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Pointwise convergence of Walsh–Fourier

series of vector-valued functions

Tuomas P. Hytönen and Michael T. Lacey

We prove a version of Carleson’s Theorem in the Walsh model for
vector-valued functions: For 1 < p <∞, and a UMD space Y , the
Walsh-Fourier series of f ∈ Lp(0, 1;Y ) converges pointwise, pro-
vided that Y is a complex interpolation space Y = [X,H]θ between
another UMD space X and a Hilbert space H, for some θ ∈ (0, 1).
Apparently, all known examples of UMD spaces satisfy this condi-
tion.

1. Introduction

We are interested in the vector-valued extension of Carleson’s celebrated
theorem on pointwise convergence of Fourier series [3], or more precisely, in
this paper, on the variant due to Billard [2] about Walsh–Fourier series. By
‘vector-valued’ we understand functions that take their values in a possibly
infinite-dimensional Banach space X. It is well known that the most gen-
eral setting in which such results could be hoped for is when X is a UMD
(unconditionality of martingale differences) space.

So far, vector-valued pointwise convergence results of this nature only
exist in the more restricted class of UMD spaces with an unconditional basis,
or somewhat more generally, in UMD lattices. Indeed, Carleson’s theorem in
such spaces was proven by Rubio de Francia [9, 10], and Billard’s theorem
by Weisz [12], who also treated the more general Vilenkin–Fourier series.
(The abstract and the MR review of the last-mentioned paper misleadingly
claim the result for UMD spaces, although it is only proven assuming an
unconditional basis.) All these results ultimately rely on the classical Car-
leson (or Billard) theorem as a black box: the scalar-valued boundedness of
the relevant maximal partial sum operator S∗ is applied component-wise in
the unconditional basis (or pointwise in a representation of the lattice as a
function space).

Rubio de Francia explicitly raised the following question [10, Problem 4
on p. 220]:

561



i
i

“11-Hytonen” — 2018/7/4 — 14:52 — page 562 — #2 i
i

i
i

i
i

562 T. P. Hytönen and M. T. Lacey

It would be interesting to know if B-valued Fourier series con-
verge a.e. for B ∈ UMD (B not a lattice), e.g., for the Schatten
ideals: B = Cp, 1 < p <∞.

Apparently, no published progress on this was made in the last 25 years until
the recent proof of the ‘little Carleson theorem’ in general UMD spaces by
Parcet, Soria and Xu [8]: the sequence of partial sums Snf(x) of the Fourier
series of f ∈ L(logL)1+δ(T;X) grows at most at the rate o(log log n) for
a.e. x ∈ T. They adapt Carleson’s original argument [3], rather than just his
result, to this vector-valued question.

In this paper, we obtain the first partial answer to the actual conver-
gence issue. We prove the pointwise convergence of Y -valued Walsh–Fourier
series for all UMD spaces Y of the following special form: Y is a complex in-
terpolation space Y = [X,H]θ between another UMD space X and a Hilbert
space H, where θ ∈ (0, 1). This includes all UMD lattices [10, Corollary on
p. 216]. It also includes the Schatten ideals Cp, p ∈ (1,∞), specifically raised
in Rubio de Francia’s question (for we can always pick another q ∈ (1,∞)
so that Cp = [Cq, C2]θ), and apparently all other known examples of UMD
spaces as well. In fact, Rubio de Francia also asked [10, Problem 4 on p. 220]:

Is every B ∈ UMD intermediate between a “worse” B0 ∈ UMD
and a Hilbert space?

This question also remains open. A possible affirmative answer, in combina-
tion with our present contribution, would yield the pointwise convergence of
X-valued Walsh–Fourier series for every UMD space X. Conversely, a coun-
terexample to the pointwise convergence result would be a counterexample
to the mentioned interpolation property.

Rubio de Francia’s class of intermediate UMD spaces Y = [H,X]θ has
played a role in a number of earlier works. Rubio de Francia himself indicated
how the boundedness of linear operators with a decomposition

(1.1) T =
∑
j∈Z

Tj , ‖Tj‖L (L2(R;H)) ≤ C2−ε|j|, ‖Tj‖L (Lq(R;X)) ≤ C.

can be conveniently handled in such spaces [10, p. 219–220]: one only needs
the decay estimate in a Hilbert space, and a much cruder uniform estimate
in general UMD spaces to conclude the summable decay ‖Tj‖L (Lp(R;Y )) ≤
C2−ε

′|j| by interpolation. The same class reappeared in Berkson–Gillespie [1]
and Hytönen [4], where stronger results were obtained for such spaces than
for general UMD spaces. See [1, 4] for more information on these spaces.
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Although treated in the same paper, Rubio de Francia’s extension of
Carleson’s theorem was not based on this interpolation property but on the
explicit lattice structure in a more fundamental way. In contrast, our present
contribution can be vaguely thought of as an adaptation of Rubio de Fran-
cia’s approach on the operators (1.1) to the maximal partial sum operator
S∗ of the Walsh–Fourier series. The decomposition of S∗ is furnished by the
time-frequency analysis of Lacey–Thiele [7], and the estimates forming the
basis of interpolation have a more subtle structure than above.

In fact, our proof is built in such a way that we obtain the convergence
of Walsh–Fourier series for all UMD spaces X satisfying a new condition,
which we call the tile-type, and we verify this condition for all intermedi-
ate UMD spaces as described. The name tile-type refers, on the one hand,
to its resemblance of some established Banach space properties like type
and martingale-type, and on the other hand, to its connection to the time-
frequency tiles in the phase plane, as in the work of Lacey–Thiele [7]. The
tile-type inequality is applied exactly once in the proof; everything else works
for general UMD spaces. In this way, we single out for further investigation
a specific sufficient condition for the convergence of vector-valued Walsh–
Fourier series in full generality.

The setting of a UMD space requires, ultimately, the use of martingale
differences. These are actually readily apparent in the Walsh case. The main
point of departure from the classical reasoning is the notion of tile-type, and
its use in the Size Lemma. The remaining lemmas are known, but the details
are included.

The extension of the present results to the trigonometric Fourier series
is treated in our subsequent work [5]. See also [6] for some refinements.

2. Main results and preliminaries

We introduce the Rademacher functions

ri(x) := sgn sin(2π · 2ix) =
∑
k∈N

(
1
2−i[k,k+

1
2)

(x)− 1
2−i[k+

1
2 ,k+1)

(x)

)
and the Walsh functions

wn(x) :=

∞∏
i=0

ri(x)ni , for n =

∞∑
i=0

ni2
i ∈ N, ni ∈ {0, 1},

as objects defined for all x ∈ R+. The restrictions 1[0,1)wn form an orthonor-
mal basis of L2(0, 1).
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Our main result is the following:

Theorem 2.1. Let Y be an intermediate UMD space, p ∈ (1,∞), and let
f ∈ Lp(0, 1;Y ). Then

SNf(x) :=

N−1∑
n=0

〈f, wn〉wn(x)→ f(x)

as N →∞ for a.e. x ∈ (0, 1). In fact, the maximal partial sum operator S∗,

S∗f(x) := sup
N∈N
|SNf(x)|,

is bounded from Lp(0, 1;Y ) to Lp(0, 1).

Making N a function N(x), we arrive at the linearization SN(x)f(x), and
the above theorem is equivalent to the uniform bound

‖SN(·)f‖Lp(0,1;Y ) ≤ C‖f‖Lp(0,1;Y )

for all f and N . To express SN(x)f(x) in a more flexible form, we recall more
notation.

A tile is a dyadic rectangle P ⊂ R+ × R+ of area 1, i.e.,

P = I × ω = I × 1

|I|
[n, n+ 1), I ∈ D , n ∈ N,

where D is the collection of dyadic intervals of R+. To every tile P , we
associate the wave packet

wP (x) :=
1

|I|1/2
w∞P (x), w∞P (x) = 1I(x)wn

(
x

|I|

)
.

The superscript ∞ refers to L∞ normalization. The Haar functions arise as
special cases:

hI(x) =
1

|I|1/2
1I(x)r0

(
x

|I|

)
= wI×|I|−1[0,1)(x).

A bitile is a dyadic rectangle of area 2, i.e.,

P = I × 1

|I|
[2n, 2(n+ 1))

= I × 1

|I|
[2n, 2n+ 1) ∪ I × 1

|I|
[2n+ 1, 2(n+ 1)) =: Pd ∪ Pu,
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where the second line gives the canonical decomposition of P to its down-
tile and up-tile. If P = I × ω is either a tile or a bitile, we write IP := I and
ωP := ω for its time and frequency interval, respectively.

The following identity is explained in Thiele [11, p. 68–69]:

SN(x)f(x) =
∑

P bitile
IP⊆[0,1)

〈f, wPd
〉wPd

(x)1ωPu
(N(x)).

As in [11], we will drop the restriction that IP ⊆ [0, 1) in the subsequent
analysis, and consider the resulting scale-invariant operator on Lp(R+;Y )
rather than Lp(0, 1;Y ). We will first establish the following inequality on
the bilinear form∣∣〈SN(·)f, g1E〉

∣∣ . ‖f‖Lq(R+;Y )‖g‖L∞(R+;Y ∗)|E|1/q ,

where q is the tile-type of the UMD space Y . This proof is then refined to
prove the full range of estimates for the Carleson operator.

A partial order (among either tiles or bitiles) is defined by

P ≤ P ′ def⇔ IP ⊆ IP ′ and ωP ⊇ ωP ′
⇔ Pd ≤ P ′d or Pu ≤ P ′u.

For bitiles, we also define

P ≤j P ′
def⇔ Pj ≤ P ′j , j ∈ {d, u}.

A tree T is a collection of bitiles P for which there exists a top bitile T
(not necessarily an element of T) such that

P ≤ T ∀P ∈ T.

Down-trees and up-trees are defined similarly by replacing ≤ by ≤d or ≤u.

Lemma 2.2. Let T be an up-tree with top T . Then for all P ∈ T, we have

wPd
(x) = εPT · w∞Tu

(x) · hIP (x)

for some constant factor εPT ∈ {−1,+1}. Hence in particular

〈f, wPd
〉wPd

= 〈f · w∞Tu
, hIP 〉hIP · w∞Tu

.
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Proof. We have Tu = IT × |IT |−1[nT , nT + 1), with odd nT . Consider an el-
ement P ∈ T with Pu = IP × |IP |−1[nP , nP + 1), again with odd nP , and
let 2−k := |IP |/|IT |. Then Pu ≤ Tu says that

IP ⊆ IT and 2−k(nT + 1)− 1 ≤ nP ≤ 2−knT .

If nT =
∑∞

i=0 2ini, then the unique integer value of nP in the given range is

nP =

∞∑
i=k

2i−kni,

which is odd if and only if nk = 1. For those values of k, we have Pd =
IP × |IP |−1[nP − 1, nP ), where

nP − 1 =

∞∑
i=k+1

2i−kni.

Hence

wPd
=

1IP
|IP |1/2

wnP−1

(
·
|IP |

)
=

1IP
|IP |1/2

w2k(nP−1)

(
·
|IT |

)
=

1IP
|IP |1/2

∞∏
i=k+1

ri

(
·
|IT |

)ni

(∗)
=

1IP
|IP |1/2

∞∏
i=0

ri

(
·
|IT |

)ni

× rk
(
·
|IT |

)
×
k−1∏
i=0

ri

(
·
|IT |

)ni

= 1ITwnT

(
·
|IT |

)
× 1IP
|IP |1/2

r0

(
·
|IP |

)
×
k−1∏
i=0

ri

(
·

2k|IP |

)ni

= w∞Tu
× hIP ×

k−1∏
i=0

ri

(
·

2k|IP |

)ni

.

Note that nk = 1 was used in (∗), together with r2i ≡ 1. Notice that the last
product takes a constant value on IP , as ri is constant over dyadic intervals
of length 2−i−1; this is our εPT . The second claim follows from ε2PT = 1. �

3. The tile-type of a Banach space

Let T be a collection of up-trees such that: For any two distinct pairs
(P i,Ti) with P i ∈ Ti ∈ T , we have P 1

d ∩ P 2
d = ∅. We say that a Banach
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space X has tile-type q if the following estimate holds uniformly for all such
T and all f ∈ Lq(R+;X):(∑

T∈T

∥∥∥ ∑
P∈T
〈f, wPd

〉wPd

∥∥∥q
Lq(R+;X)

)1/q

. ‖f‖Lq(R+;X).

Our results about this concept are summarized in the following proposi-
tion. It shows in particular that tile-type behaves somewhat like the classical
cotype.

Proposition 3.1. A necessary condition for tile-type q is that X is a UMD
space and q ≥ 2. If a UMD space has tile-type q, it has tile-type p for all p ∈
[q,∞). Every Hilbert space has tile-type 2, and every complex interpolation
space [X,H]θ, θ ∈ (0, 1), between a UMD space and a Hilbert space has tile-
type 2/θ.

In particular, every Lp space (even non-commutative) has tile-type q for
all q ∈ (max{p, p′},∞).

We consider the following operators:

WT f :=

{∑
P∈T
〈f, wPd

〉wPd

}
T∈T

, W ′
T f :=

{∑
P∈T
〈f, wPd

〉hIP

}
T∈T

.

We are concerned about the boundedness

WT : Lp(R+;X)→ `p(T ;Lp(R+;X)).

From Lemma 2.2 it follows that

‖WT f‖`p(T ;Lp(R+;X)) = ‖W ′
T f‖`p(T ;Lp(R+;X)),

so the question is equivalent for WT and W ′
T . However, the latter operator

will be more amenable for the end-point mapping property

W ′
T : L∞(R+;X)→ `∞(T ; BMO(R+;X)),

which will play a role in interpolation. Note that BMO stands for the dyadic
BMO, since this is the only BMO space we need here.

Lemma 3.2. If H is a Hilbert space, then

‖W ′
T f‖`2(T ;L2(R+;H)) = ‖WT f‖`2(T ;L2(R+;H)) ≤ ‖f‖L2(R+;H).
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Proof. This follows from the fact that all appearing wPd
are pairwise orthog-

onal, and hence

(∑
T∈T

∥∥∥ ∑
P∈T
〈f, wPd

〉wPd

∥∥∥2
L2(R+;H)

)1/2

=

(∑
T∈T

∑
P∈T
|〈f, wPd

〉|2H

)1/2

≤ ‖f‖L2(R+;H).

�

Lemma 3.3. If X is a UMD space, then

‖W ′
T f‖`∞(T ;BMO(R+;X)) . ‖f‖L∞(R+;X).

Proof. It suffices to consider a single up-tree T. By Lemma 2.2,∑
P∈T
〈f, wPd

〉hIP =
∑
P∈T

εPT 〈f · w∞Tu
, hIP 〉hIP

is a martingale transform of f · wTu
. It is well known that martingale trans-

forms map L∞(R+;X) to BMO(R+;X) when X is a UMD space. Since
‖f · w∞Tu

‖∞ = ‖f‖∞, the result follows. �

Remark 3.4. A similar argument shows that

‖WT f‖`∞(T ;Lp(R+;X)) = ‖W ′
T f‖`∞(T ;Lp(R+;X)) . ‖f‖Lp(R+;X)

for any p ∈ (1,∞) and any UMD space X. However, we have no use for this
result, where the exponents of `∞ and Lp do not match.

Lemma 3.5. If Y = [X,H]θ is a complex interpolation space between a
UMD space X and a Hilbert space H, with parameter θ ∈ (0, 1), then

‖WT f‖`p(T ;Lp(R+;Y )) = ‖W ′
T f‖`p(T ;Lp(R+;Y )) . ‖f‖Lp(R+;Y )

holds for all p ∈ [2/θ,∞).

Proof. Consider the operator W ′
T , the result (but not the proof) for the

other operator being equivalent. For p = 2/θ, we interpolate between the
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estimates of Lemmas 3.2 and 3.3, using the complex interpolation results

[L∞(R+;X), L2(R+;H)]θ = Lp(R+; [X,H]θ) = Lp(R+;Y ),

and

[`∞(T ; BMO(R+;X)), `2(T , L2(R+;H))]θ

= `p(T ; [BMO(R+;X), L2(R+;H)]θ)

= `p(T ;Lp(R+; [X,H]θ)) = `p(T ;Lp(R+;Y )).

For p ∈ (2/θ,∞), we similarly interpolate between the result just established
for p = 2/θ, and the result of Lemma 3.3 specialized to X = Y . �

4. The tree lemma

We take E ⊂ R+, and for a collection of tiles P, define two quantities below.

density(P) := sup
P∈P

sup
P ′≥P

|IP ′ ∩ EP ′ |
|IP ′ |

, EP ′ := E ∩ {x : N(x) ∈ ωP ′}.

size(P) := sup
T⊆P up-tree

(
1

|IT|

ˆ ∣∣∣ ∑
P∈T
〈f, wPd

〉wPd

∣∣∣q dx

)1/q

.

The ‘Tree Lemma’ is the estimate below. We detail the proof, indicating
the use of the UMD property at a point below.

Proposition 4.1. For each tree T, we have∑
P∈T
|〈f, wPd

〉〈wPd
, g1EPu

〉| . size(T) density(T)|IT |,

where

EPu
:= E ∩ {x : N(x) ∈ ωPu

}.

Let J be the collection of maximal dyadic intervals J ⊆
⋃
P∈T IP ⊆ IT

which do not contain any IP , P ∈ T. These intervals cover the set
⋃
P∈T IP .
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Hence, for a choice of complex numbers |εP | = 1,

∑
P∈T
|〈f, wPd

〉〈wPd
, g1EPu

〉| ≤

∥∥∥∥∥∑
P∈T

εP 〈f, wPd
〉wPd

1EPu

∥∥∥∥∥
L1(R+;X)

(4.2)

=
∑
J∈J

∥∥∥ · · ·∥∥∥
L1(J ;X)

=
∑
J∈J

∥∥∥∥∥ ∑
P∈T
IP)J

εP 〈f, wPd
〉wPd

1EPu

∥∥∥∥∥
L1(J ;X)

.

Lemma 4.3. For a fixed J ∈J , the subset

GJ := J ∩
⋃
P∈T
IP)J

EPu

satisfies |GJ | ≤ 2 density(T)|J |.

Proof. Consider the dyadic parent Ĵ of J . By maximality of J , we have
Ĵ ⊇ IP̃ for some P̃ ∈ T. Let ω̂ be the dyadic interval of size 2/|Ĵ | such that

ωP̃ ⊇ ω̂ ⊇ ωT , where T is the top of T, so that the bitile P̂ := Ĵ × ω̂ satisfies

P̃ ≤ P̂ ≤ T . Now we claim that

(4.4) GJ ⊆ J ∩ EP̂ .

Indeed, consider one of the P appearing in GJ . Then P ∈ T, thus IP ⊆
IT and ωP ⊇ ωT , and also IP ) J , thus IP ⊇ Ĵ . We also have |ωP | = 2/|IP | ≤
2/|Ĵ | = |ω̂|, and ωP ∩ ω̂ ⊇ ωT 6= ∅, hence ωP ⊆ ω̂. But this means that

EPu
= E ∩ {N ∈ ωPu

} ⊆ E ∩ {N ∈ ωP } ⊆ E ∩ {N ∈ ω̂} = EP̂ ,

which proves the claim (4.4).
The proof is completed as follows, recalling that P̂ ≥ P̃ ∈ T:

|GJ | ≤ |J ∩ EP̂ | ≤ |Ĵ |
|Ĵ ∩ EP̂ |
|Ĵ |

= 2|J |
|IP̂ ∩ EP̂ |
|IP̂ |

≤ 2|J | sup
P ′≥P̃

|IP ′ ∩ EP ′ |
|IP ′ |

≤ 2|J | density(T).

�
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Next, divide T into the down- and up-trees

Td := {P ∈ T : P ≤d T}, Tu := T \Td,

and write

FjJ :=
∑
P∈Tj

IP)J

εJ〈f, wPd
〉wPd

1EPu
, j ∈ {d, u}.

Lemma 4.5.

‖FdJ‖L1(J ;X) ≤ size(T)|GJ |.

Proof. Suppose that P, P ′ ∈ Td appear in the same sum FdJ . Then ωPd
, ωP ′d

⊇ ωTd
. If ωPd

is the larger of the two, then ωPd
) ωP ′d and hence ωPd

⊇ ωP ′ .
Thus ωPu

is disjoint from ωP ′ and a fortiori from ωP ′u . And in particular the
sets EPu

= E ∩ {N ∈ ωPu
} and EP ′u are disjoint. Thus

‖FdJ‖∞ = sup
P∈Td

IP)J

‖〈f, wPd
〉wPd

1EPu
‖∞ ≤ sup

P∈Td

IP)J

|〈f, wPd
〉|

|IP |1/2
≤ size(T).

Since 1JFdJ is supported on GJ , the claim follows. �

Lemma 4.6.

‖FuJ‖L1(J ;X) ≤ 2|GJ | inf
x∈J

Mf̃(x), f̃ :=
∑
P∈Tu

εP 〈f, wPd
〉wPd

.

Proof. Consider a fixed x ∈ J with FuJ(x) 6= 0. For the bitiles P ∈ Tu, the
sets ωPu

are nested, and hence so are the sets EPu
. The condition that

1EPu
(x) 6= 0 is hence satisfied by all P ∈ Tu with ωP large enough, hence IP

not too large, say IP ⊆ Ix. Thus

FuJ(x) =
∑
P∈Tu

J(IP⊆Ix

εP 〈f, wPd
〉wPd

(x)

=
∑
P∈Tu

J(IP⊆Ix

εP εPT 〈f, wPd
〉w∞Tu

(x)hIP (x)

= w∞Tu
(x)(EJ − EIx)

( ∑
P∈Tu

εP εPT 〈f, wPd
〉hIP

)
(x)

= w∞Tu
(x)(EJ − EIx)

(
w∞Tu

∑
P∈Tu

εP 〈f, wPd
〉wPd

)
(x).
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By the unimodularity of w∞Tu
, from here we deduce that

|FuJ(x)| ≤ 2 sup
I⊇J

 
I

∣∣∣∣∣ ∑
P∈Tu

εP 〈f, wPd
〉wPd

(y)

∣∣∣∣∣ dy

≤ 2 inf
J
M

( ∑
P∈Tu

εP 〈f, wPd
〉wPd

)
,

and the claim follows by using again that supp 1JFuJ ⊆ GJ . �

We substitute these estimates to (4.2):∑
P∈T
|〈f, wPd

〉〈wPd
, g1EPu

〉| ≤
∑
J∈J

‖FdJ + FuJ‖L1(J ;X)

≤
∑
J∈J

|GJ |(size(T) + 2 inf
J
Mf̃)

≤
∑
J∈J

2 density(T)|J |
(

size(T) + 2 inf
J
Mf̃

)
≤ 2 density(T) size(T)|IT |+ 4 density(T)

ˆ
IT

Mf̃(x) dx.

The proof of Proposition 4.1 is completed by

ˆ
IT

Mf̃(x) dx ≤ |IT |1/q
′‖Mf̃‖q ≤ C|IT |1/q

′‖f̃‖q

= C|IT |1/q
′

∥∥∥∥∥ ∑
P∈Tu

εP 〈f, wPd
〉wPd

∥∥∥∥∥
Lq(R+;X)

(∗)
≤ C|IT |1/q

′

∥∥∥∥∥ ∑
P∈Tu

〈f, wPd
〉wPd

∥∥∥∥∥
Lq(R+;X)

≤ C|IT |1/q
′ |IT |1/q size(T),

where (∗) was an application of the UMD property, observing that

w∞Tu

∑
P∈Tu

εP 〈f, wPd
〉wPd

=
∑
P∈Tu

εP εPT 〈f, wPd
〉hIP

is a martingale transform of the similar expression with all εP ≡ 1.
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5. The density lemma

Proposition 5.1. Every finite set P of bitiles has a disjoint decomposition

P = Psparse ∪
⋃
j

Tj ,

where each Tj is a tree, and

density(Psparse) ≤ 2−q density(P),
∑
j

|ITj
| ≤ 2q density(P)−1|E|.

Proof. Necessarily, we need to set

Psparse :=

{
P ∈ P : sup

P ′≥P

|IP ′ ∩ EP ′ |
|IP ′ |

≤ 2−q density(P)

}
.

For every P ∈ P \Psparse, we pick some bitile P ′ ≥ P such that

|IP ′ ∩ EP ′ |
|IP ′ |

> 2−q density(P).

Let Tj be the maximal bitiles (with respect to their partial order ≤) among
these chosen P ′, and let

Tj := {P ∈ P : P ≤ Tj}

be the tree in P with top Tj . Then

P \Psparse =
⋃
j

Tj .

Observe that the sets ITj
∩ ETj

= ITj
∩ E ∩ {N ∈ ωTj

}, which are all
contained in E, are pairwise disjoint. Indeed, if two such sets intersected,
then so would the corresponding bitiles Tj = ITj

× ωTj
, and then one of them

could not be maximal. Thus we have∑
j

|ITj
| ≤ 2q density(P)−1

∑
j

|ITj
∩ ETj

| ≤ 2q density(P)−1|E|.

�
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6. The size lemma

Proposition 6.1. Let X be a UMD space with tile-type q. Then every finite
set P of bitiles has a disjoint decomposition

P = Psmall ∪
⋃
j

Tj ,

where each Tj is a tree, and

size(Psmall) ≤ 1
2 size(P),

∑
j

|ITj
| ≤ C size(P)−q‖f‖qLq(R+;X).

Proof. For every tree T, let

∆(T)q :=
1

|IT |

ˆ ∣∣∣∣∣ ∑
P∈Tu

〈f, wPd
〉wPd

(x)

∣∣∣∣∣
q

dx,

where T is the top of T, and Tu := {P ∈ T : P ≤u T} is the up-tree sup-
ported by the same top.

Let σ := size(P). We extract the trees Tj recursively as follows: Consider
all maximal trees T ⊆ P among the ones with ∆(T) > 1

2σ. Among them, let
T1 be one whose top frequency interval ωT has the minimal center c(ωT).
Replace P by P \Tj , and iterate. When no trees can be chosen anymore,
the remaining collection Psmall satisfies size(Psmall) ≤ 1

2σ by definition.
The sum over the top intervals is immediately estimated by

∑
j

|ITj
| ≤ 2q

σq

∑
j

∥∥∥∥∥∥
∑

P∈Tj,u

〈f, wPd
〉wPd

∥∥∥∥∥∥
q

Lq(R+;X)

.

The sum on the right is bounded by C‖f‖qLq(R+;X) as a direct application
of the tile-type q inequality, as soon as we verify the required disjointness
condition that

(6.2) Pj ∈ Tj,u, Pi ∈ Ti,u, i 6= j =⇒ Pj,d ∩ Pi,d = ∅.

Suppose to the contrary that for instance Pj,d ≤ Pi,d, and hence ωPi,d
⊆

ωPj,d
. Since Pi 6= Pj , in fact ωPi

⊆ ωPj,d
. Thus, we have

ωTi
⊆ ωPi

⊆ ωPj,d
, ωTj,u

⊆ ωPj,u
,
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and hence

c(ωTj
) = inf ωTj,u

≥ inf ωPj,u
= supωPj,d

> c(ωTi
).

This means that the tree Ti was chosen first, thus i < j. But Pj,d ≤ Pi,d
implies Pj ≤ Pi ≤ Ti, so that Pj should have been taken to Ti by maxi-
mality. This gives a contradiction, proving the claim (6.2), and hence the
proposition. �

By using the density and size lemmas consecutively, it is easy to obtain
the following:

Lemma 6.3. Suppose that

density(Pn) ≤ 2nq|E|, size(Pn) ≤ 2n‖f‖q.

Then

Pn = Pn−1 ∪
⋃
j

Tn,j ,
∑
j

|ITj,n
| ≤ C2−nq,

where Pn−1 satisfies estimates similar to Pn with n− 1 in place of n.

If P is any finite collection of bitiles, it satisfies such estimates for some
large n. By iteration, we obtain the decomposition

P =
⋃
n∈Z

⋃
j

Tn,j ,

density(Tn,j) ≤ 2nq|E|, size(Tn,j) ≤ 2n‖f‖q,
∑
j

|ITn,j
| ≤ C2−nq.

Note that there is also the trivial bound density(P) ≤ 1 for any collection.
And then∑

P∈P
|〈f, wPd

〉〈wPd
, g1EPu

〉| ≤
∑
n∈Z

∑
j

∑
P∈Tn.j

. . .

.
∑
n∈Z

∑
j

min{1, 2nq|E|} · 2n‖f‖q · |ITn,j
|

.
∑
n∈Z

min{1, 2nq|E|} · 2n‖f‖q · 2−nq

. |E|1/q′‖f‖q.

This shows that ‖S∗f‖Lq,∞ . ‖f‖Lq(0,1;Y ), proving the pointwise conver-
gence SNf(x)→ f(x) for all f ∈ Lq(0, 1;Y ). Note that Lq, where q is the
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tile-type of Y , takes the classical role of L2 as the space where estimates are
easier than in general Lp spaces.

7. General p > 1

In this section we write C = SN(x) for the Carleson operator. In order to
obtain the estimate

‖Cf‖Lp(R+;X) . ‖f‖Lp(R+;X)

for all p ∈ (1,∞), we need to somewhat refine the previous considerations.
First, we make the standard reduction: by interpolation, it suffices to prove
the bound

‖Cf‖Lp,∞(R+;X) . ‖f‖Lp,1(R+;X)

for all p ∈ (1,∞), which by duality and a well-known description of the
Lorentz space Lp,1 is equivalent to

|〈Cf, g〉| . |F |1/p|E|1/p′

for all f ∈ L∞(F ;X), g ∈ L∞(E;X∗) bounded by one, and all bounded mea-
surable sets E and F . Yet another reduction is the following: It suffices that
for every E and F , we can find a major subset Ẽ ⊆ E with |Ẽ| ≥ 1

2 |E| so

that the previous estimate holds for all f ∈ L∞(F ;X), g ∈ L∞(Ẽ;X∗).

Lemma 7.1. Let |E| ≤ |F |. Then

|〈Cf, g〉| . |E|
(

1 + log
|F |
|E|

)
. |E|1/p|F |1/p′

for all f ∈ L∞(F ;X) and g ∈ L∞(E;X∗) bounded by one, and all p ∈ (1,∞).

Proof. We observe an additional upper bound for every up-tree T:

ˆ ∣∣∣∣∣∑
P∈T
〈f, wPd

〉wPd
(x)

∣∣∣∣∣
q

dx =

ˆ ∣∣∣∣∣∑
P∈T
〈fw∞Tu

, hIP 〉hIP (x)

∣∣∣∣∣
q

dx

. ‖f1IT ‖
q
Lq(R+;X) ≤ |IT |,
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and hence size(P) ≤ 1. Thus

|〈Cf, g〉| .
∑
n∈Z

min{1, 2nq|E|}min{1, 2n|F |1/q}2−nq

≤
∑

n:2n≤|F |−1/q

2n|E||F |1/q +
∑

n:|F |−1/q<2n<|E|−1/q

|E|+
∑

n:|E|−1/q≤2n

2−nq

. |E|
(

1 + log
|F |
|E|

)
.

�

The case |E| > |F | is the more involved one. We need the following
preparation:

Lemma 7.2. Let I ⊆ {I ∈ D : infIMf ≤ λ} be a finite collection of dyadic
intervals. Then ∥∥∥∥∥∑

I∈I
I⊆K

〈f, hI〉hI

∥∥∥∥∥
Lp(R+;X)

. λ|K|1/p.

Proof. Let

f̃ :=
∑
I∈I

〈f, hI〉hI .

Then, denoting by I ∗(K) the maximal elements I ∈ I with I ⊆ K,

1K(f̃ − 〈f̃〉K) =
∑
I∈I
I⊆K

〈f, hI〉hI =
∑

J∈I ∗(K)

∑
I∈I
I⊆J

〈f, hI〉hI ,

which is a martingale transform of 1⋃I ∗(K)f . By the UMD property, these
transforms are bounded from L1(R+;X) to L1,∞(R+;X), and hence

‖1K(f̃ − 〈f̃〉K)‖L1,∞(R+;X) . ‖1⋃I ∗(K)f‖L1(R+;X) ≤
∑

J∈I ∗(K)

‖1Jf‖L1(R+;X)

≤
∑

J∈I ∗(K)

|J | inf
J
Mf ≤

∑
J∈I ∗(K)

|J |λ ≤ λ|K|.

By the John–Strömberg inequality, we have ‖f̃‖BMO(R+;X) . λ, and then by
the John–Nirenberg inequality that

‖1K(f̃ − 〈f̃〉K)‖Lp(R+;X) . λ|K|1/p. �
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Lemma 7.3. Let |E| > |F |. Then there exists Ẽ ⊆ E with |E| ≤ 2|Ẽ| such
that

|〈Cf, g〉| . |F |
(

1 + log
|E|
|F |

)
.

for all f ∈ L∞(F ;X) and g ∈ L∞(Ẽ;X∗) bounded by one.

Proof. Let G := {M(1F ) > 2|F |/|E|}. Then |G| ≤ 1
2 |E|, and hence Ẽ := E \

G satisfies |Ẽ| ≥ 1
2 |E|. For f and g as in the assertion, we write∑
P∈P
|〈f, wPd

〉〈wPd
, g1EPu

〉| =
∑
P∈P
IP 6⊆G

+
∑
P∈P
IP⊆G

,

and observe that the second sum vanishes. Indeed, wPd
is supported on

IP ⊆ G, and g on Ẽ ⊆ Gc. For the first sum, we observe an additional upper
bound for the size of any subset P′ ⊆ {P ∈ P : IP 6⊆ G}: Let T ⊆ P′ be any
up-tree with top T . Then for any P ∈ T, we have

inf
IP
M(fw∞Tu

) ≤ inf
IP
M(1F ) ≤ 2

|F |
|E|

,

since IP 6⊆ G. Hence, by Lemma 7.2,

ˆ ∣∣∣∣∣∑
P∈T
〈f, wPd

〉wPd
(x)

∣∣∣∣∣
q

dx

=

ˆ ∣∣∣∣∣∑
P∈T
〈fw∞Tu

, hIP 〉hIP (x)

∣∣∣∣∣
q

dx .

(
|F |
|E|

)q
|IT |,

so that

size(P′) .
|F |
|E|

.

Thus

|〈Cf, g〉| .
∑
n

min{1, 2nq|E|}min{|F |/|E|, 2n|F |1/q} · 2−nq

≤
∑

n:2n≤|F |1/q′/|E|

|E| · 2n|F |1/q +
∑

n:|F |1/q′/|E|<2n<|E|−1/q

|F |

+
∑

n:|E|−1/q≤2n

|F |/|E| · 2−nq

. |F |
(

1 + log
|E|
|F |

)
.
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�

Lemmas 7.1 and 7.3 prove the reduced restricted weak-type estimate
explained in the beginning of the section, and thereby complete the proof of
our main Theorem 2.1.
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