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On symplectic periods for inner

forms of GLn

Mahendra Kumar Verma

In this paper we study the question of determining when an irre-
ducible admissible representation of GLn(D) admits a symplectic
model, that is when such a representation has a linear functional
invariant under Spn(D), where D is a quaternion division alge-
bra over a non-archimedean local field k and Spn(D) is the unique
non-split inner form of the symplectic group Sp2n(k). We show
that if a representation has a symplectic model it is necessarily
unique. For GL2(D) we completely classify those representations
which have a symplectic model. Globally, we show that if a discrete
automorphic representation of GLn(DA) has a non-zero period for
Spn(DA), then its Jacquet-Langlands lift also has a non-zero sym-
plectic period. A somewhat striking difference between distinction
question for GL2n(k), and GLn(D)(with respect to Sp2n(k) and
Spn(D) resp.) is that there are supercuspidal representations of
GLn(D) which are distinguished by Spn(D). The paper ends by
formulating a general question classifying all unitary distinguished
representations of GLn(D), and proving a part of the local conjec-
tures through a global conjecture.

1. Introduction

Let G be a group and H a subgroup of G. We recall that a complex repre-
sentation π of G is said to be H-distinguished if

HomH (π,C) 6= 0,

where C denotes the trivial representation of H. When G = GL2n(k), and
H = Sp2n(k), such representations of GL2n(k) are said to have a symplectic
model. When k is a non-archimedean local field of characteristic 0, and π is
an irreducible admissible complex representation of GL2n(k), this question
has been extensively studied by several authors starting with the work of M.
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310 Mahendra Kumar Verma

J. Heumos and S. Rallis in [5]. A rather complete classification of Sp2n(k)-
distinguished unitary representations of GL2n(k) is due to O. Offen and E.
Sayag [12].

When F is a number field, the analogous global question is framed in
terms of the non-vanishing of certain periods of automorphic forms f on
G(F ) \G(AF ), where AF is the ring of adèles of F , given by∫

H(F )\H(AF )
f(h)dh.

This question has been settled in [10, 11] and, in fact, Offen and Sayag treat
some aspects of the local questions via global methods.

In this paper we study the irreducible admissible representations of
GLn(D) which are Spn(D)-distinguished, where Spn(D) is an inner form
of Sp2n(k) constructed using the unique quaternion division algebra D over
k (we will define this more precisely in Section 2). We proceed to state the
main results of this paper.

Theorem 1.1. Let π be an irreducible admissible representation of GLn(D).
Then

dim HomSpn(D) (π,C) ≤ 1.

The following theorem gives a partial answer to the question on distinc-
tion of a supercuspidal representation of GLn(D) by Spn(D).

Theorem 1.2. Let π be a supercuspidal representation of GLn(D) with
Langlands parameter σπ = σ ⊗ spr where σ is an irreducible representation
of the Weil group Wk, and spr is the r-dimensional irreducible representation
of SL2(C) part of the Weil-Deligne group W ′k. Then if r is odd, π is not
distinguished by Spn(D).

In Section 5, we have constructed explicit examples of supercuspidal
representations of GLn(D) which are distinguished by Spn(D) for any odd
n ≥ 1. In Section 7 we prove a complete classification of discrete series rep-
resentations of GLn(D) which are distinguished by Spn(D) assuming glob-
alization of locally distinguished representations to globally distinguished
representations together with a natural global conjecture on distinction of
automorphic representations of GLn(D) by Spn(D).

Here is a global theorem which is a simple consequence of Offen and
Sayag’s work.
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Theorem 1.3. Let D be a quaternion division algebra over F and DA =
D ⊗F AF . Let Π be an automorphic representation of GLn(DA) which ap-
pears in the discrete spectrum of GLn(DA) and has non-vanishing period
integral on Spn(D) \ Spn(DA). Let JL(Π) be the Jacquet-Langlands lift of
Π. Then the representation JL(Π) of GL2n(AF ) has non-vanishing period
integral on Sp2n(F ) \ Sp2n(AF ).

We now briefly describe the organization of this paper. In Section 2, we
set up notation and give definitions. In this section we define the inner forms
of a symplectic group over a local field k. In Section 3, we prove the unique-
ness of the symplectic model for irreducible representations of GLn(D). In
section 4, we are able to completely analyze the question of distinction of
subquotients of principal series representations of GL2(D) by Sp2(D) via
Mackey theory. In Section 5, we construct examples of supercuspidal rep-
resentations of GLn(D) which are distinguished by Spn(D). In Section 6,
we prove that non-vanishing of symplectic period of an irreducible discrete
spectrum automorphic representation of GLn(DA) is preserved under the
Jacquet-Langlands correspondence. In this section, we partially analyze dis-
tinction problem for supercuspidal representations of GLn(D).

The paper ends by formulating a general question classifying all unitary
distinguished representations of GLn(D), and proving a part of the local
conjectures through a global conjecture.

2. Notation and definitions

Let k be a non-archimedean local field of characteristic zero, and let D be
the unique quaternion division algebra over k. We denote the reduced trace
and reduced norm maps on D by TD/k and ND/k respectively. Let τ be the
involution on D defined by x→ x = TD/k(x)− x.
For n ∈ N, let

Vn = e1D ⊕ · · · ⊕ enD

be a right D-vector space of dimension n.

Definition 2.1. We define a Hermitian form on Vn by

1) (ei, en−j+1) = δij for i = 1, 2, . . . , n;

2) (v, v′) = τ(v′, v);

3) (vx, v′x′) = τ(x)(v, v′)x′, for v, v′ ∈ Vn, x, x′ ∈ D.
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Let Spn(D) be the group of isometries of the Hermitian form (·, ·). The group
Spn(D) is the unique non-split inner form of the group Sp2n(k). Clearly
Spn(D) ⊂ GLn(D). The group Spn(D) can also be defined as

Spn(D) =
{
A ∈ GLn(D)| AJ tĀ = J

}
,

where tĀ = (āji) for A = (aij) and

J =


1

1
1

.
.

1


For a right D-vector space V , let GLD(V ) be the group of all invertible
D-linear transformations on V . Similarly, let SpD(V ) be the group of all
invertible D-linear transformations on V which preserve the above defined
Hermitian form on V . Let ν denote the character of GLn(D) which is the
absolute value of the reduced norm on the group GLn(D). For any p-adic
group G, let δG denote the modular character of G. We denote the trivial
representation of any group by C. For any representation π, we will denote
its contragredient representation by π̂.

3. Uniqueness of symplectic models

In this section we will show that for an irreducible representation π of
GLn(D), dim HomSpn(D) (π,C) ≤ 1. This result is due to M. J. Heumos and
S. Rallis [5] when D is replaced by a local field k. Our proof is a straight-
forward adaptation of their methods. We first need a result from [17] which
gives the realization of the contragredient representation of an irreducible
representation of GLn(D).

Theorem 3.1. Let D be the quaternion division algebra over k, x→ x =
TD/k(x)− x be the canonical anti-automorphism of order 2 on D. Let G =
GLn(D), and let σ : G→ G be the automorphism of G given by σ(g) =
J
(
tḡ−1

)
J , where ḡ = (gij) and J is the anti-diagonal matrix with all en-

tries 1. Let π be an irreducible admissible representation of GLn(D) and πσ

be the representation defined by πσ(g) = π(σ(g)). Then πσ = π̂, where π̂ is
the contragredient of π.
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Let k be a local field of characteristic different from 2, k̄ the algebraic
closure of k and M (resp. M̄) denote the set of n× n matrices with coef-
ficients in k (respectively k̄). Let σ denote an anti-automorphism on M̄ of
order 2. We will record two lemmas from [5] below.

Lemma 3.2 (Lemma 2.2.1 of [5]). For any A ∈ GLn(k), there exists a
polynomial f ∈ k̄[t] such that f(A)2 = A.

Proposition 3.3 (Proposition 2.2.2 of [5]). For any A ∈ GLn(k̄), there
exists U, V ∈ GLn(k̄) such that σ(U) = U, σ(V ) = V −1 and A = UV .

Set AJ = J tĀJ for A ∈ GLn(D). Then A→ AJ is an anti-involution
on GLn(D) of order 2. By Proposition 3.3, over an algebraically closed
field, there exist U, V ∈ GL2n(k̄), such that V J = V −1, UJ = U andA = UV.
Then AJ = V JUJ = V −1U = V −1AV −1. Since V ∈ Sp2n(k̄) if and only if
V ∈ GL2n(k̄) and V J = V −1, AJ and A lie in the same double cosets over
algebraic closure.

The next result shows that A and AJ lie in the same double coset of
Spn(D) in GLn(D). Let us first recall a theorem due to Kneser and Bruhat-
Tits.

Theorem 3.4. Let G be any semi-simple simply connected group over p-
adic field k. Then H1(k,G) = 0.

The theorem above will be used in conjunction with our modification of
Lemma 2.3.3 [5] given below.

Proposition 3.5. Let D be a quaternion division algebra over a local field
k of characteristic zero. Let A ∈ GLn(D). Then there exist P1, P2 ∈ Spn(D),
such that AJ = P1AP2.

Proof. Consider the set

V (A) = {(P1, P2) ∈ Spn(D)× Spn(D)|AJ = P1AP2}.

The assertion contained in the proposition is equivalent to saying that V (A)
is non-empty. Clearly V (A) is an algebraic subset of Sp2n(k̄)× Sp2n(k̄). Note
that A ∩ASpn(D)A−1 is the subgroup of GLn(D) which leaves the sym-
plectic form associated with the matrix J ′ = tĀJA−1 invariant. Denote the
group Spn(D) ∩ASpn(D)A−1 by Sp(J, J ′). Now consider the right action of



i
i

“14-Verma” — 2018/6/4 — 20:49 — page 314 — #6 i
i

i
i

i
i

314 Mahendra Kumar Verma

Sp(J, J ′) on V (A) by R (P1, P2) =
(
P1R

−1, A−1RAP2

)
. Since

P1R
−1AA−1RAP2 = P1AP2 = AJ ,

(P1R
−1, A−1RAP2) = R(P1, P2) ∈ V (A),

we have,

R(P1, P2) = (P1R
−1, A−1RAP2),

S(R(P1, P2)) = (P1R
−1S−1, A−1SAA−1RAP2),

= (P1R
−1S−1, A−1SRAP2)

for R,S ∈ Sp(J, J ′) and (P1, P2) ∈ V (A), verifying that we do indeed have
an action. We check that this action is fixed point free. This is because if
R(P1, P2) = (P1, P2) for R ∈ Sp(J, J ′) and (P1, P2) ∈ V (A), then P1R

−1 =
P1 which gives R = 1.

We next check that the action is transitive. For this let P = (P1, P2)
and Q = (Q1, Q2) be two points in V (A). We need to prove that there ex-
ists R ∈ Sp(J, J ′) such that RP = Q, that is, that R(P1, P2) = (Q1, Q2), or
equivalently that

(P1R
−1, A−1RAP2) = (Q1, Q2).

Let R = Q−11 P1 ∈ Spn(D) then P1R
−1 = Q1. With this choice of R

A−1RAP2 = A−1Q−11 P1AP2 = A−1Q−11 Q1AQ2 = Q2.

In the second equality we have used the definition of V (A) because of
which AJ = P1AP2 = Q1AQ2. Also P1AP2 = Q1AQ2 gives

R = Q−11 P1 = AQ2P
−1
2 A−1 ∈ ASpn(D)A−1.

Hence, R ∈ Sp(J, J ′) which shows that the action of Sp(J, J ′) on V (A) is
transitive. Therefore V (A) is a right principal homogeneous space for the
group Sp(J, J ′).

Klyachko proved that over an algebraically closed field, Sp(J, J ′) is an
extension of a product of symplectic groups by a unipotent group. There-
fore, over a general field, Sp(J, J ′) is an extension of a form of a product
of symplectic groups by a unipotent group, that is, there exists an exact
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sequence of algebraic groups of the form

1→ U → Sp(J, J ′)→ S → 1,

with S, a form of a product of symplectic groups. Therefore we get the
following exact sequence of Galois cohomology sets:

H1(k, U)→ H1(k, Sp(J, J ′))→ H1(k, S).

It is well-known that H1(k, U) = 0 for any unipotent group U over a field
of characteristic zero [18]. Since by Theorem 3.4, H1(k, S) = 0, the exact
sequence above gives H1(k,Sp(J, J ′)) = 0. Since V (A) is a principal homo-
geneous for Sp(J, J ′) and H1(k, Sp(J, J ′)) = 0, it follows that V (A)(k) 6= ∅,
proving the proposition. �

We recall the following result from [14].

Lemma 3.6. Let G be an l-group and H be a closed subgroup of G such that
G/H carries a G-invariant measure. Suppose x→ x̄ is an anti-automorphism
of G which leaves H invariant and acts trivially on those distributions on G
which are H bi-invariant. Then for any smooth irreducible representation π
of G, dim HomH(π,C) · dim HomH(π̂,C) 6 1.

Corollary 3.7. Let G = GLn(D), H = Spn(D), and let i be the anti-
automorphism on G given by A→ JA−1 Then for any smooth irreducible
representation π of G, dim HomSpn(D) (π,C) · dim HomSpn(D) (π̂,C) 6 1.

Proof. The hypotheses of Lemma 3.6 follow from Proposition 3.5 by stan-
dard methods in Gelfand-Kazhdan theory. Hence, the corollary is an imme-
diate consequence of Lemma 3.6. �

We are now in a position to prove the main theorem of this section.

Theorem 3.8. Let π be an irreducible admissible representation of GLn(D).
Then dim HomSpn(D)(π,C) 6 1.

Proof. Let (π1, V ) be the representation defined by π1(g) = π(Jg−1). Let
λ ∈ HomSpn(D) (π1,C) . Then λ(π1(g)v) = λ(v) which gives λ(π(Jg−1)v) =

λ(v). Since H is invariant under g → Jg−1, λ(π(g)v) = λ(v) for g ∈ H, so
λ ∈ HomSpn(D)(V,C). The other inclusion follows similarly. Hence,

dim HomSpn(D) (π,C) = dim HomSpn(D) (π1,C) .

Now the result follows from Theorem 3.1 and above corollary. �
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4. Local theory

The aim of this section is to analyze the principal series representations of
GL2(D) which have a symplectic model. This can be easily done by the
usual Mackey theory which is what we do here.

4.1. Orbits and Mackey theory

Let H and P be two closed subgroups of a group G and let (σ,W ) be
a smooth representation of P. We assume that G and H are unimodular.
Also, assume that H\G/P has only two elements, that is, the natural action
of H on G/P has two orbits, which we will call O1 and O2.

Assume without loss of generality that the orbit O1 of H through eP is
closed and the orbit O2 is open. Let H1 be the stabilizer in H of the element
eP in G/P , then H1 = P ∩H. Choose an element x in G such that the coset
xP lies in O2. Then H2 = StabH(xP ) = H ∩ xPx−1. Therefore, O1 ' H/H1

and O2 ' H/H2. Using Mackey theory we obtain an exact sequence of H-
representations:

0→ indHH2
σ2 → IndGPσ|H → IndHH1

σ1 → 0,

where

σ1(h) = (δP /δH1
)1/2 σ(h) for h ∈ H1,

and

σ2(h) = (δP /δH2
)1/2 σ(h) for h ∈ H2.

The question of the existence of an H-invariant linear form for π can thus
be addressed by studying H-invariant linear forms for representations of H
induced from its subgroups.

Now we apply the Mackey theory discussed above to the our situation
for G = GL2(D), H = Sp2(D) and a parabolic subgroup P of GL2(D).

Let V be a 2-dimensional Hermitian right D-vector space with a basis
{e1, e2} of V with (e1, e1) = (e2, e2) = 0 and (e1, e2) = 1. Let X be the set of
all 1-dimensional D-subspaces of V. The group G = GLD(V ) acts naturally
on V , and induces a transitive action on X, realizing X as homogeneous
space for G. Then the stabilizer of a line W in G is a parabolic subgroup P
of G, with X ' G/P . Using the above basis, GLD(V ) can be identified with
GL2(D). For W = 〈e1〉, P is the parabolic subgroup consisting of upper
triangular matrices in GL2(D). As we have a Hermitian structure on V ,
H = SpD(V ) ⊂ GLD(V ).
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We want to understand the space H\G/P . This space can be seen as the
orbit space of H on the flag variety X. This action has two orbits. One of
them, say O1, consists of all 1-dimensional isotropic subspaces of V and the
other, say O2 consists of all 1-dimensional anisotropic subspaces of V . Here,
the one dimensional subspace generated by a vector v is called isotropic if
(v, v) = 0; otherwise, it is called anisotropic. The fact that SpD(V ) acts tran-
sitively on O1 and O2 follows from Witt’s theorem [8, page 6, §9], together
with the well known theorem that the reduced norm ND/k : D× → k× is
surjective, and as a result if a vector v ∈ V is anisotropic, we can assume
that in the line 〈v〉 = 〈v ·D〉 generated by v, there exists a vector v′ such
that (v′, v′) = 1.

It is easily seen that the stabilizer of the line 〈e1〉 in SpD(V ) is

PH =

{(
a b
0 ā−1

)
| a ∈ D×, b ∈ D, ab̄+ bā = 0

}
.

Now we consider the line 〈e1 + e2〉 inside O2. To calculate the stabilizer
of this line in SpD(V ), note that if an isometry of V stabilizes the line
generated by e1 + e2, it also stabilizes its orthogonal complement which is
the line generated by e1 − e2. Hence, the stabilizer of the line 〈e1 + e2〉 in
SpD(V ) stabilizes the orthogonal decomposition of V as

V = 〈e1 + e2〉 ⊕ 〈e1 − e2〉,

and also acts on the vectors 〈e1 + e2〉 and 〈e1 − e2〉 by scalars. Thus the
stabilizer in SpD(V ) of the line 〈e1 + e2〉 is D1 ×D1 sitting in a natural way
in the Levi D× ×D× of the parabolic P in GL2(D). Here D1 is the subgroup
of D× consisting of reduced norm 1 elements in D×.

Now consider the principal series representation π=σ1×σ2 :=Ind
GL2(D)
P σ

of GL2(D), where σ = σ1 ⊗ σ2 is an irreducible representation of D× ×D×.
We analyze the restriction of π to Sp2(D). By Mackey theory, we get the
following exact sequence of Sp2(D) representations

0→ ind
Sp2(D)
D1×D1 [(σ1 ⊗ σ2) |D1×D1 ](4.1)

→ π → Ind
Sp2(D)
PH

ν1/2[(σ1 ⊗ σ2) |MH
]→ 0.

Here ν is the character on PH given by

ν

[(
a b
0 ā−1

)]
=
∣∣ND/k(a)

∣∣.
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Suppose π has a nonzero Sp2(D)-invariant linear form. Then one of the
representations in the above exact sequence,

(4.2) ind
Sp2(D)
D1×D1 [(σ1 ⊗ σ2) |D1×D1 ] or Ind

Sp2(D)
PH

ν1/2[(σ1 ⊗ σ2) |MH
],

must have an Sp2(D)-invariant form. First, consider the case when

HomSp2(D)(Ind
Sp2(D)
PH

ν1/2[(σ1 ⊗ σ2) |MH
],C) 6= 0.

Since H/PH is compact, by Frobenius reciprocity, this is equivalent to

HomMH
(ν1/2 (σ1 ⊗ σ2) , ν3/2) 6= 0.

Since MH = {
(
d, d̄−1

)
|d ∈ D×} ' ∆(D× ×D×), we have

HomD×((σ1 ⊗ σ̂2) , ν) 6= 0,

and hence

(4.3) HomD× (σ1, σ2 ⊗ ν) 6= 0,

or

σ1 ' ν ⊗ σ2.

Now assume that

HomSp2(D)(ind
Sp2(D)
D1×D1 [(σ1 ⊗ σ2) |D1×D1 ],C) 6= 0.

Then by Frobenius reciprocity, this is equivalent to

(4.4) HomD1×D1((σ1 ⊗ σ2),C) 6= 0.

Lemma 4.1. Let (σ, V ) be a finite dimensional irreducible representation
of D× with HomD1 (V,C) 6= 0. Then σ is one dimensional.

Proof. By a theorem due to Matsushima [9], D1 is the commutator sub-
group of D×. Since D1 is a normal subgroup of D×, V D1 6= {0} is invariant
under D× and so by the irreducibility of V , V = V D1

. Since (σ, V ) is an
irreducible representation of D×, on which D1 operates trivially, (σ, V ) as
a representation of D×/D1 is also irreducible. Since D×/D1 is abelian, σ
must be one dimensional. �



i
i

“14-Verma” — 2018/6/4 — 20:49 — page 319 — #11 i
i

i
i

i
i

On symplectic periods for inner forms of GLn 319

From the analysis above, we deduce that if the representation

π = σ1 × σ2 := Ind
GL2(D)
P (σ1 ⊗ σ2)

has an Sp2(D)-invariant linear form, then either

1) σ1 ' σ2 ⊗ ν, or

2) both σ1 and σ2 are 1-dimensional representations of D×, hence are of
the form σ1 = χ1 ◦ND/k, σ2 = χ2 ◦ND/k for characters χi : k× → C×.

Further, we note that the closed orbit for the action of Sp2(D) on P \
GL2(D) contributes to a Sp2(D)-invariant form in the first case above,
whereas it is the open orbit which contributes to a Sp2(D)-invariant lin-
ear form in the second case. Since the part of the representation supported
on the closed orbit arises as a quotient of π, we find that in the first case π
must have a Sp2(D)-invariant linear form.

If dim(σ1 ⊗ σ2) > 1, then the open orbit cannot contribute to an Sp2(D)-
invariant linear form, and therefore we conclude that if dim(σ1 ⊗ σ2) > 1,
then π = σ1 × σ2 has an Sp2(D)-invariant form if and only if σ1 = σ2 ⊗ ν.
Observe that if π has an Sp2(D)-invariant linear form, and is irreducible,
then by an analogue of a theorem of Gelfand-Kazhdan [4] due to Raghuram
[17], π̂ too has an Sp2(D)-invariant linear form. However, if π = σ1 × σ2, and
π is irreducible, then π̂ = σ̂1 × σ̂2, and if σ1 ' σ2 ⊗ ν, we get σ̂1 ' σ̂2 ⊗ ν−1.
This means by our analysis above that the representation σ̂1 × σ̂2 of GL2(D)
does not carry an Sp2(D)-invariant linear form. Therefore, we conclude that
if σ1 ' σ2 ⊗ ν, then π = σ1 × σ2 must be reducible, which is one part of the
following theorem of Tadic [20].

Theorem 4.2. (Tadic) Let σ1 and σ2 be two irreducible representations of

D×. Let π = Ind
GL2(D)
P (σ1 ⊗ σ2) be the corresponding principal series repre-

sentation of GL2(D). Assume dim(σ1 ⊗ σ2) > 1. Then π is reducible if and
only if σ1 ' σ2 ⊗ ν±1. If π is reducible then it has length two. Assuming
σ1 = σ2 ⊗ ν, we have the following non-split exact sequence:

0→ St(π)→ π → Sp(π)→ 0,

where St(π) is a discrete series representation called a generalized Stein-
berg representation of GL2(D) and Sp(π) is called a Speh representation of
GL2(D).



i
i

“14-Verma” — 2018/6/4 — 20:49 — page 320 — #12 i
i

i
i

i
i

320 Mahendra Kumar Verma

If dim(σ1 ⊗ σ2) = 1, then π = σ1 × σ2 is reducible if and only if σ1 '
σ2 ⊗ ν±2. If σ1 = σ2 ⊗ ν2, π has a one dimensional quotient, and the sub-
module is a twist of the Steinberg representation of GL2(D).

In the exact sequence of GL2(D)-modules

0→ Sp(σ1)→ Ind
GL2(D)
P (σ1ν

−1/2 ⊗ σ1ν1/2)→ St(σ1)→ 0,

and assuming that dim(σ1) > 1, we know by our previous analysis that rep-

resentation Ind
GL2(D)
P (σ1ν

−1/2 ⊗ σ1ν1/2) does not have an Sp2(D)-invariant
linear form. Therefore, from the exact sequence above, it is clear that St(σ1)
also does not have an Sp2(D)-invariant linear form.

On the other hand, we know that Ind
GL2(D)
P (σ1ν

1/2 ⊗ σ1ν−1/2) does have

an Sp2(D)-invariant linear form, and Ind
GL2(D)
P (σ1ν

1/2 ⊗ σ1ν−1/2) fits in the
following exact sequence:

0→ St(σ1)→ Ind
GL2(D)
P (σ1ν

1/2 ⊗ σ1ν−1/2)→ Sp(σ1)→ 0.

Since we have already concluded that St(σ1) does not have an Sp2(D)-

invariant linear form and since Ind
GL2(D)
P (σ1ν

1/2 ⊗ σ1ν−1/2) has a Sp2(D)-
invariant linear form, we conclude that Sp(σ1) must have an Sp2(D)-invariant
linear form.

Having completed the analysis of Sp2(D)-invariant linear forms on repre-
sentations π = σ1 × σ2 with dim(σ1 ⊗ σ2) > 1, we turn our attention to the
case when σ1 and σ2 are both one dimensional representations of D×. In this
case, the part of π supported on the open orbit, which is a submodule of π,
contributes to an Sp2(D)-invariant linear form. Suppose that σ1 6= σ2 ⊗ ν,
as otherwise there is an Sp2(D)-invariant linear form arising from the closed
orbit.

Since the part of π supported on the open orbit, that is,

ind
Sp2(D)
D1×D1 (σ1 ⊗ σ2) ,

is a submodule of π, it is not obvious that an Sp2(D)-invariant linear form

on ind
Sp2(D)
D1×D1 (σ1 ⊗ σ2) will extend to an Sp2(D)-invariant linear form on π.

For this, as in [14], we need to ensure that

Ext1Sp2(D)[Ind
Sp2(D)
PH

ν1/2 (σ1 ⊗ σ2) |MH
,C] = 0.
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For proving this, we recall the notion of the Euler-Poincaré pairing between
two finite length representations of any reductive group G, defined by

EPG[π1, π2] =

r(G)∑
i=0

(−1)idim ExtiG[π1, π2],

where r(G) is the split rank of G which for Sp2(D) is 1. Therefore, for
Sp2(D),

EPSp2(D)[π1, π2] = dim HomSp2(D)[π1, π2]− dim Ext1Sp2(D)[π1, π2].

By a well known theorem of [19], EPG[π1, π2] = 0 if π1 is a (not necessarily
irreducible) principal series representation of G. Therefore, we find that

EPSp2(D)[Ind
Sp2(D)
PH

ν1/2 (σ1 ⊗ σ2) ,C)] = 0,

and so

dim HomSp2(D)[Ind
Sp2(D)
PH

ν1/2 (σ1 ⊗ σ2) ,C)]

= dim Ext1Sp2(D)[Ind
Sp2(D)
PH

ν1/2(σ1 ⊗ σ2),C].

Since we are assuming that σ1 6= σ2 ⊗ ν,

dim HomSp2(D)[Ind
Sp2(D)
PH

ν1/2 (σ1 ⊗ σ2) ,C)] = 0.

Therefore we conclude that

Ext1Sp2(D)[Ind
Sp2(D)
PH

ν1/2(σ1 ⊗ σ2),C] = 0.

As a result, we now have proved that if σ1 and σ2 are one dimensional
representations of D×, with σ1 6= σ2 ⊗ ν, then π = σ1 × σ2 has a Sp2(D)-
invariant linear form.

We have proved most of the following theorem, which we will now com-
plete.

Theorem 4.3. The only subquotients of a principal series representation

π = σ1 × σ2 := Ind
GL2(D)
P (σ1 ⊗ σ2) of GL2(D) which have a Sp2(D)- invari-

ant linear form are the following.

1) When dim (σ1 ⊗ σ2) > 1, the unique irreducible quotient of the princi-

pal series representation Ind
GL2(D)
P (σν1/2 ⊗ σν−1/2) denoted by Sp(σ).
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2) When dim(σ1) = dim(σ2) = 1, any of the irreducible principal series

representations Ind
GL2(D)
P (σ1 ⊗ σ2), whenever σ1 6= σ2 ⊗ ν±2.

3) When dim(σ1) = dim(σ2) = 1, and σ1 = σ2 ⊗ ν2, the principal series

representation Ind
GL2(D)
P (σ1ν ⊗ σ1ν−1) fits in the following exact se-

quence:

0→ St⊗ χ→ Ind
GL2(D)
P (χν ⊗ χν−1)→ Cχ → 0,

where Cχ is the one dimensional representation of GL2(D) on which
GL2(D) operates by the character χ ◦ND/k, ND/k is the reduced norm
map and St is the Steinberg representation of GL2(D). The only sub-

quotient of Ind
GL2(D)
P (χν ⊗ χν−1) having Sp2(D)-invariant linear form

is Cχ.

Proof. The only part of this theorem not shown by the arguments above is
that

HomSp2(D)[St,C] = 0,

where St is the Steinberg representation of GL2(D), an irreducible admissible
representation of GL2(D) fitting in the exact sequence

0→ St→ Ind
GL2(D)
P (ν ⊗ ν−1)→ C→ 0.

Applying HomSp2(D)[−,C] to this exact sequence, we have:

0→ HomSp2(D)[C,C]→ HomSp2(D)[Ind
GL2(D)
P (ν ⊗ ν−1),C]

→ HomSp2(D)[St,C]→ Ext1Sp2(D)[C,C]→ · · · .

However, it is easy to see that Ext1Sp2(D)[C,C] = 0. Therefore, we have a
short exact sequence

0→ C→ HomSp2(D)[Ind
GL2(D)
P (ν ⊗ ν−1),C]→ HomSp2(D)[St,C]→ 0.

Therefore, if HomSp2(D)[St,C] 6= 0, dim HomSp2(D)[Ind
GL2(D)
P (ν ⊗ ν−1),C] >

2. However, by the analysis with Mackey theory done in this section, we know

that dim HomSp2(D)[Ind
GL2(D)
P (ν ⊗ ν−1),C] = 1. Thus we have proved that

HomSp2(D)[St,C] = 0.

�
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Remark 4.4. Let π = χ1 × χ2 := Ind
GL2(D)
P (χ1 ⊗ χ2) for characters χ1 and

χ2 of D× which arise from the characters χ1 and χ2 of k× via the reduced
norm map from D× to k×, with χ1χ

−1
2 6= ν±2. Then the representation π

of GL2(D) is distinguished by Sp2(D). In this case, JL(π) is the irreducible

principal series representation JL(π) = Ind
GL4(k)
P (χ1St2 ⊗ χ2St2) of GL4(k)

where St2 denotes the Steinberg representation of GL2(k). Since JL(π) is
a generic representation of GL4(k), it is not distinguished by Sp4(k). Thus
Jacquet-Langlands correspondence between representations of GL2(D) and
GL4(k) does not always preserve distinction.

5. Explicit examples of distinguished supercuspidal
representations

In this section we construct examples of supercuspidal representations of
GLn(D) which are distinguished by Spn(D) for any odd n ≥ 1. These ex-
amples are due to Dipendra Prasad.

Recall that OD is the maximal compact subring of D with πD a uni-
formizing parameter of OD, and OD/〈πDOD〉 ' Fq2 where Fq is the residue
field of k. The anti-automorphism x→ x̄ of D preserve OD and acts as the
Galois involution of Fq2 over Fq.

Recall also that we have defined Spn(D) to be the subgroup of GLn(D)
by:

Spn(D) =
{
A ∈ GLn(D)| AJ tĀ = J

}
,

where tĀ = (āji) for A = (aij) and

J =


1

1
1

.
.

1

 .

It follows that Spn(OD) ⊂ GLn(OD), and taking the reduction of these com-
pact groups modulo πD, we have:

Un(Fq) ↪→ GLn(Fq2),
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where Un is defined using the Hermitian form

J =


1

1
1

.
.

1

 .

Proposition 5.1. Let π00 be an irreducible cuspidal representation of
GLn(Fq), n an odd integer, and π0 = BC(π00) be the base change of π00 to
GLn(Fq2). Using the reduction mod πD : GLn(OD)→ GLn(Fq2), we can lift
π0 to an irreducible representation of GLn(OD) to be denoted by π0 again.
Let χ be a character of k× which matches with the central character of π0
on O×k . Then

π = ind
GLn(D)
k×GLn(OD)(χ · π0)

is an irreducible supercuspidal representation of GLn(D) which is distin-
guished by Spn(D).

Proof. The fact that π is an irreducible supercuspidal representation of
GLn(D) is a well-known fact about compact induction valid in a great gen-
erality once we have checked that π0 = BC(π00) is a cuspidal representation.
This assertion on GLn(Fq2) follows from the fact that n is odd in which case
we have a diagram of fields:

Fq2n

Fqn Fq2

Fq

In particular,

Gal(Fq2n/Fq) = Gal(Fqn/Fq)×Gal(Fq2/Fq).

Thus given a character χ00 : F×qn → C× whose Galois conjugates are dis-
tinct (and which therefore gives rise to the cuspidal representation π00 of
GLn(Fq)), the character χ0 : F×q2n → C× obtained from χ00 using the norm
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map: F×q2n → F×qn , has exactly n distinct Galois conjugates, therefore χ0 gives
rise to a cuspidal representation π0 of GLn(Fq2) which is the base change of
the representation π00 of GLn(Fq).

The distinction of π by Spn(D) follows from the earlier observation that
reduction mod πD of the inclusion Spn(OD) ⊂ GLn(OD) is

Un(Fq) ↪→ GLn(Fq2),

together with Theorem 2 of [15] that irreducible representations of GLn(Fq2)
which are base change from GLn(Fq) are distinguished by Un(Fq). �

Remark 5.2. 1) The Langlands parameter of the irreducible represen-

tation π = ind
GLn(D)
k×GLn(OD)(π0) is of the form σ = σ0 ⊗ sp2 where σ0 is the

Langlands parameter of the supercuspidal representation of GLn(k)
compactly induced from the representation χ · π00 of k×GLn(Ok), and
sp2 is the 2-dimensional natural representation of the SL2(C) part of
the Weil-Deligne group W ′k = Wk × SL2(C) of k.

2) If, on the other hand, the cuspidal representation π0 of GLn(Fq2) is not
obtained by base change from GLn(Fq) then the Langlands parameter
of such a π is that of the cuspidal representation of GL2n(k) which is
obtained by compact induction of the representation of k×GL2n(Ok)
which is χ on k×, and on GL2n(Ok) it corresponds to a representation
of GL2n(Fq) which is the automorphic induction of the representation
π00 of GLn(Fq2) (and which is cuspidal since we are assuming that the
representation π0 of GLn(Fq2) is not a base change for GLn(Fq)).

6. Using Jacquet-Langlands correspondence

In the rest of the paper, we will formulate certain conjectures — and prove
some parts of them — on distinction of representations of GLn(D) by Spn(D)
both locally and globally. For doing this, we will use Jacquet-Langlands cor-
respondence to transfer representations of GLn(D) to GL2n(k). An essen-
tial component of our discussion will therefore revolve around the Jacquet-
Langlands correspondence which we recall initially matched discrete series
representations of GLnd(k) and GLn(Dk) where k is any local field, Dk a
central division algebra over k of dimension d2; there was also the global
Jacquet-Langlands correspondence matching cuspidal automorphic repre-
sentations on the two groups with appropriate local conditions. In the ques-
tions on symplectic periods, we must deal with representations which are
not discrete series locally, and are non-cuspidal globally, and for this reason
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we must appeal to relatively recent results of Badulescu which completes
these earlier works on Jacquet-Langlands correspondence. For much of this
section, we refer to [1].

Let Dk be a central division algebra over a local field k of dimension
d2 over k. An irreducible admissible representation π of GLnd(k) is said to
be d-compatible if χπ, the character of π, takes non-zero value at a regular
element g0 of GLnd(k) which has the same characteristic polynomial as an
element g′0 on GLn(Dk). As an example — which will be of use to us later
— the reducible principal series representation of GL2n(k) which is τν1/2 ×
τν−1/2 where τ is a cuspidal representation of GLn(k), has the Langlands
quotient with parameter τν1/2 ⊕ τν−1/2, and a generic discrete series as a
sub-module. Both these representations of GL2n(k) are 2-compatible.

It is a theorem of Badulescu that given a d-compatible irreducible uni-
tary representation π of GLnd(k), there exists a unique irreducible unitary
representation π′ of GLn(Dk) such that,

χπ(g) = εχπ′(g
′),

where ε = ±1, and g ∈ GLnd(k), g′ ∈ GLn(Dk) are any two elements with
the same characteristic polynomials.

This theorem of Badulescu defines a map, which is denoted by him
by |LJ| from the set of irreducible unitary d-compatible representations of
GLnd(k) to the set of all irreducible unitary representations of GLn(Dk).
The map |LJ| is the inverse to the usual Jacquet-Langlands map defined
on the set of irreducible discrete series representations of GLn(Dk) to the
set of irreducible discrete series representations of GLnd(k). In the example
above of the reducible principal series representation of GL2n(k) which is
τν1/2 × τν−1/2 where τ is a cuspidal representation of GLn(k), both the sub-
quotients of this principal series are unitary representations, and for both
of them for Dk the quaternion division algebra, |LJ| is the same discrete
series representation of GLn(Dk) which corresponds by the usual Jacquet-
Langlands correspondence to the discrete series component of the represen-
tation τν1/2 × τν−1/2 of GL2n(k).

Now, let F be a number field and D central division algebra over F of
dimension d2. Let AF be the ring of adèles of F. For a place v of F , let
Dv = D ⊗F Fv and DA = D ⊗F AF . The index of Dv is denoted by dv, and
the places v of F where dv 6= 1 are called the set of ramified places for D.

Denote by DSnd the set of discrete automorphic representations of
GLnd(AF ) and DS′n the set of discrete automorphic representations of
GLn(DA). The global correspondence between the discrete spectrum of a
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general linear group and its inner form is defined and proved in Badulescu
[1] and Badulescu-Renard [2].

Theorem 6.1 (Jacquet-Langlands, . . ., Badulescu, Badulescu-Re-
nard). There exits a unique injective map JL : DS′n → DSnd such that for
all Π′ = ⊗Π′v ∈ DS′n, we have JL(Π′)v = Π′v for all places v /∈ V where V is
the set of places of F where D does not split completely. For every v ∈ V ,
JL(Π′)v is dv-compatible and we have |LJ|v(JL(Π′)v) = Π′v. The image of JL
consists of all those representations in the discrete spectrum of GLnd(AF )
which are dv-compatible at all the places v ∈ V . Moreover, either JL(Π′)v,
or its Zelevinsky involution has the same Langlands parameter as Π′v.

In [11], Offen studied the symplectic periods on the discrete automorphic
representations of GL2n(AF ). For an automorphic form f in the discrete
spectrum of GL2n(AF ), consider the period integral∫

Sp2n(F )\Sp2n(AF )
f(h)dh.

We say that an irreducible, discrete automorphic representation Π of
GL2n(AF ) is Sp2n(AF )-distinguished if the above period integral is not iden-
tically zero on the space of Π. We now recall a result from [13] that we will
use in this section.

Theorem 6.2. Let F be a number field and let Π = ⊗′vΠv be an irreducible
automorphic representation of GL2n(AF ) in the discrete spectrum. Then the
following are equivalent:

1) Π is Sp2n(AF )-distinguished,

2) Πv is Sp2n(Fv)-distinguished for all places v of F ,

3) Πv0 is Sp2n(Fv0)-distinguished for some finite place v0 of F ,

Jacquet and Rallis have shown in [6], that the symplectic period vanishes
for a cuspidal automorphic representation of GL2n(AF ), that is∫

Sp2n(F )\Sp2n(AF )
f(h)dh = 0.

In the next theorem, in the spirit of Jacquet-Rallis result mentioned above,
we prove that those cuspidal automorphic representations Π of GLn(DA) for
which JL(Π) is a cuspidal automorphic representation of GL2n(AF ), have
vanishing symplectic periods.
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Theorem 6.3. Suppose that Π is a cuspidal automorphic representation of
GLn(DA) whose Jacquet-Langlands lift JL(Π) to GL2n(AF ) is cuspidal then
the symplectic period integrals of Π vanish identically.

Proof. Assume if possible that Π has a non-zero symplectic period. Then
Πv has a non-zero symplectic period for all places v of F. The representa-
tions JL(Π) and Π are the same at all places v of F where D splits and
therefore by the Theorem 3.2.2 of [5], Πv is not generic for any v where D
splits. Since a cuspidal automorphic representation of GL2n(AF ) is globally
generic, the local representations Πv are locally generic for all v, which gives
a contradiction. �

Theorem 6.4. If Π is an automorphic representation of GLn(DA) which
appears in the discrete spectrum, and is distinguished by Spn(DA) then JL(Π),
which is an automorphic representation of GL2n(AF ), is globally distin-
guished by Sp2n(AF ).

Proof. If Π is Spn(DA)-distinguished, then it is locally distinguished at all
places v of F . Also we know that D splits at almost all places of F so
Πv = JL(Π)v at almost all places of F . By Theorem 6.2, global distinction
of Jacquet-Langland lift JL(Π) is a consequence of local distinction at any
place v of F which we know. �

Remark 6.5. If Π is a global automorphic representations of GL2(DA)
which is distinguished by Sp2(DA) with a local component Πv = χ1 × χ2, a
representation of GL2(Dv) for characters χ1, χ2 : D×v → C×, then JL(Π), an
automorphic representation of GL4(AF ), must be distinguished by Sp4(AF )
by Theorem 6.4. Since JL(Πv)=χ1St2×χ2St2 as a representation of GL4(kv),
this seems to be in contradiction to the fact that JL(Π) is globally distin-
guished by Sp4(AF ). The source of this apparent contradiction is the fact
that in this case, JL(Π)v = χ1 × χ2 as a representation of GL4(kv) (and this
is allowed by theorem 6.1).

A supercuspidal representation of GL2n(k) is not distinguished by
Sp2n(k). The situation in the case of GLn(D) is different since in the previous
section we gave an example of distinguished supercuspidal representations
due to Dipendra Prasad. The following theorem gives a partial answer to
the question on distinction of a supercuspidal representation of GLn(D) by
Spn(D).
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Theorem 6.6. Let πv be a supercuspidal representation of GLn(Dv) with
Langlands parameter σπv

= σ ⊗ spr where σ is an irreducible representation
of the Weil-group Wk, and spr is the r-dimensional irreducible representation
of SL2(C) part of the Weil-Deligne group W ′k. Then if r is odd, πv is not
distinguished by Spn(Dv).

Proof. Assuming r is odd, we prove that πv is not distinguished by Spn(Dv).
Using a theorem of [16], we globalize πv to be globally distinguished automor-
phic representation Π of GLn(DA) where D is a global quaternion division
algebra over a number field F such that Fv = k, and D ⊗ Fv = Dv.

Using the Jacquet-Langlands correspondence, Theorem 6.1, we get
an automorphic representation JL(Π) of GL2n(AF ) which is locally distin-
guished by Sp2n(Fw) at all places w of F where D splits. By a theorem of
Offen-Sayag, JL(Π) is globally distinguished by Sp2n(AF ). By Theorem 6.1,
JL(Π)v is one of the following

1) JL(Π)v = JL(Πv), a discrete series representation, or

2) JL(Π)v = a Speh representation with Langlands parameter

σ ⊗ (ν(r−1)/2 ⊕ ν(r−3)/2 ⊕ · · · ⊕ ν−(r−1)/2).

The first choice being a discrete series representation, in particular generic,
is never distinguished by Sp2n(Fv). The fact that the second choice is also
not distinguished by Sp2n(Fv) uses that r is odd, and is consequence of a
theorem of Offen-Sayag about them. �

Remark 6.7. The only place we used supercuspidality of the representa-
tion πv of GLn(Dv) with Langlands parameter σπv

= σ ⊗ spr where σ is an
irreducible representation of the Weil-group Wk, and spr is the r-dimensional
irreducible representation of the SL2(C) part of the Weil-Deligne group W ′k
is in the globalization theorem of [16]. If we grant ourselves such a global-
ization theorem for discrete series too, then we have the same conclusion as
in the theorem.

The theorem below together with local analysis done in Section 4 com-
pletes the distinction problem for GL2(D).

Theorem 6.8. No discrete series representation of GL2(Dv) is distin-
guished by Sp2(Dv).

Proof. By our local analysis, we know this already for those discrete series
representations of GL2(Dv) which are not supercuspidal. By the previous
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theorem, we also know that no supercuspidal representation of GL2(Dv)
is distinguished by Sp2(Dv) as long as its Langlands parameter is not of
the form σπ = σ ⊗ spr where r = 2, 4. By Proposition 7.3, such Langlands
parameter correspond to non-supercuspidal discrete series representations
of GL2(Dv), completing the proof of theorem. �

7. Conjectures on distinction

The following conjectures have been proposed by Dipendra Prasad.

Conjecture 7.1. 1) Let k be a non-archimedean local field, and Dk the
unique quaternion division algebra over k. Then an irreducible discrete
series representation π of GLn(Dk) is distinguished by Spn(Dk) if and
only if π is supercuspidal and the Langlands parameter σπ of π is of the
form σπ = τ ⊗ spr where τ is irreducible representation of Wk and spr
is the r-dimensional irreducible representation of the SL2(C) part of the
Weil-Deligne group W ′k = Wk × SL2(C) for r even. By Proposition 7.3
below, such a parameter σπ defines a supercuspidal representation of
GLn(Dk) if and only if r = 2, and n is odd. (This is precisely the case
in which we constructed in Section 5 a supercuspidal representation of
GLn(Dk) which is distinguished by Spn(Dk).)

2) We follow the notation of Offen-Sayag in Theorem 1 of [12], to recall
that the unitary representations of GL2n(k) which are distinguished by
Sp2n(k) are of the form

σ1 × · · · × σt × τt+1 × · · · × τt+s,

where σi are the Speh representations U(δi, 2mi) for discrete series
representations δi of GLri(k), and τi are complementary series repre-
sentations π(U(δi, 2mi), αi) with |αi| < 1/2. We suggest that unitary
representations of GLn(Dk) distinguished by Spn(Dk) are exactly those
representations of GLn(Dk) which are of the form

π = σ1 × · · · × σt × τt+1 × · · · × τt+s × µt+s+1 × · · · × µt+s+r,

where
(a) the parameter σπ of π is relevant for GLn(Dk), that is, all irre-

ducible subrepresentations of σπ have even dimension,
(b) the representations σi and τi are as in the theorem of Offen-Sayag

recalled above,
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(c) µi are supercuspidal representations of GLmi
(Dk) as in Part (1) of

the conjecture.

3) Let D be a quaternion division algebra over a number field F , and
DA = D ⊗F AF . A global automorphic representation Π of GLn(DA)
is distinguished by Spn(DA) if and only if JL(Π) as an automorphic
representation of GL2n(AF ) is distinguished by Sp2n(AF ).

Proposition 7.2. The global conjecture in Part (3) above implies the local
conjecture in Part (1).

Proof. Let D be a quaternion division algebra over a number field F , v0
a finite place of F with k = Fv0 , and Dk = Dv0 = D ⊗F Fv0 . To prove the
proposition, note that a discrete series representation π of GLn(Dv0) with
parameter τ ⊗ spr with r odd is not distinguished by Spn(Dv0) as follows
from Theorem 6.6 and Remark 6.7 following it (which assumes validity of
the globalization theorem of [16] for discrete series representations).

Now we prove that a non-cuspidal discrete series representation π of
GLn(Dv0) with parameter τ ⊗ spr with r even are not distinguished by
Spn(Dv0). Again we will grant ourselves an automorphic representation Π
of GLn(DA) which is globally distinguished by Spn(DA). By the Jacquet-
Langlands transfer, we get a representation JL(Π) of GL2n(AF ) which is dis-
tinguished by Sp2n(AF ), and therefore by the theorem of Offen-Sayag, JL(Π)
is in the residual spectrum with the Moeglin-Waldspurger type, JL(Π) =
Σ⊗ spd, where Σ is a cuspidal automorphic representation of GLr(AF ) for
some integer r, and d is a certain even integer; here the notation Σ⊗ spd is
supposed to denote a certain Speh representation. The only option for d in
our case is d = r, and Σv0 = τ . By Proposition 7.3 below, we get a contra-
diction to π being a non-cuspidal discrete series representation of GLn(Dv0).

Finally, we prove that if we have a cuspidal representation π of GLn(Dv0)
with parameter τ ⊗ spr with r even, so r = 2, and dim τ = n odd, then π is
distinguished by Spn(Dv0).

Construct an automorphic representation of GLn(AF ) whose local com-
ponent at the place v0 of F has Langlands parameter τ with dim τ = n.
Since τ is an irreducible representation of the Weil group, we are consid-
ering supercuspidal representation of GLn(Fv0), and therefore globalization
is possible (and is automatically cuspidal). We moreover assume in this
globalization that the global automorphic representation of GLn(AF ) is su-
percuspidal at all places of F where D is not split. By Moeglin-Waldspurger,
this gives an automorphic representation say Π of GL2n(AF ) in the resid-
ual spectrum, which by the theorems of Offen and Sayag is distinguished
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by Sp2n(AF ). By Theorem 6.1, Π can be lifted to GLn(DA), which by our
global conjecture Part (3) above is globally distinguished by Spn(DA), and
therefore locally distinguished at every place of F . It remains to make sure
that in this lifted representation to GLn(DA), the local representation ob-
tained for GLn(Dv0) is the cuspidal representation π that we started with,
with parameter τ ⊗ sp2; this is so by Theorem 6.1. �

The following proposition used in Theorem 6.8 as well as Proposition
7.2 is due to Deligne-Kazhdan-Vigneras [3], Theorem B.2.b.1, as well as
Badulescu, Proposition 3.7 of [1].

Proposition 7.3. A discrete series representation of GLn(Dv), where Dv

is an arbitrary division algebra over the local field Fv, with parameter τ ⊗ spr
is a cuspidal representation of GLn(Dv) if and only if (r, n) = 1.
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