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Deformed cohomology of flag varieties

Oliver Pechenik and Dominic Searles

This paper introduces a two-parameter deformation of the coho-
mology of generalized flag varieties. One special case is the Belkale-
Kumar deformation (used to study eigencones of Lie groups). An-
other picks out intersections of Schubert varieties that behave nicely
under projections. Our construction yields a new proof that the
Belkale-Kumar product is well-defined. This proof is shorter and
more elementary than earlier proofs.

1. Introduction

In 2006, P. Belkale and S. Kumar [1] introduced a new product structure
on the cohomology of generalized flag varieties. They used this deformed
product to obtain a maximally efficient solution to the Horn problem in
general Lie type (generalizing the famous Horn problem on eigenvalues of
sums of Hermitian matrices). The irredundancy of this solution was proved
in 2010 by N. Ressayre [7]. More recently this product has been used to
further study eigencones of compact connected Lie groups [2, 9] and the
representation theory of (semisimple parts of) Levi subgroups [3].

This paper introduces a more general product that has the Belkale-
Kumar product as a specialization. Another specialization identifies inter-
sections of Schubert varieties with nice projection properties. From our gen-
eral construction, we obtain a new and significantly easier proof that the
Belkale-Kumar product is well-defined.

Let G be a complex connected reductive Lie group. Choose Borel and
opposite Borel subgroups B,B− and maximal torus T = B ∩B−. Let W
denote the Weyl group NG(T )/T . For w ∈W , we denote the Coxeter length
of w by l(w). Fix a parabolic subgroup B ⊆ P ⊂ G. Let WP denote the
associated parabolic subgroup of W , and WP denote the set of minimal
length coset representatives of W/WP . For w ∈WP , the Schubert variety
Xw = B−wP/P ⊆ G/P has codimension l(w). The Poincaré duals {σw}
of the Schubert varieties form an additive basis of the cohomology ring
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H?(G/P ). That is,

σu ` σv =
∑
w

cwu,vσw,

where cwu,v ∈ Z≥0 is a Schubert structure constant. (In the case G = GLn(C)
and P is maximal, these structure constants are the Littlewood-Richardson
coefficients.) Let w∨ = w0ww

P
0 , where w0, w

P
0 are the longest elements of

W,WP , respectively. The number cwu,v is nonzero exactly when generic trans-
lates of Xu, Xv, Xw∨ intersect in a finite nonzero number of points; in that
case, cwu,v counts the number of such points.

Let Inv(WP ) denote the set of simple roots that are inverted by some
element of WP . For each α ∈ Inv(WP ), we introduce a complex variable tα
and a positive rational variable sα. For a positive root β, let nαβ denote the
multiplicity of α in the simple root expansion of β and define

tβ =
∏

α∈Inv(WP )

t
nsααβ
α .

Then define Fw(t, s) to be the product of the tβ over all positive roots β
that are inverted by w. Let A denote the algebraic closure of the ring C(tα :
α ∈ Inv(WP )) of rational functions. We define a product on H?(G/P )⊗A
by

(1.1) σu ?t,s σv =
∑
w

Fw(t, s)

Fu(t, s)Fv(t, s)
cwu,vσw.

We recover the Belkale-Kumar product �t as the specialization ?t,1. (This
is immediate from the description of �t in [4].) Most interest has been in
the further specialization �0 = ?0,1 given by evaluating each tα to 0.

Theorem 1. The product ?t,s is well-defined, commutative, and associative.
In particular, Fu(t, s)Fv(t, s) divides Fw(t, s) in A whenever the Schubert
structure constant cwu,v is nonzero.

Corollary 2 ([1, 4]). The Belkale-Kumar product is well-defined.

Proof. This follows from Theorem 1 by �t = ?t,1. �

Corollary 2 was proved by P. Belkale–S. Kumar [1] using geometric in-
variant theory (specifically a Hilbert-Mumford criterion for semistability)
and by S. Evens–W. Graham [4] using relative Lie algebra cohomology.
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In contrast, our proof of Theorem 1 (and hence of Corollary 2) uses only
straightforward analysis of the tangent spaces to Schubert varieties.

This paper is structured as follows. In Section 2, we prove Theorem 1.
In Section 3 we study the limit of ?t,s as s→ 0, and describe its geomet-
ric significance. As a corollary, we obtain an independent and completely
elementary proof of Corollary 2 in the case G = GLn(C).

2. Proof of Theorem 1

Assuming ?t,s is well-defined, we show it is commutative and associative.
Commutativity is clear. For associativity, observe that

(σu ?t,s σv) ?t,s σw = σw ?t,s
∑
x

Fx
FuFv

cxu,vσx

=
∑
x,y

Fx
FuFv

Fy
FwFx

cxu,vc
y
w,xσy

=
∑
x,y

Fy
FuFvFw

cxu,vc
y
w,xσy,

while similarly

σu ?t,s (σv ?t,s σw) =
∑
x,y

Fy
FuFvFw

cxv,wc
y
u,xσy.

Associativity then follows immediately from that of the ordinary cup prod-
uct.

We now prove ?t,s is well-defined. Let w1, w2, w3∈WP . Then c
w∨3
w1,w2(G/P )

= c
w∨3
w1,w2(G/B). In particular, since c

w∨3
w1,w2(G/P ) 6= 0 implies c

w∨3
w1,w2(G/B) 6=

0, it suffices to assume that c
w∨3
w1,w2(G/B) 6= 0 and to show that Fw1

Fw2
di-

vides Fw∨3 .
Most of the facts described below are well-known. We learned some of

these ideas from [10], where they appear with further details. Our proof is
heavily indebted to work of K. Purbhoo, in particular for the key idea that
filters give rise to B-stable subspaces. Indeed, much of our proof could be
replaced by an appeal to [6, Theorem 1]. We however give a self-contained
exposition.
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Claim 3. If c
w∨3
w1,w2(G/B) 6= 0, then for generic bi ∈ B,

TeB(G/B) =

3⊕
i=1

TeB(G/B)

biTeB(w−1
i Xwi)

.

Proof. By Kleiman transversality [5], c
w∨3
w1,w2(G/B) 6= 0 implies that the in-

tersection
⋂3
i=1 giXwi is transverse and nonempty for generic gi ∈ G. There-

fore the intersection
⋂3
i=1 giw

−1
i Xwi is transverse at eB for some gi ∈ G.

Now e ∈ giw−1
i B−wiB implies gi ∈ Bw−1

i B−wi, so gi = biw
−1
i b−i w for some

bi ∈ B and b−i ∈ B−. Hence,

giw
−1
i B−wiB = biw

−1
i B−wiB

and

giw
−1
i Xwi = biw

−1
i Xwi .

Therefore
⋂3
i=1 biw

−1
i Xwi is transverse at eB for some, and hence for generic,

bi ∈ B. Since TeB(biw
−1
i Xwi) = bi · TeB(w−1

i Xwi), the claim follows. �

Fix generic bi ∈ B and let

Ii =
TeB(G/B)

TeB(w−1
i Xwi)

.

Let Φ = Φ+ t Φ− denote a partition of the roots of G into positives and
negatives, so that the positive root spaces correspond to infinitesimal curves
through the opposite Borel B−. (This convention is more convenient in re-
gard to our definition of Schubert varieties as B−-orbit closures.) We will
use the usual poset structure on Φ+, that is β ≤ γ if and only if γ − β is a
nonnegative integral combination of positive roots. We have

TeB(G/B) =
⊕
β∈Φ+

gβ and Ii =
⊕

β∈Φ+∩w−1
i Φ−

gβ,

where gβ denotes the root space corresponding to the root β.
Recall that a filter (or upset) of a poset is a subset J such that if x ∈ J

and x ≤ y, then y ∈ J . For J a filter in Φ+, let J =
⊕

β∈J gβ ⊆ TeB(G/B).
Since J is a filter, bi · J = J .
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Let |wi|J denote the number of β ∈ J such that wiβ ∈ Φ−. Suppose

|w1|J + |w2|J + |w3|J > |J |.

For S ⊆ TeB(G/B), we write S/J for the image of S under the projection
TeB(G/B)→ TeB(G/B)/J . Then

dim (b1 · I1 + b2 · I2 + b3 · I3)/J ≤ dim b1 · I1/J + b2 · I2/J + b3 · I3/J

≤ dim I1/J + I2/J + I3/J

≤
3∑
i=1

dim Ii −
3∑
i=1

dim Ii ∩ J

< dimTeB(G/B)− dim J

= dimTeB(G/B)/J,

so by Claim 3 we must have |w1|J + |w2|J + |w3|J ≤ |J |, i.e., |w1|J +
|w2|J ≤ |w∨3 |J .

Fix a simple root α. Let Jα,k be the set of roots of Φ+ that use α at
least k times in their expansion into simple roots. Each Jα,k is a filter in
Φ+. By the above, we have |w1|Jα,k + |w2|Jα,k ≤ |w∨3 |Jα,k for all α and all
k. Hence the degree of tα in Fw∨3 is at least the degree of tα in Fw1

Fw2
, so

Fw1
Fw2

divides Fw∨3 . �

3. The limit s → 0

We write ?t for the limit of ?t,s as s→ 0. In this section, we give an in-
dependent and elementary proof that ?t is a well-defined associative and
commutative product. We then interpret ?0 geometrically.

Let Sw(t) denote the limit of Fw(t, s) as s→ 0. The product ?t on
H?(G/P )⊗A may then be defined by replacing each F (t, s) by S(t) in
Equation (1.1).

For G = GLn(C), we will show that ?t coincides with the Belkale-Kumar
product �t, while for maximal parabolics in general type ?t coincides instead
with the ordinary cup product. In general it is distinct from both.

Theorem 4. The product ?t is well-defined, commutative, and associative.

Proof. Assuming ?t is well-defined, commutativity is clear, while associativ-
ity is proved exactly as in the proof of Theorem 1.

We now prove ?t is well-defined. For a simple root α ∈ Inv(WP ), let Pα
denote the maximal parabolic subgroup of G with Inv(WPα) = {α}. Define



i
i

“15-Pechenik” — 2018/7/4 — 14:57 — page 654 — #6 i
i

i
i

i
i

654 O. Pechenik and D. Searles

a projection πα : G/P → G/Pα by πα(gP ) = gPα. Observe that πα is G-
equivariant.

For w ∈WP , let wα denote the minimal length coset representative of
wWPα . Then πα maps Xw onto Xwα .

Claim 5. If cwu,v(G/P ) 6= 0, then for each α, l(uα) + l(vα) ≤ l(wα).

Proof. If l(uα) + l(vα) > l(wα), then for dimension reasons, generic trans-
lates of Xuα , Xvα , X(w∨)α have empty intersection in G/Pα.

Since cwu,v 6= 0, for general (g1, g2, g3) ∈ G3, there is a point gP ∈ g1Xu ∩
g2Xv ∩ g3Xw∨ ⊆ G/P . This implies πα(gP ) ∈ g1Xuα ∩ g2Xvα ∩ g3X(w∨)α ⊆
G/Pα. In particular this latter intersection is nonempty, so l(uα) + l(vα) ≤
l(wα). �

The degree of tα in Sw(t) is exactly the number of positive roots β
inverted by w that use α in their simple root expansion. This number is
l(wα). Therefore, the degree of tα in Sw(t)

Su(t)Sv(t) is l(wα)− l(uα)− l(vα).

Let u, v, w ∈WP with cwu,v(G/P ) 6= 0. Then by Claim 5, l(wα)− l(uα)−
l(vα) ≥ 0 for all α, and so Su(t)Sv(t) divides Sw(t) as desired. �

As a corollary, we obtain the following special case of Corollary 2.

Corollary 6. For G = GLn(C), the Belkale-Kumar product �t is well-
defined.

Proof. For GLn(C), we always have nαβ ≤ 1, so F (t, s) = S(t) and �t =
?t,s. �

For any Q ⊃ P and w ∈WP , there is a unique parabolic decomposi-
tion w = w′w′′, where w′ ∈WQ and w′′ ∈WP ∩WQ. Suppose cw

∨

u,v 6= 0. We

say that the triple (u, v, w) ∈ (WP )3 is Q-factoring if g1Xu′ ∩ g2Xv′ ∩ g3Xw′

is zero-dimensional for general gi ∈ G (or equivalently if g1Xu′′ ∩ g2Xv′′ ∩
g3Xw′′ has expected dimension zero).

Let awu,v := Sw(0)
Su(0)Sv(0)c

w
u,v denote the structure constants of the ring

(H?(G/P ), ?0).

Proposition 7.

awu,v =

{
cwu,v if (u, v, w∨) is Q-factoring for every Q ⊃ P ,

0 otherwise.



i
i

“15-Pechenik” — 2018/7/4 — 14:57 — page 655 — #7 i
i

i
i

i
i

Deformed cohomology of flag varieties 655

Proof. This is trivial if cwu,v = 0, so assume it is positive. Suppose (u, v, w∨)
is not Q-factoring for some Q ⊃ P . We may assume that Q is a maximal
parabolic Pα for some simple root α. Then l(w′) > l(u′) + l(v′). Therefore

tα has positive degree in Sw(t)
Su(t)Sv(t) , whence Sw(0)

Su(0)Sv(0) = 0. �

Remark 8. Triples (u, v, w) that are Pα-factoring for some fixed collection
of maximal parabolics Pα may be picked out by taking the limit of ?t,s as
the corresponding sα → 0, and then setting t = 0 and other sα = 1.

Remark 9. It was observed independently by N. Ressayre [8, Theorem 2]
and E. Richmond [11, Theorem 1.1] that the numbers awu,v factor as

cw
′

u′,v′c
w′′
u′′,v′′ . Iterating this factorization for every maximal Pα ⊃ P , we ob-

tain a factorization of awu,v as a product of Schubert structure constants czx,y
on maximal parabolic quotients G/Pα.

N. Ressayre [8] and E. Richmond [11] also note that (u, v, w) is Q-
factoring for each Q ⊃ P when (u, v, w) is Levi-movable in the sense of [1,
Definition 4]. Therefore ?0 may be thought of as ‘less-degenerate’ than �0,
since a generally smaller collection of Schubert structure constants is set
to 0.

Example 10. Let G = SO9(C) and P be the parabolic with Inv(WP ) =
{α2, α4} (where α4 is the short root). Of the 8271 nonzero Schubert struc-
ture constants for H?(G/P ), 807 are nonzero for the deformation ?0. Of
these only 597 represent Levi-movable triples and so are nonzero in the
Belkale-Kumar deformation �0. An example of one of the 210 nonzero awu,v
coefficients not coming from a Levi-movable triple is a3214

1324,1234
= 1. (Here we

identify W with the group of signed permutations on four letters).
Of the 193116 nonzero Schubert structure constants for H?(G/B), only

2439 are nonzero for ?0. Of these, 2103 arise from Levi-movable triples. �

Example 11. Let G = Sp12(C) and P be the parabolic with Inv(WP ) =
{α4} (where α6 is the long root). There are 99105 nonzero Schubert struc-
ture constants for H?(G/P ). Since P is maximal, these are all nonzero for
the deformation ?0. However only 7962 are nonzero for the Belkale-Kumar
deformation �0. �
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