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Chern classes of logarithmic vector fields

for locally quasi-homogeneous

free divisors
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Let X be a nonsingular complex projective variety and D a locally
quasi-homogeneous free divisor in X. In this paper we study a nu-
merical relation between the Chern class of the sheaf of logarith-
mic derivations on X with respect to D, and the Chern-Schwartz-
MacPherson class of the complement of D in X. Our result con-
firms a conjectural formula for these classes, at least after push-
forward to projective space; it proves the full form of the conjecture
for locally quasi-homogeneous free divisors in Pn. The result gen-
eralizes several previously known results. For example, it recovers
a formula of M. Mustaţă and H. Schenck for Chern classes for free
hyperplane arrangements. Our main tools are Riemann-Roch and
the logarithmic comparison theorem of Calderon-Moreno, Castro-
Jimenez, Narvaez-Macarro, and David Mond. As a subproduct of
the main argument, we also obtain a schematic Bertini statement
for locally quasi-homogeneous divisors.

1. introduction

Let X be a nonsingular variety defined over C, D a reduced effective divisor
and U = X rD is the hypersurface complement. After a conjecture of Aluffi
[3], we raised the following question in [12]:

Question 1.1. In the Chow ring A∗(X), under what conditions is the for-
mula

(1) cSM (1U ) = c(DerX(− logD)) ∩ [X]

true?

The left hand side of the formula is the Chern-Schwartz-MacPherson
class of the open subvariety U , and the right hand side is the total Chern
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class of the sheaf of logarithmic vector fields along D. In [12], we have proven
that in the case where X is a complex surface (not necessarily a projective
surface), the above formula is true if and only if the divisor D has only
quasi-homogeneous singularities. This result strongly overlaps a result by
Adrian Langer in [11] Proposition 6.1 and Corollary 6.2.

This paper is a continuation of the investigation for conditions which
guarantee the above formula. The main result of this paper is:

Theorem 1.2. Let X ⊆ PN be a nonsingular projective variety defined over
C, and let D be a locally quasi-homogeneous free divisor in X. Then the two
classes appearing in (1) agree after push-forward to PN , that is:

(2)

∫
X
c1(O(1))i ∩ cSM (1U ) =

∫
X
c1(O(1))i ∩

(
c(DerX(− logD)) ∩ [X]

)
for all i ≥ 0.

Corollary 1.3. If X = Pn, formula (1) holds in the Chow ring for all
locally quasi-homogeneous free divisors.

As a special case when i = 0, both sides of formula (2) give the topolog-
ical Euler characteristic of U . For a general i, this formula may be seen as
an analogue for Chern classes of the computation of the cohomology of U
done by Castro et al. in [7].

In [2], Aluffi proves that formula (1) is true for free arrangements of hy-
persurfaces that are locally analytically isomorphic to hyperplane arrange-
ments; this includes the case of normal crossing divisors and of free hyper-
plane arrangements, verified earlier ([1], [3]). Aluffi’s results along with the
results in [12] have given convincing evidences why the freeness condition
has to enter the picture when comparing these two classes.

It should be noted that in the context of hyperplane arrangement, the
Chern polynomial of the sheaf of logarithmic vector fields has been compared
with other naturally defined polynomials by several authors. Mustaţă and
Schenck related the Poincaré polynomial of a free arrangement to
ct(Ω

1
X(logD)), the Chern polynomial of the sheaf of logarithmic differentials

[14]. Aluffi related the characteristic polynomial of an arrangement to the
Chern-Shwartz-MacPherson class of the arrangement complement, as well
as the class in the Grothendieck ring of varieties K0(V ar) of this comple-
ment [3]. The Poincaré polynomial and the characteristic polynomial of an
arrangement are closely related [15]. All these polynomials carry essentially
the same information for free hyperplane arrangements. By Corollary 1.3,
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the result in this paper recovers Aluffi’s result for hyperplane arrangements
[3], and generalizes it to arbitrary quasi-homogeneous free hypersurfaces ar-
rangements in projective space. Taking into account the relation between
Poincaré polynomial and CSM class polynomial stated above, the result
from this paper also gives a generalization of Mustaţă and Schenck’s result
(Theorem 4.1 in [14]) independent of the original proof.

While the freeness of the divisor is a nice relevant condition, it alone does
not guarantee the truth of formula (1), as pointed out by our previous study
[12]. The additional quasi-homogeneity condition on the divisor gives fur-
ther control over the singularities. One famous result is: the Tjurina number
being equal to the Milnor number characterizes quasi-homogeneity for iso-
lated hypersurface singularities [16]. More generally, The quasi-homogeneity
of divisors can be described by certain properties of the Tjurina Algebras
[20]. In this paper, the quasi-homogeneity, together with the freeness of the
divisor, are utilized to apply the logarithmic comparison theorem (LCT)[7],
which implies the classes in (1) have the same degree (the case i = 0 in (2)).

As a result of our local analysis, we obtain a schematic version of
Bertini’s theorem for locally quasi-homogeneous divisors (see Corollary 3.10),
strengthening Teissier’s idealistic Bertini theorem ([19] section 2.8) in this
context.

The remaining of this paper will prove Theorem 1.2 along the following
roadmap:

1) With the help of Riemann-Roch and LCT, we show the classes ap-
pearing in (1) have the same degree.

2) We show a result of Bertini type: the freeness and the quasi-homo-
geneity of the pair (X,D) are preserved by intersecting a general hy-
perplane H. So this allows us to use LCT inductively on the new pair
(X ∩H,D ∩H).

3) We study the relation between DerX∩H(− logD ∩H) and
c1(O(1)) · c(DerX(− logD)), using an exact sequence which relates the
sheaf of the logarithmic vector fields and the normal bundle. We also
show cSM (1U ) behaves in a similar fashion.

4) We conclude our proof by an induction on the dimension of X.

2. The first step of the proof

Let D be a quasi-homogeneous free divisor in a complex algebraic projective
variety X of dimension n, and U be the hypersurface complement X rD. In
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this section we prove cSM (1U ) and c(DerX(− logD)) ∩ [X], as cycle classes
in the Chow ring of X, have the same degree.

For any complex algebraic variety X, we can assign to it the group C(X)
of constructible functions on X and the group A(X) of algebraic cycles mod-
ulo the rational equivalence relation. Both assignments are functorial with
respect to proper morphisms of varieties. There is a unique natural transfor-
mation (called MaPherson transformation) between these functors, taking
the indicator function 1X to the total Chern class of the tangent bundle
c(TX) ∩ [X] for any nonsingular X. In this paper, the image of the func-
tion 1U under this transformation is denoted by cSM (1U ). For more detailed
information on Chern-Schwartz-MacPherson classes, see MacPherson’s orig-
inal paper [13] and Example 19.1.7 in [9].

We briefly recall the definition of free divisors and their basic properties
presented in [17]. Over an open subset U (in the complex topology), let f be a
defining equation of the divisor D. In this open set, a logarithmic vector field
alongD is a derivation θ ∈ DerX(U) satisfying θf ∈ (f), and a logarithmic p-
form with poles along D is a meromorphic p-form ω ∈ Ωp

X(?D)(U) satisfying
f · ω ∈ Ωp

X(U) and f · dω ∈ Ωp
X(U). This local information globalizes into

coherentOX -modules DerX(− logD) and Ωp
X(logD). There is a natural dual

pairing between DerX(− logD) and Ω1
X(logD), making them reflexive with

respect to each other. A divisor is free if DerX(− logD) (and so Ω1
X(logD))

is locally free. In this case, its rank equals dimX = n.
According to the second of the defining properties of the logarithmic

p-forms along D, the exterior differential makes the sheaves of logarithmic
forms a complex Ω•X(logD). It is a subcomplex of Ω•X(?D), the complex of
the sheaves of meromorphic forms with poles along D. When D is free, the
sheaf of logarithmic p-forms is isomorphic to the pth exterior product of the
sheaf of logarithmic 1-forms: Ωp

X(logD) ∼= ΛpΩ1
X(logD).

Next we recall the definition of locally quasi-homogeneous divisors [6]
(See also [7]).

Definition 2.1. A germ of divisor (D, p) ⊂ (X, p) is quasi-homogeneous if
there are local coordinates x1, . . . , xn ∈ OX,p with respect to which (D, p)
has a weighted homogeneous defining equation (with strictly positive
weights). We also say D is quasi-homogenous at p. A divisor D in an n-
dimensional complex manifold X is locally quasi-homogeneous if the germ
(D, p) is quasi-homogeneous for each point p ∈ D. A germ of divisor (D, p) ⊂
(X, p) is locally quasi-homogeneous if the divisor D is locally quasi-homo-
geneous in a neighborhood of p.
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Example 2.2 ([7]). Consider the surface D ⊂ C3 given by f(x, y, z) =
x5z + x3y3 + y5z. The germ of divisor (D, 0) is quasi-homogeneous with re-
spect to the weight (1,1,1). However, (D, 0) is not locally quasi-homogeneous.
In fact, (D, p) is not quasi-homogeneous for any point p on the z-axis other
than the origin.

One benefit of considering locally quasi-homogenous free divisors is, that
this class of divisors enjoys the following logarithmic comparison theorem
(LCT):

Theorem 2.3 ([7], see also [6] for generalizations). Let D be a lo-
cally quasi-homogeneous free divisor in the complex manifold X. Then the
inclusion of complexes Ω•X(logD)→ Ω•X(?D) is a quasi-isomorphism.

Remark 2.4. Denote j : U → X the inclusion. The Grothendieck compar-
ison theorem states the De Rham morphism:

Ω•X(?D)→ Rj∗CU

is a quasi-isomorphism. Grothendieck’s result together with Theorem 2.3
imply that, for locally quasi-homogeneous free divisors, the logarithmic De
Rham complex computes the cohomology of U .

Remark 2.5. In [6], it is pointed out that the Jacobian ideal JD of linear
type, with the freeness of the divisor, is enough to imply LCT. This condi-
tion, which is purely algebraic, may be used for generalizing Theorem 1.2 in
the future.

Now, we can prove:

Proposition 2.6. For locally quasi-homogeneous free divisors in nonsingu-
lar projective complex varieties, cSM (1U ) and c(DerX(− logD)) ∩ [X] have
the same degree.

Proof. By the functoriality of Chern-Schwartz-MacPherson transformation,
we have: ∫

X
cSM (1U ) = χc(U)

where
∫
X denotes degree of the dimension 0 component of the given class.
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In the context of complex algebraic varieties, or compactifiable complex
analytic manifold, it is well known that the Euler characteristic with compact
support equals the usual Euler characteristic ([18] Proposition 2.0.2), and
the latter is computed by the logarithmic De Rham complex by Remark 2.4:

χc(U) = χ(U)

=
∑
i

(−1)iH i (RΓ(X; Ω•X(logD))

=
∑
p,q

(−1)p+qHp(X; Ωq
X(logD))

=
∑
q

(−1)q
∫
X

ch(Ωq
X(logD)) ∩ Td(X)

=

∫
X

∑
q

(−1)qch(ΛqΩ1
X(logD)) ∩ Td(X)

=

∫
X
cn(DerX(− logD)) · Td(DerX(− logD))−1 ∩ Td(X)

=

∫
X
cn(DerX(− logD)) ∩ [X]

=

∫
X
c(DerX(− logD)) ∩ [X]

The fourth of these equalities comes from Riemann-Roch; the fifth one comes
from the fact that Ωp

X(logD) ∼= ΛpΩ1
X(logD) for free divisors; the sixth uses

a formula showed in [9] Example 3.2.5; for the seventh, just notice that
cn(DerX(− logD)) ∩ [X] is a 0-dimensional cycle and the Todd class starts
from 1 + . . . for any vector bundle. �

3. The second step of the proof

In this section we prove the freeness and the quasi-homogeneity of the pair
(X,D) is preserved by intersecting with a general hyperplane of the ambient
projective space PN . For this purpose, we first recall Saito’s logarithmic
stratification (see [17] lemma 3.2), which we will use in our definition of
transversal intersections.

Lemma 3.1. Let X be an n-dimensional complex manifold and D a divi-
sor in it. There exists uniquely a stratification {Dα, α ∈ I} of X with the
following properties:
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1) Stratum Dα, α ∈ I is a smooth connected immersed submanifold of X.
X is a disjoint union

∐
α∈I Dα of the strata.

2) let p ∈ X belong to a stratum Dα. Then the tangent space TDα,p of Dα

at p coincides with the subspace DerX(− logD)(p) ⊂ TX,p.

3) if Dα ∩Dβ 6= ∅, then Dα ⊂ ∂Dβ.

In the lemma, each Dα is in fact a maximal integral submanifold of the
involutive distribution determined by DerX(− logD). With the help of these
logarithmic stratum, we can now define transversal intersection of D with
nonsingular varieties.

Definition 3.2. Let X and Y be complex analytic submanifolds of some
ambient space, and D is a divisor in X. We say that the divisor D intersects
Y transversally at p ∈ D ∩ Y if TDα,p intersects TY,p transversally where Dα

is the unique stratum containing p. We say that the divisor D intersects Y
transversally if at all points of D ∩ Y they intersect transversally.

Remark 3.3. E. Faber has recently studied transversality for singular hy-
persurfaces in [8]. It turns out that our definition of transversal intersection
overlaps her definition of “splayed divisors” when one “splayed component”
is a nonsigular hypersurface.

The following propositions show that quasi-homogeneity and freeness
are preserved by transversal intersection.

Proposition 3.4. Let X ⊂ PN be an n-dimensional nonsingular complex
projective variety and D a locally quasi-homogeneous divisor in X. Let H be
a hyperplane of PN intersecting both D and X transversally. Then D ∩H
is a locally quasi-homogeneous divisor in the nonsingular X ∩H.

Proof. At any point p ∈ H ∩D, the transversal intersection of D and H
indicates that we can find a non-vanishing logarithmic vector field θ at a
neighborhood of p such that H is transversal to θp at p. By [7] Lemma
2.3 there exists a coordinate system locally at p such that (D, p) ∼= (D′ ×
C, (0, 0)) and (D′, 0) is a quasi-homogeneous germ in Cn−1. In this coordinate
system, H ∩X becomes a nonsingular hypersurface H ′ transversal to the
trivial factor. Projecting along the trivial factor gives a local isomorphism
between the pairs (Cn−1, D′) ∼= (H ′, (D′ × C) ∩H ′). �
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Proposition 3.5. Let X ⊂ PN be an n-dimensional nonsingular complex
projective variety, D a free divisor in X, and H a hyperplane of PN inter-
secting both D and X transversally. Then D ∩H is a free divisor in the
nonsingular X ∩H.

Proof. cf. [7] Lemma 2.2. �

Remark 3.6. The projective space PN and the hyperplane H play no role
in the local analysis. The propositions will remain true if we replace PN
by any nonsingular ambient space, and replace H by any complex manifold
transversal to D.

We need the next proposition in our dimension counting argument.

Proposition 3.7. Set Di = {p ∈ D | RankCDerX(− logD)(p) = i} for i =
0, . . . n− 1. Then for a locally quasi-homogeneous divisor D, Di is an ana-
lytic set of dimension at most i.

Proof. For locally quasi-homogeneous free divisors, the result is immediate.
It is known that locally quasi-homogeneous free divisors are Koszul free and
Koszul free divisors are holonomic (the logarithmic strata are locally finite)
in the sense of Saito [5]. According to [17] dimCDi ≤ i for holonomic divisors.

For locally quasi-homogeneous divisors without the freeness assumption,
the author is not able to find a direct reference. To check the conclusion of
the proposition directly we can choose a local isomorphism (D, p) ∼= (D′ ×
Ci, (0, 0)) at p ∈ Di with D′ a quasi-homogeneous divisor in an open subset
of Cn−i. We see that this step reduces the question to the case i = 0, which
is immediate because of the existence of the local Euler vector field.

�

So far we have shown if the hyperplane H ⊂ PN cuts both X and the
locally quasi-homogenous free divisor D transversally, then we can produce
a nonsingular X ∩H with locally quasi-homogeneous free diviosr D ∩H.
To obtain the Bertini type result, we only need to count the dimension of
the hyperplanes which fail to intersect D or X transversally. The set of
“bad” hyperplanes which fail to cut X transversally has dimension N − 1:
the result of the classical Bertini theorem. We now show:

Proposition 3.8. Let D be a locally quasi-homogeneous divisor (or more
generally a holonomic divisor). For any i, 0 ≤ i ≤ n− 1, the set of hyper-
planes that fail to intersect D transversally at points from Di has dimension
at most N − 1.
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Proof. Denote by PN the projective space of hyperplanes in PN . Consider
the subspace Wi of Di × PN consisting of pairs (p,H) such that H does not
meet D transversally at p. Also set πij the projection from Wi to the jth
factor, j = 1, 2. For any p ∈ Di, the fiber π−1i1 (p) consists of hyperplanes of
PN containing TDp. Here we identify a hyperplane with its tangent space at
any of its points. Because dim(TDp) = i, we get dim(π−1(p)) = N − i− 1.
Combining with Proposition 3.7, we get dim(Wi) ≤ (N − 1− i) + i = N −
1. So dim(πi2(W )) ≤ N − 1. �

Corollary 3.9. The general hyperplanes in PN intersect X and D transver-
sally at the same time. So the local quasi-homogeneity and the freeness of
divisors is preserved by intersecting with general hyperplanes.

Proof. dim(∪πi2(Wi)) ≤ N − 1 �

As an application of the ideas discussed in this section, we prove a
stronger version of Teissier’s idealistic Bertini’s theorem in the context of
locally quasi-homogeneous divisors. Recall the following version of idealistic
Bertini theorem stated in [10] Lemma 30. Let X = Pn and D is a hypersur-
face in X. For a sufficient general hyperplane H of X, the ideal of Ds ∩H
is integral over the ideal of (D ∩H)s. Here (·)s denotes the singular ana-
lytic subspace (or subscheme) of the given analytic space (or scheme). For
a hypersurface with a local equation f , the ideal of the singular subspace
is locally generated by all partial derivatives of f as well as f itself. In
Teissier’s original approach, however, the equation of the hypersurface f did
not appear in the definition of the singular analytic subspace. The seem-
ingly difference occurs because Teissier treated the singular subspace as a
subspace of D whereas we treat the singular subspace as a subspace of X.
For a general analytic space (or scheme), the ideal of the singular subspace
can be described in terms of the fitting ideals of the sheaf of Kähler differen-
tials. Note in particular the idealistic Bertini theorem implies that Ds ∩H
and (D ∩H)s have identical underlying topological spaces, although they
might not be identical as ringed spaces.

Corollary 3.10. Let X ⊂ PN be an n-dimensional nonsingular complex
projective variety and D a locally quasi-homogeneous divisor in X. Let H be
a sufficient general hyperplane of PN . Then Ds ∩H = (D ∩H)s as analytic
subspaces (or subschemes) of D.

Proof. By the previous corollary we know that a sufficient general hyper-
plane intersect D transversally. Thus locally we reduce to the case D =
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D′ × C and H is “perpendicular” to the trivial factor. It is clear then
Ds = (D′)s × C. So Ds ∩H = (D′)s = (D ∩H)s. The statement about sub-
schemes is obtained from GAGA principle. �

4. The third step of the proof

In this section, if not otherwise specified, X ⊂ PN is a smooth complex
projective variety, D is a free divisor in X, U is the complement of D in X,
and H is a hyperplane in PN intersecting X and D transversally. Also denote
by X ′, D′ and U ′ the intersection of H with X, D and U respectively. We
derive a formula relating c(DerX(− logD)) ∩ [X] and c(DerX′(− logD′)) ∩
[X ′]. Replacing c(DerX(− logD)) ∩ [X] by cSM (1U ), c(DerX′(− logD′)) ∩
[X ′] by cSM (1U ′), the same formula is true.

For closed embeddings of nonsingular varieties, we know the normal
bundle on the subvariety is the quotient of the tangent bundles. It turns
out in our current setting, the quotient of the sheaves of logarithmic vector
fields also defines the normal bundle.

Proposition 4.1. Denote N the normal bundle on X ′ to X, and i : X ′ →
X ′ the closed embedding. We have the exact sequence of vector bundles

0→ DerX′(− logD′)→ i∗(DerX(− logD))→ N → 0

Proof. First note all the arrows in the sequence are naturally defined. The
map DerX′(− logD′)→ i∗(DerX(− logD)) is induced by TX ′ → i∗TX. The
second arrow i∗(DerX(− logD))→ N is the restriction of i∗TX → N to
i∗(DerX(− logD)). This sequence of analytic coherent sheaves is exact be-
cause locally analytically the sheaf in the middle is the direct sum of the
sheaves on the sides. The same sequence is also exact in the category of
algebraic coherent sheaves as the GAGA principle applies. �

Taking Chern classes of this exact sequence and then pushing forward
to X, we get:

i∗
(
c(DerX′(− logD′)) · c(N) ∩ [X ′]

)
= c(DerX(− logD)) ∩ i∗[X ′]
= c1(OX(1)) · c(DerX(− logD)) ∩ [X]

As we have advertised before, there is a similar formula for CSM classes.
For its proof, see proposition 2.6 in [4].
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Proposition 4.2.

i∗ (c(N) ∩ cSM (1U ′)) = c1(OX(1)) ∩ (cSM (1U ))

Remark 4.3. Under the basic setting of this section, X ′ is a hyperplane
section of X, so the normal bundle N ∼= OX′(1).

5. Coda: The fourth step of the proof

With all the preparations in previous sections, we can now prove Theo-
rem 1.2 by an induction of the dimension of X.

Proof of Theorem 1.2. Let X be a nonsingular complex projective curve, D
be a reduced effective divisor in X. Since in this case D itself is nonsingu-
lar, therefore normal crossing, thus the classes in equation (1) are rationally
equivalent [1]. Alternatively, we can get the same conclusion by a direct com-
putation. If D =

∑
Pi, then cSM (U) = c(TX) ∩ [X]−

∑
[Pi]. To calculate

the Chern class of the logarithmic vector fields, we use the following exact
sequences:

0→ DerX(− logD)→ TX → OD(D)→ 0

0→ OX → OX(D)→ OD(D)→ 0

Taking Chern classes of these exact sequences we get c(DerX(− logD)) ∩
[X] = (c(TX) · c(OX(D)−1) ∩ [X] = c(TX) ∩ [X]−

∑
[Pi].

Assume the theorem is proved for all k − 1 dimensional nonsingular com-
plex projective varieties, we now finish the inductive step. Let X be a k
dimensional nonsingular complex projective variety, D be a locally quasi-
homogeneous free divisor in X, U be the complement of D in X, and H
is a hyperplane of the ambient projective space intersecting both X and D
transversally. Denote by X ′, D′ and U ′ respectively the intersections of the
corresponding spaces with H.

According to Proposition 2.6, the degrees of the CSM class and the Chern
class of the logarithmic vector fields are always the same. To establish other
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numerical relations, we use the following equalities:∫
c1(OX(1))i ∩ cSM (1U )

=

∫
c1(OX(1))i−1 ∩

(
c1(OX(1)) ∩ cSM (1U )

)
(i ≥ 1)

=

∫
c1(OX(1))i−1 ∩ i∗

(
c(OX′(1)) ∩ cSM (1U ′)

)
(Proposition 4.2)

=

∫
c1(OX(1))i−1 ∩

(
c(OX(1) ∩ i∗cSM (1′U )

)
(projection formula)

=

∫
c1(OX(1))i−1 ∩ i∗cSM (1′U ) +

∫
c1(OX(1))i ∩ i∗cSM (1′U )

=

∫
c1(OX′(1))i−1 ∩ cSM (1′U )

+

∫
c1(OX′(1))i ∩ cSM (1′U ) (projection formula)

Applying the analogous formula for logarithmic vector fields instead of
Proposition 4.2 we have:∫

c1(OX(1))i ∩
(
c(DerX(− logD) ∩ [X]

)
=

∫
c1(OX′(1))i−1 ∩

(
c(DerX′(− logD′) ∩ [X ′]

)
+∫

c1(OX′(1))i ∩
(
c(DerX′(− logD′) ∩ [X ′]

)
(i ≥ 1)

Now the theorem follows from inductive hypothesis.
�

Proof of Corollary 1.3. For X = Pn, the morphism from Ai(X) to Z

α 7→
∫
α ∩ c1(O(1))i

is an isomorphism. �
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a Ph.D student at Florida State University.
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