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Spacious knots

Autumn E. Kent and Jessica S. Purcell

We show that there exist hyperbolic knots in the 3-sphere such that
the set of points of large injectivity radius in the complement take
up the bulk of the volume. More precisely, given a finite volume
hyperbolic manifold, for any bound R > 0 on injectivity radius,
consider the set of points with injectivity radius at least R; we
call this the R-thick part of the manifold. We show that for any
ε > 0, there exists a knot K in the 3-sphere so that the ratio of the
volume of the R-thick part of the knot complement to the volume
of the knot complement is at least 1− ε. As R approaches infinity,
and as ε approaches 0, this gives a sequence of knots that is said to
Benjamini–Schramm converge to hyperbolic space. This answers a
question of Brock and Dunfield.

1. Introduction

Many knots in the 3-sphere have complement admitting a hyperbolic struc-
ture [19], and by Mostow–Prasad rigidity [14, 17] and the Gordon–Luecke
theorem [6], the structure is a complete knot invariant. However, it is still
not well understood what properties of the hyperbolic metric distinguish
knot complements from other hyperbolic 3-manifolds.

In [18], properties of hyperbolic knot complements are investigated by
studying geometric limits. If a manifold M is a geometric limit of knot com-
plements, then there exist hyperbolic knots whose geometric properties are
very close to those of M . In [18], it is shown that any one-ended hyper-
bolic 3-manifold with finitely generated fundamental group that embeds in
S3 is a geometric limit of hyperbolic knot complements. The class of such
3-manifolds is surprisingly broad, and includes hyperbolic 3-space H3 itself.
However, in [10], compact submanifolds of S3 are presented whose interiors
cannot be homeomorphic to any geometric limit of hyperbolic knot comple-
ments. Thus although the class of geometric limits of knot complements is
large, there are geometric and topological restrictions on the manifolds that
appear. These are not well understood.
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This paper continues the investigation of limits of hyperbolic knot com-
plements, particularly those converging to H3. Because H3 is a geometric
limit of knot complements, for any R > 0 there exists a hyperbolic knot
K and a point x ∈ S3 −K with injectivity radius injx(S3 −K) at least R.
Since the injectivity radius of points in a tubular neighborhood of K can
be arbitrarily small, this implies that in a sequence S3 −Kn converging to
H3, the cusp N(Kn) must be pushed further and further outside larger and
larger balls in S3 −Kn.

For M any hyperbolic 3-manifold, recall that the R-thick part of M is
defined to be M≥R = {x ∈M | injx(M) ≥ R}, and its complement, denoted
M<R is the R-thin part. The result of [18] implies that for any R, there
exists a knot K whose R-thick part is nonempty. However, that paper does
not consider the size of the set of all such points.

Brock and Dunfield [4] recently asked: For any R, does there exist a
sequence of knots for which the proportion of the volume of the R-thin part
tends to zero? That is, for fixed R, it is known that there are knots for which
the R-thick part is non-empty. But does there exist a sequence of knots for
which the R-thick part takes up larger and larger proportions of the volume?
This is called Benjamini–Schramm convergence to H3.

In this paper, we answer Brock and Dunfield’s question in the affirmative.

Theorem 1.1. Given R > 0 and ε > 0, there is a knot K ⊂ S3 such that
M = S3 −K is hyperbolic and

(1.1)
vol({x ∈M | injx(M) ≥ R})

vol(M)
=

vol(M≥R)

vol(M)
> 1− ε.

The quantity vol(M≥R)/ vol(M) will be called the R-volume ratio.
The proof of Theorem 1.1 is a modification of Brock and Dunfield’s

[4] proof of the existence of closed integral homology spheres Benjamini–
Schramm converging to H3, with added ingredients from [8] and [9]. Per-
forming 1/n-surgeries on the knots of Theorem 1.1 produces new examples
of homology spheres Benjamini–Schramm converging to H3.

1.1. Organization and proof outline

The paper is organized as follows. In Section 2, we build a mapping torus
whose R-volume ratio satisfies the result of Theorem 1.1. However, there is
no guarantee that the mapping torus will be a knot in S3. To obtain a knot
in S3, we will put the mapping torus into a topological construction, which is
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described in Section 3. The construction consists of decomposing S3 into five
pieces, two of which will be replaced by product manifolds coming from the
mapping torus of Section 2. For these two pieces, we may take the R-volume
ratio to be as large as we like, and we may take the products to have total
volume as large as we like. The geometry on the remaining three of the five
pieces is described in Section 4. The geometry of these three pieces will be
fixed once and for all. Thus by taking larger and larger product manifolds
for the other two pieces, the proportion of volume coming from the three
fixed pieces will become negligible. We describe all this in Section 5, putting
the pieces together to ensure the result is a knot in S3; this finishes the proof
of Theorem 1.1.

2. Thick mapping torus

As in [4], we first build mapping tori satisfying (1.1).
Given a surface S and a homeomorphism f : S → S, there is an associ-

ated mapping torus

Mf = (S × [−1, 1])/(x,−1) ∼ (f(x), 1).

The goal of this section is to prove the following.

Proposition 2.1. For any R > 0 and any ε > 0, there is a closed surface
Σ of genus g = g(R, ε), an even number of points {p1, . . . , p2k} ⊂ Σ, and a
pseudo-Anosov map f on the punctured surface S = Σ− {p1, . . . , p2k} such
that the R-volume ratio of Mf satisfies

vol(M≥Rf )

vol(Mf )
> 1− ε,

and f extends to a homeomorphism Σ→ Σ taking each pi to itself.

Recall that a cusp T of a hyperbolic 3-manifold M is a submanifold
with a lift to the universal cover H3 that is a horoball H. The subgroup of
π1(M) ≤ PSL(2,C) fixing H is either isometric to Z, generated by a single
parabolic element of PSL(2,C), or is isometric to Z⊕ Z, generated by two
parabolic elements. In the first case, the cusp T ∼= H/Z is homeomorphic
to the product of R and an annulus; we call this a rank-1 cusp. In the
second case, the cusp T ∼= H/Z⊕ Z is homeomorphic to the product of R
and a torus; we call this a rank-2 cusp. In the rank-1 case, the boundary
∂T is naturally a flat annulus; in the rank-2 case it is naturally a flat torus.
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584 A. E. Kent and J. S. Purcell

In either case, if the quotient of a horoball embeds in a neighborhood of
the cusp, we say the quotient of the horoball is a horoball neighborhood of
the cusp. We also use this notation and terminology for embedded disjoint
unions of such neighborhoods. Finally, notice that for any R > 0, any cusp
will have a subset lying in the R-thin part.

Now, Mf obtained in Proposition 2.1 has rank-2 cusps corresponding to

{p1, . . . , p2k} × [−1, 1]/ ∼,

and so vol(M<R
f ) > 0. To make the R-volume ratio large, we will ensure that

the R-thin part lies only in the cusps and takes up a small proportion of the
cusp volume.

Lemma 2.2. For any Q > 0, there is a surface S of genus g = g(Q) with an
even number of punctures, and a pseudo-Anosov map ϕ : S → S such that
the Q-thin part M<Q

ϕ of Mϕ consists only of disjointly embedded horoball
neighborhoods of the cusps of Mϕ corresponding to the punctures of S, and
ϕ fixes each puncture of S.

Proof. Let f be any pseudo-Anosov homeomorphism on a punctured surface
Σ with more than one puncture. The mapping torus Mf is hyperbolic [16],
and the number of closed geodesics in Mf of length at most 2Q is finite.
These correspond to conjugacy classes [γi] of elements of π1(Mf ). Since
π1(Mf ) is residually finite [12], there is a finite-index normal subgroup of
π1(Mf ) that does not contain any γi. Let N be the corresponding finite cover
of Mf . Its shortest geodesic has length at least 2Q. Moreover, the fibration
of Mf over S1 lifts to a fibration of N .

Let T be a horoball neighborhood of the cusps of N . Let [δj ] be the con-
jugacy classes of elements of π1(N) corresponding to the Euclidean geodesic
loops on ∂T whose length is less than 2Q. Residual finiteness gives us a finite-
index normal subgroup of π1(N) that contains none of the δj , and passing
to the corresponding finite cover of N produces a fibered manifold N ′ whose
Q-thin part consists only of disjointly embedded horoball neighborhoods of
the cusps.

The monodromy of the fibration F → N ′ → S1 is a homeomorphism
of the punctured surface F that permutes the punctures of F , so a finite
power takes each puncture to itself. Let N ′′ be the corresponding finite
cover of N ′, so the monodromy µ of the fibration F → N ′′ → S1 extends to
a homeomorphism fixing all the punctures of F .

It may be the case that the fiber of N ′′ has an odd number of punctures
(even if Σ were evenly punctured). If so, we pass to a further cover as follows.
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Let α and β be elements of H1(N ′′;Z) corresponding to distinct punctures
of F . Let θ : H1(N ′′;Z)→ Z/2Z be the homomorphism taking α and β to 1
and killing the other generators of H1(N ′′). Let N ′′′ be the 2–fold cover of
N ′′ corresponding to ker(θ). By construction of θ, the lifts of α and β are
connected, and the lift of any other curve representing a different puncture
has two components. It follows that the fiber S of N ′′′ has an even number
of punctures. The monodromy ϕ of the fibration S → N ′′′ → S1 fixes the
punctures of S by construction, and soN ′′′ = Mϕ is the desired manifold. �

Proof of Proposition 2.1. Let R > 0 and 1 > ε > 0. Recall that the function
sinh(x) is increasing and unbounded. Thus for fixed R and fixed ε, we may
choose Q > R large enough that sinh(R/2)/ sinh(Q/2) < ε.

Now, Lemma 2.2, applied to Q, gives a mapping torus Mϕ with Q-thin
part a horoball neighborhood of the cusps. Since Q > R, the thin parts
satisfy M<R

ϕ ⊂M<Q
ϕ and so the R-thin part is also a horoball neighborhood

of the cusps.

Let TQ be a component of M<Q
ϕ , with TR ⊂ TQ a component of M<R

ϕ .
We first prove that we have chosen Q such that

vol(TR)

vol(TQ)
< ε2.

This can be seen as follows.
Consider the universal cover BQ of TQ as a horoball centered at infin-

ity in the upper half-space model; similarly BR ⊂ BQ is a horoball. Thus
in coordinates, the boundary ∂BR = {(x, y, hR) | x, y ∈ R} is a horosphere
with height (i.e. third coordinate in H3) some constant hR > 0. Similarly,
∂BQ is a horosphere with height hQ > 0. Because TR ⊂ TQ, it follows that
the height hQ < hR. Also, because ∂TQ and ∂TR have the same Euclidean
shape (ignoring scale), the ratio

vol(TR)

vol(TQ)
=

area(∂TR)

area(∂TQ)
=
h2
Q

h2
R

.

Let ∆ be the Z⊕ Z group of parabolics such that BQ/∆ = TQ. The
shortest hyperbolic translation distance of ∆ acting on ∂BR is R, and
on ∂BQ is Q. A calculation shows that the shortest Euclidean translation
distance of ∆ acting on ∂BR is then 2 sinh(R/2), and acting on ∂BQ is
2 sinh(Q/2). On the other hand, in coordinates the element of ∆ translat-
ing the shortest distance takes some point (x, y, hR) to (x′, y′, hR); thus its
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Euclidean distance is

1/hR ·
√

(x− x′)2 + (y − y′)2 = 2 sinh(R/2).

Similarly it takes (x, y, hQ) to (x′, y′, hQ), and so

1/hQ ·
√

(x− x′)2 + (y − y′)2 = 2 sinh(Q/2).

It follows that hQ/hR = sinh(R/2)/ sinh(Q/2).
Thus, by our choice of Q, we have

vol(TR)

vol(TQ)
=
h2
Q

h2
R

=
sinh2(R/2)

sinh2(Q/2)
< ε2.

Since this holds for each component of M<R
ϕ , choosing Q in this way

guarantees that

vol(M<R
ϕ )

vol(M<Q
ϕ )

< ε2.

Then

vol(M≥Rϕ )

vol(Mϕ)
= 1−

vol(M<R
ϕ )

vol(M≥Qϕ +M<Q
ϕ )

> 1−
vol(M<R

ϕ )

vol(M<Q
ϕ )

> 1− ε2.

�

3. The topological construction

Our knot complements will be built from several geometric pieces.
Let R, ε > 0 and let g(R, ε) be as in Proposition 2.1. Consider the Hee-

gaard splitting of S3 of genus g(R, ε) with Heegaard surface Σ. So

S3 ∼= (H ′1 ∪Σ H
′
2)/ψ,

with H ′1, H ′2 handlebodies, ∂H ′i
∼= Σ, and ψ : Σ→ Σ a homeomorphism.

Consider a regular neighborhood of Σ in S3 homeomorphic to Σ× [−1, 1]
made of two pieces M ′′1

∼= Σ× [−1, 0] ⊂ H ′1 and M ′′2
∼= Σ× [0, 1] ⊂ H ′2 glued

together by ψ : Σ× {0} → Σ× {0}.
Let H1 = H ′1 −M ′′1 and H2 = H ′2 −M ′′2 . We then obtain S3 by glu-

ing four pieces: H1, M ′′1 , M ′′2 , and H2. Denote the gluing map between
H1 and M ′′1 by i1 : ∂H1 → Σ× {−1}, and that between M ′′2 and H2 by
i2 : Σ× {1} → ∂H2.
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H1
i1 M ′1

i′1 M1
ψ

M2
i′2 M ′2

i2
H2

M

Figure 1: Gluing all pieces yields S3.

We further split each of M ′′1 and M ′′2 into two pieces, as follows. Let M ′1
be the manifold Σ× [−1,−1

2 ] and let M1 = Σ× [−1
2 , 0], with gluing map

i′1 : Σ× {−1
2} → Σ× {−1

2}. Let M2 = Σ× [0, 1
2 ] and M ′2 = Σ× [1

2 , 1], with
gluing map i′2 : Σ× {1

2} → Σ× {1
2}.

We let M = (M1 ∪M2)/ψ.
This is all illustrated schematically in Figure 1.

4. Geometric tangles

We build our knots by gluing together tangles in H1, M ′1, M , M ′2, and H2.
The pieces H1, M , H2 and their tangles are chosen first and are then fixed
throughout the construction.

Start with the Heegaard splitting of S3 from the previous section. Let
K be any closed curve in S3 meeting the Heegaard surface Σ transversely
in 2k points {p1, . . . , p2k}. Recall that M ′1 ∪M ∪M ′2 is homeomorphic to
Σ× [−1, 1], a regular neighborhood of Σ in S3. We homotope K so that it
meets this neighborhood in arcs of the form pj × [−1, 1]. We will homotope
K relative its intersection with ∂H1, ∂M ′1, ∂M , ∂M ′2, and ∂H2 so that its
intersections with each of H1, M ′1, M , M ′2, and H2 are of a particularly nice
form.

The setup is as follows. Let N be a compact orientable 3-manifold. (In
our applications, N will correspond to H1, H2, or M , but a more general
result holds.) Let A be a 1-manifold properly embedded in N such that
each component of ∂N − ∂A has negative Euler characteristic. That is, A
is a collection of embedded simple closed curves and arcs in N , with each
component of ∂A lying on the closed surface ∂N . Thus the surface ∂N − ∂A
is a punctured surface, with punctures corresponding to points ∂A, and
we require that the punctured surface have negative Euler characteristic.
Finally, let P be a pants decomposition of the punctured surface ∂N − ∂A.

Lemma 4.1. Fix δ > 0. Let N , A, and P be as above. Then there is a
1-manifold B homotopic to A relative to its endpoints such that
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1) N −B is hyperbolic with totally geodesic boundary,

2) the sum of lengths of geodesic representatives of all curves of P on the
geodesic boundary of N −B is less than δ, and

3) all arcs in B correspond to rank-1 cusps.

Moreover, the manifold NB,P = N − (B ∪ P ) admits a hyperbolic structure
with totally geodesic boundary a collection of 3-punctured spheres.

The proof is nearly identical to that of [8, Theorem 1]. Indeed, if we
restrict to the case that N has boundary a single closed surface and A is
a single simple closed curve in N , then [8, Theorem 1] implies that for any
simple closed curve C on N , there exists a curve B homotopic to A such
that N −B is hyperbolic, ∂(N −B) is totally geodesic, and C is isotopic on
∂(N −B) to a geodesic with length less than δ. This implies items (1) and
(2) for this restricted case, with C replacing our P . To prove the full result
of the lemma, we extend the proof of [8, Theorem 1] to allow more general
compact manifolds N , to allow A to have multiple components including
arc components, and to require P to be a complete pants decomposition
of ∂N − ∂A. However, the proof proceeds almost exactly as in [8]; we step
through it briefly.

Proof of Lemma 4.1. First, choose a surface F properly embedded inN with
boundary containing P ; for example, in our case we may take F to be isotopic
to (∂N − ∂A)− P , pushed in a bit from the boundary. We will cut N along
F and reglue via an element ϕ carefully chosen in the mapping class group
of F . We will denote the new manifold obtained by applying this regluing
by N(ϕ).

A theorem of Myers [15, Theorem 1.1] implies that for any N − F ∼=
N(ϕ)− F containing embedded arcs and curves A− F , there exists a 1-
manifold k′′ homotopic to A− F relative to its boundary such that each
component of (N − F )− k′′ is boundary incompressible, acylindrical, and
atoroidal. Reglue N − F along the traces of F via ϕ, and let K be the
knot in N(ϕ) corresponding to k′′. The exterior N(ϕ)−K is irreducible,
atoroidal, and acylindrical by [15, Lemma 2.1], so its double d(N(ϕ)−K)
admits a hyperbolic structure by Thurston’s uniformization theorem for
Haken manifolds ([13, 19]). By the proof of the Mostow–Prasad rigidity
theorem, ∂(N(ϕ)−K) is a totally geodesic surface in d(N(ϕ)−K), since it
is fixed pointwise by an involution of that double. Thus cutting the double
open again yields a hyperbolic structure on N(ϕ)−K with totally geodesic
boundary. Note that arcs of K lie in the parabolic locus of N(ϕ)−K, and
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the boundary of a neighborhood of such an arc is homeomorphic to an an-
nulus. Thus each arc of K corresponds to a rank-1 cusp. Thus, provided we
choose ϕ such that N(ϕ) is homeomorphic to N and the image of K under
the homeomorphism is homotopic to A, these results imply items (1) and
(3) of the lemma. (For example, this will hold if ϕ is the identity map id,
but choosing ϕ = id will not allow us to prove item (2) in general.)

To finish the proof of the lemma, we choose the map ϕ and show that
our choice also implies item (2).

We use maps first studied by Birman [1], namely elements in the inter-
section of all Birman kernels for the punctures of F . (See also, for example,
[5, Chapter 4].) More carefully, let FK = F −K, and let F̂K,i be the surface
obtained by attaching a disk to the i-th boundary component of FK . Let
PMod(FK) denote the pure mapping class group of FK , i.e. the subgroup
of the mapping class group which does not permute boundary components.
Then we have the Birman exact sequence

1→ π1(F̂K,i)→ PMod(FK)
φi−→ PMod(F̂K,i)→ 1.

Take ψ to be a nontrivial element of
⋂
i kerφi; the existence of a nontrivial

ψ is shown in [8]. Note first that the map ψ is Brunnian: whenever any
boundary component of FK is filled, the resulting mapping class is the iden-
tity (see, for example, [21]). It follows that N(ψ) is homeomorphic to N ,
and that K in N(ψ) is homotopic to A in N ; indeed, this must hold for any
power ψn of ψ. Finally, it is also shown in [8] that ψ is psuedo-Anosov acting
on F .

Now consider the manifolds Nn = N(ψn). By the above work, for each
n there exists a 1-manifold Bn such that Nn

K := Nn −Bn is hyperbolic with
totally geodesic boundary, Nn is homeomorphic to N , and the image of Bn
under this homeomorphism is homotopic to A.

On the other hand, let d(F ) = S in the doubled manifold d(Nn
K); we

abuse notation slightly and denote the double of ψ by ψ. In the hyperbolic
structure on d(Nn

K), the subgroup π1(S) ≤ PSL(2,C) is quasi-Fuchsian, de-
noted by Q(ψ−nan, bn) for some an, bn in the Teichmüller space T (S) of
S. Thurston’s bounded image theorem (see, for example [13]) implies that
Q(ψ−nan, bn) lies in a compact subset A of T (S)× T (S), with A indepen-
dent of n.

Let (a, b) ∈ A ⊂ T (S)× T (S) lie in the same compact set. Since ψ is
reducible on S, fixing curves P , but pseudo-Anosov on the two components
of S − ∂F , a theorem of Brock [2, Theorem 4.5] implies that the lengths
of the geodesic representatives of P tend to zero in Q(ψna, b) as n tends
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to infinity. But by [8, Lemma 1], Q(ψ−nan, bn) and Q(ψna, b) are quasi-
isometric independent of n, so the lengths of P also tend to zero in Nn

K .
This finishes the proof of parts (1)–(3).

For the last part of the lemma, note that the complement of a disjoint
union of simple geodesics in a hyperbolic 3-manifold admits a complete hy-
perbolic structure [11]. So the manifold obtained by removing P from the
double d(N −B) of N −B admits a complete hyperbolic structure. More-
over, this manifold is the double d(NB,P ) of NB,P , and it follows that NB,P

admits a hyperbolic structure with totally geodesic boundary a collection of
3-punctured spheres. �

If α is a curve on the boundary T of a cusp neighborhood, then the
normalized length of α is defined to be

L(α) =
length(α)√

area(T )
.

Lemma 4.2. Let L > 0. Then there is δ = δ(χ(F ), L) > 0 such that the
following holds. Let N be an orientable finite-volume 3-manifold with totally
geodesic boundary in which the length of a pants decomposition P is less
than δ. Then N ′ = N − P admits a finite-volume hyperbolic metric with
totally geodesic boundary a collection of 3-punctured spheres, and, whenever
N ′ is embedded isometrically into a complete hyperbolic manifold N ′′ with
∂N ′′ = ∅, the normalized length of each meridian corresponding to a curve
of P in N ′′ is at least L.

Proof. Let P0 be a curve in P and let T0 be the corresponding cusp neigh-
borhood in N ′′. The meridian corresponding to P0 is the filling slope on ∂T0

whose homology class dies under the projection homomorphism H1(T0) ∼=
Z⊕ Z→ Z = 〈[P0]〉.

Let A be the horospherical annulus ∂T0 ∩N ′. It is shown in the proof
of [9, Theorem 39] that there is δ = δ(χ(F ), L) > 0 such that the conformal
modulus of A is at least L provided that the length of P is less than δ in the
totally geodesic boundary of N . This implies that the normalized length of
the meridian at P0 is at least L. �

5. Geometric knots

Our knot in S3 will be constructed by gluing together tangles in H1, M ′1,
M , M ′2, and H2. The tangles in M ′1 and M ′2 will be braids provided by
Proposition 2.1.



i
i

“12-Purcell” — 2018/7/4 — 14:53 — page 591 — #11 i
i

i
i

i
i

Spacious knots 591

For fixed R > 0 and ε > 0, Proposition 2.1 provides a mapping torus
Mf whose R-volume ratio is at least 1− ε. Take the surface Σ, points
{p1, . . . , p2k}, S = Σ− {p1, . . . , p2k}, and f as in that proposition. Let M∞f
denote the infinite cyclic cover of Mf corresponding to the fiber, and let Mn

f

denote the mapping torus corresponding to fn. Finally, let P be any pants
decomposition of S.

Given natural numbers m and n, there exists a maximally cusped hy-
perbolic structure on S × R with curves f−m(P ) corresponding to rank-1
cusps on one end, and fn(P ) corresponding to rank-1 cusps on the other,
by Thurston’s Geometrization Theorem [13, 16, 20]. Let S(f−m(P ), fn(P ))
be this hyperbolic manifold.

The following lemma is almost identical to [4, Proposition 3.4], only we
allow additional cusps corresponding to the punctures in our surface. The
lemma may be proven just as in that paper, using the fact that the Drilling
Theorem applies to manifolds with additional cusps.

Lemma 5.1. The maximally cusped structures S(f−m(P ), fn(P )) for
m,n > 0 converge strongly to the infinite cover M∞f as m,n→∞. The man-
ifolds S(P, fn(P )) converge strongly to a manifold SA with a degenerate end
asymptotically isometric to the positive end of M∞f and whose convex core
boundary is a surface with parabolic locus P . The analogous statement holds
for S(f−n(P ), P ). �

We now prove Theorem 1.1.

Proof of Theorem 1.1. For fixed R and ε, take Σ, {p1, . . . , p2k}, S, and f as
in Proposition 2.1. Take a Heegaard splitting of S3 with Heegaard surface
Σ, and H1, M ′1, M , M ′2, and H2 as in Section 3. Finally, take K ⊂ S3 as
in Section 4, meeting the Heegaard surface Σ for S3 transversely in points
{p1, . . . , p2k}, and let P be any pants decomposition of S. Let δ > 0.

Using Lemma 4.1, we homotope K relative its intersection with ∂H1

and ∂H2 so that Hi −K has a hyperbolic structure with totally geodesic
boundary in which the length of P is less than δ. Then H i = Hi − (K ∪ P )
has a hyperbolic structure with totally geodesic boundary a collection of
3-punctured spheres, for each i.

Now we consider M ′1
∼= S ×

[
− 1,−1

2

]
and M ′2

∼= S ×
[

1
2 , 1
]
. For any in-

teger r > 0, the manifold S ×
[
− 1,−1

2

]
− (P × {−1} ∪ f r(P )× {−1

2}) has
hyperbolic structure with totally geodesic boundary, isometric to the convex
core of S(P, f r(P )). Similarly, S ×

[
1
2 , 1
]
− (f r(P )× {1

2} ∪ P × {1}) has hy-
perbolic structure with totally geodesic boundary, isometric to the convex
core of S(f r(P ), P ).
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Consider M = Σ×
[
− 1

2 ,
1
2

]
. Let A be the intersection of K and M .

Let B be the tangle homotopic to A making the lengths of P × {−1
2} and

P × {1
2} less than δ in M −B, given by Lemma 4.1. The manifold MB,P =

M − (B ∪ P × {±1
2}) admits a hyperbolic structure with totally geodesic

boundary a collection of 3-punctured spheres. The map f r extends to a
self homeomorphism of M = Σ×

[
− 1

2 ,
1
2

]
. This homeomorphism takes B

to a collection of embedded arcs f r(B) in f r(M), and takes P × {±1
2} to

f r(P )× {±1
2}.

Glue H1 and core(S(P, f r(P ))) together via i1. Note this map takes
P to P and takes 3-punctured spheres to 3-punctured spheres. Because
there is a unique hyperbolic structure on a 3-punctured sphere, this ex-
tends to an isometry. Similarly, i′1 induces an isometry from the right side
of core(S(P, f r(P ))) to the left side of f r(M), i′2 induces an isometry from
the right side of f r(M) to the left side of core(S(f r(P ), P )), and i2 induces
an isometry from the right side of core(S(f r(P ), P )) to H2.

With these gluing maps, let

Nr = H1 ∪ core(S(P, f r(P ))) ∪ f r(MB,P ) ∪ core(S(f r(P ), P )) ∪H2.

By construction, Nr is homeomorphic to S3 with a link removed. One
component of this link is K, and the other components are copies of the
components of P and f r(P ). We call the cusps corresponding to the latter
curves the horizontal cusps.

The hyperbolic structures on H1, H2, and M are fixed, and so are their
volumes. By Mostow–Prasad rigidity, the manifold f r(M) is isometric to M .
It follows that the R-volume ratios of the links Nr approach the R-volume
ratio of Mf as r goes to infinity. In particular, we may take r such that the
ratio is at least 1− ε/2.

To finish the proof, we we fill the horizontal cusps of our links to obtain
the desired knots. To do this, we use the Universal Hyperbolic Dehn Filling
Theorem of Hodgson and Kerckhoff [7] and the Drilling Theorem of Brock
and Bromberg [3]. Together, these theorems provide a universal L such that
if the normalized length of each component of a Dehn filling slope is at least
L, then the ε3-thick part of the filled manifold is (1 + ε/100)-bilipschitz
to that of the original manifold, where ε3 is the 3-dimensional Margulis
constant.

In our case, we would like to fill our link complement along all of the
horizontal meridians. By Lemma 4.2, there is δ such that the normalized
lengths of these meridians will be at least L provided the length of P is less
than δ, and so we choose δ in this way.
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Thus the ε3-thick part of the knot complement obtained by filling along
the horizontal meridians is (1 + ε/100)-bilipschitz to the ε3-thick part of our
link complement. Since the volume of the thin parts decrease under filling,
the resulting knot is the desired one. �
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