 4.9 for m = 1, we know that at the given point x ∈ X, we have the
equality ε(ω−1X ;x) = n+ 1, and moreover

n+ 1 = 2 · ε(ω−1X ;x)− (n+ 1) ≤ s(ω−1X ;x) ≤ ε(ω−1X ;x) = n+ 1,

hence equality holds throughout. By property (b) of bundles of principal
parts, we therefore have that Pn+1(ω−1X ) is globally generated at x. On the
other hand, by Lemma 4.8 applied to L = ω−1X , we have an isomorphism
det(Pn+1(ω−1X )) ' OX . Now to show that Pn+1(ω−1X ) is a trivial bundle,
consider the following diagram:

det
(
Pn+1(ω−1X )

)
OX

det
(
Pn+1(ω−1X )⊗OX/mx

)
OX/mx

∼

∼

Suppose the isomorphism in the top row is given by a non-vanishing global
section

s ∈ H0
(
X,det

(
Pn+1(ω−1X )

))
.

Let s1,x ∧ s2,x ∧ · · · ∧ sr,x be the image of s in det
(
Pn+1(ω−1X )⊗OX/mx

)
,

which gives the isomorphism in the bottom row. Then, since Pn+1(ω−1X )
is globally generated at x, each si,x can be lifted to a global section s̃i ∈
H0
(
X,Pn+1(ω−1X )

)
. Because the exterior product s̃1 ∧ s̃2 ∧ · · · ∧ s̃r does

not vanish at x, this exterior product does not vanish anywhere, since
H0(X,OX) = k. Thus, the global sections s̃i give a frame for Pn+1(ω−1X ),
and therefore Pn+1(ω−1X ) is a trivial bundle.

To show X ' Pn
k , we use Mori’s characterization of projective space

[15, Thm. V.3.2]. It suffices to show that for every nonconstant morphism
f : P1

k → X, the pull back f∗TX is a sum of line bundles of positive degree.
Write

f∗(TX) '
n⊕
i=1

O(ai) and f∗(ω−1X ) ' O(b),

where b is positive since ω−1X is ample. We want to show that each ai is
positive. Note that

f∗(ΩX) ' f∗(TX)∨ '
n⊕
i=1

O(−ai).
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Dualizing the short exact sequence (24), we have the short exact sequence

0 −→Pn(ω−1X )∨ −→Pn+1(ω−1X )∨ −→ (Symn+1 ΩX)∨ ⊗ ωX −→ 0.

The quotient on the right is globally generated because it is a quotient of
the trivial bundle Pn+1(ω−1X )∨. We have isomorphisms

f∗
(
(Symn+1 ΩX)∨ ⊗ ωX

)
'
(
Symn+1 f∗(ΩX)

)∨ ⊗ f∗(ωX)

'
(

Symn+1
n⊕
i=1

O(−ai)
)∨
⊗O(−b),

and this bundle is globally generated since it is the pullback of a globally
generated bundle. By expanding out the symmetric power on the right-hand
side, we have a surjection

f∗
(
(Symn+1 ΩX)∨ ⊗ ωX

) n⊕
i=1

O
(
(n+ 1)ai − b

)
,

hence the direct sum on the right-hand side is also globally generated. Fi-
nally, this implies

(n+ 1)ai − b ≥ 0,

and therefore since b > 0, we have that ai > 0 as required. �

Remark 4.10. Liu and Zhuang’s characteristic zero statement in [18, Thm.
2] is stronger than Theorem B: it only assumes that X is Q-Fano, and in
particular that X is not necessarily smooth. While Theorem C holds for a
large class of singular varieties (see Remark 3.3), the rest of our approach
does not generalize to the non-smooth setting, since Mori’s characterization
of projective space uses bend and break techniques. On the other hand,
Liu and Zhuang’s methods do not seem to work in positive characteristic
without very strong assumptions on dimension and F -singularities since,
in particular, they use the Kawamata–Shokurov basepoint-freeness theorem
and the Kawamata–Viehweg vanishing theorem.
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d’Orsay (Orsay, 1992).

[10] T. Fujita, Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 30 (1983), no. 2, 353–378.



i
i

“9-Murayama” — 2018/7/23 — 17:30 — page 935 — #31 i
i

i
i

i
i

Frobenius–Seshadri constants 935

[11] R. Hartshorne, Residues and Duality, Vol. 20 of Lecture Notes in Math.,
Springer-Verlag, Berlin-New York (1966). Lecture notes of a seminar
on the work of A. Grothendieck, given at Harvard 1963/64. With an
appendix by P. Deligne.

[12] A. Ito, Okounkov bodies and Seshadri constants, Adv. Math. 241 (2013),
246–262.

[13] Y. Kachi and J. Kollár, Characterizations of Pn in arbitrary character-
istic, Asian J. Math. 4 (2000), no. 1, 115–121. Kodaira’s issue.

[14] S. Kebekus, Families of singular rational curves, J. Algebraic Geom.
11 (2002), no. 2, 245–256.

[15] J. Kollár, Rational Curves on Algebraic Varieties, Vol. 32 of Ergeb.
Math. Grenzgeb. (3), Springer-Verlag, Berlin (1996), ISBN 3-540-

60168-6.

[16] D. Laksov and A. Thorup, Weierstrass points on schemes, J. Reine
Angew. Math. 460 (1995), 127–164.

[17] R. Lazarsfeld, Positivity in Algebraic Geometry I, Classical Setting:
Line Bundles and Linear Series, Vol. 48 of Ergeb. Math. Grenzgeb. (3),
Springer-Verlag, Berlin (2004), ISBN 3-540-22533-1.

[18] Y. Liu and Z. Zhuang, Characterization of projective spaces by Seshadri
constants, Math. Z. 289 (2018), no. 1-2, 25–38.
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