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The determinant and the discriminant of

a complete intersection of even dimension

Yasuhiro Terakado

The determinant of the Galois action on the `-adic cohomology of
the middle degree of a proper smooth variety of even dimension
defines a quadratic character of the absolute Galois group of the
base field. In this article, we show that for a complete intersection
of even dimension in a projective space, the character is computed
via the square root of the discriminant of the defining polynomials
of the variety.

Introduction

Let k be a field, k̄ an algebraic closure of k and ks the separable closure of
k contained in k̄. Let Γk = Gal(ks/k) = Autk(k̄).

Let X be a proper smooth variety of even dimension m over k. If ` is a
prime number invertible in k, the `-adic cohomology V = Hm(Xk̄,Q`(

m
2 ))

defines an orthogonal representation of the absolute Galois group Γk. The
determinant

detV : Γk → {±1} ⊂ Q×`
is independent of the choice of ` (Corollary 2.2).

In this introduction we assume that the characteristic of k is not 2.
Let f1, . . . , fr be homogeneous polynomials of n+ 1 variables of degrees
d1, . . . , dr of coefficients in k. Let X be the intersection of r hypersurfaces de-
fined by these polynomials in the projective space of dimension n. O. Benoist
[1] studied the discriminant of a complete intersection and gave an explicit
formula of its degree. The discriminant, here denoted by disc(f1, . . . , fr), is
a polynomial of the coefficients of f1, . . . , fr, and is defined in [1] up to sign
by requiring the property that X is smooth of dimension n− r if and only
if disc(f1, . . . , fr) 6= 0.

In this paper, we consider the value of the discriminant, not only its
non-vanishing, when the dimension n− r is even. In this case, there exists
a unique choice of the sign of the discriminant such that the discriminant
modulo 4 is a square (Theorem 2.3.1). Let us denote the discriminant defined
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in these steps by discσ(f1, . . . , fr). We shall prove the following theorem
(Theorem 2.3.2).

Theorem 0.1. Assume that X is smooth of even dimension m = n− r.
Then the quadratic character detV is defined by the square root of
discσ(f1, . . . , fr).

In other words, the kernel of detV : Γk → {±1} is the subgroup of Γk
corresponding to the field extension k

(√
discσ(f1, . . . , fr)

)
/k.

Let us outline the contents of this paper. In Section 1, we study the
discriminant of a complete intersection. In Subsection 1.1, we recall the
definition of the discriminant in [1]. In Subsection 1.4, we give a different
calculation of the degree of the discriminant from that in [1]. For this pur-
pose, we regard the projective toric variety XA in [1] as a projective space
bundle over the projective space (Lemma 1.6). We give a new explicit pre-
sentation of the degree, though we do not know the relation between our
presentation (Lemma 1.9) and Benoist’s formula [1, Théorèm 1.3].

In Section 2, we prove Theorem 0.1. We first recall the quadratic char-
acter of the absolute Galois group defined by the determinant of the `-adic
representation of the middle degree of a proper smooth variety defined over
a field. In [8], T. Saito showed that, for a smooth hypersurface of even di-
mension, the character is computed via the square root of the discriminant
of a defining polynomial of the hypersurface. We adapt his method to the
case of a complete intersection of even dimension. By the same argument
on the universal family as in the case of a hypersurface, the equality in
Theorem 0.1.2 is true up to a sign of the discriminant. Then the sign is
determined by a property of the discriminant modulo 4.

In Section 3, we give an explicit presentation of the discriminant of
the complete intersection of two quadrics (Theorem 3.6). Let n ≥ 2 be

an integer. Let F1 =
∑

0≤i≤j≤nC
(1)
ij XiXj and F2 =

∑
0≤i≤j≤nC

(2)
ij XiXj be

universal homogeneous polynomials of degree 2. We regard t1F1 + t2F2 as
a quadratic form in variables X0, . . . , Xn and denote its discriminant by

disc(t1F2 + t2F2) ∈ Z[t1, t2, (C
(l)
ij )]. Further we regard disc(t1F2 + t2F2) as a

binary form in variables t1, t2 and denote its discriminant by disc(disc(t1F1 +

t2F2)) ∈ Z[(C
(l)
ij )].

Theorem 0.2. The identities

disc(F1, F2) =

{
disc(disc(t1F1 + t2F2)) if n is even

2−2(n+1) disc(disc(t1F1 + t2F2)) if n is odd
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hold up to sign.

The discriminant of a quadratic polynomial is the determinant of the
symmetric matrix corresponding to the quadratic form (Example 3.2). Fur-
ther, the discriminant of a binary polynomial is the determinant of the
Sylvester matrix. Thus the above equalities give explicit presentations of
the discriminant of a complete intersection of two quadrics.

The author was imformed by Takeshi Saito that Jean-Pierre Serre sug-
gested him that the discriminant of a complete intersection of two quadrics
should be given by the discriminants of a quadratic polynomial and a binary
polynomial.

Finally, in Subsection 3.7, we give an application. The cohomology of the
middle degree of the smooth complete intersection of even dimension n− 2
of two quadrics in Pn

k̄
is generated by algebraic classes of linear subspaces.

The group of all permutations of these linear subspaces preserving their
intersection numbers is isomorphic to the Weyl group W (Dn+1) [7]. The
action of the absolute Galois group Γk on the linear subspaces defines a
homomorphism Γk →W (Dn+1) unique up to conjugation. We show that
the image of Γk is contained in the index two subgroup of W (Dn+1) if and
only if the discriminant is a square (Corollary 3.8).

1. Discriminant

1.1. The universal family and the discriminant

We define the universal family of intersections of hypersurfaces and recall the
set of singular intersections [1, 1.1]. We fix integers 0 ≤ r ≤ n. We consider
the polynomial ring Z[X0, . . . , Xn] and the free Z-module E =

⊕n
i=0 Z ·Xi.

For an integer d ≥ 1, we identify the d-th symmetric power SdE defined over
Z with the free Z-module of finite rank consisting of homogeneous polyno-
mials of degree d in Z[X0, . . . , Xn]. If α = (α0, . . . , αn) ∈ Nn+1 is a multi-
index, we put Xα = Xα0

0 · · ·Xαn
n ∈ Z[X0, . . . , Xn] and |α| = α0 + · · ·+ αn.

The monomials Xα of degree |α| = d form a basis of SdE.
We put Pn = P(E) = ProjZ[X0, . . . , Xn] and fix integers d1, . . . , dr ≥

1. We assume that dl ≥ 2 for an index l (1 ≤ l ≤ r). Further we put V =⊕
1≤j≤r S

djE and let P∨ = P(V ∨) = Proj(S•(V ∨)) be the projective space

defined by the dual V ∨ = Hom(V,Z). Let (C
(j)
α )|α|=dj be the dual basis of

(SdjE)∨ and define the universal polynomials Fj =
∑
|α|=dj C

(j)
α Xα. Then

we define a closed subschemeX ⊂ Pn × P∨ by the equations F1 = · · · = Fr =
0. This is the universal family of intersections of r hypersurfaces.
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Let π : X ⊂ Pn × P∨ → P∨ be the second projection. Let k be an alge-
braically closed field and let s : Spec k → P∨ be a geometric point. Then
this s corresponds to a sequence of homogeneous polynomials f1, . . . , fr of
degrees d1, . . . , dr of coefficients in k. The geometric fiber Xs of π is isomor-
phic to the intersection of r hypersurfaces in Pnk defined by the polynomials
f1, . . . , fr.

Let J be the ideal sheaf of OPn×P∨ defined by all the r × r minor deter-
minants of the Jacobian matrix

J(F1, . . . , Fr) =

((
∂Fj
∂Xi

)
0≤i≤n,1≤j≤r

)

of the universal polynomials F1, . . . , Fr. We define a closed subscheme ∆ ⊂
X by the ideal sheaf J · OX . By the Jacobian criterion, the complement
U = X −∆ is the maximum open subscheme of X on which the morphism
π : X → P∨ is smooth of relative dimension n− r.

We define a closed subscheme D ⊂ P∨ as the image π(∆) with the re-
duced scheme structure. For an algebraically closed field k, the set of k-
valued points D(k) consists of the sequences of homogeneous polynomials
f1, . . . , fr of degrees d1, . . . , dr of coefficients in k such that the intersections
V ((f1, . . . , fr)) ⊂ Pnk are not smooth of dimension n− r.

By [1, Lemme 3.2], [1, Lemme 4.4 (i)], and [1, Corollaire 3.3], the base
change DQ is an irreducible closed subscheme of codimension one in P∨Q.

Thus there exists a geometrically irreducible homogeneous polynomial in

(C
(j)
I )1≤j≤r,|I|=dj of coefficients in Z uniquely defined up to sign, such that

it defines the closed subscheme DQ ⊂ P∨Q. We call this homogeneous poly-
nomial defined up to sign the discriminant of complete intersetions and we
denote it by disc(F1, . . . , Fr).

Proposition 1.2. The reduced closed subscheme D in P∨ is defined by the
polynomial disc(F1, . . . , Fr). In particular, D is irreducible and of codimen-
sion one.

Proof. By the definition of the discriminant, the closed subscheme D is de-
fined by a polynomial m disc(F1, . . . , Fr) for some integer m 6= 0. By [1,
Proposition 3.1], the base change DFp for any prime p has strictly positive
codimension in P∨Fp . Hence we have m = ±1. �

By specialization, the discriminant disc(f1, . . . , fr) has a meaning for
every homogeneous polynomials f1, . . . , fr in n+ 1 variables over a commu-
tative ring R, and it satisfies the following smoothness criterion.
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Proposition 1.3. Let f1, . . . , fr be homogeneous polynomials of degrees
d1, . . . , dr in n+ 1 variables of coefficients in a commutative ring R. Then,
the discriminant disc(f1, . . . , fr), defined up to sign, is invertible in R if and
only if the corresponding intersection V ((f1, . . . , fr)) in PnR over R is smooth
of relative dimension n− r.

1.4. The degree of the discriminant

We can reduce the calculation of the degree of the discriminant on complete
intersections of r hypersurfaces in Pn to that on hypersurfaces in a Pr−1-
bundle T = P(E) = ProjS•E on Pn associated to a locally free OPn-module
E = O(d1)⊕ · · · ⊕ O(dr).

We identify

Γ(T,OT (1)) = Γ(Pn, E) = Γ(Pn,O(d1)⊕ · · · ⊕ O(dr)) = V.

Let ((Sα,1, |α| = d1), . . . , (Sα,r, |α| = dr)) denote the basis ((Xα, |α| = d1),
. . . , (Xα, |α| = dr)) of V = Sd1E ⊕ · · · ⊕ SdrE. We consider the section

s =
∑
|α|=d1

C(1)
α Sα,1 + · · ·+

∑
|α|=dr

C(r)
α Sα,r

∈ V ⊗Z V
∨ = Γ(T × P∨,OT (1)⊗OP∨(1)).

We define a closed subscheme Y of T × P∨ by the equation s = 0. Let ψ :
Y ⊂ T × P∨ → P∨ be the canonical map.

We put N = dim(V )− 1 and PN = P(V ) = Proj(S•V ). The projective
space P∨ = P(V ∨) is the dual of PN parametrizing hyperplanes in PN .

Lemma 1.5. The invertible sheaf OT (1) is very ample relatively to SpecZ.
More explicitly, the global sections (Sα,1, |α| = d1), . . . , (Sα,r, |α| = dr) define
a closed immersion v : T ↪→ PN = P(V ).

Proof. For the sections Sα,j , we define open sets Uα,j ⊂ T by Uα,j = {x ∈
T | (Sα,j)x /∈ mxOT (1)x}.

Let p : T → Pn denote the canonical map and D+(Xi) ⊂ Pn (0 ≤ i ≤ n)
denote the fundamental open sets. Then we have

D+(Xi) ∼= SpecZ[x0, . . . , xi−1, xi+1, . . . , xn]
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where xk = Xk
Xi

(0 ≤ k ≤ n, k 6= i). On the open subscheme D+(Xi), the sec-

tion X
dj
i ∈ Γ(D+(Xi),O(dj)) gives the trivialization

O(dj)|D+(Xi)
∼= OD+(Xi)(1 ≤ j ≤ r).

Let Tj denote this generator X
dj
i . Then we have an isomorphism

p−1(D+(Xi)) ∼= D+(Xi)× ProjZ[T1, . . . , Tr] = D+(Xi)× Pr−1
Z .

For 0 ≤ i ≤ n and 1 ≤ j ≤ r, we define multi-indices α(i, j) ∈ Nn+1 by
α(i, j)k = 0 (k 6= i) and α(i, j)i = dj . Then we have

Uα(i,j),j
∼= D+(Xi)×D+(Tj) ⊂ D+(Xi)× Pr−1

Z

for any fixed i. Thus the open sets (Uα(i,j),j)0≤i≤n,1≤j≤r cover T .
We show that the global sections define a closed immersion Uα(i,j),j →

PN for each open set Uα(i,j),j . We have an isomorphism

Uα(i,j),j
∼= SpecZ

[
x0, . . . , xi−1, xi+1, . . . , xn,

T0

Tj
, . . . ,

Tr
Tj

]
where xk = Xk

Xi
as above. For each i and j, we define a ring homomorphism

Z
[
(sα,j′)1≤j′≤r,α∈Nn+1,|α|=dj′ ,(α,j′)6=(α(i,j),j)

]
→ Γ(Uα(i,j),j ,OT )

by the indeterminate sα,j′ mapping to the element Sα,j′/Sα(i,j),j . Then this
morphism is surjective. In fact, by the isomorphism

Γ(Uα(i,j),j ,OT ) ∼= Z
[
x0, . . . , xi−1, xi+1, . . . , xn,

T0

Tj
, . . . ,

Tr
Tj

]
,

the indeterminate sα(i,j′),j′ maps to
Tj′
Tj

. Further, if we define the multi-

indices α(i, j, l) ∈ Nn+1 (0 ≤ l ≤ n, l 6= i) by α(i, j, l)k = 0 (k 6= i, l), α(i, j, l)i
= dj − 1, and α(i, j, k)l = 1, then the indeterminate sα(i,j,l),j maps to xl. �

Let k be an algebraically closed field. We consider Tk as a closed subscheme
of PNk by the base change of the immersion v.

Now we recall the definition of the projective toric variety XA introduced
in [1]. We consider the finite set A = {YjXα}1≤j≤r,|α|=dj of monomials in
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n+ r + 1 variables Y1, . . . , Yr, X0, . . . , Xn. Each monomial YjX
α in A defines

the function

(k×)n+r+1 → k× : (y1, . . . , yr, x0, . . . , xn) 7→ yjx
α.

The variety XA ⊂ PNk is defined to be the closure of the set

X0
A := {[yixα]1≤j≤r,|α|=dj ∈ PNk : (y1, . . . , yr, x0, . . . , xn) ∈ (k×)n+r+1}.

Lemma 1.6. The closed subscheme Tk ⊂ PNk is equal to the projective toric
variety XA ⊂ PNk .

Proof. The set X0
A is an open dense subset of Tk by the definition of the

embedding v : Tk ↪→ PNk . Since Tk is irreducible, we have XA = Tk. �

Let I ⊂ OPNk be the ideal sheaf defining Tk. LetN = (I/I2)∨ denote the nor-
mal sheaf and let P(N ) = ProjS•N denote the associated projective space
bundle over Tk. By [2, Exposé XVII, 3.1, 5.1], the projective space bundle
P(N ) is canonically viewed as a closed subscheme in PNk × P∨k . We define
ϕ : P(N )→ P∨k by the composition P(N ) ⊂ PNk × P∨k → P∨k . We denote the
reduced induced closed subscheme structure of the image of ϕ by T∨k and
call it the dual variety of Tk (with respect to the immersion v : Tk ↪→ PNk ).

Proposition 1.7. We have an equality Dk = T∨k of the underlying sets of
closed subschemes of P∨k .

Proof. By [1, Proposition 3.1], we have Dk = X∨A = T∨k . Thus the assertion
follows from Lemma 1.6. �

Thus the canonical morphism ϕ induces a morphism P(N )→ Dk,red to the
maximum reduced subscheme of Dk. To compute the degree of the discrim-
inant, we need the following.

Proposition 1.8. Let k be an algebraically closed field. Assume that n− r
is even or char k 6= 2. Then, the morphism P(N )→ Dk,red is birational.

Proof. By Lemma 1.6 and [1, Lemme 4.5], for a general geometric point s
in Dk,red the fiber Ys of ψ has an ordinary quadratic singularity. Hence, by
[2, Exposé XVII, Proposition 3.3], the morphism ϕ : P(N )→ P∨k is generi-
cally unramified. Thus the assertion follows from [2, Exposé XVII, Proposi-
tion 3.5]. �
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To compute the degree of the divisor D, we define a homogeneous poly-
nomial P (H,K) ∈ Z[H,K] by

P (H,K) = (d1H −K) · · · (drH −K).

We put d̄ = d1 · · · dr, ďi = d̄/di for i = 1, . . . , r and ď = ď1 + · · ·+ ďr.

Lemma 1.9. The degree of the discriminant is the coefficient of hnkr−1 of
the element

d̄ · hr
n−r∑
i=0

(
n+ 1
i

)
(n−i)kn−1−i(−h)i+ď · hr−1

n−r+1∑
i=0

(
n+ 1
i

)
kn−i(−h)i(1)

in the ring Z[h, k]/(hn+1, P (h, k)) with respect to the basis (hikj ; i = 0, . . . , n,
j = 0, . . . , r − 1).

Proof. Let k = Q. The cycle class of Xk ⊂ Pnk × P∨k is given by

[Xk] = cr(E(1P∨k )) ∈ CHr(Pnk × P∨k )

and that of P(N ) ⊂ (Tk × P∨k )Xk is given by

[P(N )] = cn(Ω1
Pnk/k

(1Tk , 1P∨k )) ∈ CHn((Tk × P∨k )Xk).

Hence, we have [P(N )] = cr(E(1P∨k ))∩cn(Ω1
Pnk/k

(1Tk , 1P∨k ))∈CHr+n(Tk × P∨k ).

Since the morphism P(N )→ Dk is birational by Proposition 1.8, the class
[Dk] ∈ CH1(P∨k ) is the push-forward of [P(N )]. Hence the degree of Dk is
equal to the degree of the dimension 0-part

{c(E) ∩ c(Ω1
Pnk/k

(1Tk))}dim0 ∈ CH0(Tk).

Let h = [c1(OPn(1))] and k = [c1(OT (1))] denote the classes of hyper-
planes. Then, the Chow ring CH•(T ) is Z[h, k]/(hn+1, P (h, k)). For i =
1, . . . , r, we define a homogeneous polynomial Pi(H,K) of degree i− 1 by re-
quiring that P (H,K)− (−K)r−i−1Pi(H,K) is of degree ≤ r − i in K. Since

c(E) · c(ΩPn(1T )) = (1 + d1h) · · · (1 + drh) · (1− h+ k)n+1(1 + k)−1

=

r∑
i=1

Pi(h, k) · (1− h+ k)n+1,
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we obtain

{c(E) ∩ c(ΩPn(1T ))}dim0 = (n+ 1)Pr(h, k)(k − h)n + Pr−1(h, k) · (k − h)n+1.

Since

K · Pr(H,K) = d̄ ·Hr − P (H,K)

K2 · Pr−1(H,K) = ď ·Hr−1K − k̄ ·Hr + P (H,K),

the right hand side is equal to

(n+ 1)

(
d̄ · hr (k − h)n − (−h)n

k
+ Pr(h, k)(−h)n

)
+ (ď · hr−1k − d̄ · hr) ·

(k − h)n+1 −
(
(n+ 1)k(−h)n + (−h)n+1

)
k2

+ Pr−1(h, k) ·
(
(n+ 1)k(−h)n + (−h)n+1

)
= d̄ · hr

(
(n+ 1)

(k − h)n − (−h)n

k

−
(k − h)n+1 −

(
(n+ 2)k(−h)n + (−h)n+1

)
k2

)

+ d̄ · hr−1 (k − h)n+1 −
(
(n+ 1)k(−h)n + (−h)n+1

)
k

+ (n+ 1)
(
Pr(h, k) + Pr−1(h, k)k

)
(−h)n + Pr−1(h, k)(−h)n+1.

On the right hand side, the content of the big parantheses in the first line is

(n+ 1)

n−1∑
i=0

(
n
i

)
kn−1−i(−h)i −

n−1∑
i=0

(
n+ 1
i

)
kn−1−i(−h)i

=

n−1∑
i=0

(
n+ 1
i

)
(n− i)kn−1−i(−h)i.

Since Pr(h, k) + Pr−1(h, k)k = ď · hr−1 and hn+1 = 0, the sum of the remain-
ing two lines is

ď · hr−1 ·
n∑
i=0

(
n+ 1
i

)
kn−i(−h)i.

Since the dimension 0-part is the component generated by hn · kr−1 of de-
gree 1 with respect to the decomposition by the basis (hikj ; i = 0, . . . , n, j =
1, . . . , r), the assertion follows. �
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Corollary 1.10. If d1 = · · · = dr = d, the degree of D is

(n− r + 2)

(
n+ 1
r − 1

)
dr−1(d− 1)n−r+1.(2)

If r ≥ 2 and if d1 − c = d2 = · · · = dr = d, it is the sum of (2) and

dr−2
n+1∑
j=r

(
n+ 1
j

)
cj−r+1(d− 1)n+1−j(3)

+ (n+ 1)dr−1
n∑
j=r

(
n
j

)
cj−r+1(d− 1)n−j

+ (r − 2)dr−1
n∑
j=r

cj−r+1
n−j∑
p=0

(
n− p
j

)
(−1)p(d− 1)n−p−j .

If d1 = · · · = dr = d > 1, the degree (2) of D is strictly positive.

Proof. We put d1 = d+ c. Then, we have an isomorphism

Z[h, k]/
(
hn+1, P (h, k)

)
→ Z[h, l]/

(
hn+1, lr−1(l − ch)

)
sending k to l + dh. Hence, the degree of D is the coefficient of hnlr−1 of the
polynomial obtained by substituting k = l + dh in (1). Since d̄ = dr−1(d+ c)
and ď = (r − 1)dr−1 + (d+ c)dr−2, after substituting k = l + dh and lr =
clr−1h, we see that the coefficient of hnlr−1 is:

dr−1(d+ c)

n−r∑
i=0

(
n+ 1
i

)
(4)

× (n− i)
n−i−1∑
j=r−1

(
n− i− 1

j

)
cj−r−1dn−i−j−1(−1)i

+
(
(r − 1)dr−1 + (d+ c)dr−2

)
×
n−r+1∑
i=0

(
n+ 1
i

) n−i∑
j=r−1

(
n− i
j

)
cj−r+1dn−i−j(−1)i.
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Since

(d+ c)

n−i−1∑
j=r−1

(
n− i− 1

j

)
cj−r+1dn−i−j−1

=

(
n− i− 1
r − 1

)
dn+1−i−r +

n−i∑
j=r

(
n− i
j

)
cj−r+1dn−i−j

and similarly for (d+ c)
∑n−i

j=r−1

(
n− i
j

)
cj−r+1dn−i−j , (4) is equal to

dr ·
n−r∑
i=0

(
n+ 1
i

)
(n− i)

(
n− i− 1
r − 1

)
dn−r−i(−1)i(5)

+ rdr−1 ·
n−r+1∑
i=0

(
n+ 1
i

)(
n− i
r − 1

)
dn+1−m−i(−1)i

+ dr−1
n∑
j=r

cj−r+1
n−j∑
i=0

(
n+ 1
i

)
(n+ r + 1− i)

(
n− i
j

)
dn−i−j(−1)i

+ dr−2
n+1∑
j=r

cj−r+1
n+1−j∑
i=0

(
n+ 1
i

)(
n+ 1− i

j

)
dn+1−i−j(−1)i.

The sum of the first two lines in (5) is

rdr−1
n−r−1∑
i=0

(
n+ 1
i

)(
n+ 1− i

r

)
dn−r+1−i(−1)i

= rdr−1

(
n+ 1
r

) n−r+1∑
i=0

(
n− r + 1

i

)
dn−r+1−i(−1)i

= (n− r + 2)

(
n+ 1
r − 1

)
dr−1(d− 1)n−r+1.

Similarly, the last line in (5) is equal to

dr−2
n+1∑
j=r

(
n+ 1
j

)
cj−r+1(d− 1)n+1−j .
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Since (
n+ 1
i

)
(n+ r + 1− i)

(
n− i
j

)
= (j + 1)

(
n+ 1
i

)(
n+ 1− i
j + 1

)
+ (r − 2)

(
n+ 1
i

)(
n− i
j

)
= (n+ 1)

(
n
j

)(
n− j
i

)
+ (r − 2)

i∑
p=0

(
n− p
i− p

)(
n− j
j

)
,

similarly the third line in (5) is equal to

(n+ 1)dr−1
n∑
j=r

(
n
j

)
cj−r+1

n−j∑
i=0

(
n− j
i

)
dn−i−j(−1)i

+ (r − 2)dr−1
n∑
j=r

cj−r+1
n−j∑
p=0

(
n− p
j

) n−j−p∑
i−p=0

(
n− j − p
i− p

)
dn−i−j(−1)i

= (n+ 1)dr−1
n∑
j=r

(
n
j

)
cj−r+1(d− 1)n−j

+ (r − 2)dr−1
n∑
j=r

cj−r+1
n−j∑
p=0

(
n− p
j

)
(−1)p(d− 1)n−j−p.

�

Corollary 1.11. If n− r is even, the degree of D is even.

Proof. If there exists at least 2 indices such that di is even, the integers
d̄ = d1 · · · dr and ď = ď1 + · · ·+ ďr are even.

We consider the case where there exists at most 1 index such that di is
even. By the same argument as in the proof of Corollary 1.10, the congru-
ences on di implies a congruence for the degree of D. Hence, if every di is
congruent to 1, then the degree is even if n− r is even by (2).

Assume there exists exactly 1 index such that di is even. We may assume
that i = 1, d ≡ c ≡ 1 (mod 2) in (1.10). Then, (3) is congruent to 1 + (n+
1) + (r − 2)(n− r + 1) (mod 2), so is even if n− r is even. �

1.12. The discriminant of a hypersurface

Let r=1 and fix a positive integers n and d=d1. Let F = F1 =
∑
|α|=dCαX

α

denote the universal polynomial of degree d. We consider the resultant
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res
(
∂F1

∂X0
, . . . , ∂F1

∂Xn

)
of partial derivatives of F . It is a homogeneous poly-

nomial of degree m = (n+ 1)(d− 1)n in (Cα)|α|=d with integral coefficients
([5, Chap.13, Section 1.A]). If we put

a(n, d) =
(d− 1)n+1 − (−1)n+1

d
,

the greatest common divisor of the coefficients is da(n,d) by [5, Chap.13.1.D,
Proposition 1.7].

Definition 1.13. We call

discd(F ) =
1

da(n,d)
res

(
∂F

∂X0
, . . . ,

∂F

∂Xn

)
the divided discriminant of F .

The relation between the discriminant of a complete intersection and the
divided discriminant of a hypersurface is as follows.

Proposition 1.14. If r = 1 and d1 = d, then the discriminant disc(F ) de-
fined in Subsection 1.1 equals to discd(F ) up to sign.

Proof. The assertion follows from Proposition 1.3 and the smoothness crite-
rion [8, Proposition 2.3] of the divided discriminant of a hypersurface. �

2. Determinant

Let S be a normal integral scheme over Z and f : X → S be a proper smooth
morphism of relative even dimension n. For a prime number ` invertible in
the function field of S, the cup-product defines a non-degenerate symmetric
bilinear form on the smooth Q`-sheaf Rnf∗Q`(

n
2 ) on S[1

` ]. Hence the de-
terminant defines a character π1(S[1

` ])
ab → {±1} ⊂ Q×` of the fundamental

group, which we denote by [detHn
` (X)].

Lemma 2.1 ([8, Lemma 3.2]). There exists a unique character

[detHn(X)] : π1(S)ab → {±1}

such that, for every prime number ` invertible in the function field of S, the
composition with the map π1(S[1

` ])
ab → π1(S)ab induced by the open immer-

sion S[1
` ]→ S gives [detHn

` (X)].
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Corollary 2.2 ([8, Lemma 3.3]). Let X be a proper smooth scheme of
even dimension n over a field k. Then, for a prime number ` invertible
in k, the character detHn(Xk̄,Q`(

n
2 )) of the absolute Galois group Γk is

independent of `.

By applying Lemma 2.1 to the universal family of intersections of r hy-
persurfaces πU : XU → U , we define [detHn−r(X)] ∈ H1(U,Z/2Z). Let now
k be a field and let fj ∈ SdjE ⊗ k (1 ≤ j ≤ r) be homogeneous polynomi-
als of degrees d1, . . . , dr which define a smooth complete intersection Y in
Pnk . Then, the pull-back in H1(k,Z/2Z) = Hom(Γabk ,Z/2Z) of [detHn−r(X)]
by the k-valued point of U corresponding to f1, . . . , fr is given by the de-
terminant of the orthogonal representation Hn−r(Yk̄,Q`(

n−r
2 )) for a prime

number ` invertible in k.

Theorem 2.3. Let n ≥ 1 and d1, . . . , dr ≥ 1 be integers. Assume that n− r
is even and that dj ≥ 2 for an index j (1 ≤ j ≤ r).

1. Let m = deg(disc(F1, . . . , Fr)). Then there exists unique choice of sign
of the polynomial disc(F1, . . . , Fr) such that, there exist homogeneous polyno-
mials A ∈ S

m

2 (V ∨) and B ∈ Sm(V ∨) such that disc(F1, . . . , Fr) = A2 + 4B.
We denote this polynomial by discσ(F1, . . . , Fr).
2. The square roots of discσ(F1, . . . , Fr) define a Z/2Z-torsor on UZ[ 1

2
].

We denote by [discσ(F1, . . . , Fr)] the class of this torsor in H1(UZ[ 1

2
],Z/2Z).

Then, we have

[detHn−r(X)] = [discσ(F1, . . . , Fr)]

in H1(UZ[ 1

2
],Z/2Z).

Thus by a standard specialization argument, Theorem 2.3 implies The-
orem 0.1.

Proof. We first show that the assertion 2 is true up to a sign by the same
argument as in [8, Theorem 3.5], and next we prove the sign part and the
assertion 1 by the argument in [8, Theorem 4.2].

The Kummer sequence gives an exact sequence

0→ Γ(U 1

2
,O)×/(Γ(U 1

2
,O)×)2 ∂→ H1(U 1

2
,Z/2Z)→ Pic(U 1

2
)[2]→ 0,(6)

where we have written U 1

2
instead of UZ[ 1

2
], and Pic(U 1

2
)[2] denotes the sub-

group of Pic(U 1

2
) killed by 2.
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We compute Γ(U 1

2
,O)× and Pic(U 1

2
). We have an exact sequence

0→ Γ(P∨1
2

,O)× → Γ(U 1

2
,O)× → Z→ Pic(P∨1

2

)→ Pic(U 1

2
)→ 0.(7)

The Picard group Pic(P∨1
2

) is canonically identified with Z by the generator

[O(1)]. Then, the map Z→ Pic(P∨1
2

) is identified with the multiplication by

the degree m = deg(disc(F1, . . . , Fr)) > 0 since it sends 1 to the class [O(m)].
Thus, we have

Γ(U 1

2
,O)× = Γ(P∨1

2

,O)× = Z
[

1

2

]×
= 〈−1, 2〉.

It also follows from (7) that Pic(U 1

2
) ∼= Z/mZ. Since m is even by Corol-

lary 1.11, this shows Pic(U 1

2
)[2] ∼= Z/2Z. Thus, by (6), we have

H1(U 1

2
,Z/2Z) ∼= 〈−1, 2〉/〈−1, 2〉2 ⊕ Pic(U 1

2
)[2] ∼= (Z/2Z)⊕3.

Recall that D is an irreducible divisor in P∨. Let ξ̄ be a geometric generic
point of D and let Iξ̄ denote the absolute Galois group of the fraction field
of the strict henselization OP∨,ξ̄. Since the profinite group Iξ̄ is isomorphic

to Ẑ, we have Hom(Iξ̄,Z/2Z) ∼= Z/2Z.
We recall that disc(F1, . . . , Fr) is defined up to sign as the defining poly-

nomial of D. Then the square roots of disc(F1, . . . , Fr) defines a class of
Z/2Z-torsor on U 1

2
up to sign. We denote by [±disc] this class of torsor in

H1(U 1

2
,Z/2Z)/〈−1〉.

Since we have
√
−1 ∈ Q ⊂ OP∨,ξ̄, the restriction

H1(U 1

2
,Z/2Z)→ Hom(Iξ̄,Z/2Z)

induces a map H1(U 1

2
,Z/2Z)/〈−1〉 → Hom(Iξ̄,Z/2Z). We show that the im-

ages of [detHn−r(X)] and [±disc] under this map are both the unique non-
trivial element. For the latter [±disc], this follows from that disc(F1, . . . , Fr)
is the defining polynomial of the divisor D.

Let η̄ denote the geometric generic point of SpecOP∨,ξ̄. We show that
the character detHn−r(Xη̄,Q`) of Iξ̄ is the unique non-trivial character of
order 2. By [1, Lemma 4.3.(ii)], the geometric fiber Xξ̄ has a unique singu-
lar point which is an ordinary quadratic singularity in Xξ̄. Hence, by the
Picard-Lefschetz formula [2, Exposé XV, Théorème 3.4 (ii)], we have an
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exact sequence of `-adic representation of the inertia group Iξ̄

0→ Hn−r(Xξ̄,Q`)→ Hn−r(Xη̄,Q`)→ Q`

(
n− r

2

)
(8)

→ Hn−r+1(Xξ̄,Q`)→ Hn−r+1(Xη̄,Q`)→ 0.

Further, since X is regular, the base change XOP∨,ξ̄ to the strict henselization
is also regular. Hence by [2, Exposé XV, Théorème 3.4 (iii)], the inertia
group Iξ̄ acts on Q`

(
n−r

2

)
via the unique non-trivial character Iξ̄ → {±1}.

Since Iξ̄ acts trivially on Hn−r+1(Xξ̄,Q`) and on Hn−r(Xξ̄,Q`), the map
Q`(

n−r
2 )→ Hn−r+1(Xξ̄,Q`) in (8) is the zero-map and hence the character

detHn−r(Xη̄,Q`) of Iξ̄ is non-trivial.
The composition map

Γ(U 1

2
,O)×/(Γ(U 1

2
,O×)2 → H1(U 1

2
,Z/2Z)→ Hom(Iξ̄,Z/2Z)

is 0 since we have Γ(U 1

2
,O)× = 〈−1, 2〉 and the strict henselizationOP∨,ξ̄ con-

tains Q as a subfield. By (7) we thus have a map Pic(U 1

2
)[2]→Hom(Iξ̄,Z/2Z).

Since the images of [detHn−r(X)] and [±disc] in Hom(Iξ̄,Z/2Z) are
non-trivial, the map Pic(U 1

2
)[2]→ Hom(Iξ̄,Z/2Z) is an isomorphism of

groups of order 2. Further by (7), the difference [±disc]− [detHn−r(X)]
is in the image of the map

Γ(U 1

2
,O)× = Z

[
1

2

]×
→ H1(U 1

2
,Z/2Z)/〈−1〉.

Therefore, [detHn−r(X)] equals either [±disc] or [±2 disc]. We show that
the latter case is not possible.

Let ν be the generic point of the fiber P∨F2
, and let K be the fraction field

of the completion of the local ring OP∨,ν . Then, the character [detHn−r(X)]
induces an unramified character of the absolute Galois group ΓK . On the
other hand, the class [±2 disc] corresponds to a totally ramified quadratic
extension of K. Hence we obtain [detHn−r(X)] = [±disc].

Hence there exists unique choice of the sign of the polynomial disc(F1,
. . . , Fr) such that the Z/2Z-torsor defined by the square roots of the poly-
nomial on U 1

2
is isomorphic to [detHn−r(X)]. We denote this polynomial

by discσ(F1, . . . , Fr).
It remains to show that there exists a homogeneous polynomial A of

degree m
2 such that discσ(F1, . . . , Fr) ≡ A2 (mod 4). We use the following

fact.
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Lemma 2.4. [8, Lemma 4.1] Let K be a complete discrete valuation field
such that 2 is a uniformizer. Let u ∈ O×K be a unit which is not a square and
let L denote the quadratic extension K(

√
u).

1. The extension L is unramified over K if and only if there exists a unit
v ∈ O×K such that u ≡ v2 (mod 4).

2. Assume that the extension L is unramified over K. Then, for ev-
ery unit v satisfying u ≡ v2 (mod 2), we have u ≡ v2 (mod 4). Further, the
corresponding residue field extension is given by the Artin-Schreier equation
t2 + t = w, where w is the image of 1

4(uv−2 − 1) in the residue field.

Let ν be the generic point of the fiber P∨F2
, and let K be the fraction

field of the completion of the local ring OP∨,ν . The residue field F = κ(ν)
is the function field of P∨F2

. Take a global section A1 ∈ Γ(P∨,O(m2 )) not
divisible by 2. Then the germ of A1 generates the stalk (O(m2 ))ν . On the
other hand, since the polynomial discσ(F1, . . . , Fr) is not divisible by 2, its
germ generates the stalk (O(m))ν . Hence the ratio discσ(F1, . . . , Fr)/A

2
1 is

a unit in OP∨,ν .
By Theorem 2.3.2 we have

[detHn−r(X)] = [discσ(F1, . . . , Fr)]

in H1(UZ[ 1

2
],Z/2Z). Since the class [detHn−r(X)] is the restriction of a

class of H1(U,Z/2Z), the extension of K generated by the square root of
discσ(F1, . . . , Fr)/A

2
1 ∈ K× is an unramified extension. Hence by Lemma

2.4.1, there exists a unit v∈O×K such that discσ(F1, . . . , Fr)≡v2 ·A2
1 (mod 4).

We consider the germ Ā = v ·A1 (mod 2) of the stalk of OP∨F2
(m2 ) at the

generic point. Since its square is a germ of polynomial, the germ Ā has the
same property and it defines a global section Γ(P∨F2

,O(m2 )). Let us choose a
liftingA ∈ Γ(P∨,O(m2 )) of this section. Since we have discσ(F1, . . . , Fr)/A

2 ≡
1 (mod 2), we get discσ(F1, . . . , Fr)/A

2 ≡ 1 (mod 4) by Lemma 2.4.2. Thus,
discσ(F1, . . . , Fr) −A2 is divisible by 4 at ξ and hence divisible on P∨. �

2.5. The determinant in characteristic 2

We denote [B ·A−2] by the class in H1(UF2
,Z/2Z) defined by t2 + t = B ·

A−2, and we denote again [detHn−r(X)] ∈ H1(UF2
,Z/2Z) by the class of

the pull-back of [detHn−r(X)] ∈ H1(U,Z/2Z).
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Theorem 2.6. Let n, d ≥ 2 be even numbers. Then we have

[B ·A−2] = [detHn−r(X)]

in H1(UF2
,Z/2Z).

Proof. By Theorem 2.3, the pull-back of [detHn−r(X)] in H1(U 1

2
,Z/2Z) is

defined by the square roots of

discσ(F1, . . . , Fr) ∈ Γ(U 1

2
,Z/2Z)×/(Γ(U 1

2
,Z/2Z)×)2.

Since the polynomial discσ(F1, . . . , Fr) is not divisible by 2, the polynomial
A is also not divisible by 2.

Let F be the function field of P∨F2
as in the proof of Theorem 2.3. Then

the restriction map H1(UF2
,Z/2Z)→ Hom(ΓabF ,Z/2Z) is injective. By The-

orem 2.3 and Lemma 2.4, the classes [B ·A−2] and [detHn−r(X)] maps
to the same element in Hom(ΓabF ,Z/2Z), and hence we have [B ·A−2] =
[detHn−r(X)] in H1(UF2

,Z/2Z). �

3. The discriminant of the complete intersection
of two quadrics

In this section, we give an explicit presentation of the discriminant of the
complete intersection of two quadrics, by using the discriminant of a quadric
and that of a binary form.

Let F denote the universal homogeneous polynomial of degree d ≥ 2.
Recall that the divided discriminant discd(F ) of a hypersurface is defined in
Definition 1.13.

Proposition 3.1. Let n ≥ 1 and d ≥ 2 be integers. We assume that n is
odd and define the sign ε(n, d) = ±1 by

ε(n, d) =

{
(−1)

d−1

2 if d is odd

(−1)
d

2

n+1

2 if d is even.

Then, we have

discσ(F ) = ε(n, d) · discd(F ).

Proof. By Proposition 1.14, the equality is true up to a sign. For the sign,
the assertion follows from Theorem 2.3 and [8, Theorem 4.2]. �
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Example 3.2 (Quadrics). Let r = 1 and d = 2. Let

F =
∑

0≤i≤j≤n
CijXiXj and X = (X0, . . . , Xn).

Let A ∈Mn+1(S•((S2E)∨)) be the symmetric matrix such that XAtX = 2F.
Then the resultant of the partial derivatives is

res

(
∂F

∂X0
, . . . ,

∂F

∂Xn

)
= detA.

We have a(n, 2) = (1− (−1)n+2)/2. Thus we obtain

discd(F ) =

{
2−1 detA if n− 1 is odd

detA if n− 1 is even,
(9)

deg(discd(F )) = n+ 1.(10)

Example 3.3 (Binary forms). Let n = 1 and r = 1. Let F = C0X
d
0 +

C1X
d−1
0 X1 + · · ·+ CdX

d
1 be the universal binary polynomial of degree d ≥ 2.

The divided discriminant discd(F ) is a homogeneous polynomial in (Ci) of
degree m = 2d− 2 and the sign ε(1, d) is (−1)d(d−1)/2. It is well known that
the discriminant discd(F ) is explicitly presented by the determinant of the
Sylvester matrix ([5, Ch.12,(1.30)]).

If the binary form F is decomposed as F =
∏d
i=1(uiT0 − viT1), we have

([8, (5.1)])

discd(F ) =
∏
i 6=j

(uivj − ujvi).(11)

Further we have a(1, d) = d− 2 and discd(F ) = d−(d−2) res
(
∂F
∂X0

, ∂F∂X1

)
.

We will use following properties of the resultant of two binary forms to
calculate the discriminant of a binary form. Let l, m ≥ 1 be integers and

G(t0, t1) = a0t
l
0 + a1t

l−1
0 t1 + · · ·+ alt

l
1,(12)

H(t0, t1) = b0t
m
0 + b1t

m−1
0 t1 + · · ·+ bmt

m
1

be binary forms of degrees l and m over an algebraically closed field k.
Further, let

g(t) = a0 + a1t+ · · ·+ alt
l, h(t) = b0 + b1t+ · · ·+ bmt

m(13)
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be polynomials in one variable corresponding to (12). They are of degrees
at most l and m. Then the resultant res(G,H) of binary forms equals to the
resultant resl,m(g, h) of polynomials in one variable ([5, Ch12. p397]).

Let x1, . . . , xl be the roots of g and y1, . . . , ym be the roots of h. By [5,
Ch12.(1.3)], if al 6= 0 and bm 6= 0, we have the product formula

resl,m(g, h) = aml b
l
m

∏
i,j

(xi − yj).(14)

By [5, Ch12. p400], if l′ ≥ l then

resl′,m(g, h) = bl
′−l
m resl,m(g, h).(15)

3.4. Intersection of two quadrics

In this subsection, we consider the case r = 2 and d1 = d2 = 2. Then V =
Γ(Pn,O(2)⊕O(2)) and we identify the dual V ∨ with the module of pairs
of quadratic forms over Z.

Let k be an algebraically closed field. Let (f1, f2) ∈ V ∨k = V ∨ ⊗ k be pair
of quadratic forms of coefficients in k and let X(f1,f2) = V ((f1, f2)) ⊂ Pnk be
the intersection of the two quadrics defined by f1, f2.

The following proposition is due to M. Reid.

Proposition 3.5. [7, Proposition 2.1] Let k be an algebraically closed field
of characteristic 6= 2. Let (f1, f2) ∈ V ∨k be non-zero homogeneous polynomi-
als of degree 2 with coefficients in k. Let M1,M2 ∈Mn+1(k) be symmetric
matrices such that XM1

tX=2f1 and XM2
tX=2f2 where X=(X0, . . . , Xn).

Then the following two conditions are equivalent.
1. The intersection X(f1,f2) = V ((f1, f2)) is smooth of dimension n− 2.
2. The binary form det(t1M1 + t2M2) is not identically zero, and has

at most simple roots. In other words, if this binary form is decomposed as
det(t1M1 + t2M2) =

∏n+1
i=1 (uit1 − vit2), we have uivj 6= ujvi for 0 ≤ i, j ≤

n, i 6= j.

Let F1 =
∑

0≤i≤j≤nC
(1)
ij XiXj and F2 =

∑
0≤i≤j≤nC

(2)
ij XiXj be univer-

sal homogeneous polynomials of degree 2. Let R = Z[t1, t2] be the polyno-
mial ring with variables t1, t2. We see t1F1 + t2F2 as a quadratic form with
variables X0, . . . , Xn and denote its divided discriminant by discd(t1F2 +

t2F2) ∈ R[(C
(l)
ij )]. Further we see discd(t1F2 + t2F2) as a binary form with

variables t1, t2 and denote its divided discriminant by discd(discd(t1F1 +

t2F2)) ∈ Z[(C
(l)
ij )].
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Theorem 3.6. 1. Let n ≥ 2 be an even integer. Then

discσ(F1, F2) = (−1)
n

2 discd(discd(t1F1 + t2F2)).

2. Let n ≥ 3 be an odd integer. Then the equation

disc(F1, F2) = 2−2(n+1) discd(discd(t1F1 + t2F2))

holds up to sign.

Proof. Let k be an algebraically closed field of char k 6= 2. Let (f1, f2) ∈
V ∨k be a pair of non-zero homogeneous polynomials of degree 2 and let
M1,M2 ∈Mn+1(k) be corresponding symmetric matrices. By Example 3.2
(9) and Proposition 3.5, the closed subvariety X(f1,f2) in Pnk defined by the
zeros of the two polynomials f1, f2 is smooth of dimension n− 2 if and only
if the discriminant discd(t1F1 + t2F2) is not identically zero and has only
simple roots. Further by Example 3.3 (11), this condition is equivalent to
discd(discd(t1F1 + t2F2)) 6= 0. Hence we have the equality

V (discd(discd(t1F1 + t2F2)))Z[ 1

2
] = DZ[ 1

2
]

as subsets of P∨Z[ 1

2
]
. By Example 3.3, the degrees of the two polynomi-

als discd(discd(t1F1 + t2F2)) and disc(F1, F2) are both equal to 2n(n+ 1).
Since the discriminant disc(F1, F2) is geometrically irreducible in character-
istic 0 and the greatest common divisor of its coefficients is 1, the poly-
nomial discd(discd(t1F1 + t2F2)) is the multiple by a non zero integer of
disc(F1, F2). By the above equality as sets, for any prime p 6= 2 the poly-
nomial discd(discd(t1F1 + t2F2)) (mod p) is not identically zero. Thus there
exists an integer s ≥ 0 such that

2s disc(F1, F2) = discd(discd(t1F1 + t2F2)).(16)

1. Assume that n is even. First we show s = 0. Let P′ = P((S2E)∨)
denote the space of quadrics in Pn and let D′ ⊂ P′ be the divisor defined by
the discriminant of quadrics.

Let k = F2. The pair (f1, f2) defines the line l(f1,f2) = {t1f1 + t2f2} ∼= P1
k

in the space P′k. The intersection l(f1,f2) ∩D′k is isomorphic to the the hyper-
surface in the line l(f1,f2) defined by the binary form discd(t1f1 + t2f2). Hence
by the smooth criterion of the discriminant, the value discd(discd(t1f1 +
t2f2)) in k is not equals to zero if and only if l(f1,f2) ∩D′k is smooth. Further,
this is equivalent to that the line l(f1,f2) intersects with D′k transversally.
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By [2, Exposé XVIII, Théorème 2.5] and the assumption that n is even,
there exists a Lefschetz pencil l ⊂ P′k. Further by [2, Exposé XVIII, Proposi-
tion 3.2.10], the pencil l intersects with D′k transversally. We take quadratic
forms f1, f2 corresponding to two different points on l ⊂ P′k. (In the above
notation, we have l = l(f1,f2).) Then by (16), we have

2s disc(f1, f2) = discd(discd(t1f2 + t2f2)) 6= 0 ∈ k(= F2),

so we get s = 0.
Next we calculate the sign. The degree of the polynomial

discd(discd(t1F1 + t2F2))

is n+ 1, and the sign is ε(1, n+ 1) = (−1)n/2. Thus the assertion follows
from Proposition 3.1.

2. We assume that n is odd. We define a pair of quadratic forms (f1, f2) ∈
V ∨ of coefficients in Z by

f1 =

n−1

2∑
i=1

X2i−1X2i +X2
n, f2 = X2

0 +

n−1

2∑
i=0

X2iX2i+1.(17)

Let X(f1,f2) = V ((f1, f2)) ⊂ PnZ be the intersection defined by f1 and f2.
First we show that its base extension (X(f1,f2))F2

is smooth of dimension

n− 2. The Jacobian J(f1, f2) of f1, f2 over F2 is(
0 X2 X1 · · · X2i−1 X2i+2 X2i+1 X2i+4 · · · Xn−2 0
X1 X0 X3 · · · X2i+1 X2i X2i+3 X2i+2 · · · Xn Xn−1

)
.

There exist following (2× 2) minor matrices(
0 X1

X1 X3

)
,

(
X2i−1 X2i+1

X2i+1 X2i+3

)(
1 ≤ i ≤ (n− 3)/2

)
,(18) (

X2i X2i+2

X2i−2 X2i

)(
1 ≤ i ≤ (n− 3)/2

)
,

(
Xn−1 0
Xn−3 Xn−1

)
.(19)

The determinants of (18) are

X2
1 , X1X5 +X2

3 , . . . , X2i−1X2i+3 +X2
2i+1, . . . , Xn−4Xn +X2

n−2,(20)

and those of (19) are

X2
2 +X0X4, . . . , X

2
2i +X2i−2X

2
2i+2, . . . , X

2
n−3 +Xn−1Xn−5, X

2
n−1.(21)
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The polynomials (20), (21), f1, and f2 do not have any non-trivial common
root in (F2)n+1. In fact, by solving (20) from the left to the right we have
X2j+1 = 0 for 0 ≤ j ≤ n−3

2 , and by solving (21) from the right to the left
we have X2j = 0 for 2 ≤ j ≤ n−1

2 . Further, by f1 = f2 = 0 we have Xn =
X0 = 0. Hence by the Jacobian criterion, the variety (X(f1,f2))F2

is smooth
of dimension n− 2. By Proposition 1.3, we have discd(f1, f2) ≡ 1 (mod 2).

Next we calculate the integer discd(discd(t1f1 + t2f2)). The (n+ 1)×
(n+ 1) symmetric matrices corresponding to the quadratic forms f1, f2 are

M1 =



0

0 1 O
1 0

0 1
1 0

. . .

0 1

O 1 0
2


M2 =



2 1

1 0 O
0 1
1 0

. . .

0 1
1 0

O 0 1
1 0



Since these matrices are of even dimension, we have

discd(t1f1 + t2f2)

= det(t1M1 + t2M2) (by Example 3.2.(9))

= det



2t2 t2

t2 0 t1 O
t1 0 t2

t2 0 t1
t1

. . .

0 t2
t2 0 t1

O t1 0 t2
t2 2t1


= (−1)

n−1

2 4tn1 t2 + (−1)
n+1

2 tn+1
2 .
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Its partial derivatives are

∂

∂t1
discd(t1f1 + t2f2) = (−1)

n−1

2 4ntn−1
1 t2,(22)

∂

∂t2
discd(t1f2 + t2f2) = (−1)

n−1

2 4tn1 + (−1)
n+1

2 (n+ 1)tn2 .(23)

Let

g1 = (−1)
n−1

2 4ntn−1, g2 = (−1)
n−1

2 4tn + (−1)
n+1

2 (n+ 1)

be the polynomials in one variable corresponding to (22) and (23). Then by
Example 3.3, we have an equality of integers

res

(
∂

∂t1
discd(t1f2 + t2f2),

∂

∂t2
discd(t1f1 + t2f2)

)
= resn,n(g1, g2).(24)

Further by Example 3.3 (15), we have

resn,n(g1, g2) =
(
(−1)

n−1

2 4
)

resn−1,n(g1, g2).(25)

The polynomial g1 has 0 as (n− 1)-multiple root. Let y1, . . . , yn ∈ Q be the
roots of the polynomial g2. Then, by Example 3.3 (14), we have

resn−1,n(g1, g2) =
(

(−1)
n−1

2 4n
)n (

(−1)
n−1

2 4
)n−1

 n∏
j=1

(0− yj)

n−1

.(26)

By the qualities (24), (25), (26), and
∏n
j=1(−yj) = (−1)

n+1
2 (n+1)

(−1)
n−1

2 4
= −n+1

4 , we

obtain

res

(
∂

∂t1
discd(t1f2 + t2f2),

∂

∂t2
discd(t1f1 + t2f2)

)
= 22(n+1)nn(n+ 1)n−1.

Further, we have a(0, n+ 1) = n− 1. By Definition 1.13, we obtain

discd(discd(t1f1 + t2f2)) =
1

(n+ 1)n−1

(
22(n+1)nn(n+ 1)n−1

)
= 22(n+1)nn.

Thus we have

1 ≡ disc(f1, f2) = 2−s discd(discd(t1f1 + t2f2)) = 2−s(22(n+1)nn) (mod 2).

Since the integer n is odd, we get s = 2(n+ 1). �
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3.7. Application

Let n ≥ 2 be an even integer and k be a field of char k 6= 2. Let X ⊂ Pnk be an
(n− 2)-dimensional smooth complete intersection of two quadrics defined by
a pair of quadratic forms (f1, f2) ∈ S2Ek ⊕ S2Ek. Then Hn−r(Xk̄,Q`(

n−r
2 ))

is spanned by the classes of n−r2 -dimensional linear subspaces of Pn
k̄

contained
in Xk̄ ([7, Corollary 3.15], [2, Exposé XIX]). The group of Z-lattice spanned
by the classes of these linear subspaces permutationg them and preserving
the intersection form is isomorphic to the Weyl groupW (Dn+1) ([7, Theorem
3.14]).

The action of the absolute Galois group Γk on the linear subspaces de-
fines a homomorphism

Γk →W (Dn+1),

unique up to conjugation.

Corollary 3.8. Assume that char k 6= 2. Then the composition

Γk →W (Dn+1)→ {±1}

is given by the square root of (−1)
n

2 discd(discd(f1, f2)).

Proof. The assertion follows from Theorem 2.3, Theorem 3.6.1, and special-
ization. �

Remark 3.9. The group of all permutations of the 27 lines on a smooth
cubic surface preserving their intersection numbers is isomorphic to the Weyl
group W (E6) ([6, Theorem 23.9]). In 1862, G. Salmon [9] studied the dis-
criminant for a cubic surface in pentahedral normal form. A.-S. Elsenhanse
and J. Jahnel showed that for a cubic surface in pentahedral normal form
defined over a field k, the image of the morphism Γk →W (E6) is included in
the index two subgroup if and only if the Salmon discriminant is a square ([4,
Theorem 2.12]). See also [8, Example 5.4]. Corollary 3.8 gives an analogue
of their result.
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