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A note on the Schur-finiteness of linear
sections

GONGALO TABUADA

Making use of the recent theory of noncommutative motives, we
prove that Schur-finiteness in the setting of Voevodsky’s mixed
motives is invariant under homological projective duality. As an
application, we show that the mixed motives of smooth linear sec-
tions of certain (Lagrangian) Grassmannians, spinor varieties, and
determinantal varieties, are Schur-finite. Finally, we upgrade our
applications from Schur-finiteness to Kimura-finiteness.

1. Introduction and statement of results

Let (C,®,1) be a Q-linear, idempotent complete, symmetric monoidal cat-
egory. Given a partition A of an integer n > 1, consider the corresponding
irreducible Q-linear representation V) of the symmetric group &,, and the
associated idempotent ey € Q[S,,]. Under these notations, the Schur-functor
Sy: C = C (see [6, §1.4]) sends an object a to the direct summand of a®"
determined by e). Following Deligne [6l, §1], an object a € C is called Schur-
finite if it is annihilated by some Schur-functor. Among other properties,
Schur-finiteness is stable under direct sums, direct summands, tensor prod-
ucts, and distinguished triangles (consult Guletskii [§] and Mazza [23]).
Voevodsky introduced in [30] a triangulated category of geometric mixed
motives DMy (k)g (over a perfect base field k). By construction, this cat-
egory is Q-linear, idempotent complete, symmetric monoidal, and comes
equipped with a symmetric monoidal functor M(—)g: Sm(k) = DMy (K)q,
defined on smooth k-schemes. Conjecturally, all the objects of DMgm (k)g
are Schur-finite. Thanks to the work of Kimura [12], Kiinneman [16], and
Shermenev [24], the (mixed) motives M (Z)qg of smooth projective k-schemes
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Z of dimension < 1, and of abelian varieties, are Schur-finite. Besides these
cases, this important conjecture remains wide open.

Now, let X be a smooth projective k-scheme equipped with a line
bundle Ox(1); we write X — P(V) for the associated map, where V :=
HY(X,0x(1))*. Given a linear subspace L C V*, consider the linear section
X =X xpw) P(L*). Our motivating question in this note is the following:

Question: Is the mized motive M (X1)q Schur-finite?

As proved by Ayoub in [3, Prop. 5.7], a positive answer to the above
question in the particular case where X is the projective space, would imply
that all the objects of the triangulated category DMgm (k) are Schur-finite.
This justifies the importance of linear sections in the study of the Schur-
finiteness of mixed motives.

Thanks to the theory of noncommutative motives (see §2.2)) and to
Kuznetsov’s homological projective duality (=HPD), we are now able to
answer affirmatively to the aforementioned question in several cases. As-
sume that the category of perfect complexes perf(X) admits a Lefschetz
decompositionﬂ (Ap,A1(1),...,A;_1(9 — 1)) with respect to Ox(1) in the
sense of [I8, Def. 4.1]. Following [I8, Def. 6.1], let Y be the HP-dual of
X, Oy (1) the HP-dual line bundle, and Y — P(V*) the map associated to
Oy (1). Given a generic linear subspace L C V*, consider the linear sections
XL and YL =Y XIP’(V*) P(L).

Theorem 1.1 (HPD-invarianceEl). Let X and Y be as above. Assume
that Xp and Yp are smooth, that dim(Xp) = dim(X)— dim(L), that
dim(Yz) = dim(Y) — dim(L"Y), and that the category Ay admits a full ex-
ceptional collection. Under these assumptz’onﬂ M(X1)g is Schur-finite if
and only if M(Y1)q is Schur-finite.

Intuitively speaking, Theorem shows that Schur-finiteness in the set-
ting of Voevodsky’s mixed motives is invariant under homological projective
duality; consult for its proof. As a consequence of this invariance, we
obtain the following practical result:

Corollary 1.2. Let Xy, and Yy, be as in Theorem . Ifdim(Yy) < 1, then
the (mized) motive M (Xp)q is Schur-finite.

"When Ag = Ay = --- = A;_1, the Lefschetz decomposition is called rectangular.

20ther HPD-invariance type results were established in [4, 27, 28].

3Theorem holds more generally when Y is singular. In this case, we need to
replace Y by a noncommutative resolution of singularities perf(Y’; F); consult [I7]
§2.4] for details.
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In the next subsections we illustrate the strength of Corollary in
several examples (in all the cases below k is algebraically closed and of
characteristic zero).

Grassmannian Gr(2,5)

Let X be the Grassmannian Gr(2,5) equipped with the Pliicker embed-
ding Gr(2,5) — P(A2W), where W is a 5-dimensional k-vector space. As
explained in [19, §6.1], the category perf(Gr(2,5)) admits a rectangular Lef-
schetz decomposition (Ag, Aj(1),...,A4(4)) and Ay a full exceptional collec-
tion of length 2. Moreover, the HP-dual Y of Gr(2,5) is the dual Grassman-
nian Gr(2, W*). Given a generic linear subspace L C A2W*, consider the
associated smooth linear sections Gr(2,5);, and Gr(2, W*)r. Making use
of Corollary and of the equalities dim(Gr(2,5)) =6, dim(Gr(2,5)r) =
6 — dim(L), dim(Gr(2, W*)r) = dim(L) — 4, we hence obtain the following

result:

Theorem 1.3. The (mized) motive M (Gr(2,5)r)q of a smooth linear sec-
tion of Gr(2,5) of arbitrary codimension is Schur-finite.

Grassmannians Gr(2,6) and Gr(2,7)

Let W be a k-vector space of dimension 6, resp. 7, and X the Grassmannian
Gr(2,6), resp. Gr(2,7), equipped with the Pliicker embedding Gr(2,6) —
P(A2W), resp. Gr(2,7) — P(A2W). As explained in [20} §10], the category
perf(Gr(2,6)) admits a Lefschetz decomposition (A, Ai(1),...,A5(5)), with
Ay =A1 = Ay and A3 = Ay = A;. Moreover, Ag and Az admit full excep-
tional collections of length 3 and 2, respectively. In the same vein, as ex-
plained in [20, §11], the category perf(Gr(2,7)) admits a rectangular Lef-
schetz decomposition (Ag, Aq(1),...,As(6)) and Ay a full exceptional collec-
tion of length 3. Furthermore, the HP-dual Y of Gr(2,6), resp. Gr(2,7), is
given by the category of perfect complexes of F-modules perf(Pf(4, W*); F),
where Pf(4, W*) C P(A2W*) is the (singular) Pfaffian variety and F a cer-
tain coherent sheaf of algebras on Pf(4, W*). The singular locus of Pf(4, W*)
is 8-dimensional, resp. 10-dimensional, and F is Morita equivalent to the
structure sheaf on the smooth locus. Therefore, given a generic linear sub-
space L C A’W* of dimension < 6, resp. < 10, we can consider the as-
sociated smooth linear sections Gr(2,6); and Pf(4,W*)r, resp. Gr(2,7),
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and Pf(4, W*)r. Making use of Corollary [1.2{ and of the equalities

dim(Gr(2,6)) =8, dim(Gr(2,6)r) =8 — dim(L),
dim(Pf(4, W*)r) = dim(L) — 2,

resp. dim(Gr(2,7)) = 10, dim(Gr(2, 7)) = 10 — dim(L), dim(Pf(4, W*)) =

dim(L) — 4, we hence obtain the following result:

Theorem 1.4. (i) The (mized) motive M(Gr(2,6)r)q of a smooth linear
section of Gr(2,6) of codimension 1, 2, or 3, is Schur-finite.

(ii) The (mized) motive M(Gr(2,7)r)q of a smooth linear section of Gr(2,7)
of codimension 1, 2, 3, 4, or 5, is Schur-finite.

Lagrangian Grassmannian LGr(3, 6)

Let W be a 6-dimensional k-vector space, equipped with a symplectic form
w, and X the associated Lagrangian Grassmannian LGr(3,6) := LGr(3,W).
The Pliicker embedding Gr(3, W) C P(A3W) restricts to an embedding
LGr(3,6) — P(V) into a 13-dimensional projective space; see [19] §6.3]. The
classical projective dual variety LGr(3,6)Y C P(V*) is a quartic hypersur-
face which is singular along a 9-dimensional subvariety Z. As explained in
loc. cit., the category perf(LGr(3,6)) admits a rectangular Lefschetz decom-
position (Ag, A1(1),---,A3(3)) and Ag a full exceptional collection of length
2. Moreover, the HP-dual Y of LGr(3,6) is given by perf(LGr(3,6)"\Z; F),
where F is a certain sheaf of Azumaya algebras on LGr(3,6)V\Z. Given a
generic linear subspace L C V* such that P(L) N Z = (), consider the asso-
ciated smooth linear sections LGr(3,6);, and (LGr(3,6)V\Z)r. Making use
of Corollary [I.2] of the equalities dim(LGr(3,6)) =6, dim(LGr(3,6)1) =
6 — dim(L), dim((LGr(3,6)V\Z)) = dim(L) — 2, and of the fact that the
Brauer group of a smooth curve is trivial, we hence obtain the following
result:

Theorem 1.5. The (mized) motive M(LGr(3,6)r)q of a smooth linear
section of LGr(3,6) of codimension 1, 2, or 3, is Schur-finite.

Spinor variety Sp.4 (5,10)

Let W be a 10-dimensional k-vector space and ¢ € S?W* a nondegenerate
quadratic form. The associated isotropic Grassmannian of 5-dimensional
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subspaces in W has two (isomorphic) connected components
X :=Sp,(5,10) CP(A°W) and Y :=Sp_(5,10) C P(A\°W*)

called the Spinor wvarieties. As explained in [19, §6.2], the category
perf(Sp, (5,10)) admits a rectangular Lefschetz decomposition (Ag, Ai(1),
..., A7(7)) and Ag a full exceptional collection of length 2. Moreover, the
spinor varieties Sp, (5,10) and Sp_ (5, 10) are HP-dual to each other. Given
a generic linear subspace L C A’W*, consider the associated smooth linear
sections Sp, (5,10)r and Sp_(5,10)r. Making use of Corollary and of
the equalities

dim(Sp, (5,10)) = 10, dim(Sp, (5,10);) = 10 — dim(L),
dim(Sp_(5,10)1) = dim(L) — 6,

we hence obtain the following result:

Theorem 1.6. The (mized) motive M(Sp,(5,10)r)g of a smooth linear
section of Sp, (5, 10) of codimension 1, 2, 3, 4, 5, 6, or 7, is Schur-finite.

Determinantal varieties

Let U and V' be two k-vector spaces of dimensions m and n, respectively, with
m < n, let W be the tensor product U ® V', and let 0 < r < m be an integer.
Consider the determinantal variety Z7, ,, C P(W), resp. Wy, ,, C P(W™*), de-
fined as the locus of those matrices V. — U*, resp. V* — U, with rank at
most 7, resp. with corank at least r. For example, Z}n,n are the classical
Segre varieties. As explained by Bernardara, Bolognesi, and Faenzi in [0,
83], Zy, , and W}, , admit (Springer) resolutions of singularities X := Aj, ,
and Y := ), ,, respectively. Moreover, the category perf(&},,) admits a
rectangular Lefschetz decomposition (Ag,A1(1),...,A,—1) and Ay a full
exceptional collection of length ("'). Furthermore, the resolutions X and
Vin.n are HP-dual to each other. Given a generic linear subspace L C W™,
consider the associated smooth linear sections (X, )z and (Y, ,)r. Mak-
ing use of Corollary and of the equalities dim (&, ) =r(n+m —r) —
L, dim((&), ,)r) =r(n+m—r)—1—dim(L), dim((J},,,)r) =r(m—n —
r) — 1+ dim(L), we hence obtain the following result:

Theorem 1.7. Ifr(m —n—r)—1+dim(L) <1, then the (mized) motive
M((X},..)L)o of a linear section of Xy, ,, of codimension dim(L) is Schur-

finite.

s
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Since 0 < r < m < n, the inequality of Theorem holds whenever the
dimension of L is equal to 1, 2, or 3. This leads to the following unconditional
result:

Corollary 1.8. The (mized) motive M((Xy, ,)r)q of a smooth linear sec-

tion of Xy, ., of codimension 1, 2, or 3, is Schur-finite.

The dimension of &7, ,,, i.e. the integer 7(n +m — r) — 1, can be arbitrar-
ily high. Consequently, Corollary furnishes us with infinitely many ex-
amples of smooth projective k-schemes, of arbitrarily high dimension, whose

(mixed) motives are Schur-finite.

Remark 1.9. (i) To the best of the author’s knowledge, the above Theo-
rems |1.3 (and Corollary are new in the literature. They provide
us with several new examples of Schur-finite (mixed) motives.

(ii) As proved by Gorchinskiy and Guletskii in [7, §5], the (mixed) motives
of Fano threefolds are Schur-finite. In the particular case of codimension
3 in Theorems and and of codimension 7 in Theorem the
corresponding smooth linear sections Xy, are Fano threefolds. We hence
obtain, in these particular cases, an alternative proof of Schur-finiteness.

Kimura-finiteness

Let (C,®,1) be a Q-linear, idempotent complete, symmetric monoidal cat-
egory. In the case of the partition A = (1,...,1), resp. A = (n), the associ-
ated Schur-functor A" := S(; 1), resp. Sym"™ := S(;, is called the n™ wedge
product, resp. the n'™™ symmetric product. Following Kimura [12], an ob-
ject a € C is called even-dimensional, resp. odd-dimensional, if A"(a), resp.
Sym"(a) = 0, for some n > 0. The biggest integer kim (a), resp. kim_ (a),
for which AKM+(@) £ 0 resp. Sym*m-(@) (a) #0, is called the even, resp.
odd, Kimura-dimension of a. An object a € C is called Kimura-finite if
a~ay @ a_, with a; even-dimensional and a_ odd-dimensional. The in-
teger kim(a) = kim4 (a4) + kim_(a_) is called the Kimura-dimension of a.
Finally, Kimura-finiteness implies Schur-finiteness.

The notion of Kimura-finiteness has been extensively studied in the mo-
tivic setting; consult the survey [I]. For example, Kimura proved in [12]
§4] that the (mixed) motives M (Z)g of smooth projective k-schemes Z of
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dimension < 1 are Kimura—ﬁnitdﬂ Moreover, we have the following compu-
tations

length(Z) if dim(Z2)
2 if dim(Z2)
0 if dim(Z)=0
2g ifdim(Z2)=1,

0
1

ki, (M(2)g,4) = {

kim_(M(Z)q,_) = {

where g stands for the genus of the smooth projective curve Z; when Z = 0,
we have kim(M (Z)g) = 0. As another example, Guletskii and Pedrini proved
in [9, §4] that the (mixed) motive M (Z)g of a smooth projective surface Z,
with py(Z) =0, is Kimura-finite if and only if Bloch’s conjecture on the
Albanese kernel for Z holds. It also should be pointed out that, in contrast
with Schur-finiteness, it is known that not every mixed motivd’| is Kimura-
finite!l; consult [23, §5.1] for a counter-example.

Theorem 1.10. Theorems (and Corollary @ hold mutatis mu-
tandis with Schur-finiteness replaced by Kimura-finitess. Moreover, we have
the equalities

(L11)  kimy (M (Xz)o+) = kim (M (Y2)g+) + (laim(r) + -+ + li-1)

(112)  kim_ (M(X1)g-) = kim_(M(Y1)g),
where 1. stands for the length of the full exceptional collection of the cate-
gory A,..

To the best of the author’s knowledge, Theorem [1.10]is new in the litera-
ture; consult ] for its proof. It not only provides us with several new exam-
ples of Kimura-finite (mixed) motives but also computes the corresponding
even/odd Kimura-dimensions. Note that the sum lginz) + - - - + l;—1 reduces
to 2(i — dim(L)) in Theorems and to 3(i — dim(L)) in Theo-
rem (ii), and to (") (i — dim(L)) in Theorem
Example 1.13. (i) In the case of codimension 3 in Theorem [L.4{i),

Gr(2,6)r, is a fivefold and Pf(4, W*), an elliptic curve; see [20], page 33].

4Kimura’s result was later extended by Guletskii [8] and Mazza [23] to the case
of smooth (but not necessarily projective) curves. More recently [29], the latter
result was further extended to the case of quadric fibrations over smooth curves.

SNevertheless, it is conjectured that every Chow motive is Kimura-finite; see [2,
Conj. 2.7].
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Consequently,
kim; (M (Gr(2,6)r)g,+) =8 and kim_(M(Gr(2,6)r)p—) = 2.

(ii) In the case of codimension 5 in Theorem [1.4{ii), Gr(2, 7), is a fivefold and
Pf(4, W*), a smooth projective curve of genus 43; see [20, page 35]. Con-
sequently, kim (M (Gr(2,7)r)g,+) = 8 and kim_ (M (Gr(2,7)1)g,—) = 86.

Let Ko(DMgm (k)g) be the Grothendieck ring of the symmetric monoidal
triangulated category of mixed motives. Following Kapranov [10], given any
mixed motive M € DMgm(k)g, we can consider the associated motivic zeta
function ((M;t) := 3 07 ([Sym™(M)]t". Since the motivic zeta function of
every Kimura-finite mixed motive is rational (see [I, Prop. 4.6]), we obtain
the following result:

Corollary 1.14. Let X, be as in Theorems- Then the associated
motivic zeta function is rational (M (X1 )qg;t wzthp , resp. q(t),
a polynomial of degree kim_ (M (X1)g,—) — 1 resp k1m+(M(XL)Q,+) —1.

Finally, it should be mentioned that the above Remark (ii) also holds
mutatis mutandis with Schur-finiteness replaced by Kimura-finitess.

2. Preliminaries
2.1. Dg categories

For a survey on dg categories consult Keller’s ICM talk [I1]. Let C(k) be the
category of complexes of k-vector spaces. A dg category A is a category en-
riched over C(k) and a dg functor F: A — B is a functor enriched over C(k).
Every (dg) k-algebra A gives naturally rise to a dg category with a single
object. Another source of examples is provided by schemes since the cate-
gory of perfect complexes perf(Z) of every quasi-compact quasi-separated
k-scheme Z admits a canonical dg enhancementﬁ perfy,(Z). Following Kont-
sevich [I3HI5], a dg category A is called smooth if it is perfect as a bimod-
ule over itself and proper if Zj dim H’ A(z, y) < co for any pair of objects
(z,y). Examples include the dg categories of perfect complexes perfdg(Z)
associated to smooth proper k-schemes Z. Let dgcatg, (k) be the category of
smooth proper dg categories and dg functors.

SWhen X is quasi-projective this dg enhancement is unique; see Lunts-Orlov
[21, Thm. 2.12].
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2.2. Noncommutative Chow motives

For a book on noncommutative motives consult [25]. Recall from [25] §4.1]
the construction of the additive category of noncommutative Chow motives
NChow(k)g. By construction, this category is Q-linear, idempotent com-
plete, symmetric monoidal, and comes equipped with a symmetric monoidal
functor U(—)q: dgcatg, (k) — NChow (k)q.

2.3. Orbit categories

Let (C,®,1) be a Q-linear, additive, symmetric monoidal category, and O €
C a ®-invertible object. The orbit category C/—go has the same objects as
C and morphisms Home, . (a,b) := ®nezHome(a, b @ O®™). Given objects
a,b, c and morphisms f = { f,,}nez and g = {gn }nez, the j-component of g o
f is defined as Yy, (gj—n ® O®™) o f,. By construction, we have the canonical
functor 7: C = C/_g0, given by a — a and f — f = {f,}nez, where fo = f
and f, =0 if n # 0. Moreover, the category C/_go is Q-linear, additive,
and inherits from C a symmetric monoidal structure making the functor =
symmetric monoidal.

3. Proof of Theorem [1.1]

By definition of the Lefschetz decomposition (Ag, Aq1(1),...,A;—1(i — 1)), we
have a chain of admissible triangulated subcategories A; 1 C --- C A; C Ag
with A, (r) := A, ® Ox(r). Note that the category A, (r) is equivalent to A,.
Let a, be the right orthogonal complement to A,;1 in A,; these are called
the primitive subcategories in [18, §4]. By definition, we have semi-orthogonal
decompositions:

(3.1) AT:(ar,aHl,...,ai_l) OSTSi—l.

As proved in [I8, Thm. 6.3(i)], the category perf(Y) admits a HP-dual
Lefschetz decomposition (B;_1(1 —j),B;j_2(2 —j),...,Bg) with respect to
Oy (1). As above, we have a chain of admissible subcategories B;_1 C B;_o C
-+ C By. Moreover, the primitive subcategories coincide (via a Fourier-
Mukai functor) with those of perf(X) and we have semi-orthogonal decom-
positions:

(3.2) B, = (ag, a1,...,8qim(v)—r—2) O0<r<j-—1.
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Furthermore, as proved in [I8, Thm. 6.3(ii)], the assumptions dim(X) =
dim(X) — dim(L) and dim(Y7,) = dim(Y") — dim(L*) imply the existence of
semi-orthogonal decompositions:

(33) perf(XL) = <(CL, Adim(L)<1)7 “e ,Ai_l(i - d1m(L))>
(34) perf(YL) = <Bj_1(dil’n(LJ') - j), ce 7]Egdim(LL)(_1>7 (CL> .

Note that the left orthogonal complement of A gy, (1) (1), - - -, Aj—1(i—dim(L))
in , i.e. the category Cy, is the same as the right orthogonal comple-
ment of the subcategories B;_1(dim(L1) — j), ... s Baim(z1)(—1) in (B-4). In
particular, the triangulated category Cr appears in both semi-orthogonal
decompositions f. Let us denote by (Cdg, Agg, and agg, the dg en-
hancement of Cr, A, and a,, induced from perf,(Xy). Similarly, let us
denote by (C%g’ and BY the dg enhancement of C; and B, induced from
perfy,(Y7). Note that since X and Yy, are smooth projective k-schemes,
all the preceding dg categories are smooth and proper. As explained in [25,
§2.4.1], the above semi-orthogonal decompositions f give rise to
the following direct sum decompositions of noncommutative Chow motives:

U(perfag(X1))o = U(CE)o ® UAE, )o@ @ UALE))g
U(perfay(Yi))o = U(BS )o@ - & UBL, 1.))e ® UCE g

Since by assumption the triangulated category Ay admits a full excep-
tional collection, the noncommutative Chow motive U (Agg)@ is isomor-
phic to a finite direct sum of copies of U(k)qg; see [25, §2.4.2]. In par-
ticular, it is Schur-finite. Making use of the semi-orthogonal decomposi-
tions 7, we hence conclude that the noncommutative Chow mo-
tives U(Aj?m(L))@,...,U(Affl)Q and U(B?%l)(@,...,U(Bgigm(“))@ are also
Schur-finite. This implies that U(perfy,(XL))g is Schur-finite if and only if
U ((CCng)Q is Schur-finite and, similarly, that U(perfy,(Y7))q is Schur-finite
if and only if U((CdLg/)Q is Schur-finite. Since the functor perf(X) — Cr —
perf(Y7) is of Fourier-Mukai type, the dg categories (C%g and (Cig’ are Morita
equivalent. Using the fact that the functor U(—)g inverts Morita equiva-
lences (see [25, §1.6 and Thm. 2.9]), we hence conclude that U ((C%g)@ ~
U ((C%g/)(@. Consequently, the proof of Theorem follows now automati-
cally from the following result:

Proposition 3.5. Given a smooth projective k-scheme Z, the (mized) mo-
tive M(Z)q is Schur-finite if and only if the noncommutative Chow motive
Ul(perfa,(Z))q is Schur-finite.
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Proof. Recall from [2 §4.1] the construction of the classical category of
Chow motives Chow(k)g. This category is Q-linear, idempotent complete,
symmetric monoidal, and comes equipped with a (contravariant) symmetric
monoidal functor defined on smooth projective k-schemes

h(—)g: SmProj(k)°® — Chow(k)q.

As proved in [26, Thm. 1.1] (see also [25, Thm. 4.3]), there exists a Q-linear,
fully-faithful, symmetric monoidal functor ® making the following diagram
commute

Z—pert,, (Z
3.6 SmProj(k)°P Hp—()>dgcat k
sp

h(—)@l

Chow(k)qg U(=)o

|

ChOW(k)Q/f®Q(1)

NChow (k)q

where Q(1) stands for the Tate motive. Since the functor = is faithful and
the functor @ is fully-faithful, it follows from Lemma 3.8 below and from the
commutative diagram that the Chow motive h(Z)g is Schur-finite if
and only the noncommutative Chow motive U (perfy,(Z))q is Schur-finite.

The category Chow(k)g is not only symmetric monoidal but more-
over rigid, i.e. all its objects are (strongly) dualizable. Let us denote by
(—)¥: Chow(k)g’ = Chow(k)g the (contravariant) duality auto-equivalence
and by h(—)g the (covariant) composition (—)¥ o h(—)q. As proved by Vo-
evodsky in [30, Prop. 2.1.4 and Cor. 4.2.6] (see also |2, Thm. 18.3.1.1]), there
exists a Q-linear, fully-faithful, symmetric monoidal functor ¥ making the
diagram commute:

(3.7) SmProj(k) —Z22Z~ Sm(k)
h()éi lM(—m
ChOW(/{?)Q T DMgm(k‘)Q .

Since Schur-finiteness is stable under duality and W is fully-faithful, it follows
then from Lemma below and from the commutative diagram that
the Chow motive h(Z)qg is Schur-finite if and only if the (mixed) motive
M (Z)q is Schur-finite. This concludes the proof of Proposition O
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Lemma 3.8. Let (C,®,1) and (C',®',1") be two Q-linear, idempotent com-
plete, symmetric monoidal categories, and H: C — C' a Q-linear, symmetric
monoidal functor. Given any object a € C, the following holds:

(i) If a is Schur-finite, then H(a) is also Schur-finite.

(ii) If H is faithful and H(a) is Schur-finite, then a is also Schur-finite.

Proof. The proof is a simple exercise which we leave to the reader. O

4. Proof of Theorem [1.10]

In the particular cases of Theorems 1.7, we have dim(Yz) <1 (in some
cases Y7, = ()) and the semi-orthogonal decomposition (3.3)) reduces to

(4.1) perf(XL) = (perf(YL), Adim(L)a e ,Ai_l(i — d1m(L))> y

i.e. the triangulated category Cj, agrees with perf(Yy). Recall that the tri-
angulated category A, admits a full exceptional collection of length [,.. Sim-
ilarly to the proof of Theorem the semi-orthogonal decomposition
then gives rise to the following direct sum decomposition of noncommutative
Chow motives

(42)  Ulperfy(Xp))g = Uperfay(Ye))o @ @)Y, UK)G" -

Thanks to the commutative diagram (3.6) and to the fact that the functor
® is fully-faithful, (4.2)) yields an isomorphism in the orbit category of Chow
motives

(0(X1)g) = 7(H(Y)g & &k, 1, h(Spec(k)G") .

Therefore, by definition of the orbit category, there exist morphisms

f = {fn}nez € Homgpown), (h(X1)o, (0(Y)o @@Zﬁim@)f)(spec(k))%lr)(”))
g = {gn}nez € Homgypoyw(r)o (h(YL)g © @i;ldim(L)fJ(SpeC(k))%lﬂ h(XL)o(n))

verifying the equalities g o f = id = f o g; in order to simplify the exposition,
we (will) write —(n) instead of — ® Q(1)®™. Recall that by definition of the
category of Chow motives, we have f, = 0if n ¢ {—dim(Xy),...,dim(Y7)}
and g, =0 if n € {—dim(Y7),...,dim(Xz)}. The sets {f,| — dim(Xz) <
n <dim(Yz)} and {g_n(n)| —dim(Xy) <n < dim(Y7)} give then rise to
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the following morphisms

ot h(Xp)g — @:t“fﬁf;(XL)<h<YL>@ ® O (1) D (SPec(k))E) (n)

B: @) ) (0(Yi)g ® @1k 1 b(Spec(k)E) () — b(X1)e

The composition 3 o o agrees with the 0** component of g o f = id, i.e. with
the identity of h(X)g. Consequently, h(Xy)g is a direct summand of the
direct sum

(4.3) Do) sy (0(Yi)e © @12, 1 b(Spec(k)E) ().

Using the fact that h(Y7)g is Kimura-finite, that A2(Q(1)) =0, and that
Kimura-finiteness is stable under direct sums, direct summands, and tensor
products, we hence conclude from that the Chow motive h(X)g is
also Kimura-finite. The Kimura-finiteness of the (mixed) motive M (X )qg
follows now from the combination of the commutative diagram with
the fact that Kimura-finiteness is stable under duality and preserved by
Q-linear symmetric monoidal functors.

Let us now prove the equalities f. By definition, the even
and odd Kimura-dimensions are invariant under duality. Therefore, thanks
to the commutative diagram and to the fact that the functor ¥ is
fully-faithful, it suffices to prove the following equalities:

(4.4) kimy (h(X7)g,+) = kimy (h(Yz)g,+) + (ldimz) + - +liz1) -
(4.5) kim_ (h(Xr)g,—) = kim_(h(Yz)g,-) -

As explained in [1, §3], we have the following equalities

kim; (h(X1)o+) = x(h(XL)o+)
kim_ (h(X1)g,-) = —x(b(XL)g,-)

where x stands for the Euler characteristic computed in the rigid symmetric
monoidal category of Chow motives. In order to compute this Euler charac-
teristic, consider the Q-linear symmetric monoidal functor

(4.6)

HP*: NChow(k)g — Vectys(k),

induced by periodic cyclic homology, with values in the category of fi-
nite dimensional Z/2-graded k-vector spaces; see [22], Thm. 7.2]. Note that
every object (V*,V7™) of the category Vectyo(k) is Kimura-finite, that
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(VH, V)~ (VT 0) and (VT,V7)_ ~(0,V7), and that x((V*,0)) =
dim(V™*) and x((0,V ™)) = —dim(V ™). Consider also the following compo-
sition

0% : Chow(k)g —= Chow(k)g/—sg(1) — NChow(k)g 155 Vects o (k).

When restricted to the Q-algebra of endomorphisms of the ®-unit, the func-
tors 7 and ¥ become fully-faithful, and the functor HP* faithful. This
implies that the Euler characteristic of any Chow motive can be computed
after application of the functor §*. Moreover, since the decomposition of a
Kimura-finite object into even/odd parts is unique (see [12, Prop. 6.3]), we
hence conclude that

X(0=(h(X1)g)+) = dim(67 (h(XL)o))
X(0%(h(XL)g)-) = —dim(6™ (h(XL)g)) -

= =
o O
—~
= =
S
SN~—
S &
I+
o
= X
e
> D
H H
—~~
o O
=
S
S~— —
e e
I+
NN
o

Thanks to these computations, the above equalities (4.6) reduces to

kim.y (h(Xr)g+) = dim(67 (h(X1)qg))
kim_(h(X1)g ) = dim(6~ (h(XL)g)) -

The above arguments hold mutatis mutandis for the Kimura-finite Chow
motive h(Yr)g. Therefore, we also have the equality

kimy (h(YL)o,+)

dim(6" (h(Y2)o))
kim_ (h(Yz)q,~) = dim(f~

(0~ (h(Y)a)) -

Now, by combining the above decomposition (4.2]) with the commutative
diagram (3.6]), we conclude that 6% (h(XL)g) is isomorphic to the direct sum
of 6= (h(Yy)g) with &,y |\ HP*(U(k)g)®". Since HP*(U(k)q) = (k,0),
this implies that

dim(@* (5(X1)q)) = dim(8* (6(Y2)a)) + (aim(z) + -+ +li1)
dim(8(h(X1)g)) = dim(9(h(Y2)g)) -

The searched equalities (4.4])—(4.5)) follow now automatically from the com-
bination of the preceding six equalities. This concludes the proof of Theo-
rem [1.10
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