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Crystalline lifts of two-dimensional mod p

automorphic Galois representations

Fred Diamond and Davide A. Reduzzi

We show that a sufficient condition for an irreducible automorphic
Galois representation ρ : GF → GL2(Fp) of a totally real field F
to have an automorphic crystalline lift is that for each place v
of F above p the restriction detρ|Iv is a fixed power of the mod p
cyclotomic character. Moreover, we show that the only obstruction
to controlling the level and character of such automorphic lifts
arises for badly dihedral representations.
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1. Introduction

Let ρ : GQ → GL2(Fp) be a continuous irreducible odd representation of the
absolute Galois group of the rationals. By Serre’s conjecture, now a theorem
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of Khare-Wintenberger and Kisin, ρ is automorphic. It is moreover known
that ρ arises from a modular form of level prime to p.

The analogue of the last statement for automorphic mod p representa-
tions of the absolute Galois group of a totally real number field is false in
general. The purpose of this note is to give sufficient conditions for a mod
p Hilbert modular form to have a lift of level prime to p, or equivalently
for the associated Galois representation to have an automorphic lift which
is crystalline at all primes over p. The result is motivated by a question of
Dieulefait and Pacetti; see [5, Lemma 8.32] where a special case of The-
orem 1.1 is used in the construction of “chains” of compatible systems of
Galois representations.

We first recall the existence of an obvious obstruction. Let p be a prime
number and F a totally real number field. Denote by Σ the set of embeddings
of F in R. For integers k ≥ 2 and w having the same parity denote by
Dk,w the discrete series representation of GL2(R) having Blatter parameters

(k,w). In particular Dk,w has central character t 7→ t−w. Fix a tuple ~k =
(kτ )τ∈Σ ∈ ZΣ

≥2 and an integer w all sharing the same parity. Let π be a
cuspidal automorphic representation of GL2(AF ) which is holomorphic of
weight (~k, w), i.e., such that πτ ' Dkτ ,w for all τ ∈ Σ. Assume moreover that
the level of π is coprime with p. If ρπ : GF → GL2(Qp) denotes the p-adic
Galois representation attached to π, we have detρπ|Iv = εw−1

v for all primes
v of F dividing p, where Iv is the inertia subgroup of a decomposition group
of GF at v, and εv is the p-adic cylotomic character restricted to Iv (cf. [2,
Corollary 2.11] and [4]).

We show that this condition on detρπ|Iv is the only obstruction to the
existence of a crystalline lift of an irreducible automorphic representation
ρ : GF → GL2(Fp). Moreover we control the conductor and central character
of such a lift provided only that ρ is not badly dihedral (see Definition 3.3).
More precisely, we prove:

Theorem 1.1. Suppose that ρ : GF → GL2(Fp) is automorphic, irreducible,
and that for some integer k, we have detρ|Iv = εk−1

v for all v|p. Then there
exists n0 such that if n ≥ n0, there exists a cuspidal automorphic represen-
tation π of GL2(AF ) such that

• if v|p, then πv is unramified principal series;

• if v|∞, then πv∼=Dk+nδ,k+nδ where δ=lcm{ (p−1)/ gcd(p−1, ev) | v|p };

• ρπ ∼= ρ.
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Suppose further that ρ is automorphic with prime-to-p conductor dividing
n ⊂ OF , and that ψ is a finite order Hecke character of A×F of conductor
dividing n, totally of parity w = k + nδ, and satisfying detρ = ψεw−1. Then
if ρ is not badly dihedral, we can choose π as above with conductor dividing
n and central character ψ−1| |−w.

(Here ev denotes the ramification degree of v over p.) We remark that
we have ensured in the conclusion that the lift has parallel weight since it
seems no harder to achieve and slightly simplifies the statement.

There are two main ingredients to the proof of Theorem 1.1. The first
of these is Proposition 2.1 below, which is a statement purely about mod p
representations of GL2(F) where F is a finite field of characteristic p. The
result can be deduced from the main result of [12], but we give instead a
short self-contained proof that could be useful if one wishes to extract an
explicit value of n0 in the conclusion of Theorem 1.1.

We will then deduce Theorem 1.1 from standard arguments for produc-
ing congruences and liftings of cohomology classes (cf. Section 3.2). We must
do some work however to show that the only obstruction to controlling the
level and character is in the case of badly dihedral representations, even for
p = 2 (cf. Sections 3.3 and 3.5). A related result is proved in [2, Lemma 4.11]
using the Galois action on the cohomology of Shimura curves, but since we
also wish to work with forms on definite quaternion algebras, we give a dif-
ferent argument in this paper by interpreting the obstruction in terms of
the Hecke action. We remark that this obstruction is genuine, but that even
in this case one can obtain slightly weaker results by modifying our argu-
ments or by constructing CM lifts. We remark also that we could instead
have attempted to deduce a version of Theorem 1.1 using level lowering or
automorphy lifting theorems, as in [10] or [8], but this approach would have
required additional hypotheses, such as adequacy of the image of ρ, and
made the case of p = 2 even more problematic.

Finally we also give two more refined variants of the main result (Theo-
rems 4.2 and 4.5) in the special case where the initial automorphic represen-
tation has weight (2, . . . , 2) and is unramified or special at all primes over
p. This is again with a view to applications along the lines of those in [5].

2. Grothendieck ring relations

In this section we denote by F a fixed finite field of characteristic p > 0.
Fix an embedding τ0 : F→ Fp and let τi = τ0 ◦ Frobi where Frob is the



i
i

“3-Diamond” — 2018/5/14 — 22:28 — page 46 — #4 i
i

i
i

i
i

46 F. Diamond and D. A. Reduzzi

(arithmetic) Frobenius automorphism of F and we sometimes view i ∈ Z/fZ
where f = [F : Fp].

For i = 0, 1, . . . , f − 1 and n ≥ 0, we let Symn
[i] = Fp ⊗F,τi SymnF2 where

SymnF2 denotes the nth symmetric power of the standard representation of
GL2(F) for n ≥ 0; by convention we let Sym−1

[i] F2 = 0. For ~n = (n0, n1, . . . ,

nf−1) with n0, . . . , nf−1 ≥ −1, we let

S~n = ⊗f−1
i=0 Symni

[i] .

Recall that S~n is an irreducible representation of GL2(F) if and only if
0 ≤ ni ≤ p− 1 for all i, and that every irreducible representation of GL2(F)
over Fp is of the form deta ⊗ S~n for some a ∈ Z and ~n as above.

We let G0(Fp[GL2(F)]) denote the Grothendieck group on finite-
dimensional representations of GL2(F) over Fp, which is thus isomorphic to
the free abelian group generated by the classes [deta ⊗ S~n] for a = 0, . . . , pf −
2 and ~n = (n0, n1, . . . , nf−1) as above.

We use ≤ for the natural partial ordering on G0(Fp[GL2(F)]); thus
R ≤ R′ whenever R′ −R is in the submonoid of G0(Fp[GL2(F)]) consist-
ing of classes of (actual) Fp-representations of GL2(F). Note that if σ and
σ′ are Fp-representations of GL2(F), then [σ] ≤ [σ′] if and only if there is
an embedding of the semisimplification of σ in that of σ′. In particular if σ
is irreducible, then [σ] ≤ [σ′] if and only if σ is a Jordan-Hölder factor of σ′.

Assume f ≥ 1 is arbitrary. If k < −1 for each i ∈ Z/fZ define (cf. [13]):

[
Symk

[i]

]
:= −

[
detp

i(k+1) ⊗ Sym−k−2
[i]

]
.

In what follows we slightly abuse notation by allowing taking brackets of
virtual representations in G0(Fp[GL2(F)]).

Denote by NF/Fp the field norm map for the extension F/Fp.

Proposition 2.1. Let σ be an irreducible representation of GL2(F) over
Fp with central character of the form Nes

F/Fp
for some e, s ≥ 1. Then [σ] ≤[

S⊗e(t,...,t)

]
for all sufficiently large t ≡ s mod (p− 1)/ gcd(p− 1, e).

The proof will be based on the following lemmas, which can be viewed
as providing algebraic analogues of theta operators and Hasse invariants in
order to shift weights of automorphic forms in characteristic p.
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Let n,m ≥ 0. The usual identification of graded F-algebras Sym F2 '
F[t1, t2] induces an action of GL2(F) on F[t1, t2]. When f = 1, multiplica-
tion by the Dickson invariant tp1t2 − t1t

p
2 ∈ F[t1, t2]SL2(F) induces a GL2(F)-

equivariant embedding Sn ↪→ det−1 ⊗ Sn+p+1 ([1, Section 3]). Similarly, when
f >1 we obtain a GL2(F)-equivariant embedding Symm

[0]⊗Symn
[1] ↪→ det−p⊗

Symm+p
[0] ⊗ Symn+1

[1] induced by tp1 ⊗ t2 − t
p
2 ⊗ t1 ([11, Section 3.5.1]). We ob-

tain in particular:

Lemma 2.2. Suppose f = 1 and n ≥ 0. Then [Sn] ≤ [det−1 ⊗ Sn+p+1].

Lemma 2.3. Suppose f > 1 and m,n ≥ 0. Then[
Symm

[0] ⊗ Symn
[1]

]
≤
[
det−p ⊗ Symm+p

[0] ⊗ Symn+1
[1]

]
.

Lemma 2.4. Suppose f = 1 and n ≥ 0. Then [Sn] ≤ [Sn+p−1] unless n =
r(p+ 1) for some r, in which case we have [Sn] ≤ [Sn+p−1 + detr].

Proof. Serre’s periodic relation:

[Sn+p−1 − Sn] = [det⊗ (Sn−2 − Sn−p−1)],

valid in G0(Fp[GL2(F)]) for all n ∈ Z (cf. [13]) implies that positivity of
[Sn+p−1 − Sn] depends only on n mod p+ 1. If 1 ≤ n < p+ 1 the term
[Sn−p−1] is non-positive, so that [Sn] ≤ [Sn+p−1] when n 6≡ 0 mod p+ 1.
When n = r(p+ 1) we see by induction on r that [Sn+p−1 − Sn] = [detr ⊗
(Sp−1 − 1)]. �

Lemma 2.5. Suppose f > 1 and np > m ≥ 0. Then[
Symm

[0] ⊗ Symn
[1]

]
≤
[
Symm+p

[0] ⊗ Symn−1
[1]

]
.

Proof. We proceed by induction on n. The statement for n = 1 follows from

the identity
[
Symm+p

[0]

]
=
[
Symm

[0] ⊗ Sym1
[1] − detp ⊗ Symm−p

[0]

]
(cf. last equa-

tion in [11, Theorem 2.7]), together with the fact that
[
Symm−p

[0]

]
≤ 0 since

m < p. Assuming now the statement for a fixed n = n0 > 0 and letting
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0 ≤ m < (n0 + 1)p, we have, using again the above identity:[
Symm+p

[0] ⊗ Symn0

[1]

]
=
[
Symm

[0] ⊗ Sym1
[1] ⊗ Symn0

[1] − detp ⊗ Symm−p
[0] ⊗ Symn0

[1]

]
=
[
Symm

[0] ⊗ Symn0+1
[1] + detp ⊗

(
Symm

[0] ⊗ Symn0−1
[1] − Symm−p

[0] ⊗ Symn0

[1]

)]
,

If m < p, then
[
Symm−p

[0]

]
≤ 0 in G0(Fp[GL2(F)]), so the expression between

rounded parenthesis is positive, implying the statement for n0 + 1. If m ≥ p,
then 0 ≤ m− p < n0p so that

[
Symm−p

[0] ⊗ Symn0

[1]

]
≤
[
Symm

[0] ⊗ Symn0−1
[1]

]
.

The result follows. �

We now proceed with the proof of Proposition 2.1. Suppose that σ =
deta ⊗ S~n with a ≥ 0 and ~n = (n0, n1, . . . , nf−1) with 0 ≤ ni ≤ p− 1.

We first treat the case e = f = 1. By Lemma 2.2 and induction on n , we
have [σ] ≤ [Sn+a(p+1)]. Let t0 = n+ a(p+ 1), and note that t0 ≡ s mod p−
1. If n = 0, then we may replace a by a+ p− 1 so as to assume t0 ≥ p2 −
1. We claim that [σ] ≤ [St] for all t ≡ s mod p− 1 with t ≥ t0. Indeed it
suffices to prove that if t ≥ t0 and [σ] ≤ [St], then [σ] ≤ [St+p−1], and this
is immediate from Lemma 2.4 except in the case σ = detr, t = r(p+ 1).
Note however that Lemma 2.2 implies that (b+ 1)[detu] ≤ [Su(p+1)] if u ≥
(p− 1)b; in particular 2[detr] ≤ [St] if t = r(p+ 1) ≥ p2 − 1, so in this case
it again follows from Lemma 2.4 that [σ] = [detr] ≤ [St+p−1].

Next we treat the case e = 1, f > 1. Note that Lemma 2.3 implies that[
Symm

[i] ⊗ Symn
[i+1]

]
≤
[
det−p

i+1 ⊗ Symm+p
[i] ⊗ Symn+1

[i+1]

]
for any m,n ≥ 0, i ∈ Z/fZ, and hence that

(1) [S~m] ≤
[
det−

∑f−1
i=0 bip

i ⊗ S~m′
]

for any m0, . . . ,mf−1, b0, . . . , bf−1 ≥ 0, where ~m = (m0, . . . ,mf−1) and ~m′ =

(m0 + b0 + pb1, . . . ,mf−1 + bf−1 + pb0). In particular, if a =
∑f−1

i=0 bip
i with

b0, . . . , bf−1 ≥ 0, then [σ] ≤ [S~n′ ] where ~n′ = (n′0, . . . , n
′
f−1) with n′i = ni +

bi + pbi+1. Note that

f−1∑
i=0

n′ip
i ≡ 2a+

f−1∑
i=0

nip
i ≡ s

(
f−1∑
i=0

pi

)
mod pf − 1,
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from which it follows that
∑f−1

i=0 n
′
i+jp

i is divisible by
∑f−1

i=0 p
i for j =

0, . . . , f − 1.
Now consider the system of equations

(2) n′0 − x0 + px1 = n′1 − x1 + px2 = · · · = n′f−1 − xf−1 + px0.

For any x0 ∈ Z, we obtain a solution with x0, . . . , xf−1 ∈ Z by setting

xj = xj−1 − n′j−1 +

(
f−1∑
i=0

n′i+jp
i

)/(
f−1∑
i=0

pi

)

for j = 1, . . . , f − 1. In particular we may choose a solution of (2) with
x0, . . . , xf−1 non-negative integers.

We now wish to apply Lemma 2.5, or rather its twist by Frobi, iteratively
xi+1 times for i = 0, . . . , f − 1 in order to conclude that [σ] ≤ [S(t,...,t)] where
t is the common value of n′i − xi + pxi+1, but we must first ensure that the
inequality np > m in the hypothesis of the lemma is satisfied at each stage.
To this end, note that we may replace ~n′ by ~n′′ = ~n′ + r(p2 − 1, . . . , p2 − 1)
for any integer r ≥ 0; indeed [σ] ≤ [S~n′ ] ≤ [S~n′′ ] by (1), and (2) still holds
with each n′i replaced by n′′i = n′i + r(p2 − 1). Choosing r so that

r(p− 1)(p2 − 1) > n′i − pn′i+1 + 2pxi+1

for each i, we find that p(n′′i+1 − xi+1) > n′′i + pxi+1. Now by Lemma 2.5 and

induction on
∑f−1

i=0 di, we see that if 0 ≤ di ≤ xi for i = 0, . . . , f − 1, then
[S~n′′ ] ≤ [S~n′′′ ] where n′′′i = n′′i − di + pdi+1. It follows that [σ] ≤ [S(t,...,t)]
where t is the common value of n′′i − xi + pxi+1. Similarly we find that if
t > 0, then [S(t,...,t)] ≤ [S(t+p−1,...,t+p−1)], which completes the proof in the
case e = 1, f > 1.

Finally we treat the case e > 1. From the case e = 1, we have that [σ] ≤
[S(u,...,u)] for all sufficiently large u ≡ es mod p− 1, hence [σ] ≤ [S(et,...,et)]
for all sufficiently large t ≡ s mod (p− 1)/ gcd(e, p− 1). From the natural
surjection (

Symt
[i]

)⊗e
→ Symet

[i]

we see that [S(et,...,et)] ≤
[
S⊗e(t,...,t)

]
, concluding the proof of Proposition 2.1.
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Remark 2.6. When f = 1, multiplication by the Dickson invariant

(tp
2

1 t2 − t1t
p2

2 )/(tp1t2 − t1t
p
2) ∈ (Sym F2)GL2(F)

induces a GL2(F)-equivariant injection Sk → Sk+p(p−1) for all k ≥ 0. Notice
that the change in weight produced by this operator does not allow us to
prove the desired result.

3. Lifting to characteristic zero

The first part of Theorem 1.1 is proved in Section 3.2 below. In Sections 3.3
and 3.5 we refine the argument to control the level and character of the
crystalline lifts we produce, thus proving the second part of Theorem 1.1.
We begin by fixing some notation.

3.1. Notation

We normalize local and global class field theory so that geometric Frobenius
elements correspond to uniformizers, and we adopt Hecke’s normalizations
of local-global compatibility when associating a Galois representation to an
automorphic form. These are the normalizations adopted in [4] and [2].

Let p be a prime number. We fix an algebraic closure Q (resp. Qp) of
the field Q of rational numbers (resp. of the field Qp of p-adic numbers). We
choose an embedding Q→ C and an isomorphism Qp

∼= C, so that we also

identify Q with a subfield of Qp. Denote by Fp a fixed algebraic closure of
the field Fp with p elements.

Let F ⊂ Q be a totally real number field. Denote by GF = Gal(Q/F ) its
absolute Galois group, and by ε : GF → Z×p the p-adic cyclotomic character.

Let Σ be the set of embeddings of F in Q.
For each finite place x of F we denote by Fx the completion of F at x,

and byOFx its ring of integers. We let AF (resp. AF,f ) denote the topological
ring of adèles (resp. finite adèles) of F .

Let v be a place of F lying above p. Let Gv denote the decomposition
group of GF at v induced by Q ⊂ Qp, and Iv be its inertia subgroup. We
let kv be the residue field of OFv , and we set fv := [kv : Fp]. Denote by ev
the absolute inertial degree of v, and by Σv be the set of embeddings of kv
in Fp. We let εv denote the restriction of the p-adic cyclotomic character to
Gv or to Iv. The reduction modulo p of εv is denoted by εv.

For any τ ∈ Σv we denote by ωτ the corresponding fundamental charac-
ter of Iv, defined as the composition Iv −→ O×v −→ k×v

τ−→ Fp
×

, where the
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first map is the restriction of the inverse of the reciprocity isomorphism of
local class field theory. Recall that the restriction to Iv of the local mod p
cyclotomic character εv of Gv is given by

∏
τ∈Σv

ωevτ .
For integers k ≥ 2 and w having the same parity we denote by Dk,w the

discrete series representation of GL2(R) having Blatter parameters (k,w),
and hence central character t 7→ t−w.

3.2. Existence of lifts

For each place v|p of F , fix an embedding τv,0 : kv → Fp and, as in Section 2,
set τv,i = τv,0 ◦ Frobiv where Frobv denotes the arithmetic Frobenius of kv and
i ∈ Z/fvZ. For any ~n = (n0, . . . , nfv−1) with n0, . . . , nfv−1 ≥ −1 let

Sv,~n =

i=fv−1⊗
i=0

(
Fp ⊗kv,τv,i Symnik2

v

)
,

viewed as an Fp-linear representation of GL2(kv).
Suppose now that ρ : GF → GL2(Fp) is the modular Galois representa-

tion in the statement of Theorem 1.1. Assume that σ is a Serre weight for ρ
in the sense of [2]; in particular σ is an Fp-linear irreducible representation
of GL2(OF /(p)) =

∏
v|p GL2(OF /(vev)), and therefore it can be written as

σ = ⊗v|pσv where each σv is an irreducible representation of GL2(kv).
Denote by Nkv/Fp the norm map attached to the field extension kv/Fp.

Slightly modifying the proof of [2, Corollary 2.11] by taking the map N :
(OF /(p))× → F×p considered there to be

∏
v|p Nev

kv/Fp
, and by applying the

generalization to the ramified settings of [2, Proposition 2.10], we deduce
that if the central character of σv is given by

∏
τ∈Σv

τ cτ−2ev for some integers
cτ , then

detρ|Iv =
∏
τ∈Σv

ωcτ−evτ .

For any prime v of F above p we have detρ|Iv = εk−1
v =

∏
τ∈Σv

ω
ev(k−1)
τ

by assumption. We deduce therefore that the central character of σv is given
by:

N
ev(k−2)
kv/Fp

.

Proposition 2.1 implies that σv is a Jordan-Hölder factor of S⊗evv,(tv,...,tv) for

all sufficiently large tv ≡ k − 2 mod (p− 1)/ gcd(p− 1, ev). Define

δ := lcm{ (p− 1)/ gcd(p− 1, ev) | v|p }.



i
i

“3-Diamond” — 2018/5/14 — 22:28 — page 52 — #10 i
i

i
i

i
i

52 F. Diamond and D. A. Reduzzi

We can thus find a non-negative integer n0 such that for all n ≥ n0 we
have k − 2 + nδ ≥ 0 and the weight σ is a Jordan-Hölder factor of the
GL2(OF /(p))-representation ⊗v|pS⊗evv,(k−2+nδ,...,k−2+nδ). By (a generalization

to the ramified settings of) [2, Proposition 2.5] we deduce that ρ arises from
a cuspidal automorphic representation π of GL2(AF ) having level prime to
p and such that πv ' Dk+nδ,k+nδ for all places v|∞ of F . This proves the
first part of Theorem 1.1.

3.3. The refinement of the argument in the case [F : Q] even

We now explain how to refine the argument above in order to control the
level and character of π, and prove the second half of Theorem 1.1. The case
of [F : Q] odd can be treated by modifying the argument above and using
results in the proof of [2, Lemma 4.11] to show that obstructions arise only
for badly dihedral representations. For the case of [F : Q] even, we will need
to use forms on definite quaternion algebras and prove analogous results
concerning the obstructions, which we proceed to do first.

3.3.1. Automorphic forms on definite quaternion algebras. Sup-
pose that [F : Q] is even and let D be the totally definite quaternion algebra
over F which splits at all finite places of F . Let OD be a fixed maximal or-
der in D, and choose isomorphisms of OFx-algebras OD,x ∼= M2(OFx) for
each finite place x of F . Let U =

∏
x Ux be an open compact subgroup of

D×f := (D ⊗F AF,f )× such that Ux ⊂ O×D,x for each finite place x. Let A

denote the field Fp or a topological Zp-algebra of finite type, and fix a con-
tinuous representation of UA×F,f/F

× on a finitely generated (topological)
A-module V . Let

SV (U) = { f : D×f → V | f(γgu) = u−1f(g)

for all γ ∈ D×, g ∈ D×f , u ∈ UA×F,f }.

Write D×f =
∐
i∈I D

×tiUA×F,f where I is a finite set, and let Γi denote the

finite group F×\(UA×F,f ∩ t
−1
i D×ti), so that we have an isomorphism of

A-modules:

(3) SV (U)
'−→ ⊕i∈IV Γi

induced by f 7→ ⊕i∈If(ti).
Let S be a finite set of finite places of F containing the places divid-

ing p and the places x such that Ux is not maximal. Let US :=
∏
x∈S Ux
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and suppose further that the action of U on V factors through the pro-
jection to US . For x 6∈ S fix a choice of uniformizer $x of OFx , and write
UxΠxUx =

∐
α hαUx, where Πx =

(
$x 0
0 1

)
∈ GL2(Fx) ∼= (D ⊗F Fx)×. We de-

fine the Hecke operator Tx acting on f ∈ SV (U) by

(Txf)(g) :=
∑
α

f(ghα)

for all g ∈ D×f . The Hecke algebra TS
A := A[Tx : x 6∈ S] acts on SV (U). With

a slight abuse of notation, we will often not indicate the weight and level of
automorphic forms on which TS

A acts.

Let ~k = (kτ )τ∈Σ ∈ ZΣ
≥2 and w ∈ Z such that kτ ≡ w mod 2 for all τ ∈ Σ,

and let ψ a finite order Hecke character of A×F , totally of parity w, so ψ(x) =
ψf (xf )

∏
τ |∞ sign(xτ )w for some character ψf of A×F,f . Let E ⊂ Qp

∼= C be a
sufficiently large finite extension of Qp; in particular we assume E contains
the values of ψ and the images of all the embeddings F → Qp. We suppose
further that for each embedding τ : F → E, we have a splitting D ⊗F,τ E ∼=
M2(E) so that if v is the place of F induced by τ , then the projection
of U to (D ⊗F Fv)× is contained in GL2(OE). Thus for each τ ∈ Σ, we
obtain a map U → GL2(OE), and hence an action of U on det(w−kτ+2)/2 ⊗
Symkτ−2O2

E . Suppose now that ψf is trivial on U ∩A×F,f , and let V~k,w,ψ be

the representation of UA×F,f whose restriction to U is defined by

⊗τ∈Σ(det(w−kτ+2)/2 ⊗ Symkτ−2O2
E),

and whose restriction to A×F,f is defined by the character

x 7→ N(xp)
w|x|wψf (x).

We write S~k,w,ψ(U) for SV~k,w,ψ(U), and we define Striv
~k,w,ψ

(U) := {0}, unless

~k = ~2, in which case we let Striv
~k,w,ψ

(U) consist of those functions in S~k,w,ψ(U)

that factor through the reduced norm map D×f
∼= GL2(AF,f )

det−→ A×F,f . Set-

ting S0 = S~k,w,ψ(U)/Striv
~k,w,ψ

(U), we have by the Jacquet-Langlands corre-

spondence that S0 ⊗OE C ∼= ⊕ππUf , the direct sum running over all holomor-
phic cuspidal automorphic representations π = π∞ ⊗ πf of GL2(AF ) such
that πτ ∼= Dkτ ,w for all τ ∈ Σ, and π has central character ψ−1| |−w.

3.3.2. Conclusion of the argument. We fix an irreducible represen-
tation ρ : GF → GL2(Fp) as in Theorem 1.1. Assume that ρ arises from a
holomorphic cuspidal automorphic form π′ for GL2(AF ) of paritious weight
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(~k,w) ∈ ZΣ
≥2 × Z, central character ψ−1| |−w, and level U = UpU

p, where
Up =

∏
v|p Uv, U

p =
∏
x-p Ux, and Ux ⊂ GL2(OFx) for all x. Let S be a finite

set of finite places of F containing the places of F above p and the places at
which π′ is ramified. Let mρ denote the maximal ideal of the Hecke algebra
TS
OE attached to ρ; thus with our normalizations, mρ is the kernel of the

homomorphism TS
OE → Fp defined by

Tx 7→ det(ρ(Frobx))−1N(x)tr(ρ(Frobx)) = ψ($x)−1N(x)wtr(ρ(Frobx))

for all x 6∈ S. By what was recalled in 3.3.1 we know that S~k,w,ψ(U)mρ
6= 0.

In the next section we will prove the following:

Lemma 3.1. If ρ is not badly dihedral in the sense of Definition 3.3 below,
then the functor V 7→ SV (U)mρ

from finite dimensional Fp-vector spaces en-
dowed with a continuous action of USA×F,f/F

× to TS
Fp,mρ

-modules is exact.

Let U∗ := GL2(OF ⊗Z Zp) · Up, and notice there is a Hecke equivariant

injection S~k,w,ψ(U)→ SV ′(U∗) where V ′ = Ind
U∗A

×
F,f

UA×F,f
V~k,w,ψ. In particular, we

also have that SV ′(U∗)mρ
6= 0. Fix an embedding of the residue field of OE

into Fp. Using Lemma 3.1 we see that Sσ(U∗)mρ
6= 0 for some Jordan-Hölder

constituent σ of V ′ ⊗OE Fp for the action of GL2(OF ⊗Z Zp). The assump-
tion on ρ|Iv implies by Proposition 2.1 that σ is a constituent of the Fp-linear
representation

⊗v|p(det⊗ S⊗evv,(k′−2,...,k′−2))

for all sufficiently large k′ ≡ k mod δ, where δ as in the statement of Theo-
rem 1.1. It follows that mρ is in the support of SW (U∗), where W is the OE-
linear representation V~k′,k′,ψ (this again uses Lemma 3.1). Now the result fol-

lows by applying the Jacquet-Langlands correspondence to SW (U∗)⊗OE C
to produce a holomorphic Hilbert modular form with desired weight, level,
and central character.

3.4. Proof of Lemma 3.1

We keep the assumptions and notation from the previous section. Suppose
that 0→ V → V1 → V2 → 0 is an exact sequence of finite dimensional Fp-
vector spaces endowed with a continuous action of UA×F,f factoring through

USA×F,f . By (3) we obtain the exact sequence:



i
i

“3-Diamond” — 2018/5/14 — 22:28 — page 55 — #13 i
i

i
i

i
i

Crystalline lifts of automorphic Galois representations 55

(4) 0→ SV (U)→ SV1
(U)→ SV2

(U)→ ⊕i∈IH1(Γi, V ),

where Γi = F×\(UA×F,f ∩ t
−1
i D×ti) and D×f =

∐
i∈I D

×tiUA×F,f . Notice the
last term in (4) vanishes if [F (µp) : F ] > 2, which occurs for example when
p > 3 is unramified in F/Q. We will show that, in general, it vanishes after
localization at mρ if ρ is not badly dihedral.

Note that if we choose another representative t′i = δtiu for the dou-
ble coset D×tiUA×F,f with δ ∈ D×, u ∈ UA×F,f and set Γ′i = F×\(UA×F,f ∩
(t′i)
−1D×t′i), then Γi = uΓ′iu

−1 and we obtain canonical isomorphisms
Hj(Γi, V )→ Hj(Γ′i, V ) induced by the isomorphisms

Γ′i → Γi, V → Res
Γ′i
Γi
V

g 7→ ugu−1, v 7→ uv.

We let XU = D×\D×f /UA×F,f and write Hj(XU , V ) for ⊕i∈IHj(Γi, V ); this

is independent of the choice of the ti up to canonical isomorphism1, which
is moreover compatible with the isomorphism SV (U) ∼= H0(XU , V ) in the
evident sense. We may thus rewrite the exact sequence (4) as

0→ H0(XU , V )→ H0(XU , V1)→ H0(XU , V2)→ H1(XU , V ).

3.4.1. The Hecke action on H1(XU , V ). For x /∈ S, the Hecke op-
erator Tx acting on SV (U) can be defined as a composite tr ◦ (Πx)∗ ◦ res
where res (resp. tr) is a restriction (resp. trace) map to (resp. from) forms
with respect to a smaller open compact subgroup, and (Πx)∗ is induced
by Πx. More precisely, consider the natural projection XU ′ → XU where
U ′ = U ∩Π−1

x UΠx, and for each double coset D×tiUA×F,f in XU , let {tij}
be representatives of the preimage in XU ′ (so D×tiUA×F,f is the disjoint

union over j of the D×tijU
′A×F,f ). Let Γ′ij be the corresponding stabiliz-

ers, so Γ′ij = F×\(U ′A×F,f ∩ t
−1
ij D

×tij). Writing ti = δtiju for some δ ∈ D×,

u ∈ U ′A×F,f , we see that v 7→ uv defines a map V → V compatible with the
inclusion Γ′ij → Γi defined by conjugation by u, and this gives a map

H1(Γi, V )→ ⊕jH1(Γ′ij , V ).

Taking the direct sum over i of these maps, the resulting map res : H1(XU , V )
→ H1(XU ′ , V ) is independent of the choices of double coset representatives.

1Alternatively one can arrive at this notation by defining a Grothendieck topology
on the groupoid fibered overXU by the Γi and viewing V as a sheaf on the associated
site.
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Similarly we define (Πx)∗ using the bijection XU ′′ → XU ′ induced by
right multiplication by Πx, where U ′′ = ΠxU

′Π−1
x . Since

D×f =
∐
i,j

D×tijU
′A×F,f ,

we have D×f =
∐
i,j D

×tijΠ
−1
x U ′′A×F,f and the corresponding stabilizer Γ′′ij

equals ΠxΓ′ijΠ
−1
x . Since Ux acts trivially on V , the isomorphism between

the groups Γ′ij and Γ′′ij defined by conjugation by Πx is compatible with

their action on V , so it induces an isomorphism H1(Γ′ij , V )→ H1(Γ′′ij , V ).
Taking the direct sum of these isomorphisms gives a well-defined map (Πx)∗ :
H1(XU ′ , V )→ H1(XU ′′ , V ).

Finally tr is defined similarly to res but using XU ′′ → XU and transfer
maps on cohomology. It is then easy to see that the composite tr ◦ (Πx)∗ ◦ res
is compatible with (4) and the Hecke operators on the SV (U) since each of
res, Π∗x and tr is compatible with (4) in the obvious sense. Note that in fact
Tx = tr ◦ (Πx)∗ ◦ res on H0(XU , V ) = SV (U).

More generally if x1, x2, . . . , xm are distinct primes of F not in S, then
we define a Hecke operator Tx1x2···xm exactly as above, but replacing Πx by
the product of the Πxi , which we denote by Πx1···xm .

Lemma 3.2. We have Tx1x2···xm = Tx1
Tx2
· · ·Txm. In particular the opera-

tors Txi commute and TS
Fp

acts on H1(XU , V ).

Proof. Consider the diagram:

H1(XU , V ) → H1(XU ′1 , V ) → H1(XU ′′1 , V ) → H1(XU , V )

↘ ↓ ↓ ↓

H1(XU ′1∩U ′2 , V ) → H1(XU ′′1 ∩U ′2 , V ) → H1(XU ′2 , V )

↘ ↓ ↓

H1(XU ′′1 ∩U ′′2 , V ) → H1(XU ′′2 , V )

↘ ↓

H1(XU , V ),

where
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• U ′1 = U ∩Π−1
x1
UΠx1

, U ′′1 = Πx1
U ′1Π−1

x1
, U ′2 = U ∩Π−1

x2···xmUΠx2···xm and
U ′′2 = Πx2···xmU

′
2Π−1

x2···xm ;

• the first row of vertical arrows and the first column of arrows (including
the first diagonal) are defined by the evident restriction maps;

• the last row of arrows and the last column of horizontal arrows (in-
cluding the last diagonal) are defined by the evident transfer maps;

• the middle column (resp. row) of horizontal (resp. vertical) arrows is
of the form (Πx1

)∗ (resp. (Πx2···xm)∗) and the middle diagonal arrow is
(Πx1x2···xm)∗.

Note that the top row comprises Tx1
, the last column Tx2···xm and the diag-

onal Tx1x2···xm , so the lemma follows by induction from the commutativity
of all the triangles and squares in the diagram.

We only sketch the proof of commutativity of the top right corner, the
rest being immediate from the definitions of the maps. Moreover to prove
commutativity of the top right corner reduces to checking it for the corre-
sponding diagram associated to each summand of H1(XU ′2 , V ). More pre-
cisely, given a double cosetD×tU ′2A

×
F,f inXU ′2 mapping toD×sUA×F,f inXU ,

let ∆ = F×\(U ′2A
×
F,f ∩ t

−1D×t) and Γ = F×\(UA×F,f ∩ s
−1D×s). Writing

D×tU ′2A
×
F,f =

∐
j∈J

D×tj(U
′
2 ∩ U ′′1 )A×F,f

and D×sUA×F,f =
∐
i∈I

D×siU
′′
1 A×F,f ,

we must check the commutativity of the diagram⊕
i∈I

H1(Γi, V ) → H1(Γ, V )

↓ ↓⊕
j∈J

H1(∆j , V ) → H1(∆, V )

where ∆j = F×\((U ′2 ∩ U ′′1 )A×F,f ∩ t
−1
j D×tj), Γi = F×\(U ′′1 A×F,f ∩ s

−1
i D×si)

and the maps are defined as follows:

• Writing s = αtw with α ∈ D×, w ∈ UA×F,f , the right-hand arrow is the
composite

H1(Γ, V )→ H1(∆,Res∆
Γ V )

∼−→ H1(∆, V )
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where the inclusion ∆→ Γ is defined by g 7→ w−1gw and Res∆
Γ V → V

is defined by v 7→ wv.

• The left-hand arrow is similarly defined component-wise as the com-
posite

H1(Γi, V )→
⊕
j

H1(∆j ,Res
∆j

Γi
V )

∼−→
⊕
j

H1(∆j , V ),

where the direct sum is over j such that si = αjtjwj for some αj ∈ D×,
wj ∈ U ′′1 A×F,f .

• Writing s = βisiyi with βi ∈ D×, yi ∈ UA×F,f for each i ∈ I, the top
arrow is defined component-wise as the composite

H1(Γi, V )
∼−→ H1(Γ, IndΓ

ΓiV )
∼−→ H1(Γ, IndΓ

ΓiResΓi
Γ V )→ H1(Γ, V ),

where the inclusion Γi → Γ is g 7→ y−1
i gyi, the first isomorphism is that

of Shapiro’s Lemma, the second is induced by V
∼−→ ResΓi

Γ V defined

by v 7→ y−1
i v, and the last map is given by the trace IndΓ

ΓiResΓi
Γ V → V .

• Writing t = γjtjzj with γj ∈ D×, zj ∈ U ′2A
×
F,f for each j, the bottom

arrow is defined similarly by the composite

H1(∆j , V )
∼−→ H1(∆, Ind∆

∆j
V )

∼−→ H1(∆, Ind∆
∆j

Res
∆j

∆ V )→ H1(∆, V ).

Note that for each j ∈ J , the resulting diagram of inclusions

∆j → ∆
↓ ↓
Γi → Γ

commutes up to conjugation by the element gj = y−1
i w−1

j zjwF
× ∈ Γ. Un-

ravelling definitions and applying standard functorialities, one is reduced
to checking commutativity of the following diagram of homomorphisms of
∆-modules⊕

i∈I
Res∆

Γ IndΓ
ΓiV →

⊕
i∈I

Res∆
Γ IndΓ

ΓiResΓi
Γ V → Res∆

Γ V

↓ ↓⊕
j∈J

Ind∆
∆j

Res
∆j

Γi
V →

⊕
j∈J

Ind∆
∆j
V →

⊕
j∈J

Ind∆
∆j

Res
∆j

∆ V → V,

where the maps are defined as follows:
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• The first downward arrow is defined by maps

Res∆
Γ IndΓ

ΓiV → Ind∆
∆j

Res
∆j

Γi
V

sending f : Γ→ V to the map ∆→ V defined by g 7→ f(gjw
−1gw).

• The final horizontal map in each row is defined by the evident trace
map.

• The remaining maps are induced by the evident ones of the form v 7→
xv where x = w, wj , y

−1
i or z−1

j .

Choosing coset representatives ua ∈ GL2(Fx1
) so that U =

∐
a∈A uaU

′′
1 , de-

composing A =
∐
i∈I Ai where

Ai = { a ∈ A | tua ∈ D×tiU ′′1 A×F,f },

and writing tua = δatira with δa ∈ D×, ra ∈ U ′′1 A×F,f for each a ∈ Ai, we find
that

Γ =
∐
a∈Ai

y−1
i Γiyiha

for each i ∈ I, where ha = y−1
i rau

−1
a . One can similarly choose coset rep-

resentatives for each ∆j in ∆, and the desired commutativity then follows
from a direct calculation using the resulting description of the trace maps
as sums over A. �

3.4.2. Badly dihedral representations.

Definition 3.3. We say that F ′ is a p-bad quadratic extension of F if F ′

is a quadratic totally imaginary extension of F of the form F (δ) for some δ
such that δp ∈ F× and δpOF = IpOF for some fractional ideal I of F . We say
that an irreducible representation ρ : GF → GL2(Fp) is badly dihedral 2 if ρ

is induced from a character GF ′ → Fp
×

for some p-bad quadratic extension
F ′ of F .

Remark 3.4. Note that F has a p-bad quadratic extension if and only if
F contains the maximal real subfield of Q(ζp). If this is the case and p is

2There is a typo in the definition of badly dihedral in the discussion before
Lemma 4.11 of [2]: δ` ∈ K should be δ` ∈ OK . The definition here differs slightly
from the one intended in [2] in the case p = 2 since we also wish to control the
central character of the lift.
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odd, then the only p-bad quadratic extension of F is F (ζp), but if p = 2,
then there are still only finitely many such extensions, as follows for example
from the fact that such an extension is necessarily unramified outside the
primes dividing 2 and ∞.

Let ρ : GF → GL2(Fp) be the modular Galois representation from Theo-
rem 1.1. Assume that ρ arises from the definite quaternion algebra D split at
all finite places of F , in level U and weight V (here V is a possibly reducible
finite dimensional Fp-linear representation of GL2(OF /(p))). We keep the
assumptions and notation from the previous section, so that in particular
mρ is the ideal of TS

OE attached to ρ, where S is a finite set containing the
primes of F dividing p and the primes at which ρ is ramified.

Let F1, F2, . . . , Fr denote the p-bad quadratic extensions of F (so r ≤
1 unless p = 2), and for each i = 1, . . . , r, let Ji denote the ideal of TS

OE
generated by the elements Tx for those finite places x of F such that x /∈ S
and x is inert in Fi.

Lemma 3.5. If J1J2 · · · Jr ⊂ mρ then ρ is badly dihedral.

Proof. Since mρ is prime, we may assume that Ji ⊂ mρ for some i. We thus
have that tr(ρ(Frobv)) = 0 for all v 6∈ S inert in Fi. By the Chebotarev Den-
sity Theorem, it follows that tr(ρ(g)) = 0 for all g ∈ GF \GFi . Let L denote
the projective splitting field of ρ, i.e., the fixed field of the kernel of the
composite of ρ with the projection to PGL2(Fp).

We claim that Fi ⊂ L. Indeed if not, then we may choose g ∈ GL \GFi
and observe that for any h ∈ GF , we have that either h 6∈ GFi so that
tr(ρ(h)) = 0, or gh 6∈ GFi in which case tr(ρ(g)ρ(h)) = tr(ρ(gh)) = 0 also
implies that tr(ρ(h)) = 0 since ρ(g) is a scalar. If p > 2, then taking h to
be the identity immediately gives a contradiction; if p = 2, then we see that
every element of Gal(L/F ) has order dividing 2, which contradicts the irre-
ducibility of ρ.

It follows that H = Gal(L/Fi) is subgroup of index 2 in G = Gal(L/F ),
and that every element of G \H has order 2. Moreover G is isomorphic to a
finite subgroup of PGL2(Fp) which is not contained in a Borel subgroup. By
Dickson’s classification of such subgroups, we see the only possibility is that
G is isomorphic to a dihedral group and H is a cyclic subgroup of index 2.
Therefore the projective image of ρ(GFi) is cyclic, from which it follows that
ρ|GFi is reducible, and hence that ρ is induced from a character of GFi . �

Lemma 3.6. There is a finite set of places S′ such that if xν 6∈ S′ and xν
is inert in Fν for ν = 1, . . . , r, then Tx1

· · ·Txr annihilates H1(XU , V ).
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Proof. Write D×f =
∐
iD
×tiUA×F,f and choose a representative t−1

i γti with

γ ∈ D× for each conjugacy class of elements of order p in each of the groups

Γi = F×\(UA×F,f ∩ t
−1
i D×ti).

Then F [γ] is p-bad, so F [γ] = Fν for some ν. Let Sγ be the finite set of
places x of F inert in Fν such that OFx [γ] 6= OFν ,x, and let S′ contain the
union of the Sγ for all γ as above.

Now let x1, . . . , xr be as in the statement of the lemma and let T =
Tx1···xr , which by Lemma 3.2 coincides with Tx1

· · ·Txr . Let U ′, tij and Γ′ij
be as in the definition of the Hecke operator T on ⊕iH1(Γi, V ) (cf. 3.4.1).
We claim that Γ′ij has order prime to p. Indeed if t−1

ij γ
′tij is a representative

of an element of order p in Γ′ij , then its image in Γi is of the form t−1
i γti

for some γ as above, so γ is conjugate in GL2(Fx) to an element of U ′xF
×
x ,

where x = xν for ν chosen so that F [γ] = Fν , and

U ′x = U0(x) =
{(

a b
c d

)
∈ GL2(OF,x)

∣∣ c ≡ 0 mod x
}
.

Since x 6∈ Sγ , we see that detγ ∈ O×F,x, so in fact γ is conjugate to an element
of U0(x), hence its characteristic polynomial is reducible mod x. On the other
hand since x 6∈ Sγ , we see also that γ generates the ring of integers of an
unramified quadratic extension of Fx, so the characteristic polynomial of γ
is irreducible mod x, giving a contradiction.

Since all the Γ′ij have order prime to p, it follows that ⊕i,jH1(Γ′ij , V ) = 0,
and therefore T = 0. �

Lemma 3.1 follows easily from Lemmas 3.5 and 3.6. Indeed it suffices to
prove that if mρ is in the support of H1(XU , V ), then ρ is badly dihedral.
Note that we may enlarge S since if mρ is in the support of H1(XU , V ),
then so is m′ρ = mρ ∩TS′ for any finite S′ ⊃ S. In particular choosing S′ as
in Lemma 3.6 we see that the ideal J1 · · · Jr of Lemma 3.5 is contained in the
annihilator of H1(XU , V ), so if H1(XU , V )mρ

6= 0, then ρ is badly dihedral.

3.5. The refinement of the argument in the case [F : Q] odd

Assume now that [F : Q] > 1 is odd, and let ρ be as in the statement of
Theorem 1.1.

Fix an infinite place τ0 of F and let D denote the quaternion algebra over
F whose ramification set equals Σ− {τ0}. Fix moreover isomorphisms Df

∼=
M2(AF,f ) and D ⊗F,τ0 R ∼= M2(R). Let U =

∏
x Ux be an open compact

subgroup of D×f
∼= GL2(Af ). Set h± = P1(C)−P1(R). We denote by XU
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the Shimura curve over F which is the canonical model for the complex
analytic space

XU (C) = D×\(D×f × h±)/UA×F,f

as in [3] (we see F ⊂ C via τ0). Notice that we quotient D×f also by the

action of A×F,f in order to keep track of central characters in what follows.
We have the decomposition into connected components:

XU (C) =
⊔
i∈I

Γi\h,

where I is a finite set, and Γi = F×\Γ̃i acts properly discontinuously on h.
Here Γ̃i = UA×F,f ∩ t

−1
i D×+ti where D×f =

∐
i∈I D

×
+tiUA×F,f and D×+ is the

set of elements of D of totally positive reduced norm. The groups Γi are
torsion free and act freely and properly on h if U is small enough, but not
in general. Each component Γi\h has a canonical model defined over a finite
abelian extension of F by [3, 1.2].

Let S denote a finite set of finite places of F containing the places
above p and the places at which ρ is ramified. Let ~k ∈ ZΣ

≥2 and w ∈ Z such
that kτ ≡ w mod 2 for all τ ∈ Σ and let ψ be a finite order Hecke char-
acter of A×F totally of parity w. The systems of Hecke eigenvalues for the
action of TS

C on the space of holomorphic Hilbert modular forms of level

U , weight (~k,w), and central character ψ−1| · |−w coincide with those aris-
ing from the étale cohomology H1(XU,F , V~k,w,ψ ⊗OE E), where V~k,w,ψ is the

OE-sheaf associated to the homonymous representation of UpA
×
F,f on a finite

free OE-module (see 3.3.1 and [4]). Here E is a large enough finite exten-
sion of Qp, and we see E ⊂ Qp

∼= C. These Hecke eigensystems also coincide
with the Hecke eigensystems arising from ⊕i∈IH1(Γi, V~k,w,ψ ⊗OE E). (The
action of the Hecke operators on the cohomology of the Γi’s is defined as in
Section 3.4.1.) We denote by mρ the prime ideal of TS

OE attached to ρ.
To prove the second half of Theorem 1.1 we use the same strategy

adopted in the case of a definite quaternion algebra, modulo guaranteeing
that an analogue of Lemma 3.1 holds. We now consider the natural action
of TS

OE on spaces (⊕i∈IHj(Γi, V ))mρ
where V is a finite dimensional contin-

uous Fp-linear representation of UpA
×
F,f/F

×; we wish to prove that if ρ is

not badly dihedral, then the functor V 7→ (⊕i∈IH1(Γi, V ))mρ
is exact, so it

is enough to prove that (⊕i∈IHj(Γi, V ))mρ
= 0 for j = 0, 2.

First note that by the strong approximation theorem, the reduced norm
det induces a bijection D×+\D×f /UA×F,f → I where

I = A×F /F
×
∞,>0F

×det(U)(A×F,f )2.
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It follows that in the definition of the Hecke operator Tx for places x 6∈ S, we
may use the same index set I and representatives ti when U is replaced by
U ′ = U ∩Π−1

x UΠx and U ′′ = ΠxU
′Π−1
x . We may thus write Tx as a direct

sum of composite maps

Hj(Γi, V )→ Hj(Γ′i, V )→ Hj(Γ′′i′ , V )→ Hj(Γi′ , V )

where i 7→ i′ is induced by multiplication by ($x)x on I. Let FI denote the
abelian extension of F corresponding to I by class field theory; we see that
if x splits completely in FI , then Tx acts componentwise on ⊕i∈IHj(Γi, V ).
Moreover if j = 0, then for such x this action is simply multiplication by the
index [Γi : Γ′i] = [Γi : Γ′′i ] = N(x) + 1 on each component.

Suppose now that mρ is in the support of ⊕i∈IH0(Γi, V ), and let F ′

denote the composite of FI(ζp) with the splitting field of det(ρ). If x splits
completely in F ′, then Tx −N(x)− 1 ∈ mρ for all such x, which implies that
tr(ρ(Frobx)) = 2. The Brauer-Nesbitt and Chebotarev Density Theorems
then imply that ρ|GF ′ has trivial semi-simplification; since F ′ is an abelian
extension of F , this contradicts the irreducibility of ρ.

To treat the case of j = 2, we use Farrell cohomology groups Ĥj(Γ, V )
(defined in [7]) for finite index subgroups Γ of the groups Γi. Note that
if F = Q, then such Γ have virtual cohomological dimension one, so that
H2(Γ, V ) = Ĥ2(Γ, V ). If F 6= Q, then Γ is a virtual duality group of dimen-
sion 2 with dualizing module isomorphic to Z (with trivial Γ action)3, so
that [7, Thm. 2] yields an exact sequence:

H0(Γ, V )→ H2(Γ, V )→ Ĥ2(Γ, V )→ 0.

We will assume F 6= Q since the case F = Q is easier and can be treated by
minor modifications to the arguments below.

For Γ′ a finite index subgroup of Γ, we have restriction maps Hj(Γ, V )→
Hj(Γ

′, V ) and Ĥj(Γ, V )→ Ĥj(Γ′, V ), as well as corestriction mapsHj(Γ
′, V )

→ Hj(Γ, V ) and Ĥj(Γ′, V )→ Ĥj(Γ, V ), allowing us to define Hecke op-

erators Tx on ⊕i∈IHj(Γi, V ) and ⊕i∈IĤj(Γi, V ) for x 6∈ S exactly as on
⊕i∈IHj(Γi, V ). By the following lemma (and the fact that the isomorphisms
Γ′i
∼= Γ′′i are orientation-preserving), the homomorphisms

(5)
⊕
i∈I

H0(Γi, V )→
⊕
i∈I

H2(Γi, V )→
⊕
i∈I

Ĥ2(Γi, V )

3Note that there is a canonical choice of orientation H2(Γ,ZΓ) ∼= Z provided by
the complex analytic structure on XU (C).
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are compatible with the operators Tx.

Lemma 3.7. Let Γ be a virtual duality group of dimension n with dualizing
module D. Let M be a left ZΓ-module and Γ′ a finite index subgroup of Γ.
Then the diagram:

· · · → Hn−j(Γ, D ⊗Z M) → Hj(Γ,M) → Ĥj(Γ,M) → Hn−j−1(Γ, D ⊗Z M)→ · · ·
↓ ↓ ↓ ↓

· · · →Hn−j(Γ
′, D ⊗Z M) → Hj(Γ′,M) → Ĥj(Γ′,M) → Hn−j−1(Γ′, D ⊗Z M)→ · · ·

commutes, where the rows are the exact sequences given by [7, Thm. 2] and
the vertical arrows are the natural restriction maps. Similarly the diagram
commutes with the downward arrows replaced by the upward corestriction
maps.

Proof. Let (P•, d•) be a projective resolution of finite type of the trivial
(left4) Γ-module Z, which we view also as a projective resolution of Z as a
Γ′-module. We define P ∗• := HomΓ(P•,ZΓ) and P ′•

∗ := HomΓ′(P•,ZΓ′) and
denote by (P ∗• , d

∗
•) and (P ′•

∗, d′•
∗) the corresponding cochain complexes of

right ZΓ- and ZΓ′-modules respectively. There is a natural map of cochain
complexes of right ZΓ′-modules ρ• : P ∗• → P ′•

∗ induced by the map ZΓ→
ZΓ′ given by

∑
γ∈Γ nγγ 7→

∑
γ∈Γ′ nγγ. Note that ρ• is an isomorphism, with

inverse σ• defined by (σj(f))(x) =
∑

γ∈R γ
−1f(γx) for f ∈ P ′j

∗ and x ∈ Pj ,
where Γ = tγ∈RΓ′γ.

Recall that the dualizing module D is defined as Hn(Γ,ZΓ), which we
view as a right ZΓ-module, and let (Q•, e•) be a projective resolution of D
as a right ZΓ-module. Note that D = Hn(P ∗• ) = ker d∗n/Im d∗n−1, and then
the natural inclusion D ↪→ coker d∗n−1 can be extended to a map of chain
complexes f• : Q• → P ∗n−•. Moreover if we let D′ = Hn(Γ′,ZΓ′) denote the
dualizing module of Γ′, then ρ• induces the canonical isomorphism D ∼= D′

of ZΓ′-modules, so that we may also view (Q•, e•) as a projective resolution
of D′, and extend the natural inclusion D′ ↪→ coker (d′n)∗ to a map of chain
complexes f ′• : Q• → (P ′n−•)

∗ where f ′• = ρ• ◦ f•.
We now let X• denote the mapping cone of the chain map f•, so that

X• = Q• ⊕ P ∗n−•−1, and similarly let X ′• be the mapping cone of f ′•. Then
id⊕ ρ• defines a chain map, giving a commutative diagram of morphisms

4Some of the modules we consider will be naturally right ZΓ-modules; they can
be regarded as left ZΓ-modules via the involution γ 7→ γ−1 of Γ; and vice versa.
Some of the chain complexes we consider will be sometimes regarded as cochain
complexes, after relabelling; and vice versa.
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cochain complexes of right ZΓ′-modules:

(6)
0 → P ∗• → Xn−•−1 → Qn−•−1 → 0

↓ ↓ ↓
0 → P ′•

∗ → X ′n−•−1 → Qn−•−1 → 0

in which the rows are exact and the vertical maps are isomorphisms.
We now apply the functor ( · )⊗Γ M to the first line of (6), and the

functor ( · )⊗Γ′ M to the second. For a right Γ-module A and a left Γ-
module B, we define the trace map tr : A⊗Γ B → A⊗Γ′ B by tr(a⊗ b) =∑

γ∈R aγ
−1 ⊗ γb. We thus obtain a commutative diagram of complexes with

exact rows:
(7)

0 → P ∗• ⊗Γ M → Xn−•−1 ⊗Γ M → Qn−•−1 ⊗Γ M → 0
↓ ↓ ↓

0 → P ′•
∗ ⊗Γ′ M → X ′n−•−1 ⊗Γ′ M → Qn−•−1 ⊗Γ′ M → 0

where the left vertical arrow is given by P ∗• ⊗Γ M
tr−→ P ∗• ⊗Γ′ M

ρ•⊗idM−→
P ′•
∗ ⊗Γ′ M , the right vertical arrow is the trace map, and the middle vertical

arrow is their direct sum.
Taking cohomology in (7) then yields the desired commutative diagram.

Indeed the long exact sequences of [7, Thm. 2] are precisely those associated
to the rows of (7), and it is straightforward to check that the vertical maps
induce the corresponding restriction maps on homology and cohomology (for
Farrell cohomology, this follows from the characterization of res following [7,
Rem. 2]).

The proof of compatibility with corestriction is similar, so we omit the
details. One just uses σ• instead of ρ• to obtain a diagram as in (6), but
with upward arrows, and use the canonical projection A⊗Γ′ B → A⊗Γ B
to obtain the analogue of (7), again with upward arrows. �

We can now use (5) to prove that mρ is not in the support of
⊕i∈IH2(Γi, V ). Indeed the same argument as for H0 shows that if x splits
completely in FI , then Tx = N(x) + 1 on ⊕i∈IH0(Γi, V ), so that the ir-
reducibility of ρ implies that mρ is not in the support of the image of
⊕i∈IH0(Γi, V ). Note also that the surjectivity of

⊕i∈IH2(Γi, V )→ ⊕i∈IĤ2(Γi, V )

implies that the operators Tx commute, hence TS
OE acts, on ⊕i∈IĤ2(Γi, V ).

Thus it suffices to prove that if ρ is not badly dihedral, then mρ is not in

the support of ⊕i∈IĤ2(Γi, V ).
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Let S′ be a finite set of finite places of F constructed as in the proof
of Lemma 3.6. (Now D is an indefinite quaternion algebra, so the groups
Γi are infinite, but each still has only finitely many conjugacy classes of
elements of order p.) For each ν = 1, . . . , r let xν 6∈ S′ ∪ S be a finite place
of F inert in Fν ; let T = Tx1···xr = Tx1

· · ·Txr , and let Γ′i be as in the defi-
nition of the Hecke operator T . (Note that we can use the same index set
I and representatives ti.) The same proof as in Lemma 3.6 shows that Γ′i
does not contain any element of order p. Therefore Γ′i has a torsion-free

subgroup of finite index prime to p, so Ĥ2(Γ′i, V ) = 0. It follows that the op-

erator T annihilates ⊕i∈IĤ2(Γi, V ), since it factors through ⊕i∈IĤ2(Γ′i, V ).

To prove that (⊕i∈IĤ2(Γi, V ))mρ
= 0, we may enlarge S so that S ⊃ S′.

For each ν = 1, . . . , r we denote by Jν the ideal of TS
OE generated by the

Hecke operators Tx for those finite places x of F such that x 6∈ S and x is in-
ert in Fν . Observe that the ideal J1J2 · · · Jr annihilates (⊕i∈IĤ2(Γi, V ))mρ

.
By Lemma 3.5 (which holds, mut. mut., also in the current setting) we de-
duce that (⊕i∈IĤ2(Γi, V ))mρ

vanishes, since ρ is not badly dihedral. This
completes the proof that (⊕i∈IH2(Γi, V ))mρ

= 0, and hence the functor
V 7→ (⊕i∈IH1(Γi, V ))mρ

is exact.

4. A variant in a special case

We now give a variant of the main result in a special case, with a view to
producing forms satisfying the hypotheses of Assumption 8.15 in Section 8.3
of [5].

We must first introduce some notation. Recall that we have fixed an
embedding Q→ C and an isomorphism Qp

∼= C. Note that these choices
induce a bijection between the set Σ of embeddings τ : F → R and the set
of pairs (v, ϑ) where v|p and ϑ is an embedding Fv → Qp. For each v|p we

let Σv denote the set of embeddings ϑ : Fv → Qp, which we identify with a
subset of Σ via this bijection.

Let π be a cuspidal automorphic representation of GL2(AF ) which is
holomorphic of weight (~k,w), where as usual ~k ∈ ZΣ

≥2 and w ∈ Z is such
that w ≡ kτ mod 2 for all τ ∈ Σ. Suppose further that for all v|p, the local
factor πv is either unramified principal series or an unramified twist of the
Steinberg representation. Let av(π) denote the eigenvalue of the Hecke op-
erator Tv = UvΠvUv on the one-dimensional vector space πUvv , where Πv =(
$v 0
0 1

)
∈ GL2(Fv) and Uv = GL2(OF,v) or U0(v) according to whether πv is

unramified. Since av(π) is algebraic, we may view it as an element of Q via
our choices of embeddings Q→ C and Q→ Qp. We say that π is ordinary
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at v (with respect to our choices of embeddings) if

|av(π)|p = p
∑
τ∈Σv

(kτ−2−w)/2ev .

Remark 4.1. In general we have the expression on the right as an upper
bound on |av(π)|p; this follows for example from [9, Thm. 4.11], but will
also be clear from the proof of Theorem 4.2 below. Moreover if equality
holds then Theorem 1 of [14] implies that the local Galois representation
ρπ|GFv is reducible. Note that if πv is an unramified twist of the Steinberg
representation, then π is ordinary at v if and only if kτ = 2 for all τ ∈ Σv.

Theorem 4.2. Suppose that ρ : GF → GL2(Fp) is such that ρ ∼= ρπ for
some cuspidal, holomorphic, automorphic representation π of GL2(AF ) of
weight (~k, w) = (2, . . . , 2) such that for each v|p, πv is either unramified prin-
cipal series or an unramified twist of the Steinberg representation. For any
finite set of primes T of F , there exist a cuspidal automorphic representation
π′ of GL2(AF ) and a character ξ : GF → F

×
p of order at most 2 such that

• if τ ∈ Σ, then π′τ
∼= Dk′τ ,w

′ with k′τ ∈ {2, w′} where w′ = p+ 1 if p is
odd and w′ = 4 if p = 2;

• if v|p, then π′v is unramified principal series, and is ordinary if k′τ = w′

for some τ ∈ Σv;

• the prime-to-p part of the conductor of ξ divides a prime y 6∈ T which
splits completely in F ;

• ρπ′ ∼= ξ ⊗ ρ.

Suppose further that π has prime-to-p conductor dividing n ⊂ OF , and that
ψ is a totally even finite order Hecke character of A×F of conductor dividing
n satisfying detρ = ψε. Then if ρ is not badly dihedral, we can choose π′ as
above with conductor dividing ny2, central character ψ−1| |−w′ and ξy ⊗ π′y
unramified principal series.

Remark 4.3. We will see from the proof that the conclusion can be made
more precise as follows: For each v|p such that πv is ramified, we can ensure
that π′v is ordinary and the set of τ ∈ Σv such that k′τ = w′ maps bijectively
to Σv under the natural projection.

Proof. Let R denote the set of primes v|p such that πv is ramified, and as
usual let S be a sufficiently large finite set of primes containing all those
dividing p and all those at which π is ramified. We suppose that E is a
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sufficiently large finite extension of Qp in Qp that contains the eigenvalue

ax(π) of Tx on π
GL2(OF,x)
x for all x 6∈ S and (necessarily also) the eigenvalue

av(π) of Tv on π
U0(v)
v for all v ∈ R.

Let S′ = S \R and let T = TS′

OE denote the OE-algebra generated by the
operators Tx for x 6∈ S′. Let m denote the kernel of the homomorphism T→
Fp defined by sending Tx to the reduction of of ax(π ⊗ |det|)) = ax(π)N(x)−1

for x 6∈ S′. (For convenience in keeping track of ordinariness, we have re-
placed π by its twist by |det| to ensure that Tv 6∈ m for v ∈ R.)

Let U = U1(n) ∩ U0(
∏
v∈R v) where n is the prime-to-p conductor of π.

If [F : Q] is even, then we let D be the definite quaternion algebra over
F ramified at precisely the infinite places of F . By the Jacquet–Langlands
correspondence, m is in the support of SV ′(U) where V ′ is the representation
of UA×F,f on Fp on which U acts trivially and A×F,f acts via ψ. If [F : Q]
is odd, then we let D be a quaternion algebra over F ramified at precisely
all but one infinite place. In this case m is in the support of ⊕i∈IH1(Γi, V

′),
where D×f =

∐
i∈I D

×
+tiUA×F,f and Γi = F×\(UA×F,f ∩ t

−1
i D×+ti) as before.

Since the argument is the same in the case of either parity, we will ease
notation by writing S(U, V ′) for ⊕i∈IHj(Γi, V

′) where j = 0 or 1 according
to the parity of [F : Q] (so S(U, V ′) = SV ′(U) if j = 0).

We will now show that m is in the support of S(U1(n), V ) where V =
V ′ ⊗ (⊗v∈RSv,(p−1,...,p−1)). We proceed by induction on |R′| to show that m
is in the support of S(UR′ , VR′) for R′ ⊂ R, where UR′ = U

∏
v∈R′ GL2(OF,v)

and VR′ = V ′ ⊗ (⊗v∈R′Sv,(p−1,...,p−1)). Note that UR = U1(n), U∅ = U , and
we already know that m is in the support of S(U∅, V∅).

Suppose now that v ∈ R \R′. The canonical isomorphisms

S(UR′ , VR′) ∼= S(UR′∪{v}, Ind
UR′∪{v}
UR′

(VR′))

and Ind
GL2(kv)
B Fp

∼= Fp ⊕ S(p−1,...,p−1) give rise to an exact sequence

(8) 0→ S(UR′∪{v}, VR′)
αv→ S(UR′ , VR′)

βv→ S(UR′∪{v}, VR′∪{v})→ 0

such that αv and βv are compatible with the operators Tx for x 6∈ S′ ∪ {v},
but not necessarily with the operator Tv. Note however that the matrix
wv =

(
0 1
$v 0

)
∈ GL2(Fv) normalizes UR′ so that Wv = (wv)∗ defines an au-

tomorphism of S(UR′ , VR′) which is compatible with Tx for x 6∈ S′ ∪ {v} and
satisfies W 2

v = ψ($v)
−1. Moreover unravelling the definitions of the opera-

tor Tv one finds that TvWvαv = 0 and βvWvTv = TvβWv. Therefore βvWv

is T-linear, and m is not in the support of its kernel since Tv 6∈ m. It follows
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that if m is in the support of S(UR′ , VR′) then it is also in the support of
S(UR′∪{v}, VR′∪{v}).

To set the stage for lifting to characteristic zero, we distinguish between
the cases p = 2 and p > 2.

If p > 2, then we let a denote the ideal of OF such that pOF = a
∏
v∈R v.

Let y be any prime ideal of OF such that y 6∈ S and [y] = [a]−1 in the ray
class group of conductor 4OF (if non-trivial; otherwise we can let y = OF ),
and choose α such that ya = αOF and α ≡ 1 mod 4OF . Finally let ξ be the
character of GF with splitting field F (

√
α). Thus ξ is ramified precisely at

y and at certain v|p, namely those such that either v ∈ R and ev is even,
or v 6∈ R and ev is odd. Note also that y can be chosen to split completely
in F .

If p = 2, then we let ξ be the trivial character, but we must make another
modification instead of introducing a quadratic twist. For each v ∈ R we have
a GL2(kv)-equivariant inclusion S(1,...,1) → S(2,...,2), and these induce a T-
equivariant map S(U1(n), V )→ S(U1(n), V ′ ⊗ (⊗v∈RSv,(2,...,2))). One checks
as usual that m is not in the support of the kernel, so we can replace each
Sv,(p−1,...,p−1) by Sv,(2,...,2) in the definition of V for p = 2.

Now let R̃ ⊂ Σ =
∐
v|p Σv be a set of embeddings F → Q such that the

R̃ ∩ Σv = ∅ if v 6∈ R and the natural map R̃ ∩ Σv → Σv is bijective if v ∈ R.
Define ~k′ ∈ ZΣ

≥2 by setting k′τ = 2 if τ 6∈ R̃ and k′τ = w′ if τ ∈ R̃. (Recall
that w′ = p+ 1 if p > 2 and w′ = 4 if p = 2.) Consider the representation
V~k′,w′−2,ψ

of U1(n)A×F,f ; recall that this is the free OE-module defined by

V~k′,w′−2,ψ
=

⊗
τ∈R̃

Symw′−2O2
E

⊗⊗
τ 6∈R̃

det(w′−2)/2


as a representation of GL2(OF,p), with x ∈ A×F,f acting via

N(xp)
w′−2|x|w′−2ψ(x).

We let Vξ = V~k′,w′−2,ψ
if p = 2 (or if y = OF ); otherwise we let Vξ denote

the twist of V~k′,w′−2,ψ
by the Teichmuller lift of the character ξ ◦ det of

GL2(OF,y).
One finds that if p > 2, then the reduction of

∏
τ∈Σv\R̃ det(p−1)/2 is

detev(pfv−1)/2 if v ∈ R and det(ev−1)(pfv−1)/2 if v 6∈ R, from which it follows
that V ξ is isomorphic to the twist of V by the character ξ ◦ det of U1(n)A×F,f .

The isomorphisms V → V ξ of Γi = F×\(U1(n)A×F,f ∩ t
−1
i D×ti)–modules de-

fined by v 7→ ξ(det(ti))v induce an isomorphism S(U1(n), V ) ∼= S(U1(n), V ξ)
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under which ξ($v)Tv corresponds to Tv for v not dividing yp and to T 0
v

for v ∈ R, where T 0
v is compatible with an operator on S(U, Vξ) such that

Tv = T 0
v

∏
τ∈Σv\R̃ τ($v)

(w′−2)/2. (Note that T 0
v may depend on the choice of

uniformizer $v.)
Now let T′ denote the OE-algebra generated by the operators Tx for x 6∈

S ∪ {y} and T 0
v for v ∈ R, and let m′ denote the kernel of the homomorphism

T′ → Fp sending each Tx to the reduction of ξ($x)ax(π)N(x)−1 and each
T 0
v to the reduction of ξ($v)av(π)N(v)−1. We then have that m′ is in the

support of S(U1(n), V ξ). If ρ is not badly dihedral, it follows as in the proof
of Theorem 1.1 that m′ is in the support of S(U1(n), Vξ ⊗OE E), and hence
that there is an automorphic representation whose twist by |det|−1 is the
required π′. If ρ is badly dihedral, then the proof goes through after replacing
U1(n) by a smaller open compact subgroup U so that the groups Γi are
torsion-free. �

Remark 4.4. The necessity of the quadratic twist ξ in the conclusion fol-
lows from consideration of the local Galois representations ρπ′ |GFv for v|p.
Furthermore one can construct explicit examples showing that ξ may need
to be ramified outside p; we are grateful to L. Dembélé for providing the
following one. Over F = Q(α) with α =

√
10, there is a Hilbert modular

form5 of weight (2, 2), level (α+ 2) and trivial character with leading Hecke
eigenvalues (ordered by norm):

v (2, α) (3, α+ 2) (3, α+ 4) (5, α) (13, α+ 6) (13, α+ 7) (31, α+ 17) (31, α+ 14)

av −1 −1 3 1 −7 0 −3 4

The corresponding automorphic representation π then satisfies the hypothe-
ses of the theorem for p = 3, but one can show that the character ξ in the
conclusion must be ramified at (3, α+ 4) but not (3, α+ 2), from which it
follows that ξ must also be ramified at a prime y not dividing 3; in fact one
can let y be any non-principal prime of OF not dividing 6.

We now give another variant which under the same hypotheses produces
lifts of parallel weight without the quadratic twist, at the expense of ordi-
nariness.

5Dembélé also offers the equation

y2 = x3 + (990144α+ 3127248)x− 545501952α− 1726178688

for the associated elliptic curve.



i
i

“3-Diamond” — 2018/5/14 — 22:28 — page 71 — #29 i
i

i
i

i
i

Crystalline lifts of automorphic Galois representations 71

Theorem 4.5. Suppose that ρ : GF → GL2(Fp) is such that ρ ∼= ρπ for
some cuspidal, holomorphic, automorphic representation π of GL2(AF ) of
weight (~k,w) = (2, . . . , 2) such that for each v|p, πv is either unramified
principal series or an unramified twist of the Steinberg representation. Let
k′ = 2 + (p− 1)n for any positive integer n. Then there exist a cuspidal au-
tomorphic representation π′ of GL2(AF ), holomorphic of weight (k′, . . . , k′)
such that

• if v|p, then π′v is unramified principal series;

• ρπ′ ∼= ρ.

Suppose further that π has prime-to-p conductor dividing n ⊂ OF , and that
ψ is a finite order Hecke character of A×F of conductor dividing n, totally of
parity k′, and satisfying detρ = ψε. Then if ρ is not badly dihedral, we can
choose π′ as above with conductor dividing n and central character ψ−1| |−k′.

Remark 4.6. Note that we may take k′ = p+ 1 in the conclusion, but in
the case p = 2, this precludes using the Teichmüller lift of ε−1detρ for ψ as
this requires k′ to be even.

Proof. By Lemmas 2.4 and 2.5, we see that [S(p−1,...,p−1)] ≤ [S⊗e(n(p−1),...,n(p−1))]
for all n, e ≥ 1, so by the arguments of Section 3, it suffices to prove that
mρ⊗ε−1 ⊂ TS

OE is in the support of S(U1(n), V{v|p}) (with notation as in
the proof of Theorem 4.2, so in particular V{v|p} is the representation of
U1(n)A×F,f on which Up acts as ⊗v|pSv,(p−1,...,p−1), Ux acts trivially for x not

dividing p, and A×F,f acts via ψ).
For v|p, define the representation Lv of GL2(OF,v) to be the cokernel of

the natural inclusion OE → Ind
GL2(OF,v)
U0(v) OE . We let L{v|p} denote the rep-

resentation of U1(n)A×F,f on which Up acts as
⊗

v|p Lv, Ux acts trivially for

x not dividing p, and A×F,f acts via ψπ, where ψ−1
π | |−2 is the central char-

acter of π. Note that ψπ = ψ, so that L{v|p} ⊗OE Fp
∼= V{v|p}; moreover the

induced inclusion S(U1(n), L{v|p})⊗OE Fp → S(U1(n), V{v|p}) is compatible
with the natural action of TS

OE . Therefore it suffices to prove that mρ⊗ε−1 is
in the support of

S0(U1(n), L{v|p}) = S(U1(n), L{v|p})/S
triv(U1(n), L{v|p}),

which in turn follows from it being in the support of

S0(U1(n), L{v|p})⊗OE C ∼=
⊕

Π

(Πf ⊗OE L{v|p})U1(n)A×F,f ,
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where the sum is over all cuspidal automorphic representations Π = Πf ⊗
Π∞ of GL2(AF ) such that Πτ

∼= D2,0 for all τ ∈ Σ. For v|p,

(Πv ⊗OE Lv)GL2(OF,v) 6= 0

if and only if Πv has unramified central character and conductor dividing
v, so that (Πf ⊗OE L{v|p})U1(n)A×F,f 6= 0 if and only if Π has central char-
acter ψ−1

π and conductor dividing n
∏
v|p v. Furthermore note that mρ⊗ε−1

is in the support of such a summand if and only if ρΠ
∼= ρ⊗ ε−1. Finally

our hypotheses ensure that Π = π ⊗ |det| is exactly such an automorphic
representation. �

Remark 4.7. Under the assumption that πv is an unramified principal
series for all v|p and other technical conditions (p unramified in F , [F : Q]
even or F = Q), Theorem 4.5 is proved in Sections 2 and 4 of [6].
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