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Higher decay inequalities for multilinear

oscillatory integrals

Maxim Gilula, Philip T. Gressman, and Lechao Xiao

In this paper we establish sharp estimates (up to logarithmic losses)
for the multilinear oscillatory integral operator studied by Phong,
Stein, and Sturm [17] and Carbery and Wright [3] on any product∏d

j=1 L
pj (R) with each pj ≥ 2, extending the known results out-

side the previously-studied range
∑d

j=1 p
−1
j = d− 1. Our theorem

assumes a second-order nondegeneracy condition of Varčenko type,
and as a corollary reproduces a variant of Varčenko’s theorem and
implies Fourier decay estimates for measures of smooth density on
degenerate hypersurfaces in Rd.

1. Introduction

Let x = (x1, . . . , xd) ∈ Rd and let φ(x) be real analytic on some neighbor-
hood of the origin 0 ∈ Rd. Fix a smooth cutoff function χ compactly sup-
ported in that neighborhood, and consider the multilinear functional

Λ(f) =

∫
Rd
eiλφ(x)χ(x)

d∏
j=1

fj(xj)dx,(1.1)

where f = (f1, . . . , fd) is any d-tuple of locally integrable functions on R.
The purpose of this article is to study the asymptotic behavior in the real
parameter λ as |λ| → ∞ of the norm of Λ when viewed as a linear functional
on
∏d
j=1 L

pj (R).
Bilinear variants of this form have a long history in harmonic analysis

in connection with the study of Fourier integral operators and Radon-like
transforms (see, e.g., Greenleaf and Uhlmann [11] and Seeger [19]). In the
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820 M. Gilula, P. T. Gressman, and L. Xiao

1990s, Phong and Stein initiated the study of these oscillatory integrals as a
subject in its own right [13]. Their program focused primarily on weighted
and unweighted L2 × L2 estimates [14–16], as the L2 case was most directly
connected to the earlier FIO roots. In this setting, the undamped bilinear
case with real analytic phase was ultimately settled in [16], with the transi-
tion to C∞ phases being later accomplished by Rychkov [18] and Greenblatt
[8]. These works demonstrated the primary role of the (reduced) Newton
polyhedron of the phase φ, which had also been identified as a key object
in Varčenko’s study of scalar oscillatory integrals some twenty years ear-
lier [20]. To define the Newton polyhedron, expand φ(x) =

∑
α cαx

α near
the origin, where xα = xα1

1 · · ·x
αd
d , and define the Taylor support of φ by

supp(φ) = {α : cα 6= 0}. Let R≥ denote the nonnegative real numbers. The
Newton polyhedron of φ, denoted by N (φ), is defined to be the convex hull
of ⋃

α∈supp(φ)

(
α+ Rd≥

)
,

and the Newton distance dφ of φ is defined to be the minimum over all t
such that (t, . . . , t) ∈ N (φ). In the specific case of the form (1.1), modulating
each function fj by a function of the form e−iλφj(xj), it can be easily seen
that terms in the power series of φ which depend on only one coordinate
function do not affect the norm of Λ on

∏d
j=1 L

pj (R), so it will be assumed
without loss of generality that every α ∈ supp(φ) has at least two strictly
positive components. After removing all such single-variable terms in the
Taylor support of φ, the resulting Newton polyhedron corresponds to the
object known as the reduced Newton polyhedron in other contexts.

The success of the program of Phong and Stein to establish L2 × L2

estimates for (1.1) prompted generalizations and extensions to a variety of
higher-dimensional settings, including results of Carbery, Christ, and Wright
[1] as well as Carbery and Wright [3]. The most natural extension of the work
of Phong and Stein to higher dimensions turned out to be (1.1) itself, which
was studied by Phong, Stein, and Sturm [17] and Carbery and Wright [3].
The main theorem of Phong, Stein, and Sturm which is most closely related
to the present work is as follows:

Theorem B ([17]). Let α(1), . . . , α(K) ∈ Nd \ {0} be K given vertices, and
let S ∈ R[x1, . . . , xd] be any polynomial of degree nS . Set

D(α(1), . . . , α(K)) =
{
x ∈ U : |S(α(k))(x)| > 1, 1 ≤ k ≤ K

}
.
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Multilinear oscillatory integrals 821

Let N∗(α(1), . . . , α(K)) be the reduced Newton polyhedron generated by the
vertices α(k), i.e., the Newton polyhedron generated by those vertices α(k)

with at least two strictly positive components. Then for any algebraic do-
main D ⊂ D(α(1), . . . , α(K)) and any α ∈ N∗(α(1), . . . , α(K)), we have

(1.2)

∣∣∣∣∣
∫
D
eiλS(x)

d∏
j=1

fj(xj)dx

∣∣∣∣∣ ≤ C|λ|− 1

|α| lnd−
1

2 (2 + |λ|)
d∏
j=1

‖fj‖pj , d ≥ 2.

Here χD is the characteristic function of the algebraic domain D, λ 6= 0 is
any real number, |α| = α1 + · · ·+ αd, and 1

p′j
= 1− 1

pj
= αj
|α| . The constant

C depends only on nS , |α|, and the so-called type of D.

Phong, Stein, and Sturm’s purpose in proving Theorem B was to estab-
lish a robust stability result for the multilinear form (1.1), focusing on the
role of the Newton polyhedron. In the present paper, our main result, The-
orem 1.1, focuses on a somewhat different question inspired by Theorem B
concerning the possible range of exponents pj and the effect of this range on
the decay as a function of |λ|. It is certainly the case that the exponent − 1

|α|
of |λ| which appears in (1.2) is sharp for the particular choice of exponents
pj given by that theorem. In that sense, Theorem B cannot be improved
(in this sense, Theorem B surpasses Theorem 1.1 below in the case 1

p′j
= αj
|α|

since we do not investigate the stability of the constant analogous to C as a
function of the phase). The main contribution of Theorem 1.1 is that when
the exponents pj are taken to be strictly larger than the exponents in (1.2),
the resulting norm decays at a strictly faster rate as a function of |λ| for
generic phases (meaning those that satisfy the nondegeneracy condition (1.5)
below). We also note that the geometry of the domain of integration plays
no major role in our result because we do not prove stability of constants.

By studying (1.1) in the large-exponent regime as we will here, the decay
in λ of the form (1.1) is generally of a higher order than in the inequality
(1.2). However, this extra decay brings with it additional difficulties not
encountered in [17] or [3], which make it necessary to introduce certain
auxiliary nondegeneracy assumptions that were not previously needed. The
formulation we have chosen is essentially a second-order version of the so-
called Varčenko hypothesis [20]. Let F(φ) denote the set of compact faces
of N (φ). In particular, the set of zero-dimensional faces V(φ) ⊂ F(φ) is the
collection of vertices of N (φ). For each F ∈ F(φ), define the polynomial φF
by

φF (x) =
∑

α∈F∩Nd
cαx

α.
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822 M. Gilula, P. T. Gressman, and L. Xiao

Varčenko’s original nondegeneracy condition (the Varčenko hypothesis) can
be phrased as: for all F ∈ F(φ),⋂

1≤i≤d
{x : ∂iφF (x) = 0} ⊂

⋃
1≤j≤d

{x : xj = 0}.(1.3)

Under this hypothesis, Varčenko showed:

Theorem ([20]). Let φ be a real analytic function defined in a sufficiently
small neighborhood of the origin satisfying (1.3). Let `− 1 denote the small-
est dimension over all faces of N (φ) containing ν = (ν, . . . , ν), where ν = dφ
is the Newton distance of φ. Then∣∣∣∣∫

Rd
eiλφ(x)χ(x)dx

∣∣∣∣ . |λ|− 1

ν lnd−`(2 + |λ|).(1.4)

The nondegeneracy condition which proves to be most useful for our
present purposes is a second-order Varčenko-type nondegeneracy condition:
we assume that for all F ∈ F(φ),⋂

i 6=j
{x : ∂i∂jφF (x) = 0} ⊂

⋃
1≤j≤d

{x : xj = 0}.(1.5)

In other words, we assume that, for any F ∈ F(φ), any point at which all
off-diagonal terms of the Hessian matrix ∇2φF simultaneously vanish must
belong to a coordinate hyperplane. Note that Varčenko’s original hypothesis
does not require the Newton polytope and the reduced Newton polytope to
coincide for the phase φ as we have already assumed. This small distinc-
tion makes (1.3) and (1.5) slightly less similar than appearances suggest; in
particular, neither implies the other.

Our principal result is as follows:

Theorem 1.1. Suppose φ is real analytic and satisfies (1.5). Let pj ∈ [2,∞]
for 1 ≤ j ≤ d. If the support of χ is contained in a sufficiently small neigh-
borhood of 0, then for any real number ν > 2,

|Λ(f)| . |λ|−
1

ν lnm(2 + |λ|)
d∏
j=1

‖fj‖pj(1.6)
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Multilinear oscillatory integrals 823

for some implicit constant independent of f and some m ≥ 0 if and only if

ν

p′
=

(
ν

p′1
, . . . ,

ν

p′d

)
∈ N (φ),(1.7)

where p′ denotes the conjugate of p.

It should be noted that the full result of Theorem 1.1 requires at least
some version of the nondegeneracy condition (1.5). For example, the phase
φ(x) = (

∑d
j=1 xj)

k for k ≥ 3 yields a multilinear functional Λ whose norm

decays no faster than |λ|−
1

k regardless of the choice of exponents pj . This can
be seen by simply testing on smooth, nonnegative functions fj compactly
supported near the origin. Phong, Stein, and Sturm did not study this phase
in any regime in which decay greater than |λ|−

1

k might have otherwise been
expected, so no nondegeneracy hypotheses were necessary there. In our case,
φ fails to satisfy (1.5) because all second derivatives happen to vanish on the
hyperplane x1 + · · ·+ xd = 0. However, this means that when 1.5 is satisfied,
the best decay exponent provided by Theorem 1.1 will generally be higher
than that of Theorem B and will match the exponent from Varčenko’s The-
orem. An example of this type is the phase φ(x1, x2) = x2k+1

1 x2 + x1x
2k+1
2

for any integer k ≥ 1. Both Theorem B and Theorem 1.1 give that the norm

of the associated linear functional Λ on L2 × L2 decays like |λ|−
1

2k+2 . How-
ever, Theorem 1.1 also predicts that this functional has a norm decaying

like |λ|−
1

k+1 on L∞ × L∞, which is a case outside the Phong-Stein-Sturm
regime

∑
j

1
p′j

= 1 and an exponent which agrees with the decay rate of the

corresponding scalar oscillatory integral (i.e., Varčenko’s Theorem).
The reader may also note that Theorem 1.1 falls within the general

framework of Christ, Li, Tao and Thiele [2], who investigated more general
multilinear integrals of the form∣∣∣∣∣∣

∫
Rd
eiλφ(x)χ(x)

J∏
j=1

fj(πj(x))dx

∣∣∣∣∣∣ ≤ C|λ|−δ
J∏
j=1

‖fj‖pj .(1.8)

Here J ∈ N is any positive integer and each πj : Rd → Rdj is a surjective
linear transformation with 1 ≤ dj ≤ d− 1. The main focus of [2] is to explore
general conditions on the phase φ and the transformations πj to ensure
decay estimates (1.8) hold for some δ > 0 and some exponents (p1, . . . , pd).
In contrast, Theorem 1.1 deals with a very specific choice of projections πj
and deals with the question of finding sharp decay exponents δ. The methods
used here also differ significantly from the methods of [2].
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For readers interested in the exponent of the logarithmic factor, our proof
provides a value of m which can be calculated easily from the geometry of the
Newton polyhedron: m = 0 if ν

p′ is an interior point of N (φ), and m = d− `
if the face of lowest dimension containing ν

p′ has dimension (`− 1). The
value of m may not be sharp in general, but is sharp when all pj =∞. In
particular, Theorem 1.1 recovers the classical result of Varčenko under the
modified hypothesis (1.5):

Corollary 1.2. Let φ be the same as above and let (`− 1) denote the
smallest dimension over all faces of N (φ) containing ν = (ν, . . . , ν), where
ν = dφ is the Newton distance of φ. Then

|Λ(f)| . |λ|−
1

ν lnd−`(2 + |λ|)
d∏
j=1

‖fj‖∞.

When χ(0) 6= 0, the power of the log term is also sharp.

The usefulness of this functional variant of Varčenko’s theorem becomes
apparent when the functions fj are taken to be complex exponentials. Fixing
fj(xj) = eiξjxj and setting λ = ξd+1, the above corollary together with stan-
dard nonstationary phase estimates implies sharp estimates for the Fourier
decay of measures of smooth density on the surface (x, φ(x)); that is, for
ξ ∈ Rd+1, ∣∣∣∣∣

∫
eiξ·(x,φ(x))χ(x)dx

∣∣∣∣∣ . ‖ξ‖− 1

dφ

2 lnd−`(2 + |ξd+1|).

The strategy we employ to prove Theorem 1.1 can be sketched as follows.
After a series of reductions, we decompose the support of χ into boxes of
the form Qε := [ε1, 8ε1]× · · · × [εd, 8εd] for ε = (ε1, . . . , εd) ∈ (0, 1)d. On each
such box, the nondegeneracy hypothesis (1.5) makes it possible to establish
a uniform lower bound of the form

(1.9) inf
x∈Qε

max
i 6=j
|xixj∂i∂jφ(x)| & max

α∈N (φ)
εα1

1 · · · ε
αd
d

(see Lemma 3.1 and Corollary 3.3). The proof of this inequality is accom-
plished in Section 4 and is a consequence of the fact that for any box Qε,
there is always a face F ∈ N (φ) such that φF strongly dominates the rest of
the terms of the Taylor series at all points of the box. With these bounds,
Section 6 obtains the sharp estimate for Λ(f) assuming f is supported on a
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Multilinear oscillatory integrals 825

single box Qε (see Lemma 2.1) by coupling the aforementioned lower bound
with the usual operator van der Corput estimates of Phong and Stein [15].
The passage from individual boxes Qε to the entire multilinear functional
(1.1) is then fairly direct because the norms of the individual pieces sum
without any serious difficulty. The precise calculation of the sum is con-
tained in Lemma 2.2, which is proved in Section 7. In terms of the layout
of the full proof of Theorem 1.1, Section 2 reduces Theorem 1.1 to Lemmas
2.1 and 2.2. Section 3 records and proves some technical results needed for
the proofs of these two lemmas as well as the related Corollary 3.3, whose
proof appears in Section 5.

Before we begin, it is perhaps worth noting explicitly that the methods
we will use are quite different than the familiar resolution of singularities
arguments found, for example, in the work of Greenblatt [9, 10], Collins,
Greenleaf, and Pramanik [4], or the second and third authors [12, 21, 22]. In
particular, at no point do we use any nonlinear coordinate changes or make
any detailed analyses of the nature of any algebraic singularities. The only
somewhat delicate part of the proof is the establishment of the (effectively
sharp) quantitative lower bound (1.9) (which is the content of Lemma 3.1).
To think of this in another way, our methods rely on detailed quantitative
analysis of rescalings on each Qε rather than on more abstract monomial-
izations or changes of variables. We expect this alternative approach to find
use in future applications well, as it is in many cases more stable under
perturbation.

2. Reduction of (1.6) to Lemmas 2.1 and 2.2

In this section, we will prove Theorem 1.1 using Lemma 2.1 and Lemma 2.2.
After that, we will also demonstrate that the estimate (1.6) is optimal up
to possibly the exponent of the logarithm.

We begin with basic notation: given two vectors x = (x1, . . . , xd), y =
(y1, . . . , yd) ∈ Rd, and a scalar c, we define

• |x| = |x1|+ · · ·+ |xd|, so that |x| = x1 + · · ·+ xd if x ∈ Rd≥,

• xy = (x1y1, . . . , xdyd),

• xy = xy11 · · ·x
yd
d ,

• cx = (cx1 , . . . , cxd),

• c = (c, . . . , c), and

• x
y =

(
x1

y1
, . . . , xdyd

)
,
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assuming in each case that the right-hand side makes sense. We also use the
standard notation ∂α for multiindices α, i.e., ∂α = ∂α1

1 · · · ∂
αd
d . Lastly, when

ε = (ε1, . . . , εd), where each εi is an integer power of 2, we use Qε to denote
the box

Qε = [ε1, 8ε1]× · · · × [εd, 8εd].

Suppose Qε is any fixed box within a sufficiently small neighborhood of
the origin and let χε be any smooth function supported on Qε with

|∂kχε(x)| ≤ Ckε−k, ∀ k ∈ Nd,(2.10)

where the constants Ck are fixed uniformly for all boxes Qε. Fixing χ = χε,
our main multilinear functional (1.1) takes the form

Λε(f) =

∫
Qε

eiλφ(x)χε(x)

d∏
j=1

fj(xj)dx.

The basic lemma on which the proof rests is as follows:

Lemma 2.1. Assume φ satisfies (1.5) and Qε is contained in a sufficiently
small neighborhood of the origin. For fixed exponents (p1, . . . , pd) ∈ [2,∞]d,

|Λε(f)| . min
α∈N (φ)

{|λεα|−
1

2 ε
1

p′ , ε
1

p′ }
∏

1≤j≤d
‖fj‖pj(2.11)

with an implicit constant that is independent of the functions f and the box
Qε.

We will refer to the estimate of the above lemma as a single-box estimate.
Its proof is given in Section 6. To sum these estimates over all boxes, we use
Lemma 2.2 (proved in Section 7):

Lemma 2.2. Suppose γ ∈ Rd belongs to the reduced Newton polyhedron
N (φ) and let F ⊂ N (φ) be the face of lowest dimension containing γ ∈ Rd≥
(or F = N (φ) when γ is an interior point). If z = ν−1γ for some ν > 2,
then for all λ ≥ 2,

∞∑
j1,...,jd=0

min
N∈{0,1/2},
α∈N (φ)

{λ−N2〈Nα−z,j〉} . λ−
1

ν lnd−`(λ),

where ` = min{dimF + 1, d}.
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Assuming that Lemmas 2.1 and 2.2 have been established, the proof of
Theorem 1.1 is fairly immediate. We write the original cutoff function χ of
(1.1) as a sum of functions, each supported on a distinct orthant of Rd:

χ(x) =
∑

sign∈{+,−}d
χsign(x) for all

∏
1≤j≤d

xj 6= 0,

where χsign is the restriction of χ to the orthant corresponding to sign ∈
{+,−}d. By the triangle inequality, it suffices to prove (1.6) for each χsign.
Without loss of generality, it suffices to assume χ is restricted to the first
orthant. Multiplying by a standard smooth partition of unity adapted to
dyadic boxes in Rd (where by dyadic box we mean a box of the form
[2−j1+1, 2−j1+2]× · · · × [2−jd+1, 2−jd+2] for (j1, . . . , jd) ∈ Zd), one can write

χ(x) =
∑
ε

χε(x),

where each χε is a smooth function supported in a corresponding box Qε and
satisfying (2.10). Let p ∈ [2,∞]d. By the triangle inequality and Lemma 2.1,

|Λ(f)| .
∑

ε=2−j , j∈Nd
min

α∈N (φ)
{|λεα|−

1

2 ε
1

p′ , ε
1

p′ }
∏

1≤k≤d
‖fk‖pk .

If ν > 2 is such that ν
p′ ∈ N (φ), then Lemma 2.2 can be applied to estimate

the sum of the series on the right-hand side using z = 1
p′ . In particular, (1.6)

follows m = 0 with if ν
p′ is an interior point of N (φ) and m = d− ` if the

face of lowest dimension containing ν
p′ itself has dimension (`− 1).

Before taking up the work of proving Lemmas 2.1 and 2.2, we first pause
to show that the estimate (1.6) is sharp up to a logarithmic factor. For
convenience, let us define the dual polyhedron N ∗(φ) of N (φ) by

N ∗(φ) = {w ∈ Rd≥ : 〈α,w〉 ≥ 1 for all α ∈ N (φ)}.(2.12)

The double dual N ∗∗(φ) can easily be checked to equal N (φ). Likewise, it
is not difficult to see that for any w ∈ N ∗(φ), there is a constant δ > 0,
depending on φ but independent of λ, such that for all λ sufficiently large,

|λφ(x)| ≤ 10−10 provided |xj | ≤ δ|λ|−wj , j = 1, . . . , d.

If each fj is taken to equal the characteristic function of [−δ|λ|−wj , δ|λ|−wj ]
and if the cutoff function χ is smooth and nonvanishing at the origin, then

|Λ(f)| ∼ ‖f‖1 = 2dδd|λ|−〈1,w〉 ∼ |λ|−〈1,w〉
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for all λ sufficiently large. Then the estimate (1.6) implies

|λ|−〈1,w〉 . lnm(2 + |λ|)|λ|−
1

ν |λ|−〈
1

p
,w〉.

Letting |λ| → ∞ implies 〈 ν
p′
,w
〉
≥ 1

for all w ∈ N ∗(φ). Consequently, ν
p′ ∈ N

∗∗(φ) = N (φ).

3. Statements of technical lemmas

In this section, we prove several technical lemmas that are needed for the
proof of Lemma 2.1. To quantify the nondegeneracy condition (1.5), for any
subset S of Rd, we define

‖φ‖V (S) = inf
x∈S

max
i 6=j
|xixj∂i∂jφ(x)|.

The quantitative lower bound for nondegeneracy that we use is as follows:

Lemma 3.1. Let φ be real analytic near the origin and suppose that it
satisfies the nondegeneracy condition (1.5). Then there is a neighborhood U
of 0 and a positive constant K such that for all Qε ⊂ U

‖φ‖V (Qε) ≥ Kε
α, for all α ∈ V(φ).(3.13)

Lemma 3.1 is a variation of a corresponding key lemma from the first
author’s PhD Thesis [5]. The proof, which is similar to the proof in [5], is
given in Section 4. In addition to this lower bound, it is also necessary to
have control from above on sufficiently many derivatives of φ. A suitable
inequality of this sort is the following:

Lemma 3.2. There is a neighborhood U of 0 and a constant K ′ such that
for all k ∈ {0, 1, 2, 3}d and all Qε ⊂ U ,

sup
x∈2Qε

|xk∂kφ(x)| ≤ K ′ max
α∈V(φ)

εα.(3.14)

Unlike Lemma 3.1, the proof of Lemma 3.2 is extremely simple and
follows, for example, from the analyticity of the function φ. Grouping terms
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of the Taylor series appropriately, one can write φ as a finite sum

φ(x) =
∑

α∈V(φ)

xαϕα(x)

where each ϕα is nonvanishing at the origin and the sum ranges over those
α which are vertices of the reduced Newton polyhedron N (φ). (One way to
achieve this decomposition is to chose any function Φ mapping each multiin-
dex in the Taylor support of φ to a vertex of N (φ) such that β ∈ Φ(β) + Rd≥
for all β and then let ϕα be the sum of the terms in the Taylor series of φ
over the set of multiindices Φ−1(α).) Using this decomposition, the inequal-
ity (3.14) follows immediately from the product rule for differentiation. Now
let U be as in Lemma 3.1 and Lemma 3.2. By coupling these two lemmas
with the Mean Value Theorem, we will then prove a slightly stronger version
of Lemma 3.1:

Corollary 3.3. There exists N ∈ N depending on K, K ′ and φ, such that
the following holds: Each Qε ⊂ U can be partitioned into a collection of
2dN congruent boxes Qε,l for 1 ≤ l ≤ 2dN such that for each Qε,l and for all
α ∈ V(φ), there is a pair of indices (i, j), i 6= j, such that

inf
x∈2Qε,l

|xixj∂i∂jφ(x)| ≥ K

220
εα.(3.15)

The main analytic tool to be employed is the following Operator van der
Corput Lemma due to Phong and Stein [14, 15]. The proof can be found
throughout the literature; see, for example, [7].

Lemma 3.4. Let χ(x, y) be a smooth function supported in a box with
dimensions δ1 × δ2 such that |∂lyχ(x, y)| ≤ C1δ

−l
2 for l = 0, 1, 2 and some

C1 > 0. Let µ > 0 and S(x, y) be a smooth function s.t. for all (x, y) in the
support of χ,

C2µ ≤ |∂x∂yS(x, y)| ≤ C3µ and

|∂x∂lyS(x, y)| ≤ C3µδ
−l
2 for l = 1, 2 .

Then the operator defined by

Tλf(x) =

∫ ∞
−∞

eiλS(x,y)χ(x, y)f(y)dy
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satisfies

‖Tλf‖2 ≤ C|λµ|−
1

2 ‖f‖2,(3.16)

where the constant C depends on C1, C2, and C3, but is independent of µ, λ
and other information of the phase S.

Lemma 3.1 and Corollary 3.3 are proved in Sections 4 and 5, respectively.
In Section 6, we will combine the technical lemmas stated above to prove
Lemma 2.1.

4. Proof of Lemma 3.1

As mentioned in the previous section, Lemma 3.1 and the proof to be pre-
sented now are both closely based on earlier work of the first author in
his PhD thesis [5, 6]. For the rest of the section, we write φ = Pm +Rm,
where Pm is the degree m Taylor polynomial at the origin and Rm is the
remainder. The integer m is chosen so that N (φ) = N (Pm); such an m
always exists because the Newton polyhedron has finitely many vertices.
Write Pm(x) =

∑
|α|≤m cαx

α and Rm(x) =
∑
|α|=m hα(x)xα for some real

analytic functions hα. For each 1 ≤ i 6= j ≤ d we can write xixj∂i∂jφ(x) as

xixj∂i∂jφ(x) =
∑
|α|≤m

c′αx
α +

∑
|α|=m

h′α(x)xα,(4.17)

where c′α = αiαjcα, and h′α depends on i and j. For each compact F ⊂ N (φ),
we further decompose the sum over |α| ≤ m in (4.17) into terms in F and
its complement, respectively, i.e.,∑

|α|≤m

c′αx
α =

∑
α∈F

c′αx
α +

∑
α/∈F
|α|≤m

c′αx
α.(4.18)

The goal is to show for all x small enough, one may choose F and 1 ≤ i 6=
j ≤ d so that (4.17) is dominated by the sum over α ∈ F and all remaining
terms are of a perturbative quality.

4.1. Scaling calculations

The difficulty of dividing the sum (4.17) into finitely many terms on a com-
pact face F of N(φ) and a remainder term of sufficiently small magnitude
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comes when on some box Qε, there are α ∈ N(φ) such that εα ≈ εβ =
maxα′∈N (φ) ε

α′ but α does not belong to the specified face F . In such cases,
however, we show that α must effectively belong to a face of lower codimen-
sion which contains the specified face. We begin the process of making this
idea precise with Proposition 4.1:

Proposition 4.1. Let ε ∈ (0, 1)d and let α1, . . . ,αn be multiindices which
are linearly independent as vectors in Rd. Suppose that there is a multiindex
β and a positive K < 1 such that for all 1 ≤ k ≤ n, Kεβ ≤ εαk ≤ εβ. Then
there is some b ∈ (0, 1) depending only on α1, . . . ,αn and K such that for
some y ∈ [b, b−1]d and all 1 ≤ k ≤ n we have

yα
k

= εα
k−β.(4.19)

Consequently, if α =
∑

k λkα
k for

∑
k λk = 1, then

yα = εα−β.(4.20)

Proof. Let A be the n× d matrix with rows α1, . . . ,αn. Without loss of
generality, assume that the first n columns of A are linearly independent. Let
v ∈ Rn be the vector whose k-th coordinate is given by vk = log2(ε

αk−β),
and consider the equation Ãu = v, where Ã = (αji )1≤i,j≤n is the leftmost
n× nminor of A. Since Ã has full rank, we can invert Ã and write u = Ã−1v.
Fixing ρ = ‖Ã−1‖∞→∞, we have that

‖u‖∞ ≤ ρ‖v‖∞.

Therefore −‖v‖∞ρ ≤ uk ≤ ‖v‖∞ρ for all k. However, ‖v‖∞ ≤ | log2K|, so

Kρ ≤ 2−‖v‖∞ρ ≤ 2uk ≤ 2‖v‖∞ρ ≤ K−ρ.

Hence, letting b = Kρ ∈ (0, 1), we see that the vector y ∈ [b, b−1]d defined by
yk = 2uk for 1 ≤ k ≤ n and yk = 1 otherwise satisfies the system of equations
(4.19). Finally, (4.20) follows from writing α− β =

∑
k λk(α

k − β). �

One should think of α1, . . . ,αn as vertices of the reduced Newton poly-
hedron N (φ) such that each εα

`

nearly belongs to a compact face F and
is very close or equal to εβ = maxα∈N (φ) ε

α in the sense that there is some

K > 0 such that Kεβ ≤ εα` ≤ εβ. In general, the set of such points need not
be linearly independent, but the proposition can always be applied to some
maximal linearly independent subset. The vector y then essentially dictates
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how one can rescale coordinates in such a way that the approximate equality
of the εα

`

becomes exact.

4.2. The main result required for Lemma 3.1

Let K0, . . . ,Kd−1 ∈ (0, 1) be fixed small constants to be determined later.
For any d-tuple ε ∈ (0, 1)d, we say that ε is n-dominated when there is a
n-dimensional compact face F ⊂ N (Pm) such that for all β and β′ in F and
all multiindices α ∈ N (Pm) \ F ,

εβ = εβ
′

and εα ≤ Knε
β.

The property of n-domination is extremely useful (when it holds) to estimate
the size of φ and its derivatives on the box Qε via the decomposition (4.18)
since it gives comparability of all the terms arising from face F and further
shows relative smallness of the remaining terms not from F .

Unfortunately, not all ε are n-dominated for some n. In general, for a
given ε, the set of multiindices β ∈ N (Pm) such that εβ = maxα′∈N (φ) ε

α′

must lie in some compact face F of N (φ) with dimension n for some n < d.
If ε fails to be n-dominated for n equal to the dimension of this face F , then
there must exist some α 6∈ F such that

(4.21) Knε
β = Kn max

α′∈N (Pm)
εα
′ ≤ εα ≤ max

α′∈N (Pm)
εα
′

= εβ.

In this case, let α1, . . . ,αn+1 be lattice points in F which are vertices of a
nondegenerate n-dimensional simplex and let αn+2 be any multiindex sat-
isfying (4.21) in the place of α. First observe that α1, . . . ,αn+1 must in
fact be linearly independent. This is true because the simplex they generate
must be contained in the linear subspace spanned by α1, . . . ,αn+1 as well
as in F . Since F is contained in an affine subspace not containing the origin,
the intersection of F with the span of α1, . . . ,αn+1 must lie in some set
of codimension at least one inside the span. If the dimension of the span
of α1, . . . ,αn+1 is n or smaller, then the dimension of the intersection will
be too small to contain a nondegenerate n-dimensional simplex. To apply
Proposition 4.1, it suffices to demonstrate that αn+2 does not lie in the
linear span of α1, . . . ,αn+1. Unfortunately, once again, this is not always
the case. We can say, however, that for those ε such that εβ is constant for
all β in a compact face F of N (Pm), for all multiindices α ∈ N (Pm) which
belong to the linear span of these β but not the face F itself, the quan-
tity εα is o(εβ). To see this, write αn+2 = c1α

1 + · · ·+ cn+1α
n+1 for unique
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constants c1, . . . , cn+1. Since εα
j

is independent of j, we have that εα
n+2

=
(εα

1

)c1+···+cn+1 . The quantity c1 + · · ·+ cn+1 depends only on α1, . . . ,αn+2

and is greater than 1 since we may assume that εα
n+2

< εα
1 ≤ 1. Moreover,

the mapping αn+2 7→ c1 + · · ·+ cn+1 is linear and therefore is given by tak-
ing an inner product of αn+2 with some vector w ∈ Rd which is unique up
to the addition of vectors perpendicular to the span of α1, . . . ,αn+1. In par-
ticular, because α1, . . . ,αn+1 all lie in a common compact face F , we may
assume that w has nonnegative entries. Fixing any such choice of w for this
compact face F , the observation that εα = o(εβ) follows because there must
be a positive δ such that 〈α,w〉 ≥ 1 + δ for all multiindices α ∈ N (Pm)
which do not lie on F (which follows because the set of multiindices is dis-
crete).

The conclusion of this line of reasoning is that for all ε sufficiently small,
it must either be the case that ε is n-dominated for some n ≤ d− 1 or that
the multiindices α1, . . . ,αn+2 identified above are linearly independent and
satisfy the hypotheses of Proposition 4.1 when β is taken to equal any one
of α1, . . . ,αn+1. Using the vector y from the conclusion of Proposition 4.1
to rescale ε, it follows that the multiindices β in N (Pm) maximizing ( εy )β

must contain the original maximizers of εβ (i.e., α1, . . . ,αn+1 and all other
multiindices in the original face F ) and the new multiindex αn+2. Iterating
this process, it follows that for every ε = (2−j1 , . . . , 2−jd) sufficiently small,
there is an ε′ ∈ (0, 1)d (i.e., not necessarily having powers of two for coor-
dinates) such that ε′ is n′-dominated for some n′ ∈ {0, . . . , d− 1} and such
that ε

ε′ has coordinates bounded uniformly above and below by constants
depending only on N (Pm) and K0, . . . ,Kn′ .

We can now finish the proof of the main lemma. Consider once again the
sums (4.17) and (4.18). Fix any dyadic d-tuple ε = (2−j1 , . . . , 2−jd) and let
ε′ be the n-dominated d-tuple identified above which is close to ε. Let β be
any vertex in the dominant face F associated to ε′. If we define coordinates
z ∈ Rd so that x = ε′z for all x ∈ Qε, then

∣∣∣∣∣xixj∂i∂jφ(x)− ε′β
∑
α∈F

c′αz
α

∣∣∣∣∣ ≤ Knε
′β
∑
α 6∈F

∣∣c′αzα∣∣+ C
∑
|α|=m

∣∣ε′αzα∣∣

where the constant C depends only on the functions hα. If we assume that
ε is sufficiently small (or equivalently, that the cutoff function χ of (1.1) is
supported sufficiently near the origin) depending on K0, . . . ,Kn−1 and φ,
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we may assume that

C
∑
|α|=m

∣∣ε′αzα∣∣ ≤ 1

3
max
i 6=j

∣∣∣∣∣ε′β ∑
α∈F

c′αz
α

∣∣∣∣∣
for every z such that ε′z ∈ Qε since by induction the coordinates of z are
bounded away from 0 and∞, which means by the nondegeneracy hypothesis
(1.5) that

max
i 6=j

∣∣∣∣∣∑
α∈F

c′αz
α

∣∣∣∣∣
is bounded below uniformly in z by a constant that depends only on φ
and K0, . . . ,Kn−1. Likewise, if Kn is chosen sufficiently small depending on
K0, . . . ,Kn−1 and φ, we may also assume that

Kn

∑
α 6∈F

∣∣c′αzα∣∣ ≤ 1

3
max
i 6=j

∣∣∣∣∣∑
α∈F

c′αz
α

∣∣∣∣∣ ,
which finally implies that

max
i 6=j
|xixj∂i∂jφ(x)| ≥ 1

3
ε′
β

∣∣∣∣∣∑
α∈F

c′αz
α

∣∣∣∣∣ & ε′β
uniformly for all x ∈ Qε with some constant that depends only on φ and
K0, . . . ,Kn. Since ε′β dominates εα for all α ∈ V(φ) and the coordinates of
ε
ε′ are bounded above and below, Lemma 3.1 follows.

5. Proof of Corollary 3.3

Recall that we may assume that Qε is in the positive orthant. Decompose
Qε into 2dN congruent boxes Qε,l of dimensions 2−Nε, with N to be deter-
mined momentarily. Lemma 3.1 guarantees for each l there exist x ∈ Qε,l
and a pair (i, j) such that |xixj∂i∂jφ(x)| ≥ Kεα for all α ∈ V(φ). Let y be
a point in 2Qε,l, i.e., the box whose center is the same as Qε,l and whose
side lengths have increased by a factor of two. By the Mean Value Theorem
and Lemma 3.2,

εiεj |∂i∂jφ(y)− ∂i∂jφ(x)| ≤
d∑

k=1

16εiεjεk
N

|∂i∂j∂kφ(ỹk)| ≤
C

N
max
α∈V(φ)

εα
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for some constant C depending on K ′ defined in Lemma 3.2. Now

εiεj |∂i∂jφ(x)| ≥ 1

64
xixj |∂i∂jφ(x)| ≥ K

64
max
α∈V(φ)

εα

since εk ≤ xk ≤ 8εk for 1 ≤ k ≤ d. By choosing N large enough (independent
of ε), one can conclude that

εiεj |∂i∂jφ(y)| ≥ K

128
max
α∈V(φ)

εα,

meaning that

yiyj |∂i∂jφ(y)| ≥ 1

64

K

128
max
α∈V(φ)

εα.

It is clear that (3.15) is a consequence of this estimate.

6. Proof of Lemma 2.1

To prove Lemma 2.1, let us first assume that ε is fixed but arbitrary. For
this ε, let β ∈ V(φ) be any vertex which maximizes εα as α ranges over
V(φ). To prove Lemma 2.1, it suffices to show

|Λε(f)| . min{|λεβ|−
1

2 ε
1

p′ , ε
1

p′ }
∏

1≤j≤d
‖fj‖pj .(6.22)

To prove this, let {Qε,l}1≤l≤2Nd be the decomposition of Qε from Corol-
lary 3.3. Using a smooth partition of unity adapted to this decomposition,
we may write χε as a sum over cutoff functions χε,l which are smooth, sup-
ported in 2Qε,l and satisfy (2.10) for possibly new constants Ck (and we
define Λε,l to be the multilinear form (1.1) with χ replaced by χε,l). By
Corollary 3.3, for each Qε,l there is a fixed pair (i, j) such that

inf
x∈2Qε,l

|xixj∂i∂jφ(x)| ≥ K

220
εβ.

Notice also that by Lemma 3.2, we have for all x ∈ 2Qε,l and b = 1, 2, 3 that

|xixbj∂i∂bjφ(x)| ≤ K2ε
β
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for some constant K2 independent of ε. By Fubini’s Theorem,

Λε,l(f) =

∫
Rd−2

(∫
R2

eiλφ(x)fi(xi)fj(xj)χε,l(x)dxidxj

) ∏
k 6=i,j

fk(xk)dx
′

(6.23)

where x′ is the vector in Rd−2 whose coordinates equal xk for all k 6= i, j.
Applying Lemma 3.4 to the inner integral and then integrating over the
remaining variables x′ gives

|Λε,l(f)| . |λεβε−1i ε−1j |
− 1

2 ‖fi‖2‖fj‖2
∏
k 6=i,j

‖fk‖1.(6.24)

Hölder’s inequality and the assumption pj ≥ 2 for all j yield

|Λε,l(f)| . |λεβε−1i ε−1j |
− 1

2 |εi|
1

2
− 1

pi ‖fi‖pi |εj |
1

2
− 1

pj ‖fj‖pj
∏
k 6=i,j

|εk|
1− 1

pk ‖fk‖pk ,

that is,

|Λε,l(f)| . |λεβ|−
1

2

∏
1≤k≤d

|εk|
1− 1

pk ‖fk‖pk .(6.25)

Alternatively, estimating Λε,l by a simple application of the triangle inequal-
ity rather than Lemma 3.4 yields (after an application Hölder’s inequality
in the same way that it was used for (6.25))

|Λε,l(f)| .
∏

1≤j≤d
|εj |

1− 1

pj ‖fj‖pj .(6.26)

Summing (6.25) and (6.26) over l and using whichever inequality has the
smaller right-hand side gives (6.22).

7. Proof of Lemma 2.2

Finally we come to the proof of Lemma 2.2, which is essentially an elemen-
tary calculation to sum the estimates (2.11) over all Qε. Recall that the
setup of the lemma begins with a γ ∈ Rd≥ (in our case, γ = ν

p′ ) that belongs
to N (φ). If γ is not an interior point, then F ⊂ N (φ) is the face of lowest
dimension that contains γ. We let ` equal 1 plus the dimension of F in this
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case; for interior points γ, we let ` = d. Fixing z = γ
ν , we must show for all

λ ≥ 2 that

∞∑
j1,...,jd=0

min
N∈{0,1/2},
α∈N (φ)

{λ−N2〈Nα−z,j〉} . λ−
1

ν lnd−`(λ).

It suffices to consider the sum over indices ji which are of at most logarithmic
size for all 1 ≤ i ≤ d, since for any fixed i,

∞∑
j1=0

· · ·
∑

ji≥log2(λ)/γi

· · ·
∞∑
jd=0

2−〈z,j〉 . λ−
zi
γi = λ−

1

ν .

In other words, it suffices to show that

blog2(λ)/γ1c∑
j1=0

· · ·
blog2(λ)/γdc∑

jd=0

min
N∈{0,1/2},
α∈N (φ)

{λ−N2〈Nα−z,j〉} . λ−
1

ν lnd−`(λ).(7.27)

Comparing the sum over j1, . . . , jd to an integral over x = (x1, . . . , xd), it
follows that the left-hand side of (7.27) is bounded above by a fixed constant
times ∫ log2(λ)/γ1

0
· · ·
∫ log2(λ)/γd

0
min

N∈{0,1/2},
α∈N (φ)

{λ−N2〈Nα−z,x〉}dx.(7.28)

For any compact face F , if F 3 γ is of dimension (`− 1), then there are
linearly independent α1, . . . ,α` ∈ F whose convex hull contains γ. It follows
that

γ =
∑̀
i=1

λiα
i(7.29)

for nonnegative coefficients λi that sum to 1. Moreover, if F is the face of
minimal dimension containing γ, then none of the λi will equal zero. On the
other hand, if γ is an interior point, then there must be some nondegenerate
(d− 1)-dimensional simplex which lies in some hyperplane not containing
the origin, which is contained in N (φ), and which itself contains γ; this
implies that (7.29) will still hold for positive λi summing to one when ` = d
and α1, . . . ,αd are taken as the vertices of this nondegenerate simplex.
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For 1 ≤ i ≤ ` let θi = 2λiν and further define θ0 = 1− 2
ν . Because ν > 2,

all θi are positive and their sum is 1. Moreover, it is easy to check that

θ0(−z) +
∑̀
i=1

θi

(αi
2
− z

)
= 0.(7.30)

Restricting the minimum over all α ∈ N (φ) in (7.28) specifically to the αi

chosen above, the integral (7.28) must be bounded above by∫ log2(λ)/γ1

0
· · ·
∫ log2(λ)/γd

0
min
1≤i≤`

{2−〈z,x〉, λ−
1

2 2〈
αi

2
−z,x〉}dx.(7.31)

If we take e1, . . . , ed to be the standard basis vectors of Rd, then when ` < d,
we may assume without loss of generality that α1, . . . ,α`, e`+1, . . . , ed are
linearly independent. We define an invertible matrix A by

Aαi = ei for 1 ≤ i ≤ `, Aei = ei for ` < i ≤ d.

Note that 〈ATx,αi〉 = xi for 1 ≤ i ≤ `. Let

R = {y ∈ Rd : 0 ≤ 〈ATy, ej〉 ≤ ln(λ)/γj for all 1 ≤ j ≤ d}.

Now apply the change of variables x = 1
ln 2A

Ty; up to a factor depending
only on A, the integral (7.31) equals∫

R
min
1≤i≤`

{e−〈Az,y〉, λ−
1

2 e〈A(
αi

2
−z),y〉}dy.(7.32)

First integrating over directions ` < i ≤ d,∫
0≤〈ATy,ei〉≤ln(λ)/γi

`<i≤d

dy`+1 · · · dyd . lnd−`(λ).

We can therefore bound (7.32) above by

lnd−`(λ)

∫
R`

min
1≤i≤`

{e−〈Az,y〉, λ−
1

2 e〈A(
αi

2
−z),y〉}dy1 · · · dy`.(7.33)

Since Aαi = ei and
∑`

i=1 λi = 1, we see

〈Az, ln(λ)1〉 =
1

ν
ln(λ)

∑̀
i=1

λi〈Aαi,1〉 =
1

ν
ln(λ).
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Exponentiating, we obtain e−〈Az,ln(λ)1〉 = λ−
1

ν . This calculation inspires a
second change of variables y → y + ln(λ)1; after the change, e−〈Az,y〉 be-

comes λ−
1

ν e−〈Az,y〉 and λ−
1

2 e

〈
A(α

i

2
−z),y

〉
becomes λ−

1

ν e

〈
A(α

i

2
−z),y

〉
(since

ei = Aαi). We then factor out λ−
1

ν and bound (7.33) above by λ−
1

ν lnd−`(λ)
times ∫

R`
min
1≤i≤`

{e−〈Az,y〉, e〈A(
αi

2
−z),y〉}dy1 · · · dy`.

By (7.30), for any y ∈ Rd, it must be the case that

min
1≤i≤`

{
−〈Az,y〉,

〈
A

(
αi

2
− z

)
,y

〉}
≤ 0.

Assuming that y is a nonzero vector lying in the span of e1, . . . , e`, it must
moreover be true that this minimum is not zero. Were this not the case,
it would follow from the definition of A that there would exist a vector x
which is a nonzero linear combination of α1, . . . ,α` such that

0 = −〈z,x〉 =

〈
αi

2
− z,x

〉
for all i = 1, . . . , `.

However, since the vectors αi are linearly independent,
〈
αi,x

〉
= 0 for some

x in the span of the αi implies x = 0. Therefore, by homogeneity and
compactness of the unit sphere, there must exist a constant constant c =
c(α1, . . . ,α`, z) > 0 such that

min
1≤i≤`

{
−〈Az,y〉,

〈
A

(
αi

2
− z

)
,y

〉}
< −c‖y‖2

for all y in the span of e1, . . . , e`. After a polar change of variables, we can
bound (7.33) by a constant independent of λ times

λ−
1

ν lnd−`(λ)

∫ ∞
0

e−crdr . λ−
1

ν lnd−`(λ).
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