Math. Res. Lett.
Volume 24, Number 6, 18191844} 2017

Weak solutions of the Chern-Ricci flow on
compact complex surfaces

XIAOLAN NIE

In this note, we prove the existence of weak solutions of the Chern-
Ricci flow through blow downs of exceptional curves, as well as
backwards smooth convergence away from the exceptional curves
on compact complex surfaces. The smoothing property for the
Chern-Ricci flow is also obtained on compact Hermitian manifolds
of dimension n under a mild assumption.

1. Introduction

Let (M, go) be a compact Hermitian manifold with associated (1,1) form
wp. The Chern-Ricci flow starting at wg is given by

(1.1) %w = —Ric(w),  wl|t=0 = wo,
where Ric(w) = —v/—100logdet g is the Chern-Ricci form of w. It was in-
troduced by Gill [5] on manifolds with vanishing first Bott-Chern class and
investigated by Tosatti and Weinkove [20] in details on general Hermitian
manifolds. If the initial metric is Kéhler, then it coincides with the Kahler-
Ricci flow.

Many nice properties of the flow have been found (see [3], 20-22], etc.),
some of which are analogous to those of the Kahler-Ricci flow. Let

T = sup{t > 0|3 € C°(M), wy — tRic(wp) + vV—109% > 0}.

It was proved in [20] that there exists a unique maximal solution w(t) to the
Chern-Ricci flow (1.1) on [0, T). It is expected that the Chern-Ricci flow
is closely related to the geometry of the underlying manifold. In the case
of n =2 (complex surfaces), the behavior of the flow is particularly inter-
esting. Let M be a compact complex surface with wy a Gauduchon metric.
It was proved in [20] that the Chern-Ricci flow starting at wg exists until
either the volume of M goes to zero, or the volume of a curve of negative
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self-intersection goes to zero. The Chern-Ricci flow is said to be collapsing
(non-collapsing) at T if the volume of M with respect to w(t) goes to zero
(stays positive) as t — T~.

Suppose that the Chern-Ricci flow starting at wg is non-collapsing at
T < oo. It was shown in [20] that M contains finitely many disjoint (-1)-
curves F1,..., E; and thus there exists a map 7 : M — N onto a complex
surface N contracting each E; to a point y; € N. It was conjectured in [21]
that the flow blows down the exceptional curves and continues in a unique
way on a new surface N. The conjecture requires smooth convergence of the
metrics away from the (-1)-curves and global Gromov-Hausdorff convergence
as t - T~ and t — T*. Denote M’ = M \U¥_F;. In [21], Tosatti and
Weinkove prove the following theorem.

Theorem 1.1. (Tosatti-Weinkove) With the notation above, then the met-
rics w(t) converge to a smooth Gauduchon metric wr on M’ in CX.(M') as
t — T~. Assume in addition

(1.2) wo — T Ric(wp) + V—100f = m*wy

for some f € C®(M,R) and wy a smooth (1,1) form on N. Then there
exists a distance function dp on N such that (N,dr) is a compact metric
space and (M, g(t)) — (N,dr) ast — T~ in the Gromov-Hausdorff sense.

Denote &7 = (77 !)*wy the push-down of the limiting current wr to N.
To continue the flow on N, first we need to show that the Chern-Ricci flow
on N with singular initial metric &7 has a unique smooth solution on (7, 7"
for some T" > T. To prove the smooth convergence on compact subsets of
N' = N\ {yi,...,yx}, we need more precise estimates near the exceptional
curves as t — T~ and also estimates on [T,7"] x N'. We may assume wy
in condition (1.2) to be a Gauduchon metric after replacing f by a new
function (see Lemma 3.2 in [21]) and denote

Tn =sup{t > T | I € C°(N), wy — (t — T) Ric(wy) + V—190¢ > 0}.

Using the construction of Song-Weinkove for the Ké&hler-Ricci flow in
[15], we prove the following theorem.

Theorem 1.2. Assume that the condition (1.2) is satisfied. With the no-
tation above, then there exists a unique mazimal smooth solution w(t) of the
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equation:

%w = —Ric(w), forte (T,Tn),

on N such that wli—p = &1 and w(t) converges to wp in CE(N') ast — T,

When wy is Kahler, the result is contained in the work of Song-Weinkove
[15]. We use the techniques of Song-Weinkove [15], Tosatti-Weinkove [20, 21]
and a trick of Phong-Sturm [I2] in the proof of the above theorem.

The existence and uniqueness in Theorem 1.2 follows from a more general
theorem on M of dimension n. Let © be a smooth volume form on M
and &; = wp + tx, where x is a closed (1,1) form locally defined by x =
V=100 1log Q. Denote PSH (M, wq) the set of wo-plurisubharmonic functions
and let

PSH,(wp, ) = {goePSH(M, wo)NL>® (M) (“0“/?86@” eLP(M)}.

Following the arguments of Song-Tian in [I4], we prove the smoothing prop-
erty for the Chern-Ricci flow.

Theorem 1.3. Suppose that
w6 =wo + V —13&00
for some pg € PSHp(wo,2), p> 1. Assume that wy satisfies
(1.3) VYue PSH(M,wy) NL>(M), / (wo + v/ —100u)" :/ wy
M M

then there exists a unique family of smooth Hermitian metrics w(t,-) on
(0,T) x M such that

(i) %w = —Ric(w), fort € (0,T).
(ii) There exists p € CO([0,T) x M) N C*°((0,T) x M) such that w = & +
V=109¢ and p(t) — o in L°(M) ast — 0F.
In particular, w(t) — w(, in the sense of currents ast — 0F.

When (M, wp) is a Kéhler manifold, the result is contained in the work
of Song and Tian [14] (see also [1]). When M is a compact complex surface
with a Gauduchon metric wy, condition is satisfied and the above result
follows. The proof of Theorem 1.3 is given in Section 5.
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2. Construction of the weak solution

In this section, we construct the solution in Theorem 1.2 explicitly. We will
follow the construction of Song-Weinkove for the Ké&hler-Ricci flow [15].

Without loss of generality, assume that M contains only one exceptional
curve F for simplicity. Assume that the condition (1.2) holds for a Gaudu-
chon metric wy on N. Define

t t
(:)t = (1 — f)(.d() —+ TW*CUN,

which are smooth nonnegative forms on [0, 7). Let Q = ef/Tw?. (From now

on, we will write n instead of 2 whenever our calculations hold for n > 2.)
If ¢ solves the parabolic complex Monge-Ampeére equation

0y (& + V/—100p)"

(2.1) 5 — l°

) 90’15:0 =0

fort < T, then w = & + v/—199¢p solves the Chern-Ricci flow (1.1) on [0, T).
By Lemma 3.3 of [21I], there exists a uniform constant C' such that

lp| < C and ¢ < C, where we write ¢ for %—f. Then it follows that ast — T,

©(t) converges pointwise on M to a bounded function ¢7 with

wr = + v —185(,01“ > 0.

In particular, w(t) — wr in the sense of currents as t — 7'~. From Lemma
5.1 of [15] 7 must be constant on E since v/—199¢7|p = wr|g > 0. Thus
Y7 = (77 1)*pr is a bounded function on N which is smooth on N \ {yo} as
7 is the blow down map contracting E to yo. Then

(2.2) Or = wy + V—190¢r > 0.

Lemma 2.1. There exists p > 1 such that & /wi, € LP(N). Moreover, ¥
s continuous on N.

Proof. The argument of Lemma 5.2 in [15] shows that @/ /w}, € LP(N). The
continuity of ¢ then follows from the results in [§] and Dinew-Kotodziej
[2]. O

Given a smooth volume form Q2 on N, now we will construct a family of
functions ¢ on N which converge to ¢r in L>(N). For sufficiently small



Chern-Ricci flow on compact complex surfaces 1823

e > 0 and K large enough, define

1y [(BIERWN(T — )
Qe:(W‘MI\E) (W + ey on N\ {yo}-

and Qcly, = €Qn/|y,. Here s is a holomorphic section of the line bundle [E]
vanishing along the exceptional curve F to order 1. Choose h to be a smooth
Hermitian metric on [E] as in [20] with curvature Rj, = —/—199log h such
that for sufficiently small € > 0, 7*wxn — €R}, > 0( see [6] for an argument
of this.) Then the volume form Q. € C¥(N) for a fixed constant k as 7 is
the blow down map and K can be chosen to be sufficiently large. Moreover,
Q converges to @} in C* on compact subsets of N\ {yo} as € goes to
zero. By the result of Tosatti and Weinkove [19], there exist unique 97, €
C*(N)NC>®(N \ {yo}) such that

(WN + \/jaéwT,e)n = CeQm Sup wTﬁ =0
N

where the constants C. are chosen so that the integrals of both sides of
the above equation match. Normalize 17 such that supy¥r = 0 and write

N
fe=CQ/QN and f =@ /Qn. Note that Cc — 1 as € — 0, then by the
definition of 2. we have

lim I.fe = fllr vy = 0.
By Lemma 2.1 and the stability result in [§], we have
(2.3) lim |97, — Y7l pee(n) = 0.
e—0
Let x = v/—1001og Qy, then there exists 77 > T such that
Wy n =wn + (t=T)x

are smooth Gauduchon metrics for ¢ € [T, T']. For convenience, we will still
write w; for w; . Consider the parabolic complex Monge-Ampere equations

Do, O + /=100 )™
d zlog( L 2c) s Pelt=T = YT
ot Qpn

on [T, T’]. Then we have the following proposition.

Proposition 2.1. There exists p € CO([T,T'] x N)NC>®((T,T"] x N)
such that
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(i) o = ¢ in L=®([T,T'] x N).

(ii) @ is the unique solution of the equation
0y (@ + v/ —100p)"
Q

9.4 )
(2.4) B¢ = 108

in CO([T,T") x N)NC®((T,T'] x N).

) fO’I” te (T7 T/)7 @‘t:T = wT-

Proof. With Lemma 2.1, the proposition follows from Lemma 5.1 and Propo-
sition 5.3 in the last section. O

To prove smooth convergence of w(t) on compact subsets of N \ {yo} as
T — T+, we need uniform estimates for w,(t) = & + v/—199p. on [T, T'] x
N\ {yo}, independent of €. To obtain these estimates, we need the bounds
at time 7', i.e. the bounds for wr. = wy + lea5¢T,e. We will prove these
in Section 4.

3. Higher order estimates as t — T~

In this section, we will prove a third order estimate and a bound for | Ric/|,
which will be used to obtain the bounds for wr . in the next section.

As t — T, the smooth convergence of w(t) on compact subsets of M \
{E} follows from Theorem 1.1 of [21]. In particular, C* a priori estimates
for w(t) on compact subsets away from the exceptional curves have already
been obtained. However, we need more precise higher order global estimates
on M ast — T~ to obtain the bounds for wr.

By Lemma 2.3 and 2.4 in [21], there exist positive constants C' and K
such that
Kl c

wo K w(t) < —=wp.-

(3.1)

We may assume that |s|? < 1 on M for convenience. By Lemma 2.1 of Guan-
Li [7], we can choose local coordinates around a point such that at this point

(3.2) (90)i7 = 9ijs  0i(g0);5 =0

for all 4, j and (g;;) is diagonal. Now choose such a coordinate system around
a point. Following an argument in [18], we can get the inequality,

|V try, w|3

try,, w

(3.3) <> 997 0g;50k95 + D 9"9"105(90) 31>

i3,k %,J
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To see this, first applying the Cauchy-Schwarz inequality

(3.4) |V try, w|£2] = Z giz Z 0955 (Z @'Qkk)
i J k
2

=>¢" Z 0i;;
J

<2 9" (2| | 29”10l
J J
= (tre, w Z 99" 99539955

Note that w = wy + 0(t) for a closed (1,1) form 6(t). Hence
9ig;; — 9597 = 9i(90) 55 — 0j(90)5-
Using , we get
0ig;5 = 095 — 95 (90)i5

Similarly 9;9,; = 0595 — 9;5(g0) ;- Then (3.4) gives

|V try, w| S
(35) — < Z 9" 9770;950;9;: — 2Re | Y 979789505 (90) ji
wo i i.j
+> 9" 9"79;(90):795(90);
i

=" g"¢770,9;50;0; — 2Re | Y 9" 0i9,;305(90)
i, 2

=467 0;(90):395(90) i

0]
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< " 9"970;9;5059;; — 2Re | Y g7 9,9;505(90)
i, i#]

<Y 9"970;950505+ > _ 9767 |0igilP + Y 9" 9"19i(90) 51
i i3 i)

< 997 0kgi30k95 + ) 9"9"105(90) ;5"
iaj’k 17.7

Thus we get the inequality (3.3). We will use it to prove our third order
estimate.

Let Vg4, and (I‘Q)fj be the Chern connection and Christoffel symbols
of go. Denote V,Ffj, A and |- | the Chern connection, Christoffel symbols,
complex Laplacian and the norm associated to g = g(¢). It is convenient to
compute using ‘Dijk = Ffj — (Fo)fj as in [II] (see also [I3]). Consider

S = ’vg()g’? = giﬁgqukf‘bijkq)qu-

Proposition 3.1. There exist positive constants A and C such that for
tel0,T),

Proof. Let

S 8
H= + ||} tre, w — At,
(|8|}:a _trwo OJ)2 | |h w

where o and (8 are constants to be determined and at least large enough
such that

1, _ _ _
§|5|h°‘ < sl = trg, w < |s[,

and

16
IVIsly] < Clsli”,  |Als]y] < Csl7-
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Computing the evolution of H,

(36) @‘A)H:qsmlm mE (5i-2)s
- e (g A (sl = )
w)

(18], = tre, )
4ReVS - V(|s[;* — try,w

(’S’h trwo )3
65|V (|s|;* — try, w)|?
6SIV(lsl;” — tru, @)

(Il = tro, w)*

B,
+ <6t - A) (I]? tr, w).

From [I3] and (3.1), we have the estimates

(3.7) <§ - A> S < Clsl ™ (14 53/%) — \V@\Q

and

1827

0 |s|72S _a 1 s
(3.8) ((975 - A) try, w < — ?j’ + Cls[}, ™ — 9 Zg”g 950k 953-

.5,k

Also, by (B3)

|V try, w|?

93 D, 0 -1 - —a
try, @ SZQ 9" O0k9i0k957 + Clsl}, .

i7j7k

Compute

0
(- 2) (s )

0 _
= |s|’g <8t - A> try, w — (try, w)A|s|§ - 2Re(V\s\ﬁ -V try, w)

1
< —a|3|h S+
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In the last inequality we use
2| Re(V|s|? - V try, w)]
1
<C+ 5IV\8\ZPIV try,, w|
1 o
< O+ Gl VIslyPirw, @) | Y 9”07 0kgi30595 + Clsly
i7j7k

1 -
B -
<C+ §|s|h g kg“g”akgijakgji-
Z?j?

for § large enough. Then fix 3. Together with (3.7) and (3.8))we get

(- a) # < Clsfr 1+ 8 - Sl TP
52
+ Cols 1Al 1S + Colsfieos — [sffes 2
0
\oR — try, 1
+ 4Re Vsl row)+< s[> S+O’>—A.
(51 — oy ) c

As
VS| < 28V2|V®|, |Vtry,w| < Ols|,**SY/2

and |V|s|, | < Cls|,“"*, we have

ARe VS -V (|s|,* = trw, w)

(‘S‘f:a - tI.Wo w)3

< 051/2|v®|(|5’2a as 4 ‘S‘ioc—a4sl/2)

1
< 5‘ ‘ ‘V(I)|2+Cl(’8‘2a 2a55+‘ ‘404 204452)
Also
C|S|2a a153/2 < | |3a+a2 % +Cl| |a 200 — —az g
By choosing o and then A sufficiently large, we have
0
——A|H<O.
(5i=2) 7=

Thus H has a uniform upper bound and we obtain the desired estimate
for S. O
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Proposition 3.2. There exist positive constants X and C' such that for
tel0,7),

C
|2/\'
h

| Ric| <
|s

Proof. First, we have the evolution equation

0
(at - A) Rjp = ViT,/ R + T,/ ViR, + Ry "R,

— Ry™ Rjs + VT, *Rijs + T, *VRjs
Then it follows from Lemma 3.4 in [I0] and Proposition 3.1 that

(3.9) (; _ A> | Ric| = 2’}1{10’ <§t - A) | Ric|? + 2/V| Ric | )
< |s[;*(|V Ric| + |Rm |* + 1)
_ |VRic|? N |V|Ric ||
| Ric | |Ric|

for some constant ag > 0. Consider
H = |s[3%| Ric| + |s[;"S — At,

where v and 8 are constants to be determined and are at least large enough
such that

(3.10) Vsl < Clslie, |Alsfie] < Clsfze
and

| 4 3 4 3
(3.11) Vs’ < Clsl?,1Alsl| < Ol

Assume that H achieves maximum at a point (tg, z9), to > 0 and |Ric| > 1
at (to, 20). By (3.7) and the estimate for S, we have

0 g 1.9
. - < —
(3.12) < r A)S C|5|h 2|V‘1>| )
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for sufficiently large 5. Together with (3.9)),(3.10|) and (3.11)), we obtain

(3.13) <8_A)Hg¢$mVRmH4Rmm

ot
T s (|V|Ric||2 B |VRic|2)
| Ric| | Ric|
—2Re (V| Ric| - V|s[}*) — Als[}*| Ric|

_ 1 _
—2R@(vs.vp@ﬂ-+cbﬁﬁ—§pﬁﬂv¢ﬁ
— Als[Ps — A

As VH =0 at (%o, 20), we have
|53V | Ric| = — V3| Ric| — |s["V5 — V|s[}*s

Combining with (3.10) and (3.11)) and |V|Ric|| < |V Ric|, we get

V| Ric ||? N |VS||VRic| S|VRic|
(314) IO P r— S C’|S|}2L |VR1C| + —43 : C —33 :
], Ric [sl, "I Ric|  [s],""| Ric]
: BIT |2
|V Ric| . MZL Vo
VT L 6y)s|9| Ric| + C
= Al mie] TP+ Oy
sl
+ O3 s
|s[3| Ric |

where we use |[VS| < 25|V®|? and S < C |s|,:B in the second inequality. Note
that

[Rm [ < SV + 3],

N W

for a large as
V.. F=_R_F4 (Ro);-i*
a*ij iqj 0)igj -
Then we have
81 4
s [V sl
|s[3*| Ric| |s[3*| Ric

(a_A>chmmmq+c

ot
_ 1 _

+CM?W®—ZMfW®F+C—A

Assume at (to, 20), |s[3*| Ric| > 1 (otherwise, H < 2 and the bound for | Ric |

follows). By (3.1)),
|Ric| < [Va] + [s|;™.
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For a large enough, the term |s|{f| Ric| can be controlled by %\sﬁf!?@\?
Choosing o and then A sufficiently large, we get

0
——A|HL
(5-s)m=o
therefore we have the uniform upper bound for H and the proposition fol-
lows. O

Remark 3.1. We use global arguments to obtain the estimates in Proposi-
tion 3.1 and Proposition 3.2. They may also follow from the local estimates
of Sherman-Weinkove in [13] .

4. Smooth convergence as t — T+

In this section, we will prove sharper bounds on ¢, and ¢ and then obtain
the smooth convergence of the metrics w(t) to &r on compact subsets of
N\{y}ast—T+.

Recall that &7 = wn + \/—71861#16. For simplicity, write @ = Wy, w =
&r =wy and |s[? for (W‘&l\E)*ﬂSh%) in the proof of the following lemma.
Then

= C
" = (W + V—100¢r)" = ef“o", where F.=log < fn€> )
)

Lemma 4.1. There exist constants X\ >0 and C > 0, independent of e,
such that
7
WN Swre < T5rWN
c |s[7

on N\ {yo}-

Proof. As 17 is uniformly bounded by , there exists a constant Cj
such that ¢ + Cy > 1. Take €g > 0 small enough such that w — egRj, > cw
for some positive constant ¢, where Ry is the curvature of the Hermitian
metric. Let &T’E = 1. — €olog |s|2 and define

H =logtry, & — Are + =——.
N © dre+ Co

Note that H(y) goes to negative infinity as y tends to yo. Compute at a
point in N \ {yo}. Assume trgyw > 1 at this point. From Section 9 of [20],
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we have

- 2 kg
. & LW > —— qT trg w
(4.1) Aglogtryw > (trp 3)7 Re( 0 tre )

— Ctrpd — |AsF| —

Assume that H achieves a maximum at zg. As 9;H = 0 at zp, that is

8(7 tr@iw _ Aan;T7e _ aql/)T,e _ 07
trg w (wT,e + 00)2
we get
(4.2) LR(’WT Vgtre @)
’ (tr@ (:))2 ww
2 1 ~
=[5 Re( GEIT) (A + ——————)0gr.c
- (Prc 4+ Co)>C' A% trg &
" (Y + Cp)? (tro@)?

If at zo, (tro @)% < A2(drc + Co)?, then

3 ~ ~ 1
H <log A+ - log(¢re + Co) — AYre + =—.
2 lostvr 0 ! Yr.e + Co

As &T,e + Co > 1, we have an upper bound for H and thus @ is bounded
from above. Otherwise, A%(¢r . + Cp)3 < (try @)% at the maximum point.
Moreover, by the definition of ., it follows from (3.1)) and Proposition 3.2
that

[

for uniform constants C' and 8. As Ry, = —/—190log|s|? on N \ {yo}, by

(4.1) and (4.2]) we have
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2|00 (|2
(4.3) ApH = Aglogtry, @ + M
(¢T,e + 00)3

1
- A - ____________ (:) o - ’
< i (Yre + 00)2> vl et ofie)

2|0 |2
> Aplogtry, @+ cAtrgw + M —(A+1)n

(Y1 + Co)3
7 3 IA2 oA
ZCAtr&;(:J—CtI‘Q(D—(d)T’E_‘_CO)NC' trww_ C
(try @)2 |5[22

. C
> (cA—C'—C)tr@w—W.

At the maximum point, Az H < 0, therefore

c
|57

trow < 3

for sufficiently large A. Then at zg,

trow <

as " = Cf) has an upper bound by definition of Q. and (3.1]) holds. Thus
there exists C' > 0, independent of €, such that H < C for sufficiently large

A. Since 1[17’75 + Cp > 1, we obtain the desired estimates for w7 = @. O
Recall that
(4.4) we(t) = & + vV —100¢.

for t € [T, T']. From Lemma 5.4 of [15], we have the following volume bound.

Lemma 4.2. There exist constants A >0 and C > 0, independent of e,
such that

wl C
<
Qv =[5}

on [T, T x (N \ {yo})-

With Lemma 4.1 and Lemma 4.2, the upper bound for w(t) can be
obtained by using the argument of Tosatti-Weinkove [21I] (see also [12]).
For simplicity, we write © = wy, @ = w, in the proof of the following lemma.
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Lemma 4.3. There exist constants A\ >0 and C > 0, independent of e,
such that on [T, T'] x (N \ {yo}),

—wN S Wwe < —orWN.
C ElFs

Proof. Take ¢y > 0 small enough such that & — egRy, > ¢ for any t € [T, T"]
for some constant ¢ > 0. Let @ = ¢, — €9 log |s|2. By Proposition 2.1, there
exists a positive constant Cp, such that ¢, + Cy > 1. Define

1
H=logtr, & — Ape + ———,
g w SD (p€+CO

where A is a positive constant to be determined. We have
2Aeo ~
Hly—7 < |s[;7 logtr,,, &1 — AV + 1.

By Lemma 4.1, H is uniformly bounded from above at time T'. Moreover,
H(t,y) tends to negative infinity as y tends to yo, for any t € [T,T']. Com-
pute at a point in N \ {yo} with trg© > 1. From Proposition 3.1 in [20],

Re (77,05 tr @ ) + C trz &

0 2
4. Y Ad} 1 w » § 7 ~N\o
(45) <8t ) 08tte W (try @)?2

Assume H achieves its maximum at (o, 29), we have zH = 0 at this

point, thus
2 kgD -
<|-%_Re GghaTP A+ _ o)
T trp @ kP (Pe+Co)?2) 17

5 + CA*(e + Co)

~ (@e + Co) (try@)?

If at (to, Z()), (tI‘@ (:))2 < A2(¢e + Co)s, then

3
H <log A+ “log(p. +Cy) — APy + ————.
<log +2og(soe+ 0) <p€+¢6+00
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As @, + Cy > 1, we have an upper bound for H and thus @ is bounded from
above. Otherwise, A%(pc + Cp)? < (trgy ©)? at the maximum point. Comput-
ing the evolution of H, it follows from (4.5 and (4.6) at (¢, 20)

0 1
— A | HLS<Ctrg&o— A4+ ————= | ¢¢
<8t ) = Coee <+<soe+co>2)“"
1
A+ ——— | trg (0 —
+< +<,55+00)2> T (w wt-i-éoRh)
SCtr@&J—i—(A—i—l)logQN

(:)n

+C+(A+1)n
— Atr@(d)t — EQRh).

As @y — egRy, > cw and (% - A(;,) H < 0 at this point, we have
Q
tro @ < Clog — + (1.
@

for A large enough. Then at (%o, 2o),

1 det @
tro @ < tro o)V ——
e = (n—l)!(rww) det @
" Qn\" !
<C— (1 c’
<% <og (Z)”) +
< C
as 0" /Qn < M% by Lemma 4.2. Hence there exists C' > 0, independent of ¢,
h,

such that H < C for sufficiently large A. Since ¢, + Cy > 1, we see that @ is
uniformly bounded from above. The lower bound follows from an argument
similar to the proof of Lemma 2.3 in [21]. O

Proof of Theorem 1.2. The existence and uniqueness is given by Proposi-
tion 2.1 and Theorem 1.3 (the proof is in the next section). The characteri-
zation of the maximal time Ty follows from Theorem 1.2 in [20]. By Lemma
4.3, for any compact subset K C N \ {yo}, there exists a positive constant
Ck such that

N <w(t) < Ogxwy  on [I,T] x K.

Ck
The local estimates of Gill [5] then gives uniform C* estimates for w(t) on
compact subsets of N \ {yp}. The smooth convergence follows from this and
we finish the proof. O
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5. Proof of Theorem 1.3

In this section, we prove the smoothing property for the Chern-Ricci flow
with rough initial data. We follow the arguments in Song-Tian [14] closely.
Using the same notations as in the introduction, assume that wq satisfies the
condition (1.3)), then by the same arguments as in Section 4 of [10], there
exist functions ¢; € PSH(M,wy) N C*°(M) such that

(5.1) lim [[1); — ol (ar) = 0.
j—o0

Write wp; = wo + \/—185%. The Chern-Ricci flow starting at wp ; can be
reduced to a parabolic complex Monge-Ampere equation. First denote

T = sup{t > 0|3 € C*°(M), wo — tRic(wp) +v/—199¢ > 0}.
Then for any 77 < T, there exists ¢y, € C°°(M)) such that
B = wy — T’ Ric(wp) + v/ —190¢7+ > 0.

Fix T" < T and define smooth Hermitian metrics

. t t
wy = (1—T,>UJO4—T,B:W0+tX
on [0,7"], where x = £+/—109¢r — Ric(wp). Let Q be a volume form sat-
isfying v/—1001og ) = %d}t = x. It follows that if ¢; solves the parabolic
complex Monge-Ampere equation

d; o+ V=100,
(5.2 Y ORY”

for t € [0,7"], then w; = & + v/—189y; solves the Chern-Ricci flow starting
at wo,j = wo + v —100v;. We will show uniform C'*° bounds for ¢; and prove
Theorem 1.3.

Let
V—190¢0)"
Pt 5 9020)" ¢ 1r(ar),
We use C,C’,C;,... to denote uniform constants depending only on wy,

ol (ary and || F'[|L»(ar) and varying from line to line.
First we have the following two lemmas from [I4] (Lemma 3.1 and 3.2).
The proof is exactly the same as in [14].
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Lemma 5.1. There exists C > 0 such that for any t € [0,T"],

sl (ary < C.
Moreover, {p;} is a Cauchy sequence in C°([0,T'] x M), i.e.,

1‘ y oo ’ = 0
j7klgloo||<ﬁy Okl Lo (0,17 x M)

Lemma 5.2. There exists C > 0 such that

< (@ + v/ —10Dp;)"

t" < c
C Q S et

for any t € [0,T"].

For convenience, we write w’ = w; the solution of the Chern-Ricci flow
starting at wo ; and ¢/, A’ |-|y,... the notations corresponding to w; for
a fix j. All the bounds obtained in the following lemmas are independent of
j-

To prove the second order estimate, we will need the following proposi-
tion. It follows from Proposition 3.1 in [20] as (T0),; = (T0,j) i, where Tp
and Tp ; are the torsions corresponding to wp and wo ;.

Proposition 5.1. (Tosatti-Weinkove) Assume that at a point try, w' > 1,
then

2

m Re(g’pq(To);iaq try, w’) + C'try wo
Wo

<§t — A') log try, w' <

at this point for some constant C depending only on go.
Lemma 5.3. There exists C > 0 such that fort € (0,T],
, c

tre, w <et.

Proof. Let
H =tlogtr,, o +eY,
where U = A(supp; — ;) and A is a constant to be chosen later. Assume
[0,T"]x M

that H achieves its maximum at (to, 29) and try,, w’ > 1 (otherwise we obtain
the upper bound for tr,,, w’ directly). Choose coordinates around (¢, 29) such
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that at this point, (go),7 = d;; and (g/-) is diagonal. First we have
g ) J 1]

<(§t - A’) H=t <§t - A’) log tr, ' + log tr,, W' — Ae¥;
+ Ae Ny, — A2e‘y|Vgpj|§,.
It follows from Proposition 5.1 that

0 2 P
<8t — A’) log try, w’' < CONEIE Re(g™™* (Tp)%,;05 tro, w') + C tro wo.
Wo

At (to,20), Vi H = 0 gives

Ort !
t% — Ae¥Opp; = 0.
Wo
Then
2t : , 24eY : :
(5.3) m Re(glkk(TO);ciafc e, W/) < tr o | Re(glkk(T0)2i3E¢j)’
wo Wo
< e‘I’(AQIV(pj 3, + O tr, wo).
Also
n\n
t /< tr, n—1 (w) )
g & S gy (b w0

Combining all the above inequalities, we get

0
4 ——AN)H
s (5o
< C’leq’ try wo + Cttry, wo + log try, W'

+ Ane¥ — AeY try & — Aeq’gbj

"\n
< —e¥ try (A — Crwp — C'twp) + (1 — Ae?) log (wi
“o

+ (n — 1) log tryy wo + Co
< —Ctryrwg — Cslogt 4+ Cy.
for A large enough. Here we use Lemma 5.2 in the last inequality. Then at
(t(]a 20)7

1

mn n—1 1
Cs < “o ) (tT, w’)ﬁ < Ctry wy < —Cslogt + Cy.
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So

n
Wo

"\n
log try, w’' < log <(log 1 + Cg)" 1 <()>> +0; < %4_09

Thus H is uniformly bounded for ¢ € (0,7] and we obtain the required esti-
mate. U

Now let S = \Vgog’|§,. For convenience we still denote <I>ijk = F (Fo)w’
then

= ’(I)|g g/lpg/]qgqu)zykq)ﬁqf'
Lemma 5.4. There exists C > 0 and X\ > 0 such that for t € (0,T"],
5 < Cet.

Proof. By the evolution equation for tr,, " in [20] and Lemma 5.3, we have

(gt - A ) tr, W < —Che v S + Chet

and

<8—A>S§ef(53/2+1)—;('

2 &2

A A
for some positive constants o and 3. Take A1 > 0 such that %671 <er —
try,, w <e . Let

S A
H=— +e 7 tT, W

0 1 0
W)ae (2 s)s
<8t (e — try, w)? \O

+— 25 (8—A>trw0w’
(eT - tI‘Wo ) ot

AReV'tr, o' - V'S 65|V try, o'|?
- b - by
(et — try, w')3 (et — try, w)*
2/\216 ¢S *2 0

ES Ay
+ — +e (5 — A try, W 4+ e try,w
(e — tr,, w')3 ot t

/
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221 1 2x;
<dem et (S3241) - ae—%(\vﬂp\g, +|V'2)
+ —2016_%6_¥52 + 16026%6_¥S +32e_¥ ReV'tr,, ' V'S
0

2

+ Gt S+ (~Cre TS+ Crete ) Gy

where we choose Ay large enough such that 2%6_%2 try, w' < Cy for some
constant Cy. Note that |V tr,, w'|y < &ev SY/?2 for some v > 0 and |V’S]g/ <
281/2 W’@;_q/, we have
_ 371 / ;1 _3\1 2o =/
32¢” ¢ |[ReV'tr, w' -V S| <e rerSIVO|,
ax

2\ — 1 2y
< e V2 e e s,

N = ®

Also we have
,ﬁég/g _a _3M 9o 4 o 28 _n
de” v ee SV < (Chemre” T S —i—ﬁetete + S,
1

Take Ay sufficiently large such that e e_kTZ < 1, then fix Ag. Let Ay > a0+ Ao
be large enough such that

0 / 1 _a A2
— < —— t t
(875 A)H_ 2016 et S+C

for some constant C'. Assume that H achieves its maximum at (tg, o), to > 0,
then at this point

1 o 2
0< —5016_76_%5 + C.
It follows that H is bounded by some constant. Therefore S < Ce? for some
constants C' > 0 and A > 0. O

In addition, to bound the derivatives of w; in the ¢-direction, it is sufficient to
bound |Ric(g)| which follows from the proof of Lemma 3.4 in [I0]. Then by
the standard parabolic estimates [9], we obtain all the higher order estimates.

Proposition 5.2. For any 0 < e <T' and k >0, there exists Ceqrj, > 0,
such that
lillen e rxary < Cet k-

The proposition below follows from the same arguments for the proof of
Proposition 3.3 in [14]. For reader’s convenience, we provide the proof here.
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Proposition 5.3. There exists a function
© € C°[0,T) x M)NC>®((0,T) x M)

such that ¢ is the unique solution of the equation

O+ /—100p)™
(1 q 2 , forte (0,T), ¥li=0= po.

Dy
. R |
(5.5) 5; = 108

Proof. By Lemma 5.1, ¢; is a Cauchy sequence in C°([0,7"] x M) and so
we can define ¢ = lim;_,o0 ¢o; Which is in CY([0,7"] x M). Then it follows
from Proposition 5.2 that for any 0 <e <T' <T, ¢; converges to ¢ in
C*([e, T'] x M). Therefore ¢ € C*°((0,T) x M) satisfying the above equa-
tion on (0,7"). Note that

Tim [l (t,) ~ @0~y =0
as ¢;(0) = v; and 1; = g in L>(M) as j — oco. Then ¢|i—¢p = ¢o and we
have the existence of a solution ¢ € C°([0,T) x M) N C>((0,T) x M) for
equation . To prove the uniqueness, we assume that there is another
solution ¢ € C°([0,T) x M) N C>((0,T) x M) of equation . Let ¢ =
@ — . Then 1 solves the equation

o (@1 + V=100 + /—1804))"
—— =log - =
ot (@ + v —100¢)"

) fOT’ te (O7T)7 ¢|t:0 = 0.

At any given time t, the maximum of 1 is achieved at some point z €
M, then dw’”di‘f(t) <0 a.e. in [0,7). Similarly we have dw’"diit"(t) >0 a.e. in
[0,7). As both ¥mas(t) and s (t) are absolutely continuous on ([0,7)
With ¥maz(0) = VYmin(0) = 0, we have Va0 (t) < 0 < in(t) for t € [0,T).
Hence ¢(t) =0 for t € [0, 7). O

Now we can prove the smoothing property for the Chern-Ricci flow with
rough initial data.

Proof of Theorem 1.3. If ¢ is a solution of (5.5), then taking /=100 of
(5.5) shows that w = @ + +/—190¢ solves Sw = —Ric(w) on (0,7) and
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limy 0+ [l(2, ) — @o(-) |l (ar) = 0. Conversely, if w is a solution, then

0 Ay - w™
a(w—u&) = \/—18810gﬁ

Thus w(t) must be of the form w(t) = &y + /=10y for some ¢ solving the
equation

(5.6) V=108 (g‘f log Gt Jjaa@)n) — 0.

Proposition 5.3 gives a solution of the above equation. Suppose that there
exists another solution @ € C®((0,T) x M) N C°([0,T) x M) of equation

(5.6). Then

05 (G + V109§

with lim; g+ @(t) = ¢p for some smooth function f(¢). So we get that ¢ =
P — fg f(s)ds which is the unique solution of the equation li Therefore

p=p+ f[f f(s)ds. Then
W= +V—-100¢ = & + V/—100¢
and we prove the uniqueness. O
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