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Configurations of FK Ising interfaces and

hypergeometric SLE

Antti Kemppainen and Stanislav Smirnov

In this paper, we show that the interfaces in the FK Ising model at
criticality in a domain with 4 marked boundary points and wired–
free–wired–free boundary conditions conditioned on a specific in-
ternal arc configuration of interfaces converge in the scaling limit
to the hypergeometric SLE (hSLE). The arc configuration consists
of a pair of interfaces and the scaling limit of their joint law can be
described by an algorithm to sample the pair from an hSLE curve
and a chordal SLE (in a random domain defined by the hSLE).

1. Introduction

In the seminal paper [17], Oded Schramm introduced SLE as a one-parameter
family of conformally invariant random fractal curves, and showed that those
are the only possible conformally invariant scaling limits of the interfaces in
the lattice models at criticality. The SLEs are dynamically grown, by running
the Loewner evolution with a random driving term. The original definition
was formulated in two setups: chordal (curves between two boundary points)
and radial (curves between a boundary and an interior point), which both
have trivial conformal modulus, and thus their Loewner driving term is given
by a Brownian motion without a drift. Soon afterwards Lawler, Schramm
and Werner introduced a generalization [13] for domains with several marked
points and the driving process drift having a very particular and elegant de-
pendence on their conformal moduli. While including several fundamental
cases, this process does not cover all the important situations, and it was
quickly realized that one should also look at more general SLEs, weighted by
partition functions and having more complicated drifts [1, 4, 8, 12, 15, 22].

In this paper we are concerned with a particular case of SLEs in a
domain with 4 marked boundary points connected in pairs by two non-
intersecting SLE curves. Such arrangement corresponds to the wired-free-
wired-free boundary conditions in the underlying FK model. The marked
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boundary points can be connected in two ways, and conditioning on one of
those we obtain the hypergeometric SLE, cf. [16, 21].

1.1. FK Ising model on Z2

Let L• and L◦ be the even and odd sublattices of the square lattice Z2,
respectively, that is, the sum of the x and y coordinates is even or odd on
L• and L◦, respectively. The lattices L• and L◦ are both square lattices with
a lattice mesh

√
2. The medial lattice L� is formed by the midpoints of edges

of L• (or equivalently of L◦) which then are connected with edges by going
around each face of L•. The graph L� is also a square lattice. The modified
medial lattice L♠ is the square–octagon lattice which we get by replacing
all vertices of L� by a small square. See the introduction of [10] for more
information.

We call the octagons white or black, if their centers are in L• and L◦,
respectively. Those faces of L♠ that are squares are called small squares.

a

b

c

d

(a) A discrete domain with four
marked boundary points. Marked
points are the cusp points in the pic-
ture. The boundary of the discrete
domain consists of four “admissible
paths” (boundaries of chains of oc-
tagons and small squares alternating)
on L♠.

(b) In the 4 marked boundary points
setting, a configuration of (the loop
representation) of the FK Ising model
consists of two interfaces and a number
of loops. If a, b, c, d are as on the figure
(a), then the present configuration be-
longs to the internal arc configuration
event (a _ d, c _ b).

Figure 1: Discrete domain with 4 marked boundary points and a loop con-
figuration on it.
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Consider a domain Ω whose boundary is the outer boundary of a simple
closed chain of faces where the octagons and the small squares are alter-
nating. We assume that the “boundary conditions” change at 4 “marked”
points, that is, the chain consist of exactly 4 open monochromatic chains of
octagons and small squares. See Figure 1. The marked points are denoted by
a, b, c, d in general and we can assume they are the joint vertices of a black
octagon, a white octagon and a small square in the chain and thus on the
boundary of the domain. Assume that a, b, c, d are counterclockwise ordered
on the boundary and that the octagons next to the boundary arc [ab] are
white. Then necessarily the octagons next to [cd] are white as well and the
ones next to [bc] or [da] are black.

Let G♠ ⊂ L♠ be the graph which contains the vertices (V (L♠) ∩ Ω) ∪
{a, b, c, d} and all the edges contained in Ω. Let us consider a loop config-
uration which in the present case contains 2 open paths that both connect
{a, c} to {b, d} and a number of closed loops. We assume that the configu-
ration is dense on G♠, in the sense that it covers all the vertices, and that
the paths are simple and mutually disjoint. See Figure 1.

Define a probability measure on the dense simple loop configurations of
G♠ by requiring that the probability of a loop configuration is proportional
to

(1)
√

2
(# of loops)

.

Notice that the number of open paths doesn’t enter this formula, since there
are always 2 such paths. The model is called the loop representation of the
critical FK Ising model (Fortuin–Kasteleyn random cluster model with the
parameter values that corresponds to the critical Ising model).

1.1.1. The motivation for the FK random cluster model. The
(spin) Ising model is a model for ferromagnetic substance. The Ising model
configuration is a field of ±1 random variables, one on each vertex of a graph,
and their probability law is given by the Boltzmann distribution of an energy
functional with a nearest neighbor interaction. A parameter β determines
the strength of the interaction. The Fortuin–Kasteleyn random cluster model
(FK model) is a percolation-type model with two parameters p ∈ [0, 1] and
q ≥ 0. The FK model configuration is a random subset of the set of edges
of a graph. These edges are called open and the edge in the complement are
called closed. A connected component (of vertices) in that random graph
is called a cluster. In the FK model, the probability of the configuration is
proportional to q(# of clusters) p(# of open edges) (1− p)(# of closed edges).
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The FK Ising model is a particular case q = 2 of the FK model, with
other values of q leading to the FK representations of the q-state Potts
model. The spin Ising model and the FK Ising model are connected by the
Edwards–Sokal coupling, that is, there exists a random field on the vertices
and edges such that the marginal distribution of the random field on the
vertices is the spin Ising model and the marginal distribution of the random
field on the edges is the FK Ising model. For instance, spin correlations can
be expressed in terms of connection probabilities using this coupling. See for
example [5] for more information.

We consider only the case q = 2 with the critical parameter p =
√
2√

2+1

in this article. Also we consider only the square lattice Z2, although, this
assumption could be relaxed following [3].

The loop representation of the random cluster configuration is a dense
set of loops such that no loop intersects any open or dual-open edges (the
loops are the boundaries of primal and dual clusters). The choice of critical
parameter for the FK Ising random cluster model leads to the weight (1) for
the loop representation.

1.2. Setting and notation for the scaling limit

1.2.1. Discrete setting, conditional measure and the scaling limit.
For some δ > 0, (Ωδ, aδ, bδ, cδ, dδ) be a simply connected discrete domain
with four marked boundary points and lattice mesh δ > 0, that is, the bound-
ary of Ωδ is a path on δL♠ with properties given above. We assume that
the boundary arcs α1 = [aδbδ], α2 = [bδcδ], α3 = [cδ, dδ] and α4 = [dδaδ] are
simple lattice paths on the modified medial lattice δL♠ such that the first
and last edges are edges between two octagons and α1, α

←
2 , α3, α

←
4 , where

α← denotes the reversal of α, have white octagons and small squares to their
left and black octagons and white squares on their right.

Let Gδ be the graph on δL• corresponding to Ωδ and consider the FK
model with wired boundary conditions on [bδcδ] and [dδaδ]. Define also an
enhanced graph Ĝδ where we add the external arc pattern (aδ ^ bδ, cδ ^ dδ)
in the sense that the wired arcs are counted to be in the same component
and in the weight (1), if the interface starting at aδ ends at bδ, then it is
counted as a closed loop.

It turns out, that on the enhanced graph Ĝδ, discrete versions of the
Cauchy–Riemann equations are valid for a discrete observable that general-
izes the one introduced in [19]. Thus that choice of the boundary conditions
leads to holomorphic scaling limit of the observable and allows the scaling
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limit to be identified explicitly. This observable was originally proposed to
deduce convergence of the FK Ising interface tree to the branching SLE,
which was eventually done in in [10]. This required the (far from easy) sta-
bility of boundary conditions in the limit, which was justified in [3, see
Remark 6.3], where the observable first appeared in print and was used to
derive the crossing probabilities.

There are two interfaces γ and γ∗ starting at aδ and cδ respectively.
Denote by Pδ the probability law of γ and by P+

δ the measure Pδ conditional
to the fact that γ ends to dδ.

We assume that the sequence of domains (Ωδ, aδ, bδ, cδ, dδ) converges to
(Ω, a, b, c, d) in the Carathéodory sense, that is, the conformal maps from a
reference domain (H, 0, x, 1,∞) onto (Ωδ, aδ, bδ, cδ, dδ) (The marked points
are mapped on the marked points in the given order. The map exists for a
unique x ∈ (0, 1) for each δ.) converge uniformly on compact subsets of H to
the conformal map from a reference domain (H, 0, x, 1,∞) onto (Ω, a, b, c, d).

The scaling limits P = limδ→0 Pδ and P+ = limδ→0 P+
δ are considered

below.
Notice that those results that we use from [3, 10] don’t require any

particular regularity from the boundary of Ωδ.

1.2.2. Conformal transformation to the upper half-plane. It is use-
ful to describe the probability laws in the upper-half plane (or in another
fixed reference domain). We apply a conformal transformation such that
the points aδ, bδ, cδ, dδ are mapped to points U δ0 , V

δ
0 ,W

δ
0 ,∞ respectively.

Then U δ0 < V δ
0 < W δ

0 . We choose the conformal transformations such that,
as δ → 0, these points tend to some points U0 < V0 < W0.

We will consider simple curves starting at U0 as Loewner evolutions. See
[9, 14, 20] for basic definitions of half-plane capacity, Loewner equation etc.
In particular, we assume that the curves are parametrized by the half-plane
capacity. The driving process is denoted by Ut and three other marked points
are Vt,Wt and ∞. In particular, Vt and Wt satisfy the Loewner equation
driven by Ut. Then also Ut < Vt < Wt. Auxiliary processes are defined by
setting

Xt = Vt − Ut, Yt = Wt − Vt.

1.3. The hypergeometric SLE(16
3

)

The hypergeometric SLE (the name, which we abbreviate to hSLE, was
proposed in [21], but such and more general processes appeared earlier in
[4, 16, 23]) with parameter value κ = 16

3 is defined by letting the driving
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process satisfy the stochastic differential

dUt =
4√
3

dBt +

− 2

Xt
+

2

Xt + Yt
− 4

3

Yt

(
−1 +

√
1 + Xt

Yt

)
Xt(Xt + Yt)

dt.(2)

Note that the third term inside the brackets is equal to −16
3
F ′(z)
F (z)

1−z
s evalu-

ated at z = Xt

Xt+Yt
and s = Xt + Yt, where F (z) is the hypergeometric func-

tion 2F1(
3
4 ,

1
4 ; 3

2 ; z). Here Bt is a standard one-dimensional Brownian motion.

1.4. The main result

By the results of [10], the scaling limit P = limδ→0 Pδ is equal to a certain
SLE[163 , Z] process, that is, an SLE(163 ) process whose drift is given by a
partition function Z. That result of [10] extends the convergence of FK Ising
chordal interface to the chordal SLE(163 ) shown in [2] and its proof uses the
generalized martingale observable considered already in [3]. We show in the
current paper, that this process when its law is weighted by the generalized
martingale observable is in fact a hypergeometric SLE. The topology of the
convergence is given by the weak convergence of probability measures on
the metric space of continuous functions. We use that result to prove the
following theorem.

Theorem 1.1. The sequence P+
δ converges, in the same topology as above,

to P+ which is the law of a hypergeometric SLE(163 ).

See also Section 2.5 below for description of the scaling limit of the joint
law of the pair (γ, γ∗).

2. Scaling limit of FK Ising model interface as
hyperbolic SLE

2.1. Discrete martingale observable

In the random cluster model we take the boundary conditions which are
free–wired–free–wired and they change across the edges corresponding to
aδ, bδ, cδ, dδ. There are interfaces starting and ending to these points. Due
to topological (as well as parity) reasons, the interface starting at aδ has to
end at bδ or dδ. We denote these two mutually exclusive events as (aδ _
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bδ, cδ _ dδ) and (aδ _ dδ, cδ _ bδ), respectively, and we call them internal
arc patterns.

We consider the quantity

(3) M δ
t = Pδ( (aδ _ dδ, cδ _ bδ) | Ft)

which we call an observable. Here Ft is the σ-algebra generated by γ(s),
s ∈ [0, t]. Since M δ

t is a conditional expected value of a random variable
with respect to Ft, the process (M δ

t )t≥0 is a martingale with respect to the
filtration (Ft)t≥0 and the probability measure Pδ.

2.2. Scaling limit of the observable

In [3], see also Section 4.4.1 of [10] (the article whose notation we are using
here), it was shown that the observables M δ

t converge to a scaling limit Mt.
It has an explicit formula

(4) Mt =

√
1 +

Yt
Xt
−
√
Yt
Xt
.

The mode of convergence is given by the following result:

Proposition 2.1. For each ε > 0 and T > 0, there exists an event E and
δ0 > 0 such that the following holds. If δ ≤ δ0, then Pδ(E) > 1− ε and

sup
E

sup
t∈[0,T ]

|M δ
t −Mt| ≤ ε.

This result and the martingale property of (M δ
t )t≥0 imply the following.

Proposition 2.2. The process (Mt)t≥0 is a martingale with respect to fil-
tration (Ft)t≥0 and the probability measure P.

Namely, let s < t and let f be any continuous, bounded random variable
which is measurable with respect to Fs. Then Eδ(M δ

t f) = Eδ(M δ
s f) by the

martingale property of the discrete observable. By the triangle inequality

|E(Mtf)− E(Msf)| ≤ |E(Mtf)− Eδ(Mtf)|+ |E(Msf)− Eδ(Msf)|
+ |Eδ((Mt −M δ

t )f)|+ |Eδ((Ms −M δ
s )f)|.
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First and second term tend to zero as δ → 0 by the weak convergence of
probability measures. The third and fourth term also tend to zero by Propo-
sition 2.1, since

|Eδ((Mt −M δ
t )f)| ≤ 2Eδ(1Ec |f |) + sup

E
sup
t∈[0,T ]

|M δ
t −Mt|Eδ(|f |).

2.3. Weighting by a martingale

We weight the probability measure by the martingale Mt/M0 (the process
is stopped upon the martingale hitting 0 or 1, i.e. when Xt or Yt hit zero).

Denote the event (aδ _ dδ, cδ _ bδ) by A. Then by properties of condi-
tional expected values

E(fMt) = E(f E(1A | Ft)) = E(E(f 1A | Ft)) = E(f 1A)

for any Ft-measurable bounded random variable f . Thus the probability
measure P weighted by Mt/M0 can be interpreted as to be conditioned by
the event (aδ _ dδ, cδ _ bδ) and thus equals to P+.

2.3.1. Girsanov’s theorem. Suppose that Nt is a martingale such that

Mt = exp

(
Nt −

1

2
〈N〉t

)
Then by Itô’s lemma, Mt and Nt satisfy the identity

Nt = N0 +

∫ t

0

dMs

Ms

which can be used for defining Nt for any positive martingale Mt.
Under the probability measure weighted by the martingale Mt/M0, it

holds that the process

(5) Bt − 〈B,N〉t

is a standard Brownian motion by Girsanov’s theorem (see for instance [6],
Section 2.12). Thus if we have a Loewner evolution whose driving process is

Ut = U0 +
√
κBt +Dt

where Dt is the drift of Ut in the sense that Dt is a bounded variation
process, then the driving process can be written as

Ut = U0 +
√
κB̂t +Dt + ∆t
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where B̂t is a standard Brownian motion under the weighted probability
measure. Here

∆t =
√
κ〈B,N〉t

by (5).

2.4. The driving process conditioned on the internal arc
configuration

Remember that by results of [10], see in particular Section 5.5.2 therein, Mt

satisfies a stochastic differential equation which is written in the integral
form as

Mt = M0 +

∫ t

0

1

2
√

3

(1−M2
s )3

YsMs(M2
s + 1)

dBs

and the driving function Ut satisfies

dUt = − 4√
3

dBt +

(
2

Xt
− 1

3

(3M4
t + 2M2

t + 1)(1−M2
t )2

YtM2
t (M2

t + 1)2

)
dt.

These results are based on the holomorphic observables and a martingale
characterization given formulas of the type (4) for a pair of martingales. For
more information, see [10].

Consequently by the considerations of Section 2.3.1, for a process (B̂t)
which is a Brownian motion under the measure P+ (the one weighted by
(Mt/M0)), it holds that

dUt = − 4√
3

dB̂t +

(
2

Xt
− 1

3

(3M4
t + 2M2

t + 1)(1−M2
t )2

YtM2
t (M2

t + 1)2

− 2

3

(1−M2
s )3

YsM2
s (M2

s + 1)

)
dt

= − 4√
3

dB̂t +

(
2

Xt
− 1

3

(M4
t + 2M2

t + 3)(1−M2
t )2

YtM2
t (M2

t + 1)2

)
dt.

The rightmost term on the first line is
√
κd〈B,N〉t. By plugging in the

expression (4) gives after some algebra

dUt = − 4√
3

dB̂t +

 2

Xt
− 2

Xt + Yt
− 4

3

Yt

(
2 +

√
1 + Xt

Yt

)
Xt(Xt + Yt)

 dt
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which is equivalent to (2). Thus it follows that P+ is the law of a hypergeo-
metric SLE(163 ).

For another result which also uses the convergence of a sequence of
probability measures and a sequence of martingales (each with respect to a
corresponding probability measure) to derive the convergence of a sequence
of weighted probability measures, see [7].

2.5. Joint law of the pair of interfaces in the arc configuration

The scaling limit of the joint law of the interfaces from aδ to dδ and cδ to bδ
under the probability measure conditioned on the event (aδ _ dδ, cδ _ bδ)
can be characterized in the following way.

Consider the scaling limit of the pair of interfaces in the conditioned
arc configuration after conformal transformation to the upper half-plane
and let the curves be γ1 and γ2 such that γ1 and γ2 start at U0 and W0,
respectively. Parametrize the curves γ1 and γ2 in some way. For instance,
use the half-plane capacity seen from∞ or V0 as parametrization for γ1 and
γ2, respectively. Then define Fs,t to be the σ-algebra generated by γ1(q),
q ∈ [0, s], and γ2(r), r ∈ [0, t].

By the same argument that says that the marginal law of γ1 is the
hSLE, we see that conditionally on Fs,t, the marginal law of γ1 is the hSLE.
Degenerate versions of these statements give that (i) the pair (γ1, γ2) can be
sampled by sampling first γj , j = 1 or 2, as hSLE in H and then sampling
γ3−j in H, where H is the component of γ3−j(0) + i (0+) in H \ γj(0,∞),
as an independent chordal SLE and (ii) that a similar conditional version
holds (i.e. conditional on Fs,t, the pair can be sampled as an hSLE and an
independent chordal SLE).

2.6. On the topology of convergence of the interfaces

The topology of convergence of random curves used in [2, 9, 10] is given
by the weak convergence of probability measures on the set of capacity-
parametrized curves with the uniform norm. Once we have this type of
convergence for the “auxiliary” sequence Pδ which is shown in [10], we can
apply Proposition 2.1 to show that P+

δ converges weakly. Namely, for any
δ > 0 and t > 0 and any continuous, bounded, t-measurable f

(6) |Eδ(M δ
t f)− E(Mtf)| ≤ |Eδ(M δ

t f)− Eδ(Mtf)|+ |Eδ(Mtf)− E(Mtf)|.
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The second term on the right goes to zero by the weak convergence and the
first term by Proposition 2.1 by the same argument as we gave in Section 2.2.

This topology of convergence extends to the pair of interfaces.
Notice that alternatively we could use the fact that we do have the

estimates of [11] also for the sequence weighted probability measures, since
the weighting factor is bounded and the estimates hold for the non-weighted
sequence.

3. Comparison to a similar result on percolation

Let us compare the previous case of FK Ising model to that of the critical
site percolation model on triangular lattice.

Consider the site percolation model on the triangular lattice

δLtri = {δ(j + keiπ/3) : j, k ∈ Z}.

It was shown in [18], that the interface of this model in the chordal setup
converges to SLE(6).

Note that the existence of an open percolation crossing from [aδbδ] to
[cδdδ] in Ωδ is exactly the event of an internal arc pattern (aδ _ dδ, cδ _ bδ)
of interfaces. A central result in [18] is that the probability of such a crossing
event is given by Cardy’s formula

lim
δ→0

Pδ((aδ _ dδ, cδ _ bδ)) = C

(
X0

X0 + Y0

) 1

3

2F1

(
1

3
,
2

3
,
4

3
;

X0

X0 + Y0

)
holds, where X0 = V0 − U0 and Y0 = W0 − V0 with the notation used above
and C is a constant, whose exact value we don’t need below.

It follows then that

Mt =

(
Xt

Xt + Yt

) 1

3

2F1

(
1

3
,
2

3
,
4

3
;

Xt

Xt + Yt

)
is a martingale for the scaling limit for t ≤ τ where τ is the time when the
quadrilateral degenerates (the interface hits [bc] or [cd]). Since the interface
(exploration process from a to d) converges to the chordal SLE(6),

dUt =
√

6 dBt, dXt = −
√

6 dBt +
2

Xt
, ∂tYt =

2

Xt + Yt
− 2

Xt
.
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Thus it follows that if dNt = dMt

Mt

√
6 d〈B,N〉t = −

2
(

Yt

Xt+Yt

) 1

3

Xt 2F1

(
1
3 ,

2
3 ,

4
3 ; Xt

Xt+Yt

)dt

Thus for the process B̂t = Bt − 〈B,N〉t which is a Brownian motion under
the probability measure weighted by the martingale Mt/M0, the driving
process Ut satisfies

dUt =
√

6dB̂t −
2
(

Yt

Xt+Yt

) 1

3

Xt 2F1

(
1
3 ,

2
3 ,

4
3 ; Xt

Xt+Yt

)dt

which shows that the Loewner evolution is the hypergeometric SLE(6).

4. Discussion

We do expect a similar result for other values of the q parameter, namely
that similar processes to those studied here are fact SLE(κ, κ− 6) processes
in the 4-point fused setting (analogous to [10]) and hypergeometric SLE(κ)
processes in the 4-point setting when conditioned on an arc pattern. The
missing link, as for the chordal interface convergence, is the discrete holo-
morphicity of the observables – so far they have only been shown to satisfy
half of Cauchy-Riemann equations.

The approach we took gives the hypergeometric SLE as a product of a
calculation based on the holomorphic observables, the Itô calculus of semi-
martingales as well as the Girsanov theorem. A different approach based
on the uniqueness of the hypergeometric SLE and the convergence of the
interfaces in the chordal setup is taken in [21].
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