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Relative K-stability and extremal

Sasaki metrics

Charles P. Boyer and Craig van Coevering

We define K-stability of a polarized Sasakian manifold relative to
a maximal torus of automorphisms. The existence of a Sasaki-
extremal metric in the polarization is shown to imply that the
polarization is K-semistable. Computing this invariant for the de-
formation to the normal cone gives an extention of the Lichnerow-
icz obstruction, due to Gauntlett, Martelli, Sparks, and Yau, to
an obstruction of Sasaki-extremal metrics. We use this to give
a list of examples of Sasakian manifolds whose Sasaki cone con-
tains no extremal representatives. These give the first examples of
Sasaki cones of dimension greater than one that contain no ex-
tremal Sasaki metrics whatsoever. In the process we compute the
unreduced Sasaki cone for an arbitrary smooth link of a weighted
homogeneous polynomial.

1. Introduction

Sasaki-extremal metrics were introduced in [BGS08] and provide a more
general notion of a canonical metric than constant scalar curvature, which
is obstructed by the Futaki invaraiant. On a Sasakian manifold it is also
natural to deform the Reeb vector field by Hamiltonian holomorphic vector
fields, giving the notion of the Sasaki cone t+ of a Sasakian manifold, a
notion analogous to the Kähler cone in Kähler geometry. It is natural to ask
which Reeb vector fields ξ ∈ t+ admit Sasaki-extremal representatives. This
subset, called the extremal set, e ⊆ t+, was shown to be open by the above
authors. But little is known about this set because there are no known
obstructions, besides the obstructions of Gauntlett, Martelli, Sparks, and
Yau [GMSY07] which obstruct the existence of a Sasaki-Einstein metric in
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2 C. P. Boyer and C. van Coevering

the positive definite case and thus a Sasaki-extremal metric if the Futaki
invariant vanishes.

It is natural to conjecture that the existence of a Sasaki-extremal metric
is equivalent to some form of GIT stability of the affine cone (Y, ξ), where
Y = C(M) ∪ {o} is the Kähler cone on M with the vertex added, polarized
by the Reeb vector field ξ. Interesting work has been done in this direc-
tion [CS18, CS15] using K-stability in particular. Collins and Székelyhidi
[CS18] extended K-stability to irregular Sasakian manifolds using the Hilbert
series of (Y, ξ), and they proved that the existence of a constant scalar cur-
vature metric implies K-semistability.

We define a relative version of the K-stability of Collins and Székelyhidi
to get an obstruction to Sasaki-extremal metrics. This is K-stability relative
to a maximal torus T ⊂ Aut(Y, ξ). We prove that the existence of a Sasaki-
extremal structure compatible with a polarized cone (Y, ξ) implies that (Y, ξ)
is K-semistable relative to a maximal torus T .

Considering the Rees algebra degenerations which, as shown in [CS18],
give the Lichnerowicz obstructions of Gauntlett, Martelli, Sparks, and Yau,
we give a generalized Lichnerowicz obstruction to the existence of a Sasaki-
extremal metric depending on a T -homogenous f ∈ H0(Y,OY ). We apply
our construction to a large class of weighted homogeneous polynomials by
giving a sufficient condition for the obstruction of extremal Sasaki metrics
in the entire Sasaki cone. This is Theorem 13 below. We also present a list of
Sasaki manifolds in Table 1 which has families of Sasaki cones of dimension
greater than one with no extremal Sasaki metrics. In particular, our results
can be rephrased in terms of the moduli space of positive Sasaki classes with
vanishing first Chern class, viz.

Theorem 1. Let M be one of the smooth manifolds listed in the first five
entries or the last entry of Table 1. Then the moduli space Mc

+,0(M) of
positive Sasaki classes with c1(D) = 0 has a countably infinite number of
components of dimension greater than one and which contain no extremal
Sasaki metrics, i.e. e = ∅. Moreover, these different components correspond
to isomorphic transverse holomorphic structures.

2. Background

In this section we present a brief discussion of Sasakian geometry and refer
to [BG08] for details. A Riemannian manifold (M, g) is Sasakian if the met-
ric cone (C(M), ḡ), C(M) = M × R+, ḡ = dr2 + r2g, is Kähler. A Sasakian
structure is a special case of a contact metric structure S = (ξ, η,Φ, g) which
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Relative K-stability 3

is a quadruple where D = ker η is a contact structure, ξ is the Reeb vector
field of the contact form η, Φ is an endomorphism field that annihilates ξ and
such that (D,Φ|D) is a strictly pseudoconvex almost CR structure, and g
is a compatible Riemannian metric, i.e. g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y )
for any vector fields X,Y . Then the structure S = (ξ, η,Φ, g) is Sasakian
if £ξΦ = 0 and the almost CR structure (D,Φ|D) is integrable. A contact
structure D is said to be of Sasaki type if there exists such a quadruple
(ξ, η,Φ, g) which is Sasakian with D = ker η. Note that all Sasaki manifolds
are oriented and here we shall only consider compact Sasaki manifolds.

Since the Reeb vector field ξ is nowhere vanishing it defines a 1-
dimensional foliation Fξ known as the characteristic foliation which is a Rie-
mannian foliation when (ξ, η,Φ, g) is Sasakian. In fact, in the Sasakian case,
the transverse geometry is Kählerian. The basic first Chern class c1(Fξ) is an
important invariant of a Sasakian structure. A Sasakian structure (ξ, η,Φ, g)
is of positive type or simply positive if c1(Fξ) can be represented by a pos-
itive definite basic (1, 1) form. We denote the space of Sasakian structures
with Reeb vector field ξ and transverse holomorphic structure J by S(ξ, J).
Note that c1(Fξ) and hence positivity depends only on the space S(ξ, J) and
not on a particular element (ξ, η,Φ, g) ∈ S(ξ, J). So we can think of c1(Fξ)
as representing the Sasaki class of S = (ξ, η,Φ, g). By the transverse ver-
sion [EKA90] of Yau’s theorem a positive Sasakian structure has a Sasaki
metric of positive Ricci curvature. Recall that in the basic cohomology exact
sequence

0−−−→H0
B(Fξ)

δ
−−−→H2

B(Fξ)
ι∗
−−−→H2(M,R)−−−→· · ·

we have ι∗c1(Fξ) = c1(D). Thus, if c1(D) = 0 there exists a ∈ R such that
c1(Fξ) = a[dη]B. Following [BMvK16] we denote by Mc

+,0(M) the moduli
space of positive Sasaki classes on M with c1(D) = 0. Clearly, in the positive
case we have a > 0.

If the type of a Sasakian structure on M is positive or indefinite it is
possible to deform the characteristic foliation through Sasakian structures
by deforming the Reeb vector field. This gives rise to the (reduced) Sasaki
cone [BGS08] of M . However, here, as in [CS18], it is more convenient to
work on the Kähler cone C(M) or better yet on the Kähler cone with the
vertex added Y = C(M) ∪ {o} which uniquely has the structure of a normal
affine variety. We will see that the Reeb vector field ξ gives a notion of a
polarization on Y . Choose a torus T ⊂ Aut(Y, ξ), which we assume to be
maximal, so that ξ ∈ t = Lie(T ). We say that a Kähler cone metric on Y is
compatible with ζ ∈ t if ζ is its Reeb vector field. Of course the link M then
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4 C. P. Boyer and C. van Coevering

has a Sasakian structure with Reeb vector field ζ. We define the Sasaki cone
to be the subset t+ ⊂ t

(1) t+ = {ζ ∈ t | ∃ a Kähler cone metric compatible with (Y, ζ)}

Given a polarized affine scheme (Y, ξ) with a torus action T ⊂ Aut(Y )
where we assume ξ ∈ t = Lie(T ), the ring of global functions H = H0(Y,OY )
has a weight space decomposition

H =
⊕
α∈W

Hα

where W ⊂ t∗ is the set of weights.
If (Y, ξ) has a single singular point it turns out that ξ ∈ t is a Reeb

vector field for some Sasakian structure with affine cone Y if and only if
for all α ∈W, α 6= 0 we have α(ξ) > 0. Following [CS18] we give a second
definition of the Sasaki cone (where it is called the Reeb cone) in t

(2) t+ = {ξ ∈ t | ∀ α ∈W, α 6= 0 we have α(ξ) > 0} ⊂ t.

Proposition 2. The Sasaki cones as defined in (1) and in (2) are identical.
Thus t+ ⊂ t is an open rational polyhedral cone.

Proof. As described in [vC11] by the second author, or in [CS18], by choos-
ing enough homogenous elements fi ∈ H one can define a T -equivariant em-
bedding Ψ = (f1, . . . , fN ) : Y → CN , where T acts diagonally on CN with
weight αj acting on zj . If ζ ∈ t+ according to definition (2) then the polar-
ized affine cone (Y, ζ) has a Sasakian structure induced by the Kähler cone
structure on CN with Reeb vector field

∑N
j=1 αi(ζ)(xj∂yj − yj∂xj

), where

zj = xj + iyj . The Sasakian metric on S2N−1 is the weighted Sasakian struc-
ture with weights (w1, . . . , wN ) = (α1(ζ), . . . , αN (ζ)), as defined in [BG08].

The other direction, that if ζ ∈ t satisfies definition (1) then it satisfies
(2), is proved in [CS18]. �

Generally, the type of a Sasakian structure can change as one moves in
the Sasaki cone; however, this does not happen if c1(D) = 0.

Lemma 3. Let (M,D) be a contact manifold of Sasaki type with c1(D) = 0,
and let S = (ξ, η,Φ, g) be a Sasakian structure satisfying η = kerD. Suppose
further that the Sasaki cone t+ has dimension greater than one. Then all
Sasakian structures whose Reeb vector field ξ′ is in t+ are positive.
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Proof. Let S ′ = (ξ′, η′,Φ′, g′) be any Sasakian structure in t+. Then as stated
above there exists a ∈ R such that c1(Fξ′) = a[dη′]B. But since the dimension
of t+ is greater than one, a > 0 by Proposition 8.2.15 of [BG08]. So S ′ is
positive. �

3. Relative K-stability

Relative K-stability and its relation with extremal Kähler metrics were first
studied by Székelyhidi [Szé06, Szé07]. Here following Collins and Székelyhidi
[CS18] we adopt these ideas to the Sasaki setting. They defined the T -
invariant index character as a Hilbert series for ξ ∈ t+, viz.

(3) F (ξ, t) :=
∑
α∈W

e−tα(ξ) dimHα.

It is proved in [CS18] that F (ξ, t) converges and has a meromorphic exten-
sion with expression

(4) F (ξ, t) =
a0(ξ)n!

tn+1
+
a1(ξ)(n− 1)!

tn
+O(t1−n).

Given ζ ∈ t we define the weight characters:

Cζ(ξ, t) =
∑
α∈W

e−tα(ξ)α(ζ) dimHα

Cζ2(ξ, t) =
∑
α∈W

e−tα(ξ)
(
α(ζ)

)2
dimHα.

Again, these have meromorphic extensions

Cζ(ξ, t) =
b0(ξ)(n+ 1)!

tn+2
+
b1(ξ)n!

tn+1
+O(tn),(5)

Cζ2(ξ, t) =
c0(ξ)(n+ 2)!

tn+3
+O(t−n−2).(6)

The coeficients a0, a1, b0, b1, c0 depend smoothly on ξ ∈ t+ and

b0 =
−1

n+ 1
Dζa0

b1 =
−1

n
Dζa1

c0 =
1

(n+ 1)(n+ 2)
D2
ζa0.

(7)
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We also have a norm defined on t defined by

(8) ‖ζ‖2ξ = c0(ξ)− b0(ξ)2

a0(ξ)
.

A T -equivariant test configuration is a flat family of affine schemes

Y = Y1 ⊂ Υ
$−→ C,

such that $ is C∗-equivariant and T acts on the fibers. The C∗ action induces
an action on the central fiber Y0. Let ζ ∈ Lie(C∗) be the generator of this
action. The Donaldson-Futaki invariant of the test configuration is

Fut(Y0, ξ, ζ) =
a1(ξ)

a0(ξ)
b0(ξ)− b1(ξ).

In the following we assume that T ⊂ Aut(Y ) is a maximal torus with
ξ ∈ t = Lie(T ). Define χ ∈ t to be the element dual to Fut(Y0, ξ, ·) : t→ R
with respect to (8). Notice that both the bilinear form 〈·, ·〉ξ defined by (8)
and Fut(Y0, ξ, ·) vanish on Rξ, so χ is well defined modulo ξ. Up to a constant
χ is just the transversely extremal vector field, as defined in [FM95]. We
define the Donaldson-Futaki invariant relative to T of a test configuration

Futχ(Y0, ξ, ζ) = Fut(Y0, ξ, ζ)− 〈ζ, χ〉.

Definition 4. A polarized affine variety (Y, ξ) with a unique singular point
is K-semistable relative to T if for every T-equivariant test configuration

Futχ(Y0, ξ, ζ) ≥ 0.

Recall that for any (η, ξ,Φ, g) ∈ S(ξ, J) the Calabi functional is defined
by

(9) Calξ,J(g) =

(∫
M

(Sg − Sg)2 dµg

)1/2

,

where Sg is the scalar curvature and Sg is the average scalar curvature. A
Sasaki metric g is extremal if it is a critical point of Cal2

ξ,J
. This amounts

to the fact that the (1, 0) component of the gradient of the scalar curvature
Sg is a transversely holomorphic vector field. Equivalently, the transverse
Kähler structure is extremal. Note that when g is extremal, this transversely
holomorphic vector field is, up to a constant factor, χ defined above.
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An interesting property of the Calabi functional follows from the Don-
aldson lower bound [Don05] extended to Sasakian manifolds in [CS18].

Theorem 5.

(10) inf
(η,ξ,Φ,g)∈S(ξ,J)

Calξ,J(g) ≥ c(n)‖χ‖,

where c(n) the constant, depending only on n, follows from the different
scaling of the algebraic and analytic Futaki invariant. The lower bound
Calξ,J(g) = c(n)‖χ‖ is achieved if and only if g is Sasaki-extremal.

Proof. This is an application of the lower bound [CS18, Thm. 5]

(11) Calξ,J(g) ≥ −c(n)
Futχ(Y0, ξ, ζ)

‖ζ‖
,

for any (η, ξ,Φ, g) ∈ S(ξ, J) and test configuration X with central fiber Y0

and generator of C∗ action ζ. Consider a product test configuration with −χ
acting fiber-wise, in particular ζ = −χ. The fact that χ is not necessarily
rational is not a problem, because one can use an approximation argument.

For the second statement, if the lower bound is achieved at (η, ξ,Φ, g),
then it is obviously a critical point of Cal2

ξ,J
and thus Sasaki-extremal. Con-

versely, if (η, ξ,Φ, g) is Sasaki-extremal, then we can by conjugating by an
element of Aut(Y, ξ) assume that T ⊂ Aut(η, ξ,Φ, g) is a maximal torus.
Then Sg − Sg is the normalized holomorphy potential of χ and Calξ,J(g)2 =

c(n)2‖χ‖2 be the equality, up to a constant, of the norm on t defined
in [FM95] and the algebraic norm. �

Remark 6. This inequality follows easily from the arguments of [FM95]
for T -invariant metrics for a maximal torus T ⊂ Aut(Y, ξ). But this extends
the lower bound to all metrics in S(ξ, J).

The following is the Sasakian version of a theorem in [Szé06]:

Theorem 7. Let T ⊂ Aut(Y, ξ) be a maximal torus, and let X be a test
configuration compatible with T so that Futχ(Y0, ξ, ζ) < 0. Then

(12) Calξ,J(g)2 ≥ c(n)2

(
Futχ(Y0, ξ, ζ)2

‖ζ‖2
+ ‖χ‖2

)
,

for any (η, ξ,Φ, g) ∈ S(ξ, J).



i
i

“1-Boyer” — 2018/5/9 — 22:43 — page 8 — #8 i
i

i
i

i
i

8 C. P. Boyer and C. van Coevering

In particular, for any T -invariant (η, ξ,Φ, g) ∈ S(ξ, J)(∫
M

(Sg − Sg − hχg )2 dµg

)1/2

≥ −c(n)
Futχ(Y0, ξ, ζ)

‖ζ‖
,

where hχg is the normalized holomorphy potential for χ with respect to g.

Proof. Choose a constant λ so that ζ = ζ − λχ satisfies 〈ζ, χ〉 = 0. Then
Fut(Y0, ξ, ζ) = Futχ(Y0, ξ, ζ) < 0. Choose µ > 0 so that Fut(Y0, ξ, µζ) =
−‖µζ‖2. If we define γ = µζ − χ, then

Fut(Y0, ξ, γ) = −‖µζ‖2 − ‖χ‖2 = −‖γ‖2,

and
Fut(Y0, ξ, γ)

‖γ‖2
=

Futχ(Y0, ξ, ζ)

‖ζ‖2
+ ‖χ‖2.

The inequality then follows from ‖ζ‖ ≤ ‖ζ‖ and (11). �

The following easily follows from (12).

Corollary 8. If we have equality in (10), in particular if there exists a
Sasaki-extremal structure in S(ξ, J), then (Y, ξ) is K-semistable relative to
any maximal torus T .

4. Modified Lichnerowicz obstruction

We will give a modified version of the Lichnerowicz obstruction of [GMSY07],
which will be useful in obstructing Sasaki-extremal metrics in examples con-
structed from hypersurface singularities.

A necessary condition that (M,η, ξ,Φ, g), with polarized cone (Y, ξ),
admits a Sasaki-Einstein metric is that c1(Y ) = 0 (equivalently c1(D) = 0),
and o ∈ Y is a Q-Gorenstein singularity. In fact, a stronger condition must
hold. One must have

(13) c1(Fξ) = (n+ 1)[dη]B.

One can easily show, assuming M is simply connected, that (13) is equivalent
to the existence of a non-vanishing Ω ∈ Γ

(
Λn+1,0C(M)

)
with

(14) LξΩ =
√
−1(n+ 1)Ω.
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(cf. [FOW09]). If M is not simply connected, then Ω can be defined as
multivalued. Following [MSY08] we define

(15) Σ = {ξ ∈ t+ | LξΩ =
√
−1(n+ 1)Ω}.

We recall the Lichnerowicz obstruction of Gauntlett, Martelli, Sparks,
and Yau.

Theorem 9 ([GMSY07]). Suppose g is a holomorphic function on Y of
charge 0 < λ < 1, i.e.

Lξg =
√
−1λg,

then (Y, ξ) admits no Ricci-flat Kähler cone metric with Reeb vector field ξ.

Remark 1. The Lichnerowicz obstruction was also refined by Obata to
include λ = 1 in which case (Y, ξ) must be the flat structure (Cn+1, ξ0). See
Section 11.3.3 of [BG08] and references therein.

Suppose that f is a weighted homogeneous holomorphic function with
weight α ∈ t∗. Let Y ∼= Y1 ⊂ Υ→ C be the deformation to the normal cone
of V = {f = 0} ⊂ Y .

Theorem 10. The following expression holds:

Futχ(Y0, ξ, ζ) =
a0(ξ)

2

(
1− 1

α(ξ)

)
− 1

(n+ 2)(n+ 1)2

Dχa0(ξ)

α(ξ)
(16)

− 1

(n+ 2)(n+ 1)

a0(ξ)α(χ)

α(ξ)2
.

Notice that the righthand side is independent of the choice of χ modulo
ξ. If we choose χ ∈ t tangent to Σ, then this can be written as

Futχ(Y0, ξ, ζ) =
a0(ξ)

2

(
1− 1

α(ξ)

)
− 2

(n+ 2)(n+ 1)2

‖χ‖2

α(ξ)
(17)

− 1

(n+ 2)(n+ 1)

a0(ξ)α(χ)

α(ξ)2
.
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Proof. It was shown in [CS18] that the Hilbert series of the central fiber Y0

of Υ is

F (ξ + sζ) =
a0(ξ)α(ξ)n!

(α(ξ) + s)tn+1
+
α(ξ)(a1(ξ) + sn

2 a0(ξ))(n− 1)!

(α(ξ) + s)tn
+O(t1−n).

We denote the coefficients of the series as

â0(ξ + sζ) =
a0(ξ)α(ξ)

α(ξ) + s
, â1(ξ + sζ) =

α(ξ)
(
a1(ξ) + sn

2 a0(ξ)
)

α(ξ) + s
.

Then (7) gives

b̂0(ξ) =
1

n+ 1

a0(ξ)

α(ξ)
, b̂1(ξ) =

1

n

(
a1(ξ)

α(ξ)
− n

2
a0(ξ)

)
.

We compute

Fut(Y0, ξ, ζ) =
1

n+ 1

a1(ξ)

α(ξ)
+

1

n

(
n

2
a0(ξ)− a1(ξ)

α(ξ)

)
=
a0(ξ)

2

(
1− 2

n(n+ 1)

a1(ξ)

a0(ξ)α(ξ)

)
.

But the Calabi-Yau condition (13) implies for ξ ∈ Σ that a1(ξ) = n(n+1)
2 a0(ξ)

[CS18], so we get

(18) Fut(Y0, ξ, ζ) =
a0(ξ)

2

(
1− 1

α(ξ)

)
,

which was originally obtained in [CS18].
Similarly, using (7), we compute

〈ζ, χ〉 =
1

(n+ 1)(n+ 2)
DζDχâ0 −

1

(n+ 1)2

1

a0(ξ)
Dζ â0Dχa0(19)

=
−1

(n+ 1)(n+ 2)
Dχ

(a0(ξ)

α(ξ)

)
+

1

(n+ 1)2

1

α(ξ)
Dχa0(ξ)

=
1

(n+ 1)2(n+ 2)

Dχa0(ξ)

α(ξ)
+

1

(n+ 1)(n+ 2)

a0(ξ)α(χ)

α(ξ)2
,

and (17) follows from (18) and (19).
To prove (17) first observe that (16) is independent of the choice of

χ in Lie(T )/Rξ. This follows easily from Dξa0 = −(n+ 1)a0(ξ). It is well
known that if χ is tangent to Σ then 1

2Dχa0(ξ) = Fut(Y, ξ, χ). Thus by the
definition of χ we have 1

2Dχa0(ξ) = ‖χ‖2, and (17) follows. �
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Since ξ ∈ Σ Equation (16) implies

Corollary 11. If f is a homogeneous holomorphic function with weight
α ∈ t∗ satisfying the Lichnerowicz condition in Theorem 9 and α|TΣ = 0,
then the entire Sasaki cone is obstructed from admitting extremal Sasaki
metrics.

5. Applications to links of weighted homogeneous
polynomials

Let f be a weighted homogeneous polynomial in Cn+1 of degree d and weight
vector w = (w0, . . . , wn) with only an isolated singularity at the origin. It is
well known [BG08] that the link of f defined by Lf = {f = 0} ∩ S2n+1 is an
(n− 2)-connected smooth manifold with a natural Sasakian structure Sw =
(ξw, ηw,Φw, gw), that we call the standard Sasakian structure. Furthermore,
according to [BGK05] the Sasaki automorphism group will be finite if 2wi <
d for all but one i = 0, . . . , n. So we assume to the contrary that 2wi ≥ d for
at least two of the i = 1, . . . , n. In fact, we shall assume that f has the form

(20) f(z0, . . . , zn) = f ′(z0, . . . , zk) + z2
k+1 + · · ·+ z2

n

with n− k ≥ 2 and all weights wi with i = 0, . . . , k satisfy 2wi < d′, the de-
gree of f ′. In this case the connected component of the Sasaki automorphism
group is U(1)× SO(n− k). For convenience we order the weights

w0 ≤ w1 ≤ · · · ≤ wk.

We shall also assume that there is no linear factor as this implies that the
link is a standard sphere. First we describe the Sasaki cone.

Proposition 12. Let f be a weighted homogeneous polynomial of the form
of Equation (20). The Sasaki cone t+ of the link Lf is given by

(21) t+ =

b0ξw +

r∑
j=1

bjζj ∈ t
∣∣∣ b0 > 0, −db0

2
< bj <

db0
2


where ξw is the standard Reeb field on Lf .

Proof. First note that the dimension of the Sasaki cone t+ is r + 1 where
r = bn−k2 c. We define variables uj = zk+j + izk+j+1 and vj = zk+j − izk+j+1
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for j = 1, . . . , r in which case f takes the form

f(z0, . . . , zn) =

{
f ′(z0, . . . , zk) +

∑r
j=1 ujvj , if n− k is even;

f ′(z0, . . . , zk) +
∑r

j=1 ujvj + z2
n. if n− k is odd.

Now the Sasaki cone t+ is spanned by elements of the form

(22) ξ = b0ξw +

r∑
j=1

bjζj

where ζj has weight (1,−1) with respect to (uj , vj) and 0 elsewhere. Now it
follows from Theorem 3 of [CS18] that the Sasaki cone is determined by the
domain of the smooth function a0(ξ) in the Laurent expansion of the index
character F (ξ, t) of Equation (4). To find this we compute the Hilbert series
for the ring (R = C[z0, ..., zn])/I where I is the ideal generated by f , that
is, I = Rf . See Proposition 4.3 of [CS18]. The Hilbert series for R is

1

(1− e−w0(ξ))t)
· · · 1

(1− e−wn(ξ))t)

and that of I is 1− e−W (ξ)t where W (ξ) is the weight of the polynomial f ,
that is, W (ξ) = d. This gives the Hilbert series of R/I as

(23) F (ξ, t) =
1− e−db0t∏k

i=0(1− e−wib0t)
∏r
j=1(1− e−( d

2
b0+bj)t)(1− e−( d

2
b0−bj)t)

if n− k is even, and
(24)

F (ξ, t) =
1−e−db0t∏k

i=0(1−e−wib0t)
∏r
j=1(1−e−( d

2
b0+bj)t)(1−e−( d

2
b0−bj)t)(1−e−

d

2
b0t)

if n− k is odd. Then using Equation (4) with n 7→ n− 1 we have for n− k
even

(25) a0(ξ)(n− 1)! =
d

w0 · · ·wkbk−1
0 (d

2b20
4 − b

2
1) · · · (d

2b20
4 − b2r)

.

So a0(ξ) is well defined and positive precisely for the range indicated. This
finishes the proof when n− k is even. There are similar expressions when
n− k is odd. �
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Theorem 13. Let f be a weighted homogeneous polynomial of the form
of Equation (20) with no linear factors. Suppose further that the inequality
holds

k∑
i=0

wi − w0n+
d

2
(n− k − 2) ≥ 0.

Then there are no extremal Sasaki metrics in the entire Sasaki cone of the
link Lf .

Proof. We need to check that the conditions of Corollary 11 are satisfied. To
check the Lichnerowicz condition Theorem 9 we consider the homogeneous
function g = z0. The Reeb vector field of the link Lf is ξw which has Fano
index I = |w| − d. So the Reeb vector field which satisfies Equation (14) is

ξ =
n

|w| − d
ξw.

Thus, the charge of g is nw0

|w|−d . There are two cases to consider: (1) the degree

d′ of f ′ is even in which case d = d′, and (2) the degree d′ of f ′ is odd and
d = 2d′. In both cases wk+1 = · · · = wn = d

2 and the Fano index I is

(26) I = |w| − d =

k∑
i=0

wi +
d

2
(n− k)− d =

k∑
i=0

wi +
d

2
(n− k − 2).

Thus, the charge nw0

|w|−d of g will be less than one if and only if the strict
inequality holds. Moreover, since there are no linear factors in f , Remark 1
also implies the result when equality holds.

Next, we check the condition α|TΣ = 0. Note first that ξ ∈ Σ if and only
if we have

b0 =
n∑k

i=0wi + d
2(n− k − 2)

<
1

w0

so the range on Σ becomes

−1

4

dn∑k
i=0wi + d

2(n− k − 2)
< bj <

1

4

dn∑k
i=0wi + d

2(n− k − 2)
.

Now from (22) the tangent space to Σ at ξ is spanned by the set {ζj}rj=1, so
if α is the weight of f then α(ζj) = 0 since (uj , vj) has weight (1,−1) with
respect to ζj . �
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6. Explicit examples

In this section our results are presented in the form of tables. The first
table presents examples of families of Sasakian structures whose Sasaki cone
has dimension greater than one, and contains no extremal Sasaki metric at
all. We shall only present details for a representative case. In the first four
examples of Table 1 the oriented diffeomorphism type is stated explicitly
where Σ4n+1

1 is a generator of the group bP4n+2 of homotopy spheres which
bound a parallelizable manifold of dimension 4n+ 2. Note that Σ4n+1

k =
Σ4n+1

1 if (2k + 1) ≡ ±3 mod 8, and is the standard sphere when (2k + 1) ≡
±1 mod 8. It is known that bP4n+2 ≈ Z2 for 4n+ 2 6= 2j − 2 for some j and
equals the identity if n = 1, 3, 7, 15, so in these cases Σ4n+1

1 = {id}. (It is still
an open question for the remaining cases.) Thus, in these four cases there
are a countably infinite number of families of Sasakian structures with n+ 1
dimensional Sasaki cones having no extremal Sasaki metrics. Moreover, these
belong to a countably infinite number of inequivalent underlying contact
structures [Ust99, KvK16, Gut17, BMvK16, Ueb16].

The oriented diffeomorphism type can also be determined for the fifth
example. These are homotopy spheres of dimension 4n− 1 which bound a
parallelizable manifold of dimension 4n. A well known result of Kervaire and
Milnor [KM63] says that the group bP4n is cyclic of order

|bP4n| = 22n−2(22n−1 − 1) numerator

(
4Bn
n

)
,

whereBn is the n-th Bernoulli number. Thus, for example |bP8| = 28, |bP12| =
992, |bP16| = 8128. Thus, there are a countably infinite number of families
of Sasakian structures with n dimensional Sasaki cones having no extremal
Sasaki metrics. Moreover, these also belong to a countably infinite number
of underlying contact structures (actually almost contact structures in this
case) since Σ4n−1

k′ ≡ Σ4n−1
k mod |bP4n|, cf. Section 9.5.3 of [BG08]. Here

Σ4n−1
1 is called the Milnor generator.

The sixth example consists of a family of rational homology spheres of
dimension 4n− 1 with H2n ≈ Z3 described by Durfee [Dur77]. There are
two families of oriented diffeomorphism types that are equivalent as non-
oriented manifolds. We begin with the links K2 and K4 where Kk is the
link of the polynomial zk0 + z3

1 + z2
2 + · · ·+ z2

2n. Then K6l+2 is diffeomorphic
to K2#(−1)

n

2 lΣ4n−1
1 and K6l+4 is diffeomorphic to K4#(−1)

n

2 lΣ4n−1
1 . Note

that the Milnor generator Σ4n−1
1 ≈ K5. Thus, in this case there are also a
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countably infinite number of families of Sasakian structures with n dimen-
sional Sasaki cones having no extremal Sasaki metrics. We conjecture that
these also belong to inequivalent underlying contact structures, although
this has not been proven yet to the best of the authors’ knowledge.

In example seven we have Sasaki manifolds that are homeomorphic to
2k(S2n+1 × S2n+2). The oriented diffeomorphism type is not known explic-
itly and not all possible diffeomorphism types occur. In [BG06] a formula is
given for the number of diffemorphism types Dn(k) obtained by our method,
and tables are given for dimension 7 and 11. Nevertheless, since there is a
periodicity modulo a subgroup of bP4n+4, we do have countably infinite fam-
ilies of Sasakian structures with an n+ 1 dimensional Sasaki cones having
no extremal Sasaki metrics. Whether the underlying contact structures are
inequivalent is also not known at this time.

Finally we consider the connected sums #m(S2 × S3) which are all the
compact smooth Sasaki 5-manifolds with a 2-torus of Sasaki automorphisms.
Here m = 0 means S5. These are represented by links of the polynomial
zp0 + zq1 + z2

2 + z2
3 with m = gcd(p, q)− 1. They are perhaps the most in-

teresting case owing to the recent work of Collins and Székelyhidi [CS15]
which shows that the standard Sasakian structure on the link admits a
Sasaki-Einstein metric if and only if 2p > q and 2q > p. Thus, when these
inequalities are violated, namely when p ≥ 2q or q ≥ 2p, there are for each
m = 0, 1, · · · a countably infinite number of families of Sasakian structures
with 2-dimensional Sasaki cones having no extremal Sasaki metrics. More-
over, they belong to a countably infinite number of inequivalent underlying
contact structures [BMvK16, Ueb16].

Although in most cases of Table 1 the members of a given family be-
long to inequivalent contact structures, they do have isomorphic transverse
holomorphic structures. This can be seen by showing that the S1 quotients
of the link for each member are isomorphic as algebraic varieties. We refer
to the proof of Proposition 4.1 of [BGN03] for the details in the case of the
homotopy spheres. This completes the proof of Theorem 1. 2

Question 14. In the case that Sasaki-Einstein metrics exist, that is when
2p > q and 2q > p, is the entire Sasaki cone exhausted by extremal Sasaki
metrics?

We give the simple details of applying Theorem 13 for a sample case.
Consider the unit tangent sphere bundle T of S2n+1 represented by the link
L(4l + 2, 2, . . . , 2) given by the polynomial

f = z4l+2
0 + z2

1 + · · ·+ z2
2n+1.
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Diffeo-(homeo)-morphism Type f dim t+

S2n × S2n+1 z8l
0 + z2

1 + · · ·+ z2
2n+1, n, l ≥ 1 n+ 1

S2n × S2n+1#Σ4n+1
1 z8l+4

0 + z2
1 + · · ·+ z2

2n+1 = 0, n ≥ 1, l ≥ 0 n+ 1

Unit tangent bundle of S2n+1 z4l+2
0 + z2

1 + · · ·+ z2
2n+1, n > 1, l ≥ 1 n+ 1

Homotopy sphere Σ4n+1
k z2k+1

0 + z2
1 + · · ·+ z2

2n+1, n > 1, k ≥ 1 n+ 1

Homotopy sphere Σ4n−1
k z6k−1

0 + z3
1 + z2

2 + · · ·+ z2
2n, n ≥ 2, k ≥ 1 n

Rat. homology sphere H2n ≈ Z3 zk0 + z3
1 + · · ·+ z2

2n, n, k > 1 n

2k(S2n+1 × S2n+2), Dn+1(k) z
2(2k+1)
0 + z2k+1

1 + z2
2 + · · ·+ z2

2n+2, n, k ≥ 1 n+ 1
#m(S2 × S3),m = gcd(p, , q)− 1 zp0 + zq1 + z2

2 + z2
3 , p ≥ 2q or q ≥ 2p 2

Table 1: Manifolds having Sasaki cones with no extremal metrics.

We mention that there are no exotic structures in this case since T#Σ4n+1

is diffeomorphic to T . Applying Theorem 13 we take n 7→ 2n+ 1, k = 0, d =
4l + 2 and w0 = 1, so our inequality becomes

0 < w0 − w0(2n+ 1) + (2l + 1)(2n− 1) = 2l(2n− 1)− 1.

Of course there are many other examples to which we can apply The-
orem 13. For example, the rational homology spheres M4n−1

k of dimension
4n− 1 with H2n−1 ≈ Zk given by Brieskorn-Pham link of the polynomial
zk0 + z2

1 + · · ·+ z2
2n, with k > 2, n > 1 has a Sasaki cone of dimension n+ 1

and one can easily check that the inequality of Theorem 13 holds in this case.
So for each k > 2 M4n−1

k has an n+ 1-dimensional Sasaki cone having no
extremal Sasaki metrics. We mention that the case k = 2 M4n−1

2 is a Stiefel
manifold which admits a Sasaki-Einstein metric. Many more examples of
rational homology spheres can be obtained by noting that as in Corollary
9.5.3 of [BG08] if the link of f ′ in the polynomial (20) is a rational homol-
ogy sphere and n− k is even, then the link of f is also a rational homology
sphere.

Finally we give a table of ADE n-folds which admit no extremal Sasaki
metrics in the entire Sasaki cone or equivalently no Ricci-flat Kähler metric
on the corresponding Calabi-Yau cone. Notice that there is some overlap
with Table 1. These are of particular interest since they have been used in
Physics in conformal field theory [GVW00, GMSY07].
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f w dim t+

Ak−1 zk0 + z2
1 + · · ·+ z2

n, k ≥ 3 (2, k, · · · , k) 1 + bn2 c
Dk+1 zk0 + z0z

2
1 + z2

2 + · · ·+ z2
n, k ≥ 2 (2, k − 1, k, · · · , k) dn2 e

E6 z4
0 + z3

1 + z2
2 + · · ·+ z2

n (4, 3, 6, · · · , 6) dn2 e
E7 z3

0 + z0z
3
1 + z2

2 + · · ·+ z2
n (6, 4, 9, · · · , 9) dn2 e

E8 z5
0 + z3

1 + z2
2 + · · ·+ z2

n (6, 10, 15, · · · , 15) dn2 e

Table 2: ADE n-folds with n ≥ 4 whose Sasaki cones have no extremal met-
rics.
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regular Sasakian manifolds, J. Differential. Geom. 109 (2018),
no. 1, 81–109.

[CS15] Tristan Collins and Gábor Székelyhidi, Sasaki-Einstein metrics
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