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The triangulated hull of periodic
complexes

TORKIL STAI

In the terms of a ‘periodic derived category’, we describe explic-
itly how the orbit category of the bounded derived category of an
algebra with respect to a power of the shift functor embeds in its
triangulated hull. We obtain a large class of algebras whose or-
bit categories are strictly smaller than their triangulated hulls and
a realization of the phenomenon that an automorphism need not
induce the identity functor on the associated orbit category.

1. Introduction

Given a category T with an automorphism F, an obvious gadget for studying
the associated orbits is the orbit category T/F. This has the objects of T
and morphism spaces given by the coproducts

T/F(X,Y) =[] T(X,F'Y)
1EZL

with the natural composition, ensuring that objects in the same F-orbit
become isomorphic. In order for this to be a very useful tool, however, it may
be vital that the orbit category somehow resembles the original category, and
so it is only reasonable to ask under what conditions certain properties of
T are inherited by T/F. For instance, when does a triangulated structure
on the former induce one on the latter such that the canonical T — T/F
becomes a triangle functor? It seems hopeless to aim for an answer in the
generality of arbitrary triangulated categories, the evident obstacle being
the fact that it is not clear how to define cones in the orbit category, since
a morphism X — Y will typically be represented by some

k
X = J[Fy.
i=1
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Fortunately, the introduction of the cluster category DP(mod A)/S o X2
[5] about a decade ago motivated Keller to devise a triangulated hull for
certain orbit categories of derived categories in [I7]. As the name suggests,
this comes with a universal property and allows us to reformulate the above
question as ‘when does the orbit category coincide with its triangulated
hull?’

The drawback is that this construction might appear difficult to grasp,
and attempting calculations can be daunting. We seek to mend this, albeit in
a specific setting. To be more precise, when gldim A < co the rather lenient
hypotheses of Keller are satisfied by the automorphism £" of D®(mod A),
and thus ensure that the orbit category D°(mod A)/~" embeds in a triangu-
lated hull. Our goal is to develop a concrete realization of this a priori rather
abstract embedding, in order to explore when the orbit category is trian-
gulated. Notice that certain instances of this setup have already attracted
considerable attention. Prominently, if A is hereditary and n = 2 we get the
root category introduced by Happel in [13] and studied further in [20].

The framework for our hands-on description of said embedding is the
abelian category C,(mod A) of n-periodic differential complexes and chain
maps over A, together with the homotopy category K, (mod A) and derived
category D, (modA), both of whom are triangulated. Our exposition will
focus on the case n =1, that is to say modules over the algebra of dual
numbers A[t]/(¢?). These were considered already in the monograph of Car-
tan and Eilenberg [7] as ‘modules with differentiation’, and were employed
as a means to prove theorems in commutative algebra under the name ‘dif-
ferential modules’ in work by Avramov, Buchweitz and Iyengar [3], from
which we shall adopt much of our notation. While the study of periodic
complexes is certainly of independent interest, we are primarily motivated
by their applications. More explicitly, for each n the link from the orbit cat-
egory DP(mod A)/X™ is given by compression of complexes, i.e. associating
to

0 X' Xxt ... x5 x50

the n-periodic

—>]_‘[XZ—>]_[XZ —>]_[XZ—>]_‘[XZ

=1 (n) =2 (n) =0 (n) i=1(n)

with the obvious differentials. Our most basal result then states the follow-
ing.
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Theorem (See 4.3)). Compression of complezes, considered as a functor
A,: DP(modA)/E"™ — Dy(mod A),
1s precisely the embedding of the orbit category into its triangulated hull.

A realization of the triangulated hull as the n-periodic derived cate-
gory was discussed independently in [23], but the reader with our simple
minded approach might miss some details. For one the full faithfulness of
the restricted localization functor K, (projA) — D, (mod A), which follows
from our Lemma and Proposition is hardly automatic and in fact
fails if gldim A = oo (Observation . Upon learning how elusive bimodule
isomorphisms can be in this business (Lemma one could also call for a
more detailed account of the use of the universal property of the ‘generalized
n-root category’ of [10].

In accordance with our objective, the upshot of Theorem is the facil-
itation of computations. For one it is not difficult to demonstrate, in purely
homological terms, that A, is dense whenever A is iterated tilted. Once
Theorem is established it will thus follow that D?(mod A)/X" is trian-
gulated for such algebras (Proposition . This is a weak version of [17,
Theorem 1], which not only includes the piecewise hereditary algebras, but
also deals with a much larger class of automorphisms than the powers of X.
However, an orbit category need not coincide with its triangulated hull, and
examples of this behavior were exhibited already in the fundamental paper
of Keller. In fact, to the best of the author’s knowledge, for arbitrary auto-
morphisms F adhering to Keller’s premises, all known examples of algebras
A with the property that DP(mod A)/F coincides with its triangulated hull,
are piecewise hereditary. We are thus naturally led to investigate to what ex-
tent this condition is necessary, and a modest start could be answering if the
piecewise hereditary algebras are the only ones for which DP(mod A)/X™ is
triangulated. In the context of To-finite algebras and their generalized cluster
categories (see [1]), the analogous question was raised by Amiot and Opper-
mann in [2], and similar to Theorem 7.1 therein, we obtain the following.

Theorem (See [5.5). If A is a non-triangular algebra, then D®(mod A)/%"
is strictly smaller than its triangulated hull.

The cluster category is famously a 2-Calabi—Yau triangulated category,
meaning that its Serre functor S and the square of its shift functor are
isomorphic (as triangle functors). In other words, the composition S o %72
becomes naturally isomorphic to the identity on D?(mod A)/S o ©=2. As the
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latter is a most prominent orbit category, and since it does look plausible at
first glance, one could be led to believe that this always happens, i.e. that
an automorphism F on a category T always induces the identity on T/F.
The following might thus be surprising.

Proposition (See [5.6)). The identity functor and X" are not in general
isomorphic on the orbit category D?(mod A) /™.

This oddity, which was in fact noted also in [19], can be attributed to a
sign, and consequently we must avoid characteristic 2 and even n in order
to find instances. Then, however, our description of the context as that of
n-periodic complexes allows us to demonstrate plainly how the phenomenon
materializes.

Overview and conventions

Section [2] starts with recalling a few well established concepts regarding
modules over differential graded (DG) categories, together with some minor
observations of our own, all of which will be employed in the sequel (Sec-
tion . We then review the central construction of the triangulated hull,
and note that the crucial step of ‘enhancing’ D°(mod A)/~" is in fact not
as involved as for orbit categories with respect to arbitrary automorphisms.
Lastly we explain how to view DG modules over a DG algebra as graded
modules over a related graded algebra. In Section [3] we are concerned with
differential modules, or more generally periodic complexes, and their homo-
topy and derived categories. The key notion of compression of differential
complexes is introduced, as well as the tensor product of a differential mod-
ule with a complex along with its fundamental properties. We proceed by
developing a comprehensive theory of resolutions of differential modules,
including the above mentioned Proposition [3.10] with its notably construc-
tive proof, which allows us to identify the n-periodic derived category with
Ky (proj A) and to explain how compression yields an embedding of the orbit
category DP(mod A) /™ into D,,(mod A). Theorem |4.3|is proved in Section
and put to use in Section[5} After the foreknown Proposition [5.3]is attained,
the investigation goes in the opposite direction, in the sense that we arrive
at Theorem The latter is collected as evidence in favor of a conjecture
which we briefly discuss in the light of [6l [I4]. Lastly we turn to the phe-
nomenon of ¥ failing to induce the identity functor on DP(mod A)/X". A
simple is provided in some detail before Lemma presents an intrinsic
reason for this behavior.
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Throughout, proofs and detailed constructions will be formulated only in
terms of differential modules and the category DP(mod A)/%, but we stress
that this is solely for cosmetic reasons and that our results extend in obvi-
ous ways to n-periodic complexes and the category DP(mod A)/%" for each
positive integer n.

2. Preliminaries

We let K be a field, and by an algebra we mean a finite dimensional k-algebra.
Moreover we restrict to algebras of finite global dimension. A module is
a right module, and if A and A’ are algebras then on a A—A’-bimodule,
A acts from the left while A’ acts from the right. Mod A is the category
of A-modules with mod A (projA) as its subcategory of finitely generated
(projective) modules. When IT is a graded algebra, GrII (gr IT) is the category
of graded (finitely generated) II-modules.

2.1. DG modules

For a more comprehensive introduction and further details, see e.g. Keller’s
[15, 18]. Recall that a (right) DG module over a DG category A is a DG
functor A°? — Dif(k) where Dif(K) is the DG category of chain complexes
over kK, and that the DG modules over A form a DG category again, de-
noted by dg-mod A. Associated to the latter is the additive category C(A) =
Z°(dg-mod A) which carries an exact structure where

0L ME N0

is a conflation if there is some s € dg-mod A(N, M)® such that ps =1y
(equivalently, there is some r € dg-mod A(M, L) such that rm = 1z,). This
generalizes the ‘degreewise split’ exact structure that can be imposed on
any category of chain complexes and, indeed, C(A) is Frobenius with these
conflations. The homotopy category K(A) = HY(dg-modA) coincides with
the stable category associated to C(A) and is hence triangulated. Finally
the derived category D(A) is obtained by formally inverting the class of
quasi-isomorphisms in K(A).
The Yoneda embedding

t: A — dg-mod A

given by X — X" = A(—, X) identifies A with the subcategory of its mod-
ule category consisting of the representables and, by virtue of being a DG
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functor, restricts to a functor ZY(A) — C(A). If the image of the latter is
stable under extensions and shifts, then HY(A) becomes a triangulated sub-
category of K(A) and A is called pre-triangulated. The pre-triangulated hull
of A is the full DG subcategory AP of dg-mod A whose objects are the
DG A-modules obtained by taking the closure in C(A) of the representables
under extensions, shifts and summands. The pre-triangulated hull comes
with a universal property, making it functorial and left adjoint to the inclu-
sion of the category of pre-triangulated DG categories in the category of DG
categories. Our first observation is that the pre-triangulated hull determines
the entire module category.

Lemma 2.1. If A and A’ are DG categories such that AP = A'Pretr
then there is a DG equivalence dg-mod A = dg-mod A’.

Proof. Tt is sufficient, as well as more elegant, to check that the categories of
left DG modules are equivalent. Denoting by (A,.A’) the DG functors A —

A’, the left adjointness of the pre-triangulated hull reads (A, P) = (Apre'tr, fP)
for each pre-triangulated P. In particular, since Dif(K) is pre-triangulated,
we find that

dg-mod A°P = (A, Dif(k))
(APt Dif(k))
(A’Pre'“ Dif(k))
( , Dif (k )
dg-mod A’°P .

i1 1R

O

Given a DG functor F: A — A’, denote by Rg: dg-mod A" — dg-mod A
the associated DG restriction functor. Rs admits a left adjoint

Jg: dg-mod A — dg-mod A’

called the DG induction functor (see e.g. [0, Section 14]) whose definition
will be recalled in the proof of the following observation.

Lemma 2.2. If a DG functor F: A — A’ is fully faithful, then so is the
DG induction functor J5: dg-mod A — dg-mod A’.

Proof. Since (J5,R5) is an adjoint pair, it suffices to show that these DG
functors compose to the identity on dg-modA. As F is fully faithful we
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identify A with its essential image in A’. By definition, for Y € A’ and
M € dg-mod A we have

I5(M)(Y) = M ®4 (R (A'(Y,=))) = M @4 A" (Y, -)

where only objects from A are allowed in the last argument. More explicitly,

%(M)(Y)—(H M(X) ® A’(Y,X))/N

XeA )

where ~ is what one might expect: To each f € A(X, X') we associate the
two induced maps f*: M(X') — M(X) and f.: A'(Y,X) — A (Y, X’). The
relation is then given by f*(u) @ v ~u® f.(v) for each u € M(X’) and
ve A (Y, X). We claim that if Y € A, then J5(M)(Y) = M(Y), which is
sufficient. Denoting by w ® v the simple tensors, the crucial observation is
that

uRv=u®u(ly)=0v"(u)® ly
for each u € M(X) and v € A(Y, X). Therefore we can identify

Ig(M)(Y) =2 {v*(u) e M(Y) |lue M(X),X e A,v e A(Y,X)} = M(Y)
where the last equality is clear (choose X =Y and v = 1y). O
Lemma 2.3. The DG induction functor restricts to Jg: AP — A/Pretr
Proof. Suppose the DG A-module M appears in a conflation

0= X"=>M-—=Y"=0

in C(A), with X, Y € A. One easily checks that induction preserves repre-
sentables in the sense that Jo(X”) = (FX)". Hence the induced sequence
in C(A') is

0— (FX)" - I5(M) = (FY)" =0,
which is a conflation again. Further, for each U € A, the shift of U” appears
in a conflation

0—-U" = VN =2U" =0

for some V € A, which induces the conflation

0— (FU)" = (FV)" =I5 (2(U") =0
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in C(A’). Thus J5(X(U")), appearing as an admissible cokernel of (FU)"
into a projective-injective, is isomorphic to X ((FU)"). In other words the
objects of AP i.e. summands of iterated extensions and shifts in C(A) of
representables, are sent by Jg to AP, O

Remark. The restriction of the DG induction J: AP®Y — A’P* i noth-
ing but P ie. the functor ‘pre-triangulated hull’ applied to J. Indeed,
restricting to pre-triangulated hulls, the fact that induction preserves repre-
sentables means precisely that

L

.A Apre—tr

.A/ L .A/ pre-tr

is commutative. Since the functoriality of the pre-triangulated hull comes
from its universal property, the claim follows.

2.2. The triangulated hull

For an algebra A and positive integer n, the automorphism X" & — ®, X"A
of D (mod A) clearly meets the requirements of [I7] that ensure the existence
of a triangulated hull of the orbit category D?(mod A)/%", that is to say, the
data of a triangulated category Dy~ (mod A) and an embedding

DP(mod A) /%™ — Dy (mod A)

with a certain universal property. To construct Dy»(mod A), recall from [4]
that a DG enhancement of a (triangulated) category T is a (pre-triangulated)
DG category T with a (triangle) equivalence T = H?(T). The upshot of lift-
ing to DG categories is that canonical choices then become available, for in-
stance, cones are famously functorial in ‘enhanced’ triangulated categories.
What is more, a DG enhanchement of the orbit category will unveil a canon-
ical triangulated hull. Since gldim A < oo, the DG category per A of perfect
complexes over A enhances its bounded derived category, and %" clearly
lifts to a DG equivalence, also denoted by ™, on per A. This allows us to
form the orbit category By» = per A/¥" which is inherently a DG category
and gives the desired enhancement, namely

DP(mod A)/¥" 2 HO(Byw).
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The alluded to canonical choice of triangulated hull is thus
Dzn(mod A) = thick(‘BEn) C D(an)7

i.e. the triangulated subcategory of the derived category of By» generated
by the representable functors, and the embedding of the orbit category is
simply Yoneda

H°(Bsn) — D(Bsn)
which obviously factors through Dy»(mod A).

Remark. The above is a special case of a broader definition by Keller. In
general, any automorphism F which is a standard equivalence, i.e. isomorphic
to

—®% Z: DP(mod A) — DP(mod A)

for a complex Z of A—A-bimodules, lifts to a DG functor F: per A — per A
in an obvious way. However, the latter might not be an equivalence, and so
in order to enhance DP(mod A)/F we must invoke the DG orbit category.
That is, the DG category B with the objects of per A and morphism spaces
of the form
B%(X,Y) = colim, H per A(FF X, 7 Y).
k>0

Its merit is of course that, when F satisfies certain mild technical hypothe-
ses, there is an equivalence of categories D?(mod A)/F = HO(B/;). We are
thus in the same situation as above, and it is clear how to obtain the trian-
gulated hull Dg(mod A). It is also straightforward to verify that the above
Bsw is a special case of the DG orbit category. Indeed, whenever F lifts to a
DG equivalence F on per A, the orbit category By = per A/ F exists and is
naturally a DG category again. Moreover,

H per A(FF X, FPY) = H per A(F*X,Y)

k>0 k>—p

in this case, and hence the directed system defining B’ (X,Y) is the sequence

H per A(FFX,Y) — H per A(FF X, V) — H per A(F*X,Y) — - -
k>0 k>—1 k>—2

in which each morphism is the canonical split mono. It follows that the
colimit B%(X,Y) is nothing but the coproduct Bs(X,Y).
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Remark. One can construct the triangulated hull also when gldim A is infi-
nite. The enhancement of DP(mod A) is then the DG version of C™®(proj A),
but otherwise the construction carries over verbatim. Similarly one can han-
dle orbit categories of D(Mod A) using the enhancement by homotopically
projective complexes (see [16]).

2.3. DG modules as graded modules

Although the following construction appears to complicate matters, it will
prove useful in Section For a DG algebra A let A(e) be the graded algebra
with |e| = 1, and A(e) the graded algebra obtained as the quotient of A(e)
modulo the relations €2 = 0 and d4(a) + ca — (—1)!%ae = 0.

Lemma 2.4. GrA(e) and C(A) are equivalent categories.
Proof. Let M € C(A), i.e. a complex

SRS VAT VRN VLS
with an A-action satisfying Leibniz’s rule

Anr(ma) = dpr(m)a + (—1)™mad, (a).

Associate to M the graded A(g)-module (M?); with action m - a = ma for
ac A andm e = (—1)"y (m). Putting o = 94 (a) + ca — (—1)l%ae gives

m-a=mda(a) + (=)™ (m)a — (=1)I™dy (ma) =0,

so this action is indeed well-defined. On the other hand, take N € Gr A(e),
that is N = (N?); with an A(e)-action satisfying ne? = 0 and moreover
n (0a(a) +ea — (—1)l2lag) = 0. Associate to N the DG A-module given by
the complex

oy i O e D i

with A-action given by n - a = na. This action satisfies Leibniz’s rule, since
n(n-a) = (=1)"nae
while

On(n) - a+ (=1)"n - 94(a) = (=1)nea + (=1)"nd 4 (a),
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and the difference between the latter two expressions is
n((=1)1%ag — ea — 44 (a)) = 0.

Leaving morphisms unaltered, the above two assignments clearly give mu-
tually inverse equivalences between the categories in question. O

3. Differential modules

This section introduces the context in which we will describe the orbit cat-
egory DP(mod A)/X" and its triangulated hull for an algebra A. Our expo-
sition focuses on n = 1, but we point out the general versions of important
notions and results along the way. At these points the reader might find it
instructive to fill in details.

3.1. Triangulated structure

To an additive category A one can associate Ci(A), i.e. the category of
1-periodic complexes and chain maps in A. In other words, the objects
of C1(A) are pairs (M, eys) with underlying object M € A and differential
en € A(M, M) squaring to zero, and its morphisms are those between the
underlying objects that commute with the differentials involved. In [22] it is
shown that if A is Frobenius exact, then so is C;(A). This means that if we
call the sequence

0— (Lyer) = (M,enr) — (N,en) — 0

in C;(A) a conflation whenever it admits a splitting in A, then C;(A) be-
comes Frobenius. The injective envelope of (M, eps) is the middle term in
the conflation

(M, ) @ (M@M, ( 0 0)) M (M, —en),

1p O

and each projective-injective object is of this form. Hence the stable category
K1(A) is triangulated with suspension X acting by (M,epr) — (M, —enr)
on objects and trivially on morphisms. The mapping cone of a morphism
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f: (M,epn) — (N,en) is the object

. —EM 0
cr=(won (3 1))

and it is straightforward to verify that the standard triangle associated to
fis
ML NS s

with the canonical morphisms, as well as the fact that each conflation em-
beds in a triangle. Equivalently, if we say that the above f is null-homotopic
whenever there is some s € A(M, N) such that f = sep + ens, then Ki(A)
is the 1-periodic homotopy category. When A is abelian, the homology of
(M, epr) is the quotient Ker(eas)/Im(enr), giving rise to a homological func-
tor H: Ki(A) — A. The class S of quasi-isomorphisms in Kj(A) is thus a
multiplicative system compatible with the triangulation, which means that
the 1-periodic derived category

Di(A) = ST1K{(A),

carries a triangulated structure such that the localization functor K;(A) —
Di(A) is a triangle functor. Further, e.g. by [11], D1(A) admits a calculus of
roofs.

Our primary engagement is with the case A = mod A. Evidently, denot-
ing by

Ale] = At/ (%)

the algebra of dual numbers, Ci(modA) is precisely mod Ale]. We hence
refer to the objects of Ci(mod A) as differential modules and its morphisms
as being Ale|-linear.

Remark. For each positive integer n, the category C,(A) of n-periodic
complexes and chain maps in A is Frobenius with respect to the ‘degree-
wise split’ exact structure. Hence the n-periodic homotopy category K, (A),
obtained as the stabilization of C,,(A), and its localization D,,(A) at quasi-
isomorphisms are both triangulated. Moreover, C,,(mod A) is nothing but
the finitely generated modules over A ®k I, where I, is the selfinjective
Nakayama algebra with n vertices and Loewy length 2.
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3.2. Compression and tensor products

Since Ale] is graded with |¢| =1 and a graded module is nothing but a
complex over A, there is a forgetful functor

A: C°(mod A) — Cy(mod A).
Explicitly, forgetting about the grading on the complex
8l—1

C=0-C" L0t 5. ot 2 0l

results in the differential module

l -1
AC = (AC,enc) = (H I ai> :
1=0 =0

With respect to the obvious decomposition, the differential ep¢ is clearly
the matrix

o 0 0 -~ 0 0
oA 0 0 .- 0 0
o o o --- 0 0
o 0 0 --- 0 0
o 0 0 --- 91 0

In [3] the authors coin the descriptive term compression for this functor.
Observe that the procedure of compression also gives rise to triangle functors

A: KP(modA) = Ky(modA) and A: DP°(modA) — Di(modA)

as it commutes with suspensions and cones, and preserves quasi-
isomorphisms. Naturally, the objects in the essential image of A are referred
to as gradable.
For each algebra A’ and each complex
0 l—1
X=0-x"% x5 x1 2 ¥

of A—A’-bimodules, the tensor product of a differential A-module (M, exy)
with X is the differential A’-module

l
MKy X = (H(M oA XD, m@z—m®o(z)+ (=1)ley(m) @ :c) .
=0
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This construction, together with the obvious action on morphisms, gives a
functor

— X X: Cy(modA) — Cy(mod A').

The tensor product commutes with compression in the sense that when
Y is a complex of right A-modules, there is a canonical isomorphism

(AY) Xp X = A(Y XA X)

of differential A’-modules. Further, if A” is also an algebra and Z is a
bounded complex of A’~A”-bimodules, there is a canonical isomorphism

(3.1) MRXp (X ®p Z) = (MHRy X)Xy Z

of differential A”-modules. What is more, when X satisfies the expected
hypotheses (i.e. when each X? is flat as A-module), then — X, X preserves
quasi-isomorphisms and hence defines a functor D;(mod A) — D;(mod A’)
making the diagram

DP(mod A) —8 DP(mod A’)
(32) JA A

Di(mod A) —EA Di(mod A')

commutative. The following fundamental property will be exploited in Sec-
tion [Bl

Lemma 3.3. If X gives rise to an equivalence
— ®A X: D°(mod A) — D®(mod A'),

then also
—Xj X: Di(modA) — Dq(mod A').

1s tnvertible.
Proof. A quasi-inverse of — ®p X is
RHomp/ (X, —) &2 — ®a Y,

where Y is a A’-projective resolution of RHomy/ (X, A’). We claim that — X,
Y is a quasi-inverse of — Ky X. In order to show that the two compose to
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the identity on Dj(mod A), observe first that the stalk complex A serves as
a one-sided tensor unit in the sense that for each differential A-module M
there is an isomorphism

MRy AZ=M
in C;(mod A), natural in M. Further, quasi-isomorphic (bounded) complexes

clearly give rise to naturally isomorphic tensor product functors. Combining
these observations with the isomorphisms

X @ Y = RHomp (X, X) = A
in D®(mod A), it follows from (3.1 that there are natural isomorphisms
(M&AX)gA/YgMgA(X®A/Y)gM®AA:M

in D;(modA). A similar argument shows that the reversed composition is
isomorphic to the identity on Di(mod A’). O

3.3. Resolutions

Using the terminology of [3], a projective flag in a differential module (P, ep)
is a decomposition of the underlying module P = P, ® P,_1 ® - - - & Py where
each P; € proj A, with respect to which ep is of the form

0 0 0 e 0 0

o=t 0 o - 0 0

8[,[—2 al—l,l—2 0 . 0 0

(3.4) . .
ai,l al—.l,l al—.2,1 . 0 O

8l,0 al—l,O al—Q,O . 61,0 0

Not only are the differential modules admitting projective flags homologi-
cally most viable (e.g. Lemma[3.8|and [3, Proposition 2.4]), they also provide
resolutions in the following sense.

Lemma 3.5. Fach differential module (M, epr) € Ci(modA) is quasi-
isomorphic to one admitting a projective flag.
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Proof. Choose projective resolutions
0= Xp == X1 = Xo—Im(epy) =0

and

0—=-Yy—-—>Y1 >Yy—>H(M)—0
in mod A. Applying the Horseshoe Lemma, first to

0 — Im(epr) — Ker(epr) = H(M) — 0
and then to

0 — Ker(epr) = M — Im(epr) — 0,
produces a projective resolution
81 81 a0
O—-P =P 11— =P =P —=M-=0

of M in mod A, in which P, = X; @ Y; ® X;. By construction, equipping each
P; with the endomorphism

turns the latter resolution into a sequence of Ale]-linear morphisms. Intro-
ducing the sign &; = (—1)’¢; results in the diagram

o o1 9o

0 Py P4 Py Py M 0
(36) J{El Jlgl—l J/E1 J/Eo J{E[u
0— P 2Py — P By M —— 0

in which the rows are exact and each square is anti-commutative, except
for the rightmost one which is commutative. With respect to the indicated
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decomposition of the A-module pM = P, & P_1 & --- ® Py, define

€l 0 o -~ 0 0
8; E1—1 0 0 0
0 81_1 El—g - 0 0
SpM = : : : :
0 0 0O -+ e O
0 0 0 s 81 €0

Now ep squares to zero because of the introduced sign, and the assignment

(plvpl—la ce 7p0) = 60(]70)

defines a Ale]-linear morphism f: (pM,epnr) — (M, epr) by commutativity
of the rightmost square in . With this diagram in mind it is straight-
forward to verify that f is a quasi-isomorphism, which suffices since epps is
of the required form. O

We say that a differential A-module K is homotopically projective if
HomKl(A)(K, N) =0

for each acyclic N. The class of homotopically projectives is closed under
extensions and hence constitutes a triangulated subcategory

K™ (mod A) € Ky (mod A).

It is easy to check that each (@, 0) with @ € proj A is homotopically projec-
tive, from which it follows that the homotopically projectives encompass the
differential modules admitting projective flags. Indeed, each object in the lat-
ter class can be obtained as an iterated extension of differential modules with
underlying projective module and vanishing differential. To show this, note
that the differential ep in on the underlying P=P, & P_16---® P
restricts to a differential, also denoted by p, on each summand of P of the
form P& P 1®---d Py fori=0,...,l. Moreover these differentials fit in
a filtration

(37) (Po,O) C (P1 @Po,Ep) c---C (Bfl D--- @P(),EP) C (P,&"p)

in Cy(mod A) with the property that each filtration factor has vanishing
differential. Hence, iterating from the canonical conflation

0— (P(),O) — (Pl@P(),{;“P) — (Pl,O) —0
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we reach each term of (3.7)), including (P, ep) itself, as an extension
0— (Pi_l@"'@Po,Ep) — (PZ‘@"'@P(),EP) — (P;,0) — 0.

Lemma 3.8. If P is a homotopically projective differential A-module, then
the localization functor induces an isomorphism

Homy, () (P, M) = Homp, (4) (P, M)
for each M.

Proof. First, observe that if f € Homy, (1)(P, M) maps to the zero morphism
in Di(mod A), then it factors through some acyclic N and hence vanishes
already in Ki(mod A) since Homg, 4y (P, N) = 0. Second, in the calculus of
roofs a morphism P — M in Dj(mod A) is represented by a diagram

X
v N
P M

with g a quasi-isomorphism. In the triangle
XLprP-C,—2X

the middle morphism must be zero, as Cj is acyclic. Thus ¢ is a split epi-
morphism and there is some ¢ ensuring commutativity of both squares in

Hence the roofs

X P
v N and Lo N
P M P M

are equivalent and it follows that the left hand roof lies in the image of the
localization functor, since the right hand one clearly does. O
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Note that the incredibly convenient attribute of homotopically projec-
tives expressed in Lemma [3.8]is a 1-periodic analog of the essential property
enjoyed by projective resolutions of differential complexes. Lemma [3.5] hence
indicates that, up to homotopy, the class of differential modules admitting
a projective flag should coincide with the class of homotopically projectives.

Proposition 3.9. The class of homotopically projectives in Ki(mod A) is,
up to isomorphism, precisely the class of differential modules admitting pro-
jective flags. Moreover, restriction of the localization functor gives a triangle
equivalence

K" (mod A) 22 Dy (mod A).

Proof. We have already seen how the differential modules admitting projec-
tive flags are all homotopically projective. Conversely, by Lemma each
differential module K allows a quasi-isomorphism pK — K where pK ad-
mits a projective flag, and by Lemma this will be invertible already in
Ki(mod A) whenever K is homotopically projective. The last claim is clear,
as density of the restricted localization functor is Lemma [3.5] while full faith-
fulness is Lemma 3.8 U

Remark. With no restriction on gldim A, it is clear how to devise homo-
topically projective resolutions of differential A-modules whose underlying
modules are not necessarily finitely generated. Indeed, using the idea of the
proof of Lemma, the resolutions will appear as colimits of possibly infi-
nite systems

Po—)P1—>P2 —

of differential modules in which each map is split mono over A and each quo-
tient Pjy1/P; has vanishing differential and underlying projective module.
Plainly, as in the filtration , each P; is homotopically projective, and so
it follows from

Homy, (x)(colim P;, N) = lim Homy, (x) (P, IV)

that also the colimit itself satisfies the required vanishing condition. Hence,
in analogy to the unbounded resolutions of differential complexes of [16],
there is a triangle equivalence D;(Mod A) = KTP(Mod A).

Let us denote by Kj(projA) the triangulated subcategory of Ki(mod A)
consisting of relatively projectives, i.e. differential modules whose underlying
modules are projective. In a sense, the most convenient scenario imaginable,
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and also the most striking analogy to the context of differential complexes
and their resolutions, is that the relatively projectives are all homotopically
projective. A priori, this would be just as surprising as it would be beneficial.
For instance, let G be the quiver

1—2—3
"\—/
Y

and consider the algebra KG/(Sa). Then, denoting by P, the indecompos-
able projective corresponding to vertex 2, it might seem unreasonable to
expect that the relatively projective differential module (P, ayf3) admits a
projective flag, even in the 1-periodic homotopy category. We nevertheless
have the following.

Proposition 3.10. The categories KTp(mod A) and Ky (projA) coincide.

Proof. Each homotopically projective in Ki(mod A) is isomorphic to a dif-
ferential module admitting a projective flag, and so is relatively projective.
Conversely, let (P, e) be relatively projective. Observe that Im(g) admits a
projective resolution

P=0-P%P .. 5P %P o,

obtained by splicing a finite resolution of Ker(e) with its inclusion into Pp.
Let (AP,eap) be the compression of P. The cone

Cotyp = (AP@AP, <_€AP 0 ))
—lap ear

vanishes in the homotopy category, and it therefore suffices to show that

—eap O 0
(Q,EQ) = (Po,s) ®C 1, = (AP ©® Py® AP, 0 e 0 )
—Iap 0 eap

is isomorphic to a differential module admitting a projective flag. To this
end,

o o1 e

0 Pl 13171 P1 PO Im(aQ) — 0
o)) 01 5

0 f)l f)l—l P1 Po Im(sQ) — 0
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is a pivotal diagram. Indeed, its commutativity reveals that the indicated
chain map P — P is a lift of the zero endomorphism on Im(eg), and must
therefore be null-homotopic. This means there are s;: P; — Py for 0 <14 <
I — 1 such that 0159 =€, 0;4+18; + $,-10; = 0for1 <i <[ —1ands;_10; =0.
Denoting by e: AP — Py and m: Py — AP the canonical split epi- and
monomorphism, respectively, and letting h; = (—1)’s;, it is clear that the
latter assemble to h: AP — AP such that

(3.11) mee = eaph — heap.

Miraculously, it turns out that (Q,eg) is isomorphic to

—EAP 0 0
(@ eq) = (AP @ Py® AP, —ce 0 0 > ,
—(lap+h) —m eap

whose differential is clearly of the required lower triangular form. Indeed,

lap+h m 0
f= e 0 —eeap
0 0 1ap

gives an isomorphism (Q',eg/) — (Q,eq). The reader so inclined is invited
to check that eqf = feg using (3.11]) together with the obvious equalities

eapm =0, eceeap=0=eh and em =1p,.
O

Example. Let us revisit the algebra KG/(fBa) with the relatively projective
differential module (P,,e = ayf3), discussed just prior to Proposition
The image of ¢ is the simple module Sy, so the relevant diagram is

[e% €

0 P1 P2 52 0
[ G
0 P2 p-—=55, 0.

In the notation of the proof of Proposition (Py, €) is hence a summand,
with null-homotopic complement, of the homotopically projective differential
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module
0 0 0 0 0
—a 0 0 0 0
(Q’,s@)z<P1@P2@P2@P1@P2, 0 - 0 00 )
—1p —8 0 0 0
0 —1p, —lp, a 0

We moreover know that e¢ is obtained by conjugation of the differential of

0 0 0 0 O
—a 0 0 0 O
(Q,€Q)=<P1@PQ@P2@P1@P2, 0 0 e 0 O ),
~1p, 0 0 0 0
0 —1p, 0 a 0

and the reader may verify this by checking that f~leqf = ¢ for

lp, 76 0 0 0 lp, 0 —B8 0 0
0 1p, 1p, 0 0 0 0 1p, a 0
f=10 1p, 0 —a 0 | with f7'=[ 0 1p —1p, —a 0
0 0 0 1p 0 0 0 0 1p 0
0 0 0 0 1p, 0 0 0 0 1p,

Remark. The results of the current subsection clearly extend beyond the
case n = 1. In particular combining counterparts of Proposition and

Proposition yields
D, (mod A) = K, (proj A).
An independent discussion of the case n = 2 can be found in [12, Section 9.1].

Observation 3.12. We do not have a triangle equivalence of the above
form when gldim A is infinite. In particular the restriction

Kn(projA) — Dy, (mod A)

of the localization functor is no longer faithful in this case. For an easy exam-
ple take A = K[t]/(t?). Then the identity on the acyclic differential module
(A, t) cannot be null-homotopic, that is, (A, t) is non-zero in K;(projA) but
vanishes in D;(mod A).
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3.4. An embedding of the orbit category

If X,Y € DP(modA) then, since A is of finite global dimension, we may
replace X by a projective resolution to get

J T Hompe(a) (X, Y) = [ ] Hompes() (X, =Y.
€L 1EZ

In this case AX is homotopically projective by Proposition and hence
HOle(A) (AX, AY) = HomKl(A) (AX, AY)
by Lemma Further, it is straightforward to write down an isomorphism

] Homke(a) (X, 5Y) — Homy, () (AX, AY),
€L

as an element of the left hand side is just a sequence (f;); of, up to homotopy,
sequences of morphisms f; = ( fj ); with f] X7 — YI* Tt is clear that these
isomorphisms comprise a proof of the following.

Lemma 3.13. Compression of complexes induces a fully faithful embedding
A: D°(mod A)/% — Dy(mod A).

In other words, the orbit category is equivalent to the full subcategory of
gradable objects in D1(mod A).

Remark. There is a fully faithful embedding, abusively denoted by
A,: DP(mod A)/%™ — D, (mod A),
for each positive integer n, given by taking a complex
0-X0 x5 .. o Xt Xx 50

to the n-periodic
s [ x> [ X [ X = [ X'—
i=1(n) i=2 (n) i=0 (n) i=1(n)

whose differentials, with respect to the obvious decompositions, are matrices
of ‘gradable’ shape. The embedding of Lemma is clearly the case n = 1.
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4. Main result on the triangulated hull

The aim of the current section is to show that the embedding A of
Lemma/3.13] and more generally the A,, in the remark following it, is exactly
the embedding of the orbit category into its triangulated hull (Theorem.
For the sake of brevity, we stick to our scheme of providing details only for
the case n = 1.

From here on, B denotes the DG category By, = per A/¥ from Subsec-
tion and By is its full DG subcategory on the single object A viewed as a
stalk complex. For X,Y € B, note that each degree of the ‘mapping complex’
B(X,Y) is simply Homp(AX,AY) and that the differential B(X,Y)" —
B(X,Y)"*! is given by

f — €Ayf — (—1)if6AX.

Indeed,

per A(X, YY) = H Homy (X!, Yty
lez

so letting j run through the integers we obtain

B(X,Y)' = [ per A(X,57Y)" = Homa(AX, AY)
JEZ

for each i € Z. It is straightforward to check that the differential acts as
claimed.

Lemma 4.1. There is an equivalence of DG categories
dg-mod B = dg-mod By .

Proof. By Lemmal2.3]and Lemma the inclusion of By in B yields a fully
faithful DG induction functor

J: BEE  pRretr
By Lemma it suffices to show that J is dense. In our specific setup, i.e.

where the objects of the DG category B are complexes, all shifts and certain
cones exist already in Z°(B). Indeed, the notion of shift is the obvious one,



The triangulated hull of periodic complexes 223

and it is clear how to define the cone of each morphism

f (fz)z € ZO H Homc X Ez )

€L

with the property that f; is non-zero for at most one . This is in stark
contrast to the general setup where we must pass to the module category
before such constructions become available. Denoting by thick?(Bg) the full
subcategory of B obtained as the closure of By under summands, shifts and
cones of maps from Z°(Bg) of the form of the above f, the key observation
is that

thick®(Bg) = B.
This is easily verified. Indeed, the complex
0—rP" L Pl

is the cone of 3° € Z°(B)(PY, P') and therefore belongs to thick?(Bg). We
hence inductively obtain each perfect complex

0P L pt . L pt 27 ply g

as the cone of the chain map

—9°

0 PO Pl . Pl—2 Pl—l 0

between objects in this subcategory. Moreover, taking shifts and cones com-
mutes with the Yoneda embedding in the sense that there are canonical
isomorphisms

(EX)"N 2 2(X") and (Cf)" =2 Cpa

in C(B) for each X € B and f € Z°(B)(X,Y) of the above form. Combining
these observations with the commutativity of

By — B

Ll

,Bgre-tr J Rpre-tr
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it is straightforward to verify that J(BE'®*") is all of BP™, O

The point of view that a category is merely a ring with several objects
is justified also in the differential graded context. Hence we may identify the
DG category By with the DG algebra I' = B(A, A), which in combination
with Lemma [4.1] reads

dg-mod B = dg-mod .

I is clearly the formal DG algebra A[t,¢~!] with [t| = 1, and we proceed by
observing that DG I'-modules are nothing but modules over the algebra of
dual numbers.

Lemma 4.2. There is an equivalence of exact categories
C(T") = Cy(Mod A).

Proof. A graded ring II is said to be strongly graded if 11;11; = II;1; for all
i,7 € Z. By a classical theorem of Dade [8], II is strongly graded if and only
if the functor

— @, II: ModIly — GrlI
is an equivalence. In this case a quasi-inverse takes a graded II-module M to

the IIy-module My, and we also have mod IIp = gr II. Recall from Lemma 2.4
that there is an equivalence C(I') = GrI'(¢) where, since I is formal,

D(e) = I(e)/ (%, e = (=1)1Thye)

is the graded algebra with |¢| = 1. It is easy to check that I'(g) is strongly
graded, and hence the proof is completed by the straightforward calculation

D(e)o = A[t]/(t%). O

Upon passage to the level of derived categories, the two previous lemmas
reveal a triangle equivalence

D(B) 2 D;(Mod A),

which sets us up for proving Theorem First, under the DG equiva-
lence of Lemma per B corresponds to perI’. Moreover the equivalence
of Lemma [4.2] identifies the free I'-module of rank one with the differential
module (A, 0), making the exact category per B equivalent to the full subcat-
egory of C;(mod A) whose class of objects is the iterated extensions of objects



The triangulated hull of periodic complexes 225

of the form (P,0) with P € proj A. We have seen, using the filtration (3.7)),
that this is precisely the class of differential modules admitting projective
flags, and hence passing to the derived level it follows that the triangulated
hull Dy;(mod A) is all of D;(mod A). On the other hand, each perfect complex
X € H(B) = D°(mod A) /X sits in dg-mod B as the associated representable
functor and corresponds by Lemma[4.1] to the DG I'-module B(A, X). Pass-
ing through the equivalence of Lemma [4.2] amounts simply to taking degree
zero, and so X is further identified with

B(A, X)° =[] per A(A, £°X)% = ] Homa (A, X7) = AX,
i€Z i€Z

equipped with the differential e x.
Theorem 4.3. Compression of complexes, considered as a functor
A: DP(modA)/¥ — Di(mod A),
1s precisely the embedding of the orbit category into its triangulated hull.
Remark. More generally, for each positive integer n the embedding
A,: DP’(modA)/E"™ — D,(mod A)

described in the remark following Lemma is precisely the embedding
of the orbit category into its triangulated hull. This is of course dense,
and hence an equivalence, if and only if the compression A,,: D?(mod A) —
D, (mod A) is dense.

5. Applications

Our next goal is to determine when the orbit category DP(mod A)/%" actu-
ally coincides with its triangulated hull. The following homogeneity property
shows that for such purposes we need only consider the case n = 1.

Theorem (See [21, Theorem 1]). If the orbit category DP(mod A)/%"™ is
triangulated for one choice of n, then it is triangulated for each n.

5.1. Iterated tilted algebras

Our first application is Proposition which recovers a weak version of
[17, Theorem 1]. An analogous result in the context of root categories (i.e.
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for n = 2) can be found found in [20, Corollary 7.1]. Recall that if H is a
hereditary abelian category, then in DP(H) there is an isomorphism

x=][="H(X)
i€Z

for each X. We start by observing that the analogous property holds in
D1 (H).

Lemma 5.1. If H is hereditary abelian, then in Dy(H) there is an isomor-
phism

(M,en) = (H(M),0)

for each (M, epr).

Proof. The idea is of course to think of global dimension 7 not as Ext'*!

vanishing, but rather as Ext’ being right exact. The assumption on H hence
tells us that the epimorphism M =% Im(epr) induces an exact sequence

Exth(H (M), M) — Exth(H(M),Im(epr)) — 0.

In particular there is a commutative diagram

m p

E H(M) —— 0
(5.2) leM ls JlH(M)

0 — Im(eps) — Ker(epyy) — H(M) — 0

in H with exact rows. Notice that the chain map

0——0—— H(M)—0

is a quasi-isomorpism, and so after compressing we get

(H(M),0) = (M DE, <T?L 8))
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in Dy(H). The kernel and image of the latter differential is £ and Im(m),
respectively, viewed as subobjects of M @ E, and the map induced in ho-

mology by
. 0 0 (1M 3)
f: (M@E, <m 0)) ——= (M, en)

therefore appears as the following cokernel.

0 —— Im(m) E H(M ® E) — 0

0 — Im(ep;) — Ker(epyy) —— H(M) —— 0

This, however, is nothing but diagram (5.2]), which means that H f is invert-
ible. U

Proposition 5.3. The orbit category DP(mod A) /X" is triangulated when-
ever A is an iterated tilted algebra.

Proof. Tt suffices to show that the compression A: DP(mod A) — Dy(mod A)
is dense. This is easy, since when A is iterated tilted there is a hereditary
algebra A’ and a standard equivalence D?(mod A’) — DP(mod A). From ({3.2)
and Lemma this fits in a commutative diagram

DP(mod A’) ——— DP(mod A)

A E

D1<m0d A/) Dl(mod A)

where also the bottom row is an equivalence. By Lemma [5.1]it is clear that
the left hand compression functor is dense, forcing density of the right hand
one. ]

5.2. Non-gradable objects

We now turn to the perhaps more intriguing problem of finding algebras A
for which D°(mod A)/%™ does not coincide with its triangulated hull. Akin
to [2, Theorem 7.1], it turns out that the existence of an oriented cycle in
the ordinary quiver of A is sufficient (Theorem [5.5). A fundamental tool for
proving this is the following.
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Proposition 5.4. If there exists an indecomposable periodic complex of
finitely generated projective A-modules, then the orbit category DP(mod A) /X"
18 strictly smaller than its triangulated hull.

Proof. Tt suffices, using the resolutions of differential modules from Subsec-
tion to show that the compression functor

A: KP(projA) — Ky (proj A)

is not dense, i.e. to produce an object in K;(proj A) that is not gradable. So
let

al al _ 8171 al
V=5V Syl S y2s . 5yt 2y Syt

be an indecomposable complex of finitely generated projectives. Then Y is
indecomposable also after we factor out homotopy, and the coproduct

l

]_[ Yy

i=1

is 1-periodic, that is a differential module. Moreover, as such it cannot be
gradable. Indeed, assume it belongs to the essential image of A. This means
there is some indecomposable X € KP(projA) such that

l
]_[ Ny = ]_[ D¢
=1

1€Z

in Ky(projA). Since Endgs(p)(X) is local this implies that X must be a
summand of at least one of the left hand summands. This is a contradiction,
as Y cannot have a summand in KP(proj A). O

Theorem 5.5. If A is non-triangular then DP(mod A) /X" is strictly smaller
than its triangulated hull.

Proof. When A is non-triangular, its ordinary quiver contains an oriented
cycle
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The following algorithm produces an indecomposable periodic complex of
finitely generated projective A-modules, which is sufficient by Proposition|[5.4
Start with the doubly infinite periodic sequence

oy —
N e R N R N = T Y

If this is a complex, the algorithm terminates. If not, insert the maximal
non-zero composition

alzPil =P1£>P2—>--~—>Pi_1ﬁ>Pi:Pi2
with the property a;a; = 0 into the previous sequence to obtain
R R R PPy N e O = I

If this is a complex, the algorithm terminates. If not, insert the maximal
non-zero composition

. (o7
a21321>3+1—>“-—>ij1—]—1—>Pj=P¢3
with the property ajas = 0 into the previous sequence to obtain
g (a7

After finitely many steps this gives a sequence

As—1

"'_>Pi1£>PiQ_>"'_>PiS,1‘—%Pisﬁ)Pk—i—l_)"'—)-F)li)Pil—)"'
in which agas—1 =0 and as = ---ap #0 (possibly as =) = o). If
aras = 0, then

s o
o P PP 5P PSP,

is a complex and the algorithm terminates. If ajas # 0, then the algorithm
terminates with the complex

a10s 4105

as_
R T Y S SR Y 17— O = A S,

This is a complex which is clearly periodic and indecomposable as such.
Indeed, it has an indecomposable module in each degree and non-vanishing
differentials. |
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In light of [I7, Theorem 1], and in analogy to [2, Conjecture 1.2], the
highest hope one could have for the search for more algebras whose orbit
categories do not coincide with their triangulated hulls, is the following.

Conjecture. For each positive integer n, the embedding
A,: D’(mod A)/E™ — D, (mod A)
is dense if and only if A is piecewise hereditary.

Recall that the strong global dimension of A, a notion first proposed
by Ringel, is the supremum of the widths of the indecomposable objects
in KP(projA). By the work of Happel and Zacharia in [I4], A is piecewise
hereditary if and only if it has finite strong global dimension. One approach
to the conjecture might be to look for a more explicit argument showing
that arbitrarily wide indecomposable objects exist in KP(proj A) whenever A
is not piecewise hereditary. Indeed, if one can show that one of these inde-
composable complexes is even periodic, then the conjecture will be settled
by Proposition

In a sense this has already been done in the commutative setting. That
is, in [6] Buchweitz and Flenner classify the commutative noetherian rings of
finite strong global dimension. As finiteness of the strong global dimension is
a local property, the characterization is furnished by the construction of an
‘iterated Koszul complex’. Explicitly, if (R, m) is local and admits a regular
sequence of length [ > 2 then the associated Koszul complex

K=0-K 5 K!'—»... 5Kt 5 KM 50

can be ‘spliced’ with 'K by taking the cone of the chain map K — X!K
whose only non-zero component is an isomorphism K° — K'. Factoring out
an acyclic subcomplex isomorphic to 0 — K° — K! — 0 yields an indecom-
posable complex, and it is clear how to repeat the procedure in both direc-
tions to obtain periodicity.

Secretly, a modification of the iterated Koszul complex appeared al-
ready in the algorithm in the proof of Theorem Let us explain how this
works, as a rewriting of the process in homological terms will indicate that
a characterization of piecewise hereditary algebras by minimal projective
resolutions of simples may prove helpful in settling our conjecture. Also, the
reader might find the rephrased algorithm to be more easily applied in cer-
tain examples. So assume that the algebra A admits a simple module S with
Ext (S, S) # 0. Then a chain map f: P — X'P which is not null-homotopic
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must exist, where P is a minimal projective resolution of S. Note that this
is precisely what happens with the simple R-module R/m above, whose
minimal projective resolution is precisely the Koszul complex K. Factoring
out the only acyclic subcomplex of the cone Cf results in some complex C,
and a decomposition C = C & Cy will induce a decomposition in homol-
ogy, which is simply ¥ @ %!S. Hence we may assume that H(Cp) = £S5
and H(Cy) = 'S, which implies C; = £ P and Cy = %'P since P is inde-
composable. This is a contradiction, since a splitting of the canonical exact
sequence

0->XP—Cp—3SP—0

of complexes implies the vanishing of f in the homotopy category. Hence
C is indecomposable, and iterating results in periodicity. More generally,
a cycle of non-zero extensions between simples allows a similarly flavored
combination of minimal projective resolutions, yielding an indecomposable
periodic complex of projectives.

Example. Let G be the quiver

If A = KG/(Ba, 67), then Ext% (S1,S3) # 0 # Ext3 (53, S1), corresponding to

0— P3P, 2P —0

[

0—P PP

[

0— PP 2op—0.

Taking cones and factoring out acyclic subcomplexes yields

revealing the 2-periodic
,,,_>P2£>P4a_6>P2ﬁ>P4_>,,, .

In like manner, over the algebra KG/(vB«) there are chain maps
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04>P1E>P3L>P44>0

[1n

0— P, 2P —0

B
0—pr 2 p 2 p—.

between minimal projective resolutions of simples. Taking cones and factor-
ing out acyclic subcomplexes yields

0— P 2% py 2% p 0y p ),

hence the 1-periodic
1 o
-—>P360[—7>P3'8(1—7>P3—>~--.
5.3. Functors induced on orbit categories

Given a category T with an automorphism F, one might expect that F in-
duces the identity functor on T/ F. This famously does happen in the cluster
category DP(mod A)/S o ¥72, and hence the mantra ‘the cluster category is
2-Calabi—Yau’. Interestingly enough however, we have on our hands a situ-
ation that does not conform to this intuition.

Proposition 5.6. The identity functor and ¥ do not in general coincide
on the orbit category DP(mod A) /3.

Let us elaborate under the necessary assumption chark # 2. First of all,
note that the condition > 2 id on a triangulated category is a highly restric-
tive one. In fact, as was pointed out to the author by Steffen Oppermann, it
essentially implies semisimplicity. Hence we should not expect to find such an
isomorphism of functors on Dj(mod A) = Kj(projA). And indeed, recalling
that the shift functor changes the signs of differentials, it is easy to produce
an algebra A and an object in Kj(projA) that does not admit an isomor-
phism to its shift, never mind one that commutes with induced maps. Of
course, one might still suspect that X coincides with the identity functor on
the orbit category DP(mod A)/¥ itself, i.e. on the subcategory of gradables
in Ky (projA). And admittedly, each gradable does allow an isomorphism to
its shift (even worse, there are often many). However, objectwise isomor-
phisms X P = P cannot constitute a natural isomorphism ¥ 2 id of functors
on DP(mod A)/Y in general. For example, consider the path algebra of
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1—»2—3
w
Yy

modulo the ideal generated by Ba, and the gradable differential modules

0 0
Q1= (P1,0) and Q2= <P2@P3> (ﬁ 0))
If ¥ = id as functors on the orbit category, then the morphism

finng

fits in a commutative square

!

Q1 Q2

(5.7) J . J

f
LQ1 — ¥Q2

whose vertical arrows are isomorphisms. As this takes place in a triangulated
category, an isomorphism of cones Cy — Cy; is induced, i.e.

0 0 O 0O 0 O
(Pl@PQEBP?,, a 0 0 )g<P1@P2€BP3, o 0 0 )

v B 0 v =B 0

However, a straightforward calculation shows that the latter isomorphism
does not exist. One can also rebut the existence of with no mention
of the axioms of triangulated categories, using only the facts that an iso-
morphism @1 — Q1 is multiplication by Ae; with A € k* and that each
isomorphism Qo — Q)2 is some

)\,62 0
)\//B —)\/6’3
with ' € k¥ and \ € k.

Remark. For even n and regardless of chark, the identity and the n’th
power of the shift are precisely the same functor on C,(mod A). In partic-
ular, it follows that there is always an isomorphism " 2 id on the orbit
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category DP(mod A)/¥™ in these cases. Contrarily, as long as n is odd and
chark # 2 one can easily mimic the above example to produce occurences of
DP(mod A) /™ that suffer from the imperfection £™ 2 id. In light of this, one
could (very naively) worry that the n-Calabi—Yau property of the n-cluster
category DP(mod A)/S o ¥, introduced in [I7], might in fact fail unless n
is even. In [19], however, Keller shows that in this orbit category the signs
add up to ensure S = X" after all.

This behavior can be traced back to the formal DG algebra I' = A[t, 1]
with [t| = 1, employed in Section |4 Recall that if M is a right DG module
over a DG algebra A, then the right DG A-module XM is the shifted complex
with A-action

mxa=ma.

On the other hand, if N is a left DG A-module, then the shifted complex
YN is a left DG A-module with action given by

axn=(—1)"an.

Lemma 5.8. T' and XI' are isomorphic as right and as left DG I'-modules,
but not as DG T'-bimodules. In particular ¥ = — ®p XTI is not isomorphic
to the identity functor on the category of right DG I'-modules.

Proof. Let f: ' = XTI be a homomorphism of right DG I'-modules, i.e. f =
(fi) where f; € Endy(A) for each integer 7 such that

Fr () = fiy (1) %4 = fiy ()Y

for homogeneous «,~’ € T'. In particular picking v/ = 15 € I'y yields 41 =
fly|> that is f must be given by the same homomorphism in each degree.
Similarly, if g = (g;): I' = XI' is a homomorphism of left DG T'-modules,
then

Il (V1) = * g (1) = (1) gy (),
and picking 7/ = 15 € I'y yields Gly|+1 = —gJy|- Hence I' = XI" on each side,

but the required signs reveal that no isomorphism of DG I'-bimodules can
exist. O
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