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A unified approach to partial and

mock theta functions

Robert C. Rhoades

The theta functions ∑
n∈Z

ψ(n)nνe2πin
2z,

with ψ a Dirichlet character and ν = 0, 1, have played an impor-
tant role in the theory of holomorphic modular forms and modu-
lar L-functions. A partial theta function is defined by a sum over
part of the integer lattice, such as

∑
n>0 ψ(n)nνe2πin

2z. Such sums
typically fail to have modular properties. We give an analytic con-
struction which unifies these partial theta functions with the mock
theta functions introduced by Ramanujan.

1. Introduction and main result

Shimura [19] studied the theta functions

θ(ψ, ν; z) =
∑
n∈Z

ψ(n)nνe(n2z)

where ψ is a primitive Dirichlet character of conductor r satisfying ψ(−1) =
(−1)ν and ν = 0 or 1 with e(z) := e2πiz and z in the upper half plane.
He proved (Proposition 2.2 of [19]) that this theta series is a holomorphic
modular form of weight 1/2 + ν on Γ0(4r2) with Nebentypus ψ when ν = 0
and ψ · χ−4 when ν = 1 with χ−4 the nontrivial Dirichlet character modulo
4. These theta series have played a significant role in the development of
modular forms and in particular the development of half integral weight
modular forms and modular L-functions.

The author was supported by an NSF fellowship during the writing of this paper.
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660 Robert C. Rhoades

A partial theta function is a function

θ∗(ψ, ν; z) :=
∑
n≥0

ψ(n)nνe
(
n2z
)

where ψ and ν are as above, but ψ(−1) = (−1)ν+1. While these functions
are not modular, they arise in many varied contexts. For example, the arise
in the theory of quantum invariants of 3-manifolds (see, for instance, the
works of Lawrence-Zagier and Hikami [8, 9] and Section 4) and Vassiliev
knot invariants [21, 22]. They often arise in enumerative combinatorics. For
example, the partial theta function θ∗

(
χ−4, 0,

1
2z
)

arises in the study of
unimodal sequences. Specifically, the generating function for the number of
unimodal sequences of weight n, denoted u(n), is given by

∞∑
n=0

u(n)qn =
1

(1− q)2(1− q2)2 · · ·

∞∑
n=1

(−1)n−1q
1

2
n(n+1)

see Corollary 2.5.3 of [20] and the sum on the right hand side is easily seen to
be related to the partial theta function. Additionally, they arise in the study
of partition ranks [5] and cranks. For example, the number of partitions with
crank 0, denoted M(0, n), is given by

∞∑
n=0

M(0, n)qn =
1

(1− q)(1− q2) · · ·
∑
n≥0

(−1)n−1q
1

2
n(n−1)(1− qn)

and the number of partitions with rank equal to 0, denoted N(0, n), is given
by

∞∑
n=0

N(0, n)qn =
1

(1− q)(1− q2) · · ·
∑
n≥0

(−1)n−1q
1

2
n(3n−1)(1− qn).

It is straightforward to relate the sums in these series to a sum of
θ∗
(
χ−4, 0,

m
2 z
)

for integers m.
Let q = e2πiz and

( ·
·
)

be the Kronecker symbol. We give an analytic
construction of a single function that equals the partial theta function

ψ(q) :=
∑
n≥1

(
−12

n

)
q

n2−1

24

in the lower half plane and equals Ramanujan’s mock theta function f(q) in
the upper half plane. Ramanujan’s mock theta function is defined for |q| < 1
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Partial and mock theta functions 661

by the q-hypergeometric series

(1.1) f(q) :=

∞∑
n=0

qn
2

(−q; q)2
n

,

where (x)n = (x; q)n :=
∏n−1
j=0 (1− xqj). This mock theta function (see Sec-

tion 4 for a definition) is celebrated for its connection with the rank statistic
for partitions (see the surveys of Ono [12] and Zagier [23] and the references
therein).

Define

ak(s) :=
∑
m≥0

( π

12k

)2m+ 1

2 1

Γ
(
m+ 3

2

) 1

sm+1

and

Φd,k(z) :=
1

2πi

∫
|s|=r

ak(s)e
23s

1− ζd2kqe24s
ds

where r is taken sufficiently small so that
∣∣log

(
ζd2kq

)∣∣� r and the integral
converges. Furthermore, define

ωh,k := exp (πis(h, k)) .(1.2)

Here we follow the standard notation for Dedekind sums, namely

s(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
,

with the sawtooth function defined as

((x)) :=

{
x− bxc − 1

2 if x ∈ R \ Z,
0 if x ∈ Z.

The following is our main theorem.

Theorem 1.1. Let q = e2πiz. The function

F (z) := 1 + π

∞∑
k=1

(−1)b
k+1

2
c

k

×
∑

d (mod 2k)

ω−d,2k exp

(
2πi

(
−d

8

(
1 + (−1)k

)
+

d

2k
+ z

))
Φd,k(z)
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662 Robert C. Rhoades

converges for z ∈ H and z ∈ H− = {z : Im (z) < 0}. Moreover,

F (z) =

{
f(q) z ∈ H,
2ψ(q−1) z ∈ H−.

Remark. According to our definition, qψ(q24) is a partial theta function.
Similar theorems exist for partial theta functions with nontrivial character
ψ. This theorem explains that partial theta functions may be constructed
as lower half plane analogous of the mock theta functions.

Remark. It is an open problem to interpret the meaning of this series for
z ∈ Q. Such an interpretation is related to Zagier’s notion of a quantum
modular form [24].

Theorem 1.1 relies on the construction of a Maass-Poincaré series for the
mock theta function and the “expansion of zero” principle of Rademacher
[16] (see, for instance, Chapter IX of Lehner’s book on Discontinuous Groups
[11]). Rademacher proved an exact formula for p(n), the number of partitions
of n. Using his formula he found an extension of the generating function to
the lower half plane. Rademacher conjectured and later proved [17] that
each of the Fourier coefficients of the function in the lower half plane is zero.
Rademacher’s conjecture was proved independently by Petersson [13]. Such
expansions were noticed earlier by Poincaré. See his memoir on Fuchsian
groups [14] or the english translation of Poincaré’s paper by Stillwell [15]
(p. 204). Extensions of the “expansion of zero” principle were obtained by
Lehner [10]. Additionally, Knopp [6] wrote about this principle in connection
with Eichler cohomology. The perspective of Knopp’s work is relevant here
when one makes the connection between mock theta functions and their
completions (see Section 4). We do not address this connection here, but we
hope to take it up in future work.

Remark. There are at least four ways to see a connections between partial
theta functions and mock theta functions. In Section 4 we explain a way this
connection arises from q-hypergeometric series (see also [2] and the references
therein). An asymptotic relation is discussed in works of Lawrence-Zagier
[9] and Zwegers [26]. Finally, a relation using the Mordell integral explains
the connection (see the work of Chern and the author [4]). Each of these
perspectives has its own advantages, the advantage here is that, since the
construction passes through Poincaré series, the construction generalizes to
any weight and group. The asymptotic approach has the same benefit.
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Partial and mock theta functions 663

In Section 2 we recall two constructions for the modular completion
of Ramanujan’s mock theta function f(q). In Section 3 we give the proof
of Theorem 1.1. Finally, in Section 4 we discuss some of the relationships
between partial theta functions, mock theta functions, and WRT invariants
of Seifert manifolds.

Acknowledgements

The author thanks the referee for useful comments. The author also thanks
Jeff Lagarias for helpful conversations during the writing of this paper.

2. Preliminaries

In this section we describe two “completions” of Ramanujan’s mock theta
function f(q). The first is due to Zwegers [25]. The second is due to Bring-
mann and Ono [3] and relies on the construction of a certain Poincaré series
for f(q).

In Zwegers notation [23, 25] let

h3(z) = q−
1

24 f(q)

and set

R3(z) :=
i√
3

∫ ∞
−z

g3(τ)√
(τ + z)/i

dτ

where

g3(z) =
∑

n≡1 (mod 6)

nq
n2

24 =

∞∑
n=1

(
−12

n

)
nq

n2

24 .

Applying the straightforward calculation

∫ i∞

−z

e2πiτ n2

24√
−i(τ + z)

dτ = i

(
12

π

) 1

2

n−1Γ

(
1

2
,
πn2y

6

)
q−

n2

24 ,

where Γ(α, x) :=
∫∞
x e−ttα dtt is the incomplete Gamma function, we may

rewrite R3 as

(2.1) R3(z) = −2

∞∑
n=1

(
−12

n

)
π−

1

2 Γ

(
1

2
,
πn2y

6

)
q

−n2

24 .
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Then the corrected function

ĥ3(z) = h3(z) +R3(z)

is a weight 1
2 harmonic Maass form with respect to Γ(2) (see [23] page 07).

By work of Bringmann and Ono [3] we may write f(q) as a Poincaré
series. Define the Kloosterman-like sum by

Ak(n) =
∑

x (mod k)

ω−x,k · e
(nx
k

)

where the sum is over those x relatively prime to k and e(x) := e2πix.

Theorem 2.1 (Bringmann-Ono, Theorem 3.2 and Section 5 of [3]).

In the notation above we have ĥ3(z) = Ph(z) + Pnh(z) where

Ph(z) := q−
1

24 +

∞∑
n=1

α(n)qn−
1

24

Pnh(z) :=− π−
1

2 Γ

(
1

2
,
πy

6

)
q−

1

24 +

0∑
n=−∞

γy(n)qn−
1

24

where

α(n) =
π

(24n− 1)
1

4

∞∑
k=1

(−1)b
k+1

2
cA2k

(
n− k(1+(−1)k)

4

)
k

)I 1

2

(
π
√

24n− 1

12k

)
and

γy(−n) = π−
1

2 Γ

(
1

2
,
π |24n+ 1| y

6

)
π

(24n+ 1)
1

4

×
∞∑
k=1

(−1)b
k+1

2
c

k
A2k

(
−n− k(1 + (−1)k)

4

)
J 1

2

(
π
√

24n+ 1

12k

)
.

Remark. The function Ph is a holomorphic function while the function
Pnh is a non-holomorphic function. This explains the subscripts.

From this we deduce the following lemma.
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Lemma 2.2. Define

α̃(n) :=
π

(24n+ 1)
1

4

×
∑
k≥1

(−1)b
k+1

2
c

k
A2k

(
−n− k(1 + (−1)k)

4

)
J 1

2

(
π
√

24n+ 1

12k

)
.

For α̃(0) = 1 and for ` = n2−1
24 > 0 we have

−2

(
−12

n

)
= α̃(`).

Furthermore, α̃(`) = 0 in all remaining cases.

Proof. From the definition of ĥ3 and Theorem 2.1 we have

q
1

24R3(z) = −π−
1

2 Γ(
1

2
,
πy

6
) +

∞∑
n=0

γy(−n)q−n.

Using (2.1) and the series expansion of γy(n) we see that α̃(0) = 1 and for
` > 0 we have γy(−`) = 0 unless ` = n2−1

24 for some n ≡ 1, 5 (mod 6), that
is 24`+ 1 = n2 for some n ≥ 1. For such ` we have −2

(−12
n

)
= α̃(`). �

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. As mentioned in the intro-
duction the construction relies on the expansion of zero principle. We follow
the treatment in Chapter IX of [11].

Throughout this section, for c ∈ N let ζc := e2πi 1
c be a root of unity and

e(α) := e2πiα. We begin by showing that f(q) equals F (q) for |q| < 1. We
apply Theorem 2.1 and switch the order of summation to obtain

f(q) = 1 + π

∞∑
n=1

(24n− 1)−
1

4

∞∑
k=1

(−1)b
k+1

2
cA2k

(
n− k(1+(−1)k)

4

)
k

× I 1

2

(
π
√

24n− 1

12k

)
e (n(x+ iy))
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= 1 + π

∞∑
k=1

(−1)b
k+1

2
c

k

∑
n≥1

A2k

(
n− k(1+(−1)k)

4

)
(24n− 1)

1

4

× I 1

2

(
π
√

24n− 1

12k

)
e (n(x+ iy)) .

Remark. The order we have switched to is in some sense more natural.
To obtain the Fourier expansion, one completes the switch in the other
direction. For instance see the proof of Theorem 3.2 of [3].

Next we insert the sum defining Ak to obtain

f(q) = 1 + π

∞∑
k=1

(−1)b
k+1

2
c

k

∑
d (mod 2k)

ω−d,2ke

(
−d(1 + (−1)k)

8

)

×
∑
n≥1

e
(
n
(
d
2k + x+ iy

))
(24n− 1)

1

4

I 1

2

(
π
√

24n− 1

12k

)
.

We begin by rewriting the function

S(ζd2kq) :=
∑
n≥1

e
(
n
(
d
2k + x+ iy

))
(24n− 1)

1

4

I 1

2

(
π
√

24n− 1

12k

)
.

Later we will continue this function for values with y < 0. Write q̃ := ζd2kq
so that

S(q̃) =
∑
n≥1

1

(24n− 1)
1

4

I 1

2

(
π
√

24n− 1

12k

)
q̃n.

and set

Bk(24t− 1) :=
1

(24t− 1)
1

4

I 1

2

(
π
√

24t− 1

12k

)
.

Lemma 3.1. In the notation above, we have

Bk(t) =
∑
m≥0

bm(k)

m!
tm

with bm(k) =
(
π

12k

)2m+ 1

2 1
Γ(m+ 3

2)
.
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Proof. The proof follows from the fact that I 1

2
(x) = i−

1

2J 1

2
(ix) and the Tay-

lor expansion of J 1

2
(ix) is given by

∑∞
m=0

(−1)m

m!Γ(m+ 3

2)

(
i
2x
)2m+ 1

2 . Hence

I 1

2

( π

12k

√
t
)

= t
1

4

∑
m≥0

( π

12k

)2m+ 1

2 1

m!Γ
(
m+ 3

2

) tm.
�

A standard calculation gives

Bk(t) =
1

2πi

∫
|s|=r

est
∑
m≥0

bm(k)

sm+1
ds

where r may be taken to sufficiently small. We have ak(s) =
∑

m≥0
bm(k)
sm+1 .

By the previous lemma this series is absolutely convergent for all s. We have

S(q̃) =
∑
n≥1

Bk(24n− 1)(qζd2k)
n(3.1)

=
1

2πi

∫
|s|=r

∑
n≥1

es(24n−1)(qζd2k)
nak(s)ds

=
1

2πi
ζd2kq

∫
|s|=r

ak(s)e
23sds

1− ζd2kqe24s
.

We point out that r can be taken to be small enough so that
∣∣e (x+ iy) e24s

∣∣
< 1.

Thus we have established the first part of the Theorem, namely

f(q) = 1 + π

∞∑
k=1

(−1)b
k+1

2
c

k

×
∑

d (mod 2k)

ω−d,2ke

(
−d

8
(1 + (−1)k) +

d

2k
+ z

)
Φd,k(z)

where we recall that

Φd,k(z) =
1

2πi

∫
|s|=r

ak(s)e
23s

1− ζd2kqe24s
ds.

To prove the second part of the theorem we return to the the integral
in (3.1). This integral converges so long as − 1

24 log(ζd2kq) is outside the circle
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we integrate over, that is so long as
∣∣log(ζd2kq)

∣∣ > 24r. When ζd2kq 6= 1 we can
find r small enough so that this integral converges. In particular Φd,k(z) is
regular in the entire complex sphere except at ζd2kq = 1.

Now we will construct the Fourier expansion in the region where |q| > 1.
As above, with q̃ := ζd2kq, we take r sufficiently small so that

∣∣q̃e24s
∣∣ > 1 and

obtain

q̃Φd,k(z) =
∑
n≥0

Bk(24n− 1)(qζd2k)
n

=
∑
m≥0

bm(k)
q̃

2πi

∫
|s|=r

e23sds

sm+1(1− q̃e24s)

= −
∑
m≥0

bm(k)

∫
|s|=r

ds

sm+1

∞∑
n=0

(q̃)−ne−(24n+1)s

= −
∑
m≥0

bm(k)

∞∑
n=0

(q̃)−n
∫
|s|=r

ds

sm+1
e−(24n+1)s

= −
∞∑
n=0

ζ−dn2k q−n
∑
m≥0

bm(k)

m!
(−24n− 1)m

= −
∞∑
n=0

ζ−dn2k q−n
(−1)

1

2 i−
1

2

(−(24n+ 1))
1

4

J 1

2

(
π
√

24n+ 1

12k

)

where we have used

I 1

2
(ix) = i−

1

2J 1

2
(−x) = i−

1

2 (−1)
1

2J 1

2
(x).

The Fourier expansion of F (q) in the lower half-plane becomes

F (q) = 1− π
∞∑
k=1

(−1)b
k+1

2
c

k

∑
d (mod 2k)

ω−d,2ke

(
−d(1 + (−1)k)

8

)

×
∞∑
n=0

ζ−dn2k q−n(24n+ 1)−
1

4J 1

2

( π

12k

√
24n+ 1

)

= 1− π
∞∑
k=1

(−1)b
k+1

2
c

k

∞∑
n=0

A2k

(
−n− k(1+(−1)k)

4

)
(24n+ 1)

1

4

J 1

2

( π

12k

√
24n+ 1

)
q−n

= 1−
∑
n≥0

q−nα̃(n)
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where the last equality follows from switching the order of summation.
Also, we note that convergence of the series α̃ follows from Theorem 4.1
of [3]. Applying Lemma 2.2 we may deduce that for |q| > 1 we have F (q) =

2
∑

n≥1

(−12
n

)
q−

n2−1

24 .

Remark. Note the convergence of the sum defining F (q) follows from the
above calculations.

4. Relationship to other works

A relationship between partial theta functions and mock theta functions
has been observed in the work of Lawrence-Zagier [9] and Zwegers [26]. The
connection has been further expounded upon in Hikami’s work [8] and the
paper of Bringmann, Folsom, and the author [2]. In this section we describe
the framework laid out in [9]. It remains an open question in what way the
construction of this work might shed light on the applications those authors
had in mind.

4.1. Mock theta functions and q-hypergeometric series

Following Zagier [23], a mock theta function is a q-series H(q) =
∑∞

n=0 anq
n

such that there exists a rational number λ and a unary theta function
of weight 3/2, g(z) =

∑
n>0 bnq

n, such that setting q = e2πiz, then h(z) =
qλH(q) + g∗(z) non-holomorphic modular form of weight 1/2, where

g∗(z) =

∫ i∞

−z

g(−τ)dτ√
τ + z

.

The theta function g is called the shadow of the mock theta function H.
For instance, the shadow of the mock theta function f(q) is proportional

to gf (z) :=
∑

n∈Z
(−12

n

)
nq

n2

24 . Thus the failure of f(q) to satisfy a modular

transformation is related to the failure of the Eichler integral
∫ i∞
−z

gf (τ)dτ√
τ+z

to

be modular.
Ramanujan’s third order mock theta function, defined in (1.1), may also

be defined for |q| < 1 by the q-hypergeometric series

f2(q) := 1 +
∑
n≥1

(−1)nqn

(1 + q)(1 + q2) · · · (1 + qn)
.
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That is for |q| < 1

f2(q) = f(q)

see, for instance, [8] (4.20) or the introduction of [2].
A striking property of the q-hypergeometric series defining f(q) and f2(q)

is that they are equal for |q| < 1, but are not equal for |q| > 1. Namely, for
|q| > 1 we have (see [8])

f2 (q) = 1 +
∑
n≥1

(−1)nq−
n(n+1)

2

(1 + q−1) · · · (1 + q−n)
(4.1)

= 2
∑
n≥1

(
−12

n

)
q−

n2−1

24 = 2ψ(q−1).

On the other hand, for |q| > 1 (see [1])

f(q) = 1 +
∑
n≥1

q−n

(1 + q−1)2 · · · (1 + q−n)2
(4.2)

= 2ψ(q−1)− 1

(−q−1; q−1)2
∞

∑
n≥0

(−1)nq−
n(n+1)

2

The existence of 2ψ(q) in each of these identities is consistent with Theo-
rem 1.1. However, the existence of the extra term in the identity for f(q)
remains mysterious.

Remark. See [2] for details and many more examples of q-hypergeometric
series which are equal to mock theta functions in the domain |q| < 1 and
not equal but related to partial theta functions in the domain |q| > 1.

4.2. WRT-invariants

Partial theta functions arise in the computation of topological invariants.
See, for instance, [9, 21, 22]. For instance, for each root of unity ξ the Witten-
Reshetikhin-Turaev (WRT) invariant associated to the Poincaré homology
sphere M is an element W (ξ) ∈ Z[ξ]. The Poincaré homology sphere is the
quotient space X = SO(3)/Γ where Γ is the rotational symmetry group of
the icosahedron. Thus, X is a 3-manifold X which has the same homology
as a 3-sphere, namely H0(X,Z) = H3(X,Z) = Z and Hn(X,Z) = {0} for all
other n.
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Let

A±(q) :=
∑
n>0

n≡±1 (mod 5)

(
12

n

)
q(n2−1)/120.

Lawrence and Zagier (Theorem 1 and the remark preceding (20) of [9])
proved that the radial limit as q → ξ (for |q| < 1) of 1−A±(q) agrees with
W (ξ). The q-series A+(q) and A−(q) are related to the partial theta function

φ(q) :=
∑
n>0

(
12

n

)
ε(n)q

n2

120 ,

where ε is the nontrivial Dirichlet character of modulus 5, via the identity

q
1

120 (A−(q) +A+(q)) =
∑

n>0 Re
((

12
n

)
ε(n)

)
q

n2

120 .
Lawrence and Zagier explain that the asymptotics of φ(q) toward roots

of unity are equal, up to a constant, to the asymptotics toward roots of unity
of the Eichler integral

Θ∗(z) :=

∫ i∞

−z

Θ(τ)dτ√
τ + z

where Θ(z) =
∑

n∈Z n
(

12
n

)
ε(n)q

n2

120 is a weight 3/2 theta function.
Additionally, Zwegers (see Section 5 of [9]) demonstrated a curious con-

nection between one of Ramanujan’s mock theta functions and the functions
A±(q). The q-hypergeometric series

Φ(q) := −1 +

∞∑
n=0

q5n2

(q; q5)n(q4; q5)n
.

is a mock theta function. As in Section 4.1, the series defining Φ(q) converges
not only for |q| < 1, but also for |q| > 1. Let

Φ∗(q) := −1−
∞∑
n=0

q5n+1

(q; q5)n(q4; q5)n
= Φ(1/q).

Then Zwegers [9] established

−Φ∗(q) = A+(q)− 1

(q4; q5)∞(q; q5)∞
F+(q)

= A−(q) +
1

(q4; q5)∞(q; q5)∞
F−(q)

where F±(q) :=
∑
±(n− 1

2)>0(−1)nq(5n2−n)/2.
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These q-series identities are analogous to (4.1) and (4.2) and establish
a deep relationship between the WRT invariants, the asymptotics of partial
theta functions, and the asymptotics of a mock theta function. Moreover,
Zwegers conjectured a stronger relationship concerning the asymptotics of
mock and partial theta functions.

To explain this conjecture we turn to Ramanujan’s “definition” of a mock
theta function. In his final letter to Hardy, Ramanujan gave examples of
what he called mock theta functions. Following Zwegers’s slight rephrasing
[25], Ramanujan “defined”’ a mock theta function as a function F of the
complex variable q, defined by a q-hypergeometric series, which converges
for |q| < 1 and satisfies the following

1) infinitely many roots of unity are exponential singularities

2) for every root of unity ξ there is a theta-function ϑξ(q) such that the
difference F (q)− ϑξ(q) is bounded as q → ξ radially,

3) there is no theta function that works for all ξ, i.e. F is not the sum of
two functions one of which is a theta function and the other a function
which is bounded at all roots of unity.

Remark. Ramanujan referred to sums, products, and quotients of series
of the form

∑
n∈Z ε

nqan
2+bn with a, b ∈ Q and ε = ±1 as theta functions.

Conjecture 4.1 (Zwegers [25]). Let f be Ramanujan’s third order mock
theta function defined above. If ξ is a root of unity where f is bounded (as
q → ξ radially inside the unit circle), for example ξ = 1, then f is C∞ over
the line radially through ξ. If ξ is a root of unity where f (or f2) is not
bounded, for example, ξ = −1, then the asymptotic expansion of the bounded
term in condition (2) in the “definition” of a mock theta function is the same
as the asymptotic expansion of f2 as q → ξ radially outside the unit circle.

Remark. Zwegers states this conjecture for a different mock theta function
of Ramanujan. However, the same should follow for f .

The work of Lawrence and Zagier [9] shows that the limits must agree.
It would be interesting to use the function F from Theorem 1.1 of this paper
to prove this conjecture.
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[14] H. Poincaré Mémoire sur les fonctions fuchsiennes, Acta Math. 1
(1882), 193-294.



i
i

“16-Rhoades” — 2018/7/4 — 15:06 — page 674 — #16 i
i

i
i

i
i

674 Robert C. Rhoades
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