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Multivariable (ϕ,Γ)-modules and products

of Galois groups

Gergely Zábrádi

We show that the category of continuous representations of the dth
direct power of the absolute Galois group of Qp on finite dimen-
sional Fp-vector spaces (resp. finitely generated Zp-modules, resp.
finite dimensional Qp-vector spaces) is equivalent to the category
of étale (ϕ,Γ)-modules over a d-variable Laurent-series ring over
Fp (resp. over Zp, resp. over Qp).

1. Introduction

This note serves as a complement to the work [11] where we relate multivari-
able (ϕ,Γ)-modules to smooth modulo pn representations of a split reductive
group G over Qp. The goal here is to show that the category of d-variable
(ϕ,Γ)-modules is equivalent to the category of representations of the dth
direct power of the absolute Galois group of Qp.

Let K be a finite extension of Qp with ring of integers OK , prime element
$, and residue field κ. For a finite set ∆ let GQp,∆ :=

∏
α∈∆ Gal(Qp/Qp) de-

note the direct power of the absolute Galois group of Qp indexed by ∆. We
denote by Repκ(GQp,∆) (resp. by RepOK (GQp,∆), resp. by RepK(GQp,∆)) the
category of continuous representations of the profinite group GQp,∆ on fi-
nite dimensional κ-vector spaces (resp. finitely generated OK-modules, resp.
finite dimensional K-vector spaces). On the other hand, for independent
commuting variables Xα (α ∈ ∆) we put

E∆,κ := κ[[Xα | α ∈ ∆]][X−1
α | α ∈ ∆],

OE∆,K := lim←−
h

(
OK/$h[[Xα | α ∈ ∆]][X−1

α | α ∈ ∆]
)
,

E∆,K := OE∆,K [p−1].

Moreover, for each element α ∈ ∆ we have the partial Frobenius ϕα, and
group Γα ∼= Gal(Qp(µp∞)/Qp) acting on the variable Xα in the usual way
and commuting with the other variablesXβ (β ∈ ∆ \ {α}) in the above rings.
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688 Gergely Zábrádi

A (ϕ∆,Γ∆)-module over E∆,κ (resp. over OE∆,K , resp. over E∆,K) is a finitely
generated E∆,κ-module (resp.OE∆,K -module, resp. E∆,K-module)D together
with commuting semilinear actions of the operators ϕα and groups Γα (α ∈
∆). In case the coefficient ring is E∆,κ or OE∆,K , we say that D is étale if the
map id⊗ϕα : ϕ∗αD → D is an isomorphism for all α ∈ ∆. For the coefficient
ring E∆,K we require the stronger assumption for the étale property that
D comes from an étale (ϕ∆,Γ∆)-module over OE∆,K by inverting p. The
main result of the paper is that Repκ(GQp,∆) (resp. RepOK (GQp,∆), resp.
RepK(GQp,∆)) is equivalent to the category of étale (ϕ∆,Γ∆)-modules over
E∆,κ (resp. over OE∆,K , resp. over E∆,K).

Passing from the Galois side to (ϕ∆,Γ∆)-modules is rather straightfor-
ward. One constructs a big ring Esep∆ as an inductive limit of completed
tensor products of finite separable extensions E′α of Eα = Fp((Xα)) (α ∈ ∆)
over which the action of HQp,∆ = Ker(GQp,∆ �

∏
α∈∆ Γ∆) trivializes. The

other direction is more involved. In order to trivialize the action of the par-
tial Frobenii ϕα (α ∈ ∆) using induction, the main step is to find a lattice
D+∗
α integral in the variable Xα for some fixed α ∈ ∆ which is an étale

(ϕ∆\{α},Γ∆\{α})-module over the ring Fp[[Xβ | β ∈ ∆]][X−1
β | β ∈ ∆ \ {α}].

This uses the ideas of Colmez [3] constructing lattices D+ and D++ in usual
(ϕ,Γ)-modules.

We remark here that Scholze [7] recently realized GQp,∆ (using Drinfeld’s
Lemma for diamonds) as a geometric fundamental group π1((Spd Qp)

|∆|/
p.Fr.) of the diamond (Spd Qp)

|∆| modulo the partial Frobenii ϕβ (β ∈
∆ \ {α}) for some fixed α ∈ ∆: one can endow E+

∆ = Fp[[Xα | α ∈ ∆]] with
its natural compact topology, and look at the subset of its adic spectrum
SpaE+

∆ where all Xα (α ∈ ∆) are invertible. This defines an analytic adic
space over Fp, whose perfection modulo the action of all Γα’s is a model
for (SpdQp)

d. Thus, after taking the action modulo partial Frobenii ϕβ
(β ∈ ∆ \ {α} for some fixed α ∈ ∆), the fundamental group will be GQp,∆.
Now, quite generally étale local systems on diamonds are equivalent to ϕ-
modules. This introduces the last missing Frobenius, and one ends up with
an equivalence between representations of GQp,∆, and some sheaf of modules
with Γ∆-action and commuting actions of ϕα for all α ∈ ∆. However, this
will not produce an actual module over a ring, but a sheaf of modules over a
sheaf of rings. One can perhaps deduce the result of this paper along these
lines, but that would require some further nontrivial input (replacing the
above method of finding a lattice D+∗

α ).
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Multivariable (ϕ,Γ)-modules and products of Galois groups 689

2. Algebraic properties of multivariable (ϕ,Γ)-modules

2.1. Definition and projectivity

For a finite set ∆ (which is the set of simple roots of G in [11]) consider
the Laurent series ring E∆ := E+

∆[X−1
∆ ] where E+

∆ := Fp[[Xα | α ∈ ∆]] and
X∆ :=

∏
α∈∆Xα ∈ E+

∆. E+
∆ is a regular noetherian local ring of global di-

mension |∆|, therefore E∆ is a regular noetherian ring of global dimension
|∆| − 1. For each index α we define the action of the partial Frobenius ϕα
and of the group Γα with χα : Γα

∼→ Z×p on E∆ as

ϕα(Xβ) :=

{
Xβ if β ∈ ∆ \ {α}
(Xα + 1)p − 1 = Xp

α if β = α

γα(Xβ) :=

{
Xβ if β ∈ ∆ \ {α}
(Xα + 1)χα(γα) − 1 if β = α

(1)

for all γα ∈ Γα extending the above formulas to continuous ring endomor-
phisms of E∆ in the obvious way. By an étale (ϕ∆,Γ∆)-module over E∆

we mean a (unless otherwise mentioned) finitely generated module D over
E∆ together with a semilinear action of the (commutative) monoid T+,∆ :=∏
α∈∆ ϕ

N
αΓα (also denote by ϕt the action of ϕt ∈ T+,∆ where the subscript t

is formal and refers to distinguishing between the elements of the set T+,∆)
such that the maps

id⊗ϕt : ϕ∗tD := E∆ ⊗E∆,ϕt D → D

are isomorphisms for all elements ϕt ∈ T+,∆. Here we put Γ∆ :=
∏
α∈∆ Γα.

We denote by Det(ϕ∆,Γ∆, E∆) the category of étale (ϕ∆,Γ∆)-modules
over E∆.

The category Det(ϕ∆,Γ∆, E∆) has the structure of a neutral Tannakian
category: For two objects D1 and D2 the tensor product D1 ⊗E∆

D2 is an
étale T+,∆-module with the action ϕt(d1 ⊗ d2) := ϕt(d1)⊗ ϕt(d2) for ϕt ∈
T+,∆,, di ∈ Di (i = 1, 2). Moreover, since E∆ is a free module over itself
via ϕt, putting (·)∗ := HomE∆

(·, E∆) we have an identification (ϕ∗tD)∗ ∼=
ϕ∗t (D

∗). So the isomorphism id⊗ϕt : ϕ∗tD → D dualizes to an isomorphism
D∗ → ϕ∗t (D

∗). The inverse of this isomorphism (for all ϕt ∈ T+,∆) equips
D∗ with the structure of an étale T+,∆-module.

Lemma 2.1. There exists a Γ∆-equivariant injective resolution of E+
∆ as

a module over itself.
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690 Gergely Zábrádi

Proof. Consider the Cousin complex (see IV.2 in [6])

0→ E∆ → E∆,(0) → · · · →
⊕

p∈Spec(E∆),codim p=r

J(p)→ · · ·

where J(p) is the injective envelope of the residue field κ(p) as a module
over the local ring E∆,p. This is a Γ∆-equivariant injective resolution since
the action of Γ∆ on Spec(E∆) respects the codimension. �

Proposition 2.2. Any object D in Det(ϕ∆,Γ∆, E∆) is a projective module
over E∆.

Proof. Since E∆ has finite global dimension, let n be the projective dimen-
sion of D. Then by Lemma 4.1.6 in [9] we have Exti(D,M) = 0 for all i > n
and E∆-module M and there exists an R-module M0 with Extn(D,M0) 6= 0.
By the long exact sequence of Ext and choosing an onto module homomor-
phism F �M0 from a free module F we find that Extn(D,F ) 6= 0. Now F
is a (possibly infinite) direct sum of copies of E∆ whence Extn(D,E∆) 6= 0
as Extn(D, ·) commutes with arbitrary direct sums. However, Extn(D,E∆)
is a finitely generated (as E∆ is noetherian) torsion E∆-module for n > 0 (as
all the modules in positive degrees in the Cousin complex above are torsion)
admitting a semilinear action of Γ∆ by Lemma 2.1. Therefore the global an-
nihilator of Extn(D,E∆) in E∆ is a nonzero Γ∆-invariant ideal in E∆ hence
equals E∆ by Lemma 2.1 in [11]. So n = 0 and D is projective. �

Lemma 2.3. We have K0(E∆) ∼= Z, ie. any finitely generated projective
module over E∆ is stably free.

Proof. E+
∆
∼= Fp[[Xα | α ∈ ∆]] is a regular local ring, so it has finite global

dimension and K0(E+
∆) ∼= G0(E+

∆) ∼= Z (Thm. II.7.8 in [10]). Therefore the
localization E∆ = E+

∆[X−1
∆ ] also has finite global dimension whence we have

K0(E∆) ∼= G0(E∆). The statement follows noting that the map G0(E+
∆)→

G0(E∆) is onto by the localization exact sequence of algebraic K-theory
(Thm. II.6.4 in [10]). �

Remark. I am not aware of the analogue of the Theorem of Quillen and
Suslin on the freeness of projective modules over E∆. However, using the
equivalence of categories of Det(ϕ∆,Γ∆, E∆) with RepFp(GQp,∆) we shall
see later on (Cor. 3.16) that any object D in Det(ϕ∆,Γ∆, E∆) is in fact free
over E∆.
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We equip E+
∆ with the X∆-adic topology. Then (E∆, E

+
∆) is a Huber

pair (in the sense of [7]) if we equip E∆ with the inductive limit topology
E∆ =

⋃
nX

−n
∆ E+

∆. In fact, E∆ is a complete noetherian Tate ring (op. cit.).
Note that this is not the natural compact topology on E+

∆ as in the compact
topology E+

∆ would not be open in E∆ since the index of E+
∆ inX−n∆ E+

∆ is not
finite. On the other hand, the inclusion Fp((Xα)) ↪→ E∆ is not continuous in
the X∆-adic topology (unless |∆| = 1) therefore we cannot apply Drinfeld’s
Lemma (Thm. 17.2.4 in [7]) directly in this situation.

Let D be an object in Det(ϕ∆,Γ∆, E∆). By Banach’s Theorem for Tate
rings (Prop. 6.18 in [8]), there is a unique E∆-module topology on D that
we call the X∆-adic topology. Moreover, any E∆-module homomorphism is
continuous in the X∆-adic topology.

2.2. Integrality properties

Put ϕs :=
∏
α∈∆ ϕα ∈ T+,∆ and define D++ := {x ∈ D | limk→∞ ϕ

k
s(x) = 0}

where the limit is considered in the X∆-adic topology (cf. II.2.1 in [3] in case
|∆| = 1). Note that ϕs is the absolute Frobenius on E∆, it takes any element
to its pth power.

Lemma 2.4. Let M be a finitely generated E+
∆-submodule in D. Then

E+
∆ϕs(M) is also finitely generated.

Proof. If M is generated by m1, . . . ,mn then ϕs(m1), . . . , ϕs(mn) generate
E+

∆ϕs(M). �

Proposition 2.5. D++ is a finitely generated E+
∆-submodule in D that is

stable under the action of T+,∆ and we have D = D++[X−1
∆ ].

Proof. Choose an arbitrary finitely generated E+
∆-submodule M of D with

M [X−1
∆ ] = D (e.g. take M = E+

∆e1 + · · ·+ E+
∆en for some E∆-generating

system e1, . . . , en of D). By Lemma 2.4 we have an integer r ≥ 0 such that
ϕs(M) ⊆ X−r∆ M , since E+

∆ is noetherian and we have D =
⋃
rX
−r
∆ M . Then

we have

ϕs(X
k
∆M) = Xpk

∆ ϕs(M) ⊆ Xpk−r
∆ M ⊆ Xk+1

∆ M

for any integer k ≥ r+1
p−1 . Therefore we have X

[
r+1

p−1

]
+1

∆ M ⊆ D++ whence

D++[X−1
∆ ] = M [X−1

∆ ] = D.
Since T+∆ is commutative and the action of each ϕt ∈ T+,∆ is continuous,

D++ is stable under the action of T+,∆. There is a system of neighbourhoods
of 0 in D consisting of E+

∆-submodules therefore D++ is an E+
∆-submodule.
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To prove that D++ is finitely generated over E+
∆ suppose first that D is

a free module over E∆ generated by e1, . . . , en and put M := E+
∆e1 + · · ·+

E+
∆en. We may assume M ⊆ D++ by replacing M with X

[
r+1

p−1

]
+1

∆ M . More-
over, further multiplying M = E+

∆e1 + · · ·+ E+
∆en by a power of X∆, we

may assume that the matrix A := [ϕs]e1,...,en of ϕs in the basis e1, . . . , en lies

in E+
∆
n×n

as we have [ϕs]Xr
∆e1,...,Xr

∆en = X
(p−1)r
∆ [ϕs]e1,...,en . Now we choose

the integer r > 0 so that it is bigger than valXα(detA) for all α ∈ ∆ and
claim that D++ ⊆ X−r∆ M whence D++ is finitely generated over E+

∆ as E+
∆

is noetherian. Assume for contradiction that d =
∑n

i=1 diei lies in D++ for
some di ∈ E∆ (i = 1, . . . , n) such that at least one di, say d1, does not lie
in X−r∆ E+

∆. In particular, there exists an α in ∆ such that valXα(d1) < −r.
Since M is open in D and d ∈ D++, there exists an integer k > 0 such that
ϕks(d) is in M which is equivalent to saying that the column vector

Aϕs(A) · · ·ϕk−1
s (A)

ϕ
k
s(d1)

...
ϕks(dn)


lies in E+

∆
n
. Multiplying this by the matrix built from the (n− 1)× (n− 1)

minors of Aϕs(A) · · ·ϕk−1
s (A) we deduce that

det(Aϕs(A) · · ·ϕk−1
s (A))ϕks(d1) = det(A)

pk−1

p−1 dp
k

1

lies in E+
∆. We compute

0 ≤ valXα(det(A)
pk−1

p−1 dp
k

1 ) =
pk − 1

p− 1
valXα(det(A)) + pk valXα(d1)

<
pk − 1

p− 1
valXα(det(A))− pkr < 0

by our assumption that r > valXα(det(A)), yielding a contradiction.
In the general case note that D is always stably free by Prop. 2.2 and

Lemma 2.3. So D1 := D ⊕ Ek∆ is a free module over E∆ for k large enough.
We make D1 into an étale T+,∆-module by the trivial action of T+,∆ on Ek∆
to deduce that D++

1 is finitely generated over E+
∆. The result follows noting

that D++ ⊆ D++
1 and E+

∆ is noetherian. �

For an object D in Det(ϕ∆,Γ∆, E∆) we define

D+ := {x ∈ D | {ϕks(x) : k ≥ 0} ⊂ D is bounded} .
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Since ϕks(X∆) tends to 0 in the X∆-adic topology, we have X∆D
+ ⊆ D++,

ie. D+ ⊆ X−1
∆ D++. In particular, D+ is finitely generated over E+

∆. On the
other hand, we also have D++ ⊆ D+ by construction whence we deduce
D = D+[X−1

∆ ].

Lemma 2.6. We have ϕt(D
+) ⊂ D+ (resp. ϕt(D

++) ⊂ D++) for all ϕt ∈
T+,∆.

Proof. For any generating system e1, . . . , en of D and any ϕt ∈ T+,∆ there
exists an integer k = k(ϕt,M) > 0 such that we have

ϕt(X
k
∆M) ⊆ Xk

∆E
+
∆ϕt(M) ⊆M

where we put M := E+
∆e1 + · · ·+ E+

∆en by Lemma 2.4. Indeed, X∆ divides
ϕt(X∆) in E+

∆, and we have D = M [X−1
∆ ] by construction. The statement on

D++ follows from the commutativity of the monoid T+,∆ noting that there
exists a basis of neighbouhoods of 0 in D consisting of E+

∆-submodules of
the form M . To see that ϕt(D

+) ⊆ D+ note that ϕt(D
+) is bounded and

we have ϕks(ϕt(D
+)) = ϕt(ϕ

k
s(D

+)) ⊂ ϕt(D+). �

Now fix an α ∈ ∆ and define D+
α := D+[X−1

∆\{α}] where for any subset

S ⊆ ∆ we put XS :=
∏
β∈S Xβ. Then D+

α is a finitely generated module over

E+
α := E+

∆[X−1
∆\{α}]. We denote by T+,α ⊂ T+,∆ the monoid generated by ϕβ

(β ∈ ∆ \ {α}) and Γ∆.

Lemma 2.7. D+
α /D

+ is Xα-torsion free: If both Xn1
α d and Xn2

∆\{α}d lie in

D+ for some element d ∈ D, α ∈ ∆, and integers n1, n2 ≥ 0 then we have
d ∈ D+. The same statement holds if we replace D+ by D++.

Proof. At first assume that D is free as a module over E∆ with basis

e1, . . . , en. Then the denominators of ϕks(X
n1
α d) = Xn1pk

α ϕks(d) in the basis
e1, . . . , en are bounded for k ≥ 0 by assumption. Therefore the Xβ-valuations
of the denominators of ϕks(d) are bounded for all β ∈ ∆ \ {α} since E+

∆ is a
unique factorization domain. On the other hand, the Xα-valuations of these
denominators are also bounded since the denominators of ϕks(X

n2

∆\{α}d) =

Xn2pk

∆\{α}ϕ
k
s(d) are bounded. To prove the statement for D++ we have the

same argument but ‘being bounded’ replaced by ‘tends to 0’.
Finally, by Prop. 2.2 and Lemma 2.3 D ⊕ Ek∆ is free over E∆ and we

equip it with the structure of an étale (ϕ,Γ)-module (trivially on Ek∆). The
statement follows from the additivity of the constructions D 7→ D+ and
D 7→ D+

α in direct sums. �
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Lemma 2.8. Assume that D is generated by a single element e1 ∈ D over
E∆. Then for any ϕt in T+,α we have ϕt(e1) = ate1 for some unit at in
(E+

α )×.

Proof. Define at ∈ E∆ and aα ∈ E∆ so that ϕt(e1) = ate1 and ϕα(e1) =
aαe1. By the étale property both at and aα are units in E∆, so it remains
to show that valXα(at) = 0. We compute

ϕα(at)aαe1 = ϕα(at)ϕα(e1) = ϕα(ate1) = ϕα(ϕt(e1))

= ϕt(ϕα(e1)) = ϕt(aαe1) = ϕt(aα)ϕt(e1) = ϕt(aα)ate1

whence we deduce

p valXα(at) + valXα(aα) = valXα(ϕα(at)aα)

= valXα(ϕt(aα)at) = valXα(aα) + valXα(at).

This yields valXα(at) = 0 as required. �

Lemma 2.9. There exists an integer k = k(D) > 0 such that for any ϕt ∈
T+,α we have Xk

αD
+
α ⊆ E

+
∆ϕt(D

+
α ).

Proof. At first assume that D is free, choose a basis e1, . . . , en contained in
D+, and put M := E+

∆e1 + · · ·+ E+
∆en, Mα := E+

α e1 + · · ·+ E+
α en. There

exists an integer k0 > 0 such that D+ ⊆ X−k0

∆ M . In particular, we have
D+
α ⊆ X−k0

α Mα. Now for a fixed ϕt ∈ T+,α let At ∈ En×n∆ be the matrix
of ϕt in the basis e1, . . . , en. Since ϕt(ei) lies in D+ ⊆ X−k0

α Mα, all the
entries of the matrix At are in X−k0

α E+
α . Applying Lemma 2.8 to the single

generator e1 ∧ · · · ∧ en of
∧nD we obtain valXα(detAt) = 0. In particular,

all the entries of A−1
t lie in X

−(n−1)k0
α E+

α by the formula for the inverse
matrix using the (n− 1)× (n− 1) minors in At. Now note that the elements
e1, . . . , en can be written as a linear combination of ϕt(e1), . . . , ϕt(en) with
coefficients from A−1

t . Using Lemma 2.6 this shows

Xk0
α D

+
α ⊆Mα ⊆ X−(n−1)k0

α ϕt(Mα) ⊆ X−(n−1)k0
α ϕt(D

+
α ).

So we may choose k := nk0 independent of ϕt.
The general case follows from Prop. 2.2 and Lemma 2.3 noting that the

functor D 7→ D+
α commutes with direct sums. �



i
i

“18-Zabradi” — 2018/6/22 — 12:10 — page 695 — #9 i
i

i
i

i
i

Multivariable (ϕ,Γ)-modules and products of Galois groups 695

In view of the above Lemma we define

D+∗
α :=

⋂
ϕt∈T+,α

E+
α ϕt(D

+
α ).

D+∗
α is finitely generated over E+

α as it is contained in D+
α and E+

α is noethe-
rian. On the other hand, by Lemma 2.9 we have Xk

αD
+
α ⊆ D

+∗
α for some

integer k = k(D) > 0 whence, in particular, D = D+∗
α [X−1

α ].

Proposition 2.10. D+∗
α is an étale T+,α-module over E+

α , ie. the maps

(2) id⊗ϕt : ϕ∗tD+∗
α = E+

α ⊗E+
α ,ϕt

D+∗
α → D+∗

α

are bijective for all ϕt ∈ T+,α.

Proof. At first note that we have ϕt(D
+∗
α ) ⊆ D+∗

α for all ϕt ∈ T+,α

by Lemma 2.6 and the commutativity of T+,α, so the map (2) exists. Now
let ϕt0 ∈ T+,α be arbitrary. Since E+

α (resp. E∆) is a finite free module over
ϕt0(E+

α ) (resp. over ϕt0(E∆)) with generators contained in E+
∆, we have a

natural identification ϕ∗t0D
+∗
α
∼= E+

∆ ⊗E+
∆,ϕt0

D+∗
∆ (resp. ϕ∗t0D

∼= E+
∆ ⊗E+

∆,ϕt0
D). Since E+

∆ is finite free (hence flat) over ϕt0(E+
∆), the inclusion D+

α ⊂ D
induces an inclusion ϕ∗t0D

+
α ⊂ ϕ∗t0D. It follows that (2) is injective since D

is étale. Similarly, for each ϕt ∈ T+,α, the map

id⊗ϕt0 : ϕ∗t0(E+
α ϕt(D

+
α ))→ E+

α ϕt(D
+
α )

is injective with image E+
α ϕt0ϕt(D

+
α ). On the other hand, since E+

∆ is fi-
nite free over ϕt0(E+

∆), we have ϕ∗t0D
+∗
α =

⋂
t∈T+,α

ϕ∗t0(E+
α ϕt(D

+
α )) where

the intersection is taken inside ϕ∗t0D. Therefore (2) is bijective as we have
D+∗
α =

⋂
ϕt∈T+,α

E+
α ϕt0ϕt(D

+
α ). �

Lemma 2.11. There exists a finitely generated E+
∆-submodule D0 ⊂ D+∗

α

such that D0⊆E+
∆ϕα(D0) and D+∗

α =D0[X−1
∆\{α}] where ϕα :=

∏
β∈∆\{α} ϕβ.

Moreover, we have D+∗
α =

⋃
r≥0E

+
∆ϕ

r
α(X−1

∆\{α}D0).

Proof. Put D1 := D+ ∩D+∗
α . By Prop. 2.10 and the fact that D+∗

α =
D1[X−1

∆\{α}] we find an integer k0 > 0 such that Xk0

∆\{α}D1 ⊆ E+
∆ϕα(D1).
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So for k > k0

p−1 we have

X−k∆\{α}D1 ⊆ X−k−k0

∆\{α}E
+
∆ϕα(D1) ⊆ X−pk∆\{α}E

+
∆ϕα(D1) = E+

∆ϕα(X−k∆\{α}D1).

So we put D0 := X−k∆\{α}D1 so that the first part of the statement is satisfied.

Iterating the inclusion D0 ⊆ E+
∆ϕα(D0) we obtain D0 ⊆ E+

∆ϕ
r
α(D0) for all

r ≥ 1. Finally, we compute

X−p
r

∆\{α}D0 ⊆ X−p
r

∆\{α}E
+
∆ϕ

r
α(D0) = E+

∆ϕ
r
α(X−1

∆\{α}D0).

The statement follows noting that we have

D+∗
α = D0[X−1

∆\{α}] =
⋃
r

X−p
r

∆\{α}D0.

�

3. The equivalence of categories for Fp-representations

3.1. The functor D

Take a copy GQp,α
∼= Gal(Qp/Qp) of the absolute Galois group of Qp for each

element α ∈ ∆ and let GQp,∆ :=
∏
α∈∆GQp,α. Let RepFp(GQp,∆) be the cat-

egory of continuous representations of the group GQp,∆ on finite dimensional
Fp vectorspaces. We identify Γα with the Galois group Gal(Qp(µp∞)/Qp) as
a quotient of GQp,α via the cyclotomic character

χα : Gal(Qp(µp∞)/Qp)→ Z×p .

Further, we denote by HQp,α the kernel of the natural quotient map GQp,α →
Γα and put HQp,∆ :=

∏
α∈∆HQp,α CGQp,∆. Putting Eα := Fp((Xα)) we have

the following fundamental result of Fontaine and Wintenberger (Thm. 4.16
[5]).

Theorem 3.1. The absolute Galois group Gal(Esepα /Eα) is isomorphic to
HQp,α. Moreover, GQp,α acts on the separable closure Esepα via automor-
phisms such that the action of Γα ∼= GQp,α/HQp,α on Eα = (Esepα )HQp,α co-
incides with the one given in (1).

For each α ∈ ∆ consider a finite separable extension E′α of Eα together
with the Frobenius ϕα : E′α → E′α acting by raising to the power p. We de-
note by E′+α the integral closure of E+

α = Fp[[Xα]] in E′α. Note that E′α is
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isomorphic to Fqα((X ′α)) for some power qα of p and uniformizer X ′α such that
we have E′+α

∼= Fqα [[X ′α]]. We normalize the Xα-adic (multiplicative) valua-
tion on Eα so that we have |Xα|Xα = p−1. This extends uniquely to the finite
extension E′α. Moreover, we equip the tensor product E′∆,◦ :=

⊗
α∈∆,Fp E

′
α

with a norm | · |prod by the formula

(3) |c|prod := inf

(
max
i

(
∏
α∈∆

|cα,i|α)
∣∣∣ c =

n∑
i=1

⊗
α∈∆

cα,i

)
.

Note that the restriction of | · |prod to the subring E′+∆,◦ :=
⊗

α∈∆,Fp E
′+
α in-

duces the valuation with respect to the augmentation ideal Ker(E′+∆,◦ �⊗
α∈∆,Fp Fqα). The norm | · |prod is not multiplicative in general, as the ring⊗
α∈∆,Fp Fqα is not a domain. However, it is submultiplicative. We define E′+∆

as the completion of E′+∆,◦ with respect to | · |prod and put E′∆ := E′+∆ [1/X∆].
Note that E′∆ is not complete with respect to | · |prod (unless |∆| = 1) even
though E′∆,◦ = E′+∆,◦[1/X∆] is a dense subring in E′∆. Since we have a con-
tainment  ⊗

α∈∆,Fp

Fqα

 [X ′α, α ∈ ∆] =
⊗

α∈∆,Fp

Fqα [X ′α] ≤dense E′+∆,◦

we may identify E′+∆ with the power series ring (
⊗

α∈∆,Fp Fqα)[[X ′α, α ∈ ∆]]
which is the completion of the polynomial ring above. In particular, the spe-
cial case E′α = Eα for all α ∈ ∆ yields a ring E′∆ isomorphic to E∆. Therefore
E∆ is a subring of E′∆ for all collections of finite separable extensions E′α
of Eα (α ∈ ∆). Further, ϕα acts on E′+∆,◦ (and on E′∆,◦) by the Frobenius
on the component in E′α and by the identity on all the other components in
E′β, β ∈ ∆ \ {α}. This action is continuous in the norm | · |prod therefore ex-

tends to the completion E′+∆ and the localization E′∆. We have the following
alternative characterization of the ring E′∆.

Lemma 3.2. Put ∆ = {α1, . . . , αn}. We have

E′∆
∼= E′α1

⊗Eα1

(
E′α2
⊗Eα2

(
· · · (E′αn ⊗Eαn E∆)

))
.

Proof. By rearranging the order of tensor products we have an identification

E′+∆,◦ =
⊗

α∈∆,Fp

(E′+α ⊗E+
α
E+
α ) ∼= E′+α1

⊗E+
α1

(
E′+α2
⊗E+

α2

(
· · · (E′+αn ⊗E+

αn
E+

∆,◦)
))

,
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where E+
∆,◦ is just E′+∆,◦ with the choice E′α = Eα for all α ∈ ∆. The state-

ment follows by completing this with respect to the maximal ideal of E+
∆,◦

and inverting X∆. �

We define the multivariable analogue of Esep as

Esep∆ := lim−→
Eα≤E′α≤E

sep
α ,∀α∈∆

E′∆.

For any subset S ⊆ ∆ we define the similar notions E′+S , E′S , and EsepS

with ∆ replaced by S. We equip Esep∆ with the relative Frobenii ϕα for each
α ∈ ∆ defined above on each E′∆. Further, Esep∆ admits an action of GQp,∆
satisfying

Proposition 3.3. Assume that the extensions E′α/Eα are Galois for all
α ∈ ∆ and let H ′ :=

∏
α∈∆H

′
α where H ′α := Gal(Esepα /E′α). Then we have

(Esep∆ )H
′
∆ = E′∆. In particular, the subring (Esep∆ )HQp,∆ of HQp,∆-invariants

in Esep∆ equals E∆ with the previously defined action of Γ∆
∼= GQp,∆/HQp,∆.

Proof. Since X∆ is H ′∆-invariant and lim−→ can be interchanged with taking
H ′∆-invariants, it suffices to show that whenever

Eα = Fp((Xα)) ≤ E′α = Fq′α((X ′α)) ≤ E′′α = Fq′′α((X ′′α))

is a sequence of finite Galois extensions for each α ∈ ∆ then we have
(E′′+∆ )H

′
∆ = E′+∆ . The containment (E′′+∆ )H

′
∆ ⊇ E′+∆ is clear. We prove the

converse by induction on |∆|. Note that the ideal Mα C E
′′+
∆ generated by

X ′′α is invariant under the action of H ′∆ for any fixed α in ∆. Moreover, for
any integer k ≥ 1 the ring E′′+α /Mk

α is finite dimensional over Fp. Therefore
the image of (E′′+∆ )H

′
∆ under the quotient map E′′+∆ � E′′+∆ /Mk

α is contained
in(
E′′+∆ /Mk

α

)H′∆ ⊆ (E′′+∆ /Mk
α

)H′∆\{α}
=
(
E′′+∆\{α} ⊗Fp

(
E′′+α /Mk

α

))H′∆\{α}
=
(
E′′+∆\{α}

)H′∆\{α} ⊗Fp

(
E′′+α /Mk

α

)
= E′+∆\{α} ⊗Fp

(
E′′+α /Mk

α

)
by induction. Taking the projective limit with respect to k ≥ 1 we deduce
that (E′′+∆ )H

′
∆ is contained in the power series ring
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Fq′′α ⊗Fp
⊗

β∈∆\{α},Fp

Fq′β

 [[X ′′α, X
′
β | β ∈ ∆ \ {α}]] ⊆ E′′+∆ .

Now using the action of H ′α in a similar argument as above (reducing modulo
the kth power of the ideal generated by all the X ′β, β ∈ ∆ \ {α} for all k ≥ 1)
we deduce the statement. �

The subring Esep∆,◦
∼=
⊗

α∈∆,Fp E
sep
α in Esep∆ is the inductive limit of E′∆,◦ ⊆

E′∆ where E′α runs through the finite separable extensions of Eα for each
α ∈ ∆.

Let V be a finite dimensional representation of the group GQp,∆ over Fp.
The basechange Esep∆ ⊗Fp V is equipped with the diagonal semilinear action
of GQp,∆ and with the Frobenii ϕα for α ∈ ∆. These all commute with each
other. We define the value of the functor D at V by putting

D(V ) := (Esep∆ ⊗Fp V )HQp,∆ .

By Proposition 3.3 D(V ) is a module over E∆ inheriting the action of the
monoid T+,∆ from the action of ϕα (α ∈ ∆) and the Galois group GQp,∆ on
Esep∆ ⊗Fp V . Our key Lemma is the following.

Lemma 3.4. The Esep∆ -module Esep∆ ⊗Fp V admits a basis consisting of el-
ements fixed by HQp,∆.

Proof. At first consider the Esep∆,◦-module Esep∆,◦ ⊗Fp V . We show by induction

on |∆| that Esep∆,◦ ⊗Fp V admits a basis consisting of HQp,∆-invariant vectors.

The statement follows from this noting that Esep∆,◦ is a subring in Esep∆ there-

fore the required basis exists also in Esep∆ ⊗Fp V
∼= Esep∆ ⊗Esep∆,◦

(Esep∆,◦ ⊗Fp V ).

By Hilbert’s Thm. 90 the HQp,α-module Esepα ⊗Fp V is trivial for each

α ∈ ∆. So we have an Esepα -basis e
(α)
1 , . . . , e

(α)
d of Esepα ⊗Fp V consisting of

HQp,α-invariant elements. Since we have an action of the direct product
HQp,∆ on V , the Eα-vector space

Vα := Eαe
(α)
1 + · · ·+ Eαe

(α)
d = (Esepα ⊗Fp V )HQp,α

admits a linear action of the group HQp,∆\{α}. Now note that the represen-
tations V and Vα of the group HQp,∆\{α} become isomorphic over the field
Esepα by construction. Since HQp,∆\{α} acts through a finite quotient on V ,
there is a finite extension E′α of Eα contained in Esepα such that we have
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an isomorphism E′α ⊗Fp V
∼= E′α ⊗Eα Vα of HQp,∆\{α}-representations. Mak-

ing this identification and writing ei := 1⊗ ei ∈ E′α ⊗Fp V (resp. e
(α)
i := 1⊗

e
(α)
i ), i = 1, . . . , d, for a basis e1, . . . , ed in V (resp. for the basis e

(α)
1 , . . . e

(α)
d

in Vα) by an abuse of notation, we find a matrix B ∈ GLd(E
′
α) with Bρ(h) =

ρα(h)B for all h ∈ HQp,∆\{α} where ρ(h) ∈ GLd(Fp) (resp. ρα(h) ∈ GLd(Eα))
is the matrix of the action of h on V (resp. on Vα) in the basis e1, . . . , ed
(resp. e

(α)
1 , . . . e

(α)
d ). Now E′α/Eα is a finite separable extension, so there

exists a primitive element u ∈ E′α with E′α = Eα(u). Hence we may write
B as a sum B = B(u) = B0 +B1u+ · · ·+Bn−1u

n−1 for some matrices B0,
B1, . . . , Bn−1 ∈ Ed×dα with n := |E′α : Eα|. Since detB 6= 0, the polynomial
det(B(x)) := det(B0 +B1x+ · · ·+Bn−1x

n−1) ∈ Eα[x] is not identically 0.
As Eα is an infinite field, there exists a u0 ∈ Eα with detB(u0) 6= 0. Now
we have ρ(h) = B(u0)−1ρα(h)B(u0) for all h ∈ HQp,∆\{α}, ie. the represen-
tations V and Vα of HQp,∆\{α} are isomorphic already over Eα. This shows

that there exists a basis v
(α)
1 , . . . v

(α)
d in Vα such that the action of each h in

HQp,∆\{α} is given by a matrix in GLd(Fp) in this basis. We put

Vα∗ := Fpv
(α)
1 + · · ·+ Fpv

(α)
d ⊂ Vα =

(
Esepα ⊗Fp V

)HQp,α

=

 ⊗
β∈∆\{α}

1

⊗ (Esepα ⊗Fp V )

HQp,α

⊆
(
Esep∆,◦ ⊗Fp V

)HQp,α
.

By induction we find a basis v1, . . . , vn of

Esep∆\{α},◦ ⊗Fp Vα∗ ⊆
(
Esep∆,◦ ⊗Fp V

)HQp,α

consisting of HQp,∆\{α}-invariant elements which are HQp,α-invariant, as
well, by construction. Therefore v1, . . . , vn is an HQp,∆-invariant basis of
Esep∆,◦ ⊗Fp V as required. �

Lemma 3.5. We have (Esep∆ )× ∩ E∆ = E×∆.

Proof. Let u be arbitrary in (Esep∆ )× ∩ E∆. Since u is invariant under the
action of HQp,∆, so is its inverse u−1 whence it also lies in E∆ by Proposi-
tion 3.3. �

Lemma 3.6. We have
⋂
α∈∆(Esep∆ )ϕα=id = Fp.

Proof. The containment Fp ⊆
⋂
α∈∆(Esep∆ )ϕα=id ⊆ (Esep∆ )ϕs=id is obvious. On

the other hand, let u ∈ Esep∆ be arbitrary such that ϕα(u) = u for all α ∈ ∆.
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Then we also have up = ϕs(u) = u as ϕs is the absolute Frobenius on Esep∆ .
Since Esep∆ is defined as an inductive limit, u lies in E′∆

∼= (
⊗

α∈∆,Fp Fqα)[[X ′α |
α ∈ ∆]][X−1

∆ ] for some collection E′α = Fqα((X ′α)) (α ∈ ∆) of finite separable
extensions of Eα. Note that

⊗
α∈∆,Fp Fqα is a finite étale algebra over Fp,

in particular, it is reduced. Therefore we have |up|prod = |u|pprod. We deduce

|u|prod = 1 unless u = 0. In particular, u lies in E′+∆ = (
⊗

α∈∆,Fp Fqα)[[X ′α |
α ∈ ∆]]. The constant term u0 ∈

⊗
α∈∆,Fp Fqα also satisfies ϕα(u0) = u0

for all α ∈ ∆. For a fixed α ∈ ∆ we choose an Fp-basis d1, . . . , dn of⊗
β∈∆\{α},Fp Fqβ and write u0 =

∑n
i=1 ci ⊗ di with ci ∈ Fqα . This decompo-

sition is unique and we compute

n∑
i=1

ci ⊗ di = u0 = ϕα(u0) =

n∑
i=1

cpi ⊗ di.

We deduce ci = cpi , ie. ci ∈ Fp for all 1 ≤ i ≤ n. It follows by induction on
|∆| that u0 lies in Fp. Now u− u0 is also fixed by each ϕα (α ∈ ∆), but we
have |u− u0|prod < 1. This implies by the discussion above that u = u0 is in
Fp as desired. �

Proposition 3.7. D(V ) is an étale T+,∆-module over E∆ of rank d :=
dimFp V . Moreover, we have Esep∆ ⊗E∆

D(V ) ∼= Esep∆ ⊗Fp V and

V =
⋂
α∈∆

(Esep∆ ⊗E∆
D(V ))ϕα=id.

Proof. By Lemmata 3.3 and 3.4 D(V ) is a free module of rank d over E∆.
Moreover, the matrix of ϕα in any basis of D(V ) is invertible in Esep∆ , there-
fore also in E∆ by Lemma 3.5. So the action of T+,∆ on D(V ) is étale. The
last statement is a direct consequence of Lemmata 3.4 and 3.6. �

Lemma 3.8. For objects V, V1, V2 in RepFp(GQp,∆) we have D(V1 ⊗Fp V2) ∼=
D(V1)⊗E∆

D(V2) and D(V ∗) ∼= D(V )∗.

Proof. We compute

D(V1 ⊗Fp V2) =
(
Esep∆ ⊗Fp V1 ⊗Fp V2

)HQp,∆

∼=
(
(Esep∆ ⊗Fp V1)⊗Esep∆

(Esep∆ ⊗Fp V2)
)HQp,∆

∼=
(
(Esep∆ ⊗E∆

D(V1))⊗Esep∆
(Esep∆ ⊗E∆

D(V2))
)HQp,∆

∼=
(
Esep∆ ⊗E∆

(D(V1)⊗E∆
D(V2))

)HQp,∆ ∼= D(V1)⊗E∆
D(V2).
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For the second statement we have

D(V ∗) =
(
Esep∆ ⊗Fp HomFp(V,Fp)

)HQp,∆

∼= HomEsep∆
(Esep∆ ⊗Fp V,E

sep
∆ )HQp,∆

∼= HomEsep∆
(Esep∆ ⊗E∆

D(V ), Esep∆ )HQp,∆

∼=
(
Esep∆ ⊗E∆

HomE∆
(D(V ), E∆)

)HQp,∆ ∼= D(V )∗.

�

Theorem 3.9. D is a fully faithful tensor functor from the category
RepFp(GQp,∆) to the category Det(ϕ∆,Γ∆, E∆).

Proof. Let f : V1 → V2 be a nonzero morphism in RepFp(GQp,∆). Then the
Esep∆ -linear map id⊗f : Esep∆ ⊗Fp V1 → Esep∆ ⊗Fp V2 is also nonzero. By the
last statement in Prop. 3.7 it follows that D(f) 6= 0 therefore the faithfulness.

Now let V1 and V2 be arbitrary objects in RepFp(GQp,∆) and θ : D(V1)→
D(V2) be a morphism in Det(ϕ∆,Γ∆, E∆). Then by Prop. 3.7 we obtain a
GQp,∆-equivariant Fp-linear map

f : V1 =
⋂
α∈∆

(
Esep∆ ⊗E∆

D(V1)
)ϕα=id →

⋂
α∈∆

(
Esep∆ ⊗E∆

D(V2)
)ϕα=id

= V2

induced by θ for which we have θ = D(f). Therefore D is full. The compat-
ibility with tensor products is proven in Lemma 3.8. �

Remark. Note that any étale T+,∆-module D in the image of the functor
D is free as a module over E∆ by construction.

Consider the diagonal embedding diag : GQp ↪→ GQp,∆ sending g ∈ GQp
to (g, . . . , g). This defines a functor d̂iag : RepFp(GQp,∆)→ RepFp(GQp) via
restriction. On the other hand, we have the reduction map

` : Det(ϕ∆,Γ∆, E∆)→ Det(ϕ,Γ, E)

to usual (ϕ,Γ)-modules defined in section 2.4 of [11]. Recall that this is given
by taking the quotient by the ideal generated by (Xα −Xβ | α, β ∈ ∆) and
restricting to the diagonal ϕ = ϕs =

∏
α∈∆ ϕα and Γ := {(γ, . . . , γ)} ≤ Γ∆.

Corollary 3.10. There is a natural isomorphism d̂iag ∼= VF ◦ ` ◦ D of func-
tors RepFp(GQp,∆)→ RepFp(GQp) where VF : Det(ϕ,Γ, E)→ RepFp(GQp) is
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Fontaine’s functor from classical étale (ϕ,Γ)-modules to Galois representa-
tions.

Proof. We may identify Eα
∼→ E = Fp((X)) by sending Xα → X for all α ∈

∆. We extend this identification to Esepα → Esep. So we obtain a map `sep :
Esep∆ → Esep sending each subring Esepα to Esep via these identifications
and completing on the level of each finite extension E′∆. Then `sep is GQp-
equivariant where GQp acts on Esep∆ via the diagonal embedding GQp ↪→
GQp,∆ and the usual way on Esep. The restriction of `sep to E∆ is the map
` : E∆ → E defined above, so the diagram

E∆
� � //

`
��

Esep∆

`sep

��
E �
� // Esep

commutes. Thus for an object V in RepFp(GQp,∆) we compute

VF ◦ ` ◦ D(V ) = VF (E ⊗`,E∆
D(V )) = VF ((Esep)HQp ⊗`,E∆

D(V ))

= VF ((Esep ⊗`sep,Esep∆
Esep∆ ⊗E∆

D(V ))HQp )

= VF ((Esep ⊗`sep,Esep∆
Esep∆ ⊗Fp V )HQp )

= VF ((Esep ⊗Fp V )HQp ) = VF ◦ DF (V )

= V |diag(GQp )= d̂iag(V ),

where DF : RepFp(GQp)→ Det(ϕ,Γ, E) stands for Fontaine’s classical func-
tor. �

3.2. The functor V

In order to show that the functor D is essentially surjective, we construct
its quasi-inverse V. Let D be an object in Det(ϕ∆,Γ∆, E∆). The group
GQp,∆ acts on Esep∆ ⊗E∆

D via the formula g(λ⊗ x) := g(λ)⊗ χcyc(g)(x)
(g ∈ GQp,∆, λ ∈ Esep∆ , x ∈ D) where χcyc : GQp,∆ → Γ∆ is the quotient map.
Moreover, each partial Frobenius ϕα (α ∈ ∆) acts semilinearly on Esep∆ ⊗E∆

D via the formula ϕα(λ⊗ x) := ϕα(λ)⊗ ϕα(x). All these actions commute
with each other by construction. We define

V(D) :=
⋂
α∈∆

(
Esep∆ ⊗E∆

D
)ϕα=id

.
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V(D) is a—a priori not necessarily finite dimensional—representation of
GQp,∆ over Fp.

Lemma 3.11. For any integer r > 0 we have⋂
β∈∆

(Esep∆\{α}[Xα]/(Xr
α))ϕβ=id = Fp[Xα]/(Xr

α).

Proof. This follows from Lemma 3.6 noting that Fp[Xα]/(Xr
α) is a finite

dimensional Fp-vector space on which ϕβ acts identically for all β ∈ ∆ \ {α}
and we have Esep∆\{α}[Xα]/(Xr

α) ∼= Esep∆\{α} ⊗Fp Fp[Xα]/(Xr
α). �

Lemma 3.12. For any integer r>0 and finitely generated E+
α /(X

r
α)-module

M we have an identification

Esep∆\{α}[Xα]/(Xr
α)⊗E+

α /(X
r
α) M

∼= Esep∆\{α} ⊗E∆\{α} M.

Proof. This follows from the isomorphism E+
α /(X

r
α) ∼= E∆\{α}[Xα]/(Xr

α).
�

For a subset S⊆∆ we put Esep+S :=lim−→E′+S so we have EsepS =Esep+S [X−1
S ].

Lemma 3.13. EsepS (resp. Esep+S ) is flat as a module over ES (resp. over
E+
S ) for all S ⊆ ∆.

Proof. By construction, E′S (resp. E′+S ) is finite free over ES (resp. over E+
S ),

so EsepS (resp. Esep+S ) is the direct limit of flat modules hence flat. �

Lemma 3.14. We have (Esep+∆\{α}[[Xα]][X−1
∆ ])HQp,∆\{α} = E∆.

Proof. We have E∆ = E+
∆\{α}[[Xα]][X−1

∆ ] where E+
∆\{α} = (Esep+∆\{α})

HQp,∆\{α}

by Lemma 3.3 and HQp,∆\{α} acts trivially on both Xα and X∆, so acts on

the power series ring Esep+∆\{α}[[Xα]] coefficientwise. �

Our main result in this section is the following

Theorem 3.15. The functors D and V are quasi-inverse equivalences of
categories between the Tannakian categories RepFp(GQp,∆) and Det(ϕ∆,
Γ∆, E∆).

Corollary 3.16. Any object D in Det(ϕ∆,Γ∆, E∆) is a free module over E∆.
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Proof. This follows from the essential surjectivity of D using the remark
after Thm. 3.9. �

Proof of Thm. 3.15. This is a long proof that we divide into 5 steps.
Step 1. Reducing the statement to the essential surjectivity of D. By

Thm. 3.9 the functor D is fully faithful and we have V ◦ D(V ) ∼= V naturally
in V for any object V in RepFp(GQp,∆) by Prop. 3.7. Moreover, by Lemma 3.8
D is compatible with tensor products and duals. So it remains to show that
D is essentially surjective. We proceed by induction on |∆|. For |∆| = 1 this
is a classical result of Fontaine (see e.g. Thm. 2.21 in [5]). Suppose that
|∆| > 1, fix α ∈ ∆, and pick an object D in Det(ϕ∆,Γ∆, E∆).

Step 2. The goal here is to trivialize the ϕβ-action (β ∈ ∆ \ {α}) on
D+∗
α /Xr

αD
+∗
α uniformly in r by tensoring up with Esep∆\{α}. By Prop. 2.10

D+∗
α is an étale T+,α-module over E+

α . Reducing mod Xr
α for an integer

r > 0 we deduce that D+∗
α,r := D+∗

α /Xr
αD

+∗
α is an étale T+,α-module over

E+
α /(X

r
α) ∼= E∆\{α}[Xα]/(Xr

α). Since each ϕβ (β ∈ ∆ \ {α}) acts trivially
on the variable Xα, we have a natural isomorphism of functors

E∆\{α}[Xα]/(Xr
α)⊗E∆\{α}[Xα]/(Xr

α),ϕt · ∼= E∆\{α} ⊗E∆\{α},ϕt ·

for all t ∈ T+,α. Hence D+∗
α,r is an object in Det(ϕ∆\{α},Γ∆\{α}, E∆\{α})

since E∆\{α}[Xα]/(Xr
α) is finitely generated as a module over E∆\{α}. By

the inductional hypothesis (see step 1), we can therefore trivialize D+∗
α,r by

tensoring with Esep∆\{α} over E∆\{α}. However, this is the same as applying

Esep∆\{α}[Xα]/(Xr
α)⊗E∆\{α}[Xα]/(Xr

α) · by Lemma 3.12. Hence the natural map

Esep∆\{α}[Xα]/(Xr
α)⊗Fp[Xα]/(Xr

α)(4) ⋂
β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xr

α)⊗E+
α /(X

r
α) D

+∗
α,r

)ϕβ=id

∼→ Esep∆\{α}[Xα]/(Xr
α)⊗E+

α /(X
r
α) D

+∗
α,r

∼= Esep∆\{α}[Xα]/(Xr
α)⊗E+

α
D+∗
α

is an isomorphism for all r > 0 using Lemma 3.11. Our key Lemma is the
following consequence of Prop. 2.10.

Lemma 3.17. There exists a finitely generated E+
∆-submodule M ≤ D+∗

α

such that

(5)
⋂

β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xr

α)⊗E+
α
D+∗
α,

)ϕβ=id
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is contained in the image of the map

Esep+∆\{α}[Xα]/(Xr
α)⊗E+

∆
M → Esep+∆\{α}[Xα]/(Xr

α)⊗E+
∆
D+∗
α(6)

∼= Esep∆\{α}[Xα]/(Xr
α)⊗E+

α
D+∗
α

induced by the inclusion M ≤ D+∗
α for all r > 0. Moreover, M can be chosen

in such a way that (6) is injective.

Proof. We show that M := X−1
∆\{α}D0 will do where D0 is defined in Lemma

2.11. Since D0 is finitely generated over E+
∆, so is M . By Lemma 2.11,

we have D+∗
α =

⋃
l≥0E

+
∆ϕ

l
α(M). For any fixed r > 0 there exists an integer

lr ≥ 0 such that (5) is contained in

Esep+∆\{α}[Xα]/(Xr
α)⊗E+

∆
X−p

lr+1
∆\{α} M

⊆ Esep+∆\{α}[Xα]/(Xr
α)⊗E+

∆
E+

∆ϕ
lr
α (M)

= Esep+∆\{α}[Xα]/(Xr
α)ϕlrα (Esep+∆\{α}[Xα]/(Xr

α)⊗E+
∆
M).

Now if x lies in (5), then we have ϕlrα (x) = x. On the other hand, x lies in

E′∆\{α}[Xα]/(Xr
α)ϕlrα (E′∆\{α}[Xα]/(Xr

α)⊗E+
∆
M)

for some finite separable extensions E′β/Eβ for β ∈ ∆ \ {α} and E′∆\{α} :=⊗̂
β∈∆\{α},FpE

′
β. Therefore x lies in fact in E′∆\{α}[Xα]/(Xr

α)⊗E+
∆
M by the

injectivity of the map id⊗ϕlrα :

E′∆\{α}[Xα]/(Xr
α)⊗E′∆\{α}[Xα]/(Xr

α),ϕlrα
(E′∆\{α}[Xα]/(Xr

α)⊗E+
α
D+∗
α )

→ E′∆\{α}[Xα]/(Xr
α)⊗E+

α
D+∗
α

(D+∗
α is étale) noting that the absolute Frobenius ϕα : E′∆\{α} → E′∆\{α} is

injective since the ring E′∆\{α} is the localization of a power series ring over
a finite étale algebra over Fp, in particular, it is reduced.

Finally, by the proof of Lemma 2.11 we may choose D0 = X−k∆\{α}(D
+ ∩

D+∗
α ) for some integer k > 0 whence M = X−k−1

∆\{α}(D
+ ∩D+∗

α ). So by Lemma

2.7 D+∗
α /M has no Xα-torsion as D+∗

α /M ∼= D+∗
α +X−k−1

∆\{α}D
+/(X−k−1

∆\{α}D
+)

is contained in D+
α /(X

−k−1
∆\{α}D

+) ∼= D+
α /D

+. Therefore the map (6) is injec-
tive. �

Step 3. The goal here is to show the following compatibility of our con-
struction with projective limits with respect to r.
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Lemma 3.18. We have

lim←−
r

(
Esep+∆\{α}[Xα]/(Xr

α)⊗E+
∆
M
)
∼= Esep+∆\{α}[[Xα]]⊗E+

∆
M,

lim←−
r

(
Esep∆\{α}[Xα]/(Xr

α)⊗E+
α
D+∗
α

)
∼= Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α , and

lim←−
r

(
Esep∆\{α}[Xα]/(Xr

α)⊗Fp[Xα]/(Xr
α)

⋂
β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xr

α)⊗E+
α /(X

r
α) D

+∗
α,r

)ϕβ=id
)

∼= Esep∆\{α}[[Xα]]⊗Fp[[Xα]]

⋂
β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E∆

D
)ϕβ=id

.

Proof. Since M is contained in D, M has no Xα-torsion. In particular, M is

flat as a module over the local ring Fp[[Xα]] and Tor
Fp[[Xα]]
i (Fp[Xα]/(Xr

α),M)
= 0 for integers i, r > 0. Now we have the identification

Esep+∆\{α}[Xα]/(Xr
α)⊗E+

∆
· ∼= Esep+∆\{α} ⊗E+

∆\{α}
(Fp[Xα]/(Xr

α)⊗Fp[[Xα]] ·)

applied to an arbitrary projective resolution P• of M as an E+
∆-module.

Noting that each Pj (j ≥ 0) is flat over Fp[[Xα]] (as they are torsion-free)
we deduce that Fp[Xα]/(Xr

α)⊗Fp[[Xα]] P• is acyclic in nonzero degrees as it

computes Tor
Fp[[Xα]]
• (Fp[Xα]/(Xr

α),M). Moreover, by Lemma 3.13 Esep+∆\{α}
is flat over E+

∆\{α} whence the complex Esep+∆\{α}[Xα]/(Xr
α)⊗E+

∆
P• is also

acyclic in nonzero degrees showing that Esep+∆\{α}[Xα]/(Xr
α) and M are Tor-

independent over E+
∆.

On the other hand, M is finitely generated over E+
∆, so we have short

exact sequences

0→M1 → (E+
∆)k0

f0→M → 0 and 0→M2 → (E+
∆)k1 →M1 → 0

by noetherianity. In order to simplify notation write (·)r for

Esep+∆\{α}[Xα]/(Xr
α)⊗E+

∆
·

to obtain an exact sequence

(M2)r → (E+
∆)k1

r
f1,r→ (E+

∆)k0
r

f0,r→ (M)r → 0
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for all r > 0 using the Tor-independence above. Now since the natural map
(N)r1 → (N)r2 is surjective for any E+

∆-module N and r1 ≥ r2 > 0 by the
right exactness of · ⊗E+

∆
N , the natural map Ker(f0,r1)→ Ker(f0,r2) is also

surjective (applying this in case N = M1 and a diagram chasing). So the
Mittag-Leffler property is satisfied for these projective systems showing
that the map lim←−r f0,r is surjective with kernel lim←−r Ker(f0,r) = lim←−r Im(f1,r).
Applying the same trick as above with N = M2 we deduce that the pro-
jective system Ker(f1,r) also satisfies the Mittag-Leffler property showing
that lim←−r f1,r has image lim←−r Im(f1,r). In particular, lim←−r(M)r is the cok-

ernel of the map lim←−r f1,r : (Esep+∆\{α}[[Xα]])k1 → (Esep+∆\{α}[[Xα]])k0 and so is

Esep+∆\{α}[[Xα]]⊗E+
∆
M as claimed. The second statement follows in exactly

the same way.
For the third statement note that the isomorphism (4) and the surjectiv-

ity of the map Esep∆\{α}[Xα]/(Xr1
α )⊗E+

α
D+∗
α → Esep∆\{α}[Xα]/(Xr2

α )⊗E+
α
D+∗
α

implies that the map⋂
β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xr1

α )⊗E+
α /(X

r1
α ) D

+∗
α,r1

)ϕβ=id

→
⋂

β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xr2

α )⊗E+
α /(X

r2
α ) D

+∗
α,r2

)ϕβ=id

is also onto for all r1 ≥ r2. Therefore the natural map⋂
β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α

)ϕβ=id

= lim←−
r

⋂
β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xr

α)⊗E+
α /(X

r
α) D

+∗
α,r

)ϕβ=id

→
⋂

β∈∆\{α}

(
Esep∆\{α}[Xα]/(Xα)⊗E+

α /(Xα) D
+∗
α,1

)ϕβ=id

is also onto using the second statement of the Lemma. On the other hand,
the kernel of this map equals⋂

β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α

)ϕβ=id
∩XαE

sep
∆\{α}[[Xα]]⊗E+

α
D+∗
α

= Xα

⋂
β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α

)ϕβ=id
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since Xα is fixed by each ϕβ and Esep∆\{α}[[Xα]]⊗E+
α
D+∗
α has no Xα-torsion.

This shows, in particular, that
⋂
β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α

)ϕβ=id
is

finitely generated over Fp[[Xα]] by the topological Nakayama Lemma (see
[1]). Moreover, it is torsion-free hence free as Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α has no

Xα-torsion either. In particular,

Esep∆\{α}[[Xα]]⊗Fp[[Xα]]

⋂
β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E∆

D
)ϕβ=id

is Xα-adically complete and the result follows. �

Step 4. The goal here is to obtain a (ϕα,Γα)-module Dα over Eα (by
trivializing the action of each ϕβ, β ∈ ∆ \ {α}) which is at the same time
a linear representation of the group GQp,∆\{α}. We take projective limits of
the inclusions in Lemma 3.17 with respect to r to conclude (using Lemma
3.18) that ⋂

β∈∆\{α}

(
Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α

)ϕβ=id

is contained in the image of the map

Esep+∆\{α}[[Xα]]⊗E+
∆
M → Esep∆\{α}[[Xα]]⊗E+

α
D+∗
α .

Note that M [X−1
∆ ] = D+∗

α [X−1
∆ ] = D+∗

α [X−1
α ] = D and ϕβ acts trivially on

Xα. So inverting X∆ above we deduce that

Dα :=
⋂

β∈∆\{α}

(
Esep∆\{α}((Xα))⊗E∆

D
)ϕβ=id

is contained in the image of the map

Esep+∆\{α}[[Xα]][X−1
∆ ]⊗E∆

D ↪→ Esep∆\{α}((Xα))⊗E∆
D.

On the other hand, by (4) and the third statement of Lemma 3.18 we have
an isomorphism

(7) Esep∆\{α}((Xα))⊗Fp((Xα)) Dα
∼→ Esep∆\{α}((Xα))⊗E∆

D.

Lemma 3.19. The finite dimensional Fp((Xα))-vector space Dα has the
structure of an étale (ϕα,Γα)-module. At the same time it is a (linear) rep-
resentation of the group GQp,∆\{α}. These two actions commute with each
other.
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Proof. The operator ϕα and the groups Γα and GQp,∆\{α} act naturally
on Dα. For the étaleness of the action of ϕα on Dα note that we have
Fp((Xα))⊗Fp((Xα)),ϕα D

∼= D by the étale property of ϕα on D and that ϕβ
acts trivially on Fp((Xα)) for β ∈ ∆ \ {α}. So we compute

Fp((Xα))⊗Fp((Xα)),ϕα Dα

= Fp((Xα))⊗Fp((Xα)),ϕα

⋂
β∈∆\{α}

(
Esep∆\{α}((Xα))⊗E∆

D
)ϕβ=id

=
⋂

β∈∆\{α}

(
Fp((Xα))⊗Fp((Xα)),ϕα E

sep
∆\{α}((Xα))⊗E∆

D
)ϕβ=id

=
⋂

β∈∆\{α}

(
Esep∆\{α}((Xα))⊗E∆

Fp((Xα))⊗Fp((Xα)),ϕα D
)ϕβ=id

∼=
⋂

β∈∆\{α}

(
Esep∆\{α}((Xα))⊗E∆

D
)ϕβ=id

= Dα.

�

Step 5. We show the essential surjectivity of D here. Now we apply VF,α =
(Esepα ⊗Fp((Xα)) ·)ϕα=id to Dα to obtain a finite dimensional Fp-representation
V of GQp,∆. Moreover, we have dimFp V = dimFp((Xα))Dα = rkE∆

D by the
isomorphism (7) since VF,α is rank-preserving by Fontaine’s classical result.
Using again the isomorphism (7) we conclude that the upper horizontal map
in the diagram

Esep+∆\{α}[[Xα]][X−1
∆ ]⊗Fp((Xα)) Dα
� _

��

// Esep+∆\{α}[[Xα]][X−1
∆ ]⊗E∆

D
� _

��
Esep∆\{α}((Xα))⊗Fp((Xα)) Dα

∼ // Esep∆\{α}((Xα))⊗E∆
D

induced by the containmentDα ⊂ Esep+∆\{α}[[Xα]][X−1
∆ ]⊗E∆

D is injective since

so are the vertical arrows as Esep+∆\{α}[[Xα]][X−1
∆ ] is a subring in Esep∆\{α}((Xα))

and D (resp. Dα) is flat over E∆ (resp. over Fp((Xα))) by Prop. 2.2 (resp.
since Fp((Xα)) is a field). Applying Esepα ⊗Fp((Xα)) · we deduce another injec-
tive composite map
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Esep∆ ⊗Fp V

↪→
(
Esep+∆\{α}[[Xα]][X−1

∆ ]⊗Fp((Xα)) E
sep
α

)
⊗Fp V

∼= Esep+∆\{α}[[Xα]][X−1
∆ ]⊗Fp((Xα)) E

sep
α ⊗Fp((Xα)) Dα

= Esepα ⊗Fp((Xα)) E
sep+
∆\{α}[[Xα]][X−1

∆ ]⊗Fp((Xα)) Dα

↪→
(
Esepα ⊗Fp((Xα)) E

sep+
∆\{α}[[Xα]][X−1

∆ ]
)
⊗E∆

D.

Taking HQp,∆-invariants of this inclusion we deduce an inclusion D(V ) ↪→ D
using Lemma 3.14. However, this is an isomorphism by Prop. 2.1 in [11] as
D(V ) and D have the same rank. �

Remarks. 1) Even though we have constructed V in the proof of the
above theorem by a different procedure from just putting V := V(D),
we still have an isomorphism V ∼= V(D(V )) ∼= V(D) by Prop. 3.7.

2) If κ is a finite extension of Fp, then we have an equivalence of cat-
egories between Repκ(GQp,∆) and Det(ϕ∆,Γ∆, κ⊗Fp E∆). Indeed, we
have a natural isomorphism (κ⊗Fp E

sep
∆ )⊗κ · ∼= Esep∆ ⊗Fp · as functors

on Repκ(GQp,∆).

4. The case of p-adic representations

4.1. Cohomological preliminaries

We will need the following multivariable analogue of Hilbert’s Theorem 90
(additive form).

Proposition 4.1. The continuous group cohomology H1
cont(HQp,∆, E

sep
∆ )

vanishes.

Proof. By Prop. 3.3 it suffices to show that for finite Galois extensions
E′α/Eα (for all α ∈ ∆) with Galois group H ′α := Gal(E′α/Eα) we have
H1(H ′, E′∆) = {1} where we put H ′ :=

∏
α∈∆H

′
α. Choose a normal basis

e1, . . . , enα ∈ E′α over Eα for each α ∈ ∆. By Lemma 3.2 the set {
∏
α∈∆ eiα |

1 ≤ iα ≤ nα, α ∈ ∆} is a basis of the free E∆-module E′∆. In particular,
E′∆
∼= E∆[H ′] is induced as an H ′-module whence the cohomology group

H1(H ′, E′∆) is trivial. �
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Let D be an abelian group admitting an action of the commutative
monoid

∏
α∈∆ ϕ

N
α. Fix a total ordering < on ∆ and consider the complex

Φ•(D) : 0→ D →
⊕
α∈∆

D → · · · →
⊕

{α1,...,αr}∈(∆

r)

D → · · · → D → 0

where for all 0 ≤ r ≤ |∆| − 1 the map d
β1,...,βr+1
α1,...,αr : D → D from the compo-

nent in the rth term corresponding to {α1, . . . , αr} ⊆ ∆ to the component
corresponding to the (r + 1)-tuple {β1, . . . , βr+1} ⊆ ∆ is given by

dβ1,...,βr+1
α1,...,αr =

{
0 if {α1, . . . , αr} 6⊆ {β1, . . . , βr+1}
(−1)ε(id−ϕβ) if {β1, . . . , βr+1} = {α1, . . . , αr} ∪ {β},

where ε = ε(α1, . . . , αr, β) is the number of elements in the set {α1, . . . , αr}
smaller than β. Since the operators (id−ϕβ) commute with each other,
Φ•(D) is a chain complex of abelian groups. Note that for each α ∈ ∆ we
have a complex

Φ•α(D) : 0→ D
id−ϕα→ D → 0

such that Φ•(Esep∆ ) is a kind of completed tensor product of the complexes
Φ•α(Esepα ). More precisely, the tensor product over Fp of the complexes
Φ•(Esepα ) is the complex Φ•(Esep∆,◦) which is therefore acyclic in nonzero de-
grees with 0th cohomology equal to Fp by the Künneth formula. Note that
there are no higher Tor’s as the tensor product is taken over the field Fp.
We need the following completed version of this observation.

Proposition 4.2. The complex Φ•(Esep∆ ) is acyclic in nonzero degrees with
0th cohomology equal to Fp.

The following Lemma is well-known.

Lemma 4.3. For any finite separable extension E′α/Eα the map id−ϕα :
X ′αE

′+
α → X ′αE

′+
α is bijective.

Proof. The kernel of id−ϕα is Fp which is not contained in X ′αE
′+
α . On the

other hand,
∑∞

n=0 ϕ
n
α converges on this set and is therefore an inverse to

id−ϕα for formal reasons. �

Our key is the following

Lemma 4.4. For all α ∈ S ⊆ ∆ the map id−ϕα : EsepS → EsepS is surjective
with kernel EsepS\{α}.
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Proof. We may assume S = ∆. The inclusion Esep∆\{α} ⊆ Ker(id−ϕα) is clear.

For a collection Eβ ≤ E′β = Fqβ((X ′β)) (β ∈ ∆) of finite separable extensions
the ring E′∆ is embedded into (E′∆\{α} ⊗Fp Fqα)((X ′α)). By comparing the

coefficients we find that (E′∆\{α} ⊗Fp Fqα)((X ′α))ϕα=id = E′∆\{α}.

For the surjectivity pick an element c in E′∆ ⊂ E
sep
∆ for some collec-

tion of finite separable extensions Eβ ≤ E′β = Fqβ((X ′β)) (β ∈ ∆). There ex-

ists an integer k ≥ 0 such that c lies in X−k∆ E′+∆ =
⊗̂

β∈∆,FpX
−k
β E′+β . So

we may write c as a convergent sum c =
∑∞

n=1 cα,n ⊗ cα,n such that cα,n ∈
X−k∆\{α}E

′+
∆\{α} with cα,n → 0 and cα,n ∈ X−kα E′+α . The set X−kα E′+α /X

′
αE
′+
α

is finite, so we choose a finite set U ⊂ X−kα E′+α of representatives of all the
cosets in X−kα E′+α /X

′
αE
′+
α . We adjoin the roots of the polynomial fu(X) =

Xp −X − u to E′α for each u ∈ U in order to obtain a finite separable ex-
tension E′′α/E

′
α (noting that these polynomials do not have multiple roots).

We deduce that each u ∈ U lies in the image of id−ϕα : E′′α → E′′α, and by
construction we may write cα,n = un + vn with un ∈ U and vn ∈ X ′αE′+α for
all n ≥ 1. By Lemma 4.3, the elements vn are in the image of id−ϕα, too,
whence so are the elements cα,n by the additivity of the map id−ϕα, ie.
cα,n = dα,n − ϕα(dα,n) for some dα,n ∈ E′′α for all n ≥ 1. Moreover, the Xα-
adic valuation of dα,n is bounded by that of the Xα-adic valuation of cα,n
showing that the sum d :=

∑∞
n=1 cα,n ⊗ dα,n defines an element in Esep∆ with

c = d− ϕα(d). �

Proof of Prop. 4.2. We proceed by induction on |∆|. The case |∆| = 1 is
clear, so suppose n := |∆| > 1 and we have proven the statement for any
proper subset S ( ∆ = {α1, . . . , αn}. Let c = (cS)S∈(∆

r)
∈
⊕

S∈(∆

r)
Esep∆ be a

cocycle in degree r. By Lemma 4.4 we find an element x = (xU )U∈( ∆

r−1)
with

xU = 0 for all U with αn ∈ U such that (c− dr−1(x))S = 0 for all S ∈
(

∆
r

)
with αn ∈ S. Indeed, the map · ∪ {αn} :

(
∆\{αn}
r−1

)
→ {S ∈

(
∆
r

)
| αn ∈ S} is a

bijection and by our assumption that x is concentrated into
(

∆\{αn}
r−1

)
⊂
(

∆
r−1

)
only the S \ {α}-component of x contributes to the S component of dr−1(x)
for αn ∈ S. So by replacing c with c− dr−1(x) we may assume without loss of
generality that cS = 0 for all S containing αn. In particular, for S′ ∈

(
∆\{αn}

r

)
we compute

0 = (dr(c))S′∪{αn}

= (−1)r(id−ϕαn)(cS′) +
∑
β∈S′

(−1)ε(β,S)(id−ϕβ)(cS′∪{αn}\{β})

= (−1)r(id−ϕαn)(cS′).
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Using Lemma 4.4 again this yields cS′ ∈ Esep∆\{αn} for all S′ ∈
(

∆
r

)
. Now the

statement follows by induction. �

The association D 7→ Φ•(D) is an exact functor from the category of
abelian groups with an action of

∏
α∈∆ ϕ

N
α to the category of chain complexes

of abelian groups. In particular, for any short exact sequence 0→ D1 →
D2 → D3 → 0, we have a short exact sequence 0→ Φ•(D1)→ Φ•(D2)→
Φ•(D3)→ 0 of chain complexes. This yields a long exact sequence

0→ h0Φ•(D1)→ h0Φ•(D2)→ h0Φ•(D3)

→ h1Φ•(D1)→ h1Φ•(D2)→ h1Φ•(D3)→ · · ·

of abelian groups.

4.2. The multivariable p-adic coefficient ring

Our goal in this section is to lift E∆ and Esep∆ to characteristic 0 so we can
classify p-adic representations ofGQp,∆. Recall [5] thatOE∼=lim←−h Z/(p

h)((X))
is constructed as a Cohen ring of E ∼= Fp((X)). Via the embedding X 7→
[ε]− 1 these are subrings of B̃ which is defined as B̃ := W (Êsep)[p−1] where

W (Êsep) is the ring of p-typical Witt vectors of the completion Êsep (with re-
spect to the X-adic topology) of the separable closure Esep. Here [ε] denotes
the Teichmüller representative of the sequence ε = (εn)n ∈ lim←−x7→xp OCp

∼=
Êsep

+
of p-power roots of unity with ε1 6= 1. Note that Êsep is an alge-

braically closed field of characteristic p which is, in fact, isomorphic to the
tilt C[p = Frac(lim←−x 7→xp OCp/(p)) of Cp in the modern terminology. Further,
for any finite extension E′/E contained in Esep there exists a unique finite
unramified extension E ′ of E = OE [p−1] contained in B̃ with residue field E′

(Prop. 4.20 in [5]).
We define the ring OE∆ as the projective limit lim←−h

(
Z/(ph)[[Xα | α ∈

∆]][X−1
∆ ]
)

and put E∆ := OE∆ [p−1] so we have OE∆/(p) ∼= E∆. The Iwasawa
algebra O+

E∆ = Zp[[Xα | α ∈ ∆]] ≤ OE∆ is isomorphic to the completed tensor

product of the one-variable Iwasawa algebras O+
Eα := Zp[[Xα]] (α ∈ ∆) over

Zp. This motivates the way we can lift E′∆ to characteristic 0 for a collection
E′α/Eα (α ∈ ∆) of finite separable extensions. We define

O+
E ′∆

:=
⊗̂

α∈∆,Zp

O+
E ′α
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as a completed tensor product. If we write E′α = Fqα((X ′α)) (α ∈ ∆) then we

may identify O+
E ′∆

with the power series ring
(⊗

α∈∆,ZpW (Fqα)
)

[[X ′α | α ∈
∆]] over the finite étale Zp-algebra

⊗
α∈∆,ZpW (Fqα). We define OE ′∆ as the p-

adic completion ̂O+
E ′∆

[X−1
∆ ] = lim←−hO

+
E ′∆

[X−1
∆ ]/(ph) and put E ′∆ := OE ′∆ [p−1].

We have the following alternative characterization of OE ′∆ .

Lemma 4.5. Writing ∆ = {α1, . . . , αn} we have

OE ′∆ ∼= OE ′α1
⊗OEα1

(· · · (OE ′αn ⊗OEαn OE∆)).

In particular, OE ′∆ is a free module of rank
∏n
i=1 |E′αi : Eαi | over OE∆.

Proof. Each OE ′αi is naturally a subring in OE ′∆ and so is OE∆ . Therefore
there is a ring homomorphism from the right hand side to the left hand
side which is an isomorphism modulo p by Lemma 3.2. The first statement
follows from the p-adic completeness of both sides.

Since OEαi is a complete discrete valuation ring, OE ′αi is finite free over

OEαi of rank |E′αi : Eαi | (i = 1, . . . , n). Therefore the second statement. �

Now we define Eur∆ := lim−→E
′
∆ and OEur∆

:= lim−→OE ′∆ where E′α runs over
the finite subextensions of Eα in Esepα for all α ∈ ∆. Further, we denote by
Êur∆ (resp. by OÊur∆

) the p-adic completion of Eur∆ (resp. of OEur∆
). We have

OÊur∆
/(p) ∼= Esep∆ by construction. The group GQp,∆ acts naturally on Êur∆

(resp. on OÊur∆
). Moreover, for each α ∈ ∆ we have the Frobenius lift ϕα on

B̃α (the copy of B̃ indexed by α) which acts on [ε] by raising to the pth power
(as it is a Teichmüller representative). So we have ϕα(Xα) = (Xα + 1)p − 1.
For each finite extension E′α/Eα we have ϕα(E ′α) ⊂ E ′α, so this defines an

action of ϕα on the rings Eur∆ , OEur∆
, Êur∆ , and OÊur∆

for all α ∈ ∆. These

operators commute with each other and with the action of the group GQp,∆.

Proposition 4.6. We have

Êur∆

HQp,∆
= E∆,

⋂
α∈∆

Êur∆

ϕα=id
= Qp,

OHQp,∆

Êur∆

= OE∆ ,
⋂
α∈∆

Oϕα=id

Êur∆

= Zp.

Proof. The statements on Êur∆ follow from those on OÊur∆
as p is ϕα- and

HQp,∆-invariant for all α ∈ ∆. Moreover, the latter statements are conse-
quences of Prop. 3.3, resp. Lemma 3.6 using devissage. �
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4.3. The equivalence of categories

We denote by RepZp(GQp,∆) (resp. by RepQp(GQp,∆)) the category of con-
tinuous representations of GQp,∆ on finitely generated Zp-modules (resp.
on finite dimensional Qp-vector spaces). Let T (resp. V ) be an object in
RepZp(GQp,∆) (resp. in RepQp(GQp,∆)). We define

D(T ) :=
(
OÊur∆

⊗Zp T
)HQp,∆

(
resp. D(V ) :=

(
Êur∆ ⊗Qp V

)HQp,∆
)
.

By Prop. 4.6 D(T ) (resp. D(V )) is a module over OE∆ (resp. over E∆).
Moreover, it admits an action of the monoid T+,∆: the action of ϕα (α ∈ ∆)
is trivial on T (resp. on V ) and therefore comes from the action on OÊur∆

(resp. on Êur∆ ) defined above. The action of Γ∆ = GQp,∆/HQp,∆ comes from

the diagonal action of GQp,∆ on OÊur∆
⊗Zp T (resp. on Êur∆ ⊗Qp V ).

Proposition 4.7. Let T be an object in RepZp(GQp,∆). The natural map

OÊur∆
⊗OE∆ D(T )→ OÊur∆

⊗Zp T

is an isomorphism.

Proof. This is very similar to the proof of Prop. 2.30 in [5]. We proceed in
two steps. Assume first that T is killed by a power ph of p. We use induction
on h. The case h = 1 is done in Prop. 3.7. Now for h > 1 we have a short
exact sequence 0→ T1 → T → T2 → 0 of objects in RepZp(GQp,∆) such that

pT1 = 0 and ph−1T2. Since OÊur∆
has no p-torsion, it is flat as Zp-module.

Therefore we obtain a short exact sequence

0→ OÊur∆
⊗Zp T1 → OÊur∆

⊗Zp T → OÊur∆
⊗Zp T2 → 0.

Now we have an identificationOÊur∆
⊗Zp T1

∼= Esep∆ ⊗Fp T1
∼= Esep∆ ⊗E∆

D(T1).

In particular, as a representation of HQp,∆ we have

OÊur∆
⊗Zp T1

∼= (Esep∆ )dimFp T1 .

In particular, Prop. 4.1 yields H1
cont(HQp,∆,OÊur∆

⊗Zp T1) = {1}. By the long

exact sequence of continuous HQp,∆-cohomology we deduce the exactness of
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the sequence

0→ D(T1)→ D(T )→ D(T2)→ 0.

Now we have a commutative diagram

0 // OÊur∆
⊗OE∆ D(T1) //

∼
��

OÊur∆
⊗OE∆ D(T ) //

��

OÊur∆
⊗OE∆ D(T2) //

∼
��

0

0 // OÊur∆
⊗Zp T1

// OÊur∆
⊗Zp T // OÊur∆

⊗Zp T2
// 0

with exact rows. Thus the vertical map in the middle is an isomorphism by
induction using the 5-lemma.

The general case follows from this by taking the projective limit of the
isomorphisms above for T/phT as h tends to infinity. �

An étale T+,∆-module over OE∆ is a finitely generated OE∆-module D
together with a semilinear action of the monoid T+,∆ such that for all ϕt ∈
T+,∆ the map

id⊗ϕt : ϕ∗tD := OE∆ ⊗OE∆ ,ϕt D → D

is an isomorphism. We denote by Det(ϕ∆,Γ∆,OE∆) the category of étale
T+,∆-modules over OE∆ . As in the mod p case, Det(ϕ∆,Γ∆,OE∆) has the
structure of a neutral Tannakian category. If D is a finitely generated OE∆
module that is killed by a power ph of p we define the generic length of D as
lengthgenD :=

∑h
i=1 rkE∆

pi−1D/piD where rkE∆
denotes the generic rank

(ie. dimension over Frac(E∆) of the localisation at (0)).

Corollary 4.8. The functor D is exact. D(T ) is an object in Det(ϕ∆,Γ∆,
OE∆) for any T in RepZp(GQp,∆). Moreover, if T is killed by a power of p
then the we have lengthgenD(T ) = lengthZp T .

Proof. If T is an object in RepZp(GQp,∆) such that phT = 0, then we have

H1(HQp,∆,OÊur∆
⊗Zp T ) = {1} by induction on h using the long exact se-

quence of continuous HQp,∆-cohomology. So the exactness of D on finite
length objects in RepZp(GQp,∆) follows the same way as in the proof of
Prop. 4.7 in the special case when pT1 = 0. Now if 0→ T1 → T2 → T3 → 0
is an arbitrary short exact sequence in RepZp(GQp,∆) then we have an exact
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sequence

0→ T1[ph]→ T2[ph]→ T3[ph]
∂h→ T1/p

hT1 → T2/p
hT2 → T3/p

hT3 → 0

of finite length objects for all h ≥ 1. Applying D yields an exact sequence

0→ D(T1[ph])→ D(T2[ph])→ D(T3[ph])

→ D(T1/p
hT1)→ D(T2/p

hT2)→ D(T3/p
hT3)→ 0

for all h ≥ 1. Since Ti is finitely generated over Zp, we have Ti[p
h] = (Ti)tors

for h ≥ h0 large enough (i = 1, 2, 3). In particular, the connecting map

Ti[p
(n+1)h]

ph·→ Ti[p
nh] is the zero map for h ≥ h0 and i = 1, 2, 3. Thus the

Mittag–Leffler property is satisfied for both Im(∂h)h and Coker(∂h)h as the
map T1/p

h+1T1 → T1/p
hT1 is surjective for all h ≥ 1. Hence taking the pro-

jective limit we obtain an exact sequence 0→ D(T1)→ D(T2)→ D(T3)→ 0
as claimed.

The statement on the generic length follows from the exactness using
Prop. 3.7 and induction on h such that phT = 0. In particular, D(T ) is
finitely generated over OE∆ if T has finite length. Now if T is not necessarily
of finite length then we apply the exactness of D on the exact sequence 0→
T [p]→ T

p·→ T → T/pT → 0 to obtain that D(T/pT ) = D(T )/pD(T ) which
is finitely generated over E∆. Therefore D(T ) is finitely generated over OE∆
by the p-adic completeness of D(T ) (it follows easily from the definition that
we have lim←−hD(T/phT ) = D(T )).

Finally, the étale property for finite length modules follows by induction
on the length from the case h = 1 (Prop. 3.7) and in general by taking the
projective limit. �

Conversely, let D be an object in Det(ϕ∆,Γ∆,OE∆). We define

T(D) :=
⋂
α∈∆

(
OÊur∆

⊗OE∆ D
)ϕα=id

.

This is a Zp-module admitting a diagonal action of GQp,∆ via the formula
g(λ⊗ d) := g(λ)⊗ χ(g)(d) where χ : GQp,∆ � Γ∆ is the quotient map.

Proposition 4.9. For any object D in Det(ϕ∆,Γ∆,OE∆), the natural map

OÊur∆
⊗Zp T(D)→ OÊur∆

⊗OE∆ D

is an isomorphism.
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Proof. This is completely analogous to the proof of Prop. 2.31 in [5]. We
proceed in two steps. At first assume that phD = 0 for some integer h ≥ 1.
Consider the exact sequence 0→ D[p]→ D → D/D[p]→ 0 and apply the
exact functor Φ• ◦ (OÊur∆

⊗OE∆ ·) to obtain an exact sequence

0→ Φ•(OÊur∆
⊗OE∆ D[p])→ Φ•(OÊur∆

⊗OE∆ D)

→ Φ•(OÊur∆
⊗OE∆ D/D[p])→ 0.

By Thm. 3.15 D[p] is in the image of the functor D whence OÊur∆
⊗OE∆ D[p]

is isomorphic to (Esep∆ )rkE∆
D[p] as a

∏
α∈∆ ϕ

N
α-module using Prop. 3.7. In

particular, h1Φ•(OÊur∆
⊗OE∆ D[p]) = 0 by Prop. 4.2. This yields an exact

sequence

0→ T(D[p])→ T(D)→ T(D/D[p])→ 0,

and the statement follows the same way as in the proof of Prop. 4.7.
The general case follows by taking the limit. �

Now note that T(D) is finitely generated over Zp: this is obvious in
the case when phD = 0 using induction on h and in the general case by
Nakayama’s lemma as we have T(D) = lim←−h T(D/phD) by construction. So
we deduce

Theorem 4.10. The functors D and T are quasi-inverse equivalences of
categories between the Tannakian categories RepZp(GQp,∆) and Det(ϕ∆,
Γ∆,OE∆).

Finally, an étale T+,∆-module over E∆ is a finitely generated E∆-module
D together with a semilinear action of the monoid T+,∆ such that there ex-
ists an object D0 in Det(ϕ∆,Γ∆,OE∆) with an isomorphism D ∼= D0[p−1] =
E∆ ⊗OE∆ D0. We denote by Det(ϕ∆,Γ∆, E∆) the category of étale T+,∆-
modules over E∆. As before, Det(ϕ∆,Γ∆, E∆) has the structure of a neutral
Tannakian category. We have the following characteristic 0 version of the
category equivalence:

Theorem 4.11. The functors

V 7→ D(V ) :=
(
Êur∆ ⊗Qp V

)HQp,∆

D 7→ V(D) :=
⋂
α∈∆

(
Êur∆ ⊗E∆ D

)ϕα=id
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are quasi-inverse equivalences of categories between the Tannakian categories
RepQp(GQp,∆) and Det(ϕ∆,Γ∆, E∆).

Proof. Since GQp,∆ is compact, any finite dimensional Qp-representation V
contains a GQp,∆-invariant lattice T . The statement follows from Thm. 4.10
by inverting p on both sides. The compatibility with tensor products and
duals follows the same way as in characteristic p. �

Remarks.

1) If A is a Zp-algebra which is finitely generated as a module over
Zp, then we have an equivalence of categories between RepA(GQp,∆)
and Det(ϕ∆,Γ∆, A⊗Zp OE∆). Indeed, we have a natural isomorphism
(A⊗Zp OÊur∆

)⊗A · ∼= OÊur∆
⊗Zp · as functors on RepA(GQp,∆). Similarly,

if K is a finite extension of Qp, then we have an equivalence of cate-
gories between RepK(GQp,∆) and Det(ϕ∆,Γ∆,K ⊗Qp E∆).

2) It is expected that there is a similar equivalence of categories for rep-
resentations of the |∆|th direct power of the group Gal(Qp/F ) for a
finite extension F/Qp. However, at this point it is not clear what type
of (ϕ,Γ)-modules one should consider. The usual cyclotomic (ϕ,Γ)-
modules do not seem to be well-suited for the purpose of the p-adic
and mod p Langlands programme. On the other hand, the Lubin–Tate
setting may not work properly in characteristic p due to the non-
existence of the distinguished left inverse ψ of ϕ. To work over the
character variety of the group OF [2] seems, however, to be a good
candidate.
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