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Weak solutions of the Chern-Ricci flow on

compact complex surfaces

Xiaolan Nie

In this note, we prove the existence of weak solutions of the Chern-
Ricci flow through blow downs of exceptional curves, as well as
backwards smooth convergence away from the exceptional curves
on compact complex surfaces. The smoothing property for the
Chern-Ricci flow is also obtained on compact Hermitian manifolds
of dimension n under a mild assumption.

1. Introduction

Let (M, g0) be a compact Hermitian manifold with associated (1, 1) form
ω0. The Chern-Ricci flow starting at ω0 is given by

∂

∂t
ω = −Ric(ω), ω|t=0 = ω0,(1.1)

where Ric(ω) = −
√
−1∂∂̄ log det g is the Chern-Ricci form of ω. It was in-

troduced by Gill [5] on manifolds with vanishing first Bott-Chern class and
investigated by Tosatti and Weinkove [20] in details on general Hermitian
manifolds. If the initial metric is Kähler, then it coincides with the Kähler-
Ricci flow.

Many nice properties of the flow have been found (see [3, 20–22], etc.),
some of which are analogous to those of the Kähler-Ricci flow. Let

T = sup{t ≥ 0|∃ψ ∈ C∞(M), ω0 − tRic(ω0) +
√
−1∂∂̄ψ > 0}.

It was proved in [20] that there exists a unique maximal solution ω(t) to the
Chern-Ricci flow (1.1) on [0, T). It is expected that the Chern-Ricci flow
is closely related to the geometry of the underlying manifold. In the case
of n = 2 (complex surfaces), the behavior of the flow is particularly inter-
esting. Let M be a compact complex surface with ω0 a Gauduchon metric.
It was proved in [20] that the Chern-Ricci flow starting at ω0 exists until
either the volume of M goes to zero, or the volume of a curve of negative
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self-intersection goes to zero. The Chern-Ricci flow is said to be collapsing
(non-collapsing) at T if the volume of M with respect to ω(t) goes to zero
(stays positive) as t→ T−.

Suppose that the Chern-Ricci flow starting at ω0 is non-collapsing at
T <∞. It was shown in [20] that M contains finitely many disjoint (-1)-
curves E1, . . . , Ek and thus there exists a map π : M → N onto a complex
surface N contracting each Ei to a point yi ∈ N . It was conjectured in [21]
that the flow blows down the exceptional curves and continues in a unique
way on a new surface N . The conjecture requires smooth convergence of the
metrics away from the (-1)-curves and global Gromov-Hausdorff convergence
as t→ T− and t→ T+. Denote M ′ = M \ ∪ki=1Ei. In [21], Tosatti and
Weinkove prove the following theorem.

Theorem 1.1. (Tosatti-Weinkove) With the notation above, then the met-
rics ω(t) converge to a smooth Gauduchon metric ωT on M ′ in C∞loc(M

′) as
t→ T−. Assume in addition

ω0 − T Ric(ω0) +
√
−1∂∂̄f = π∗ωN(1.2)

for some f ∈ C∞(M,R) and ωN a smooth (1,1) form on N . Then there
exists a distance function dT on N such that (N, dT ) is a compact metric
space and (M, g(t))→ (N, dT ) as t→ T− in the Gromov-Hausdorff sense.

Denote ω̃T = (π−1)∗ωT the push-down of the limiting current ωT to N .
To continue the flow on N , first we need to show that the Chern-Ricci flow
on N with singular initial metric ω̃T has a unique smooth solution on (T, T ′]
for some T ′ > T . To prove the smooth convergence on compact subsets of
N ′ = N \ {y1, . . . , yk}, we need more precise estimates near the exceptional
curves as t→ T− and also estimates on [T, T ′]×N ′. We may assume ωN
in condition (1.2) to be a Gauduchon metric after replacing f by a new
function (see Lemma 3.2 in [21]) and denote

TN = sup{t ≥ T | ∃ψ ∈ C∞(N), ωN − (t− T ) Ric(ωN ) +
√
−1∂∂̄ψ > 0}.

Using the construction of Song-Weinkove for the Kähler-Ricci flow in
[15], we prove the following theorem.

Theorem 1.2. Assume that the condition (1.2) is satisfied. With the no-
tation above, then there exists a unique maximal smooth solution ω(t) of the
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equation:
∂

∂t
ω = −Ric(ω), for t ∈ (T, TN ),

on N such that ω|t=T = ω̃T and ω(t) converges to ω̃T in C∞loc(N
′) as t→ T+.

When ω0 is Kähler, the result is contained in the work of Song-Weinkove
[15]. We use the techniques of Song-Weinkove [15], Tosatti-Weinkove [20, 21]
and a trick of Phong-Sturm [12] in the proof of the above theorem.

The existence and uniqueness in Theorem 1.2 follows from a more general
theorem on M of dimension n. Let Ω be a smooth volume form on M
and ω̂t = ω0 + tχ, where χ is a closed (1,1) form locally defined by χ =√
−1∂∂̄ log Ω. Denote PSH(M,ω0) the set of ω0-plurisubharmonic functions

and let

PSHp(ω0,Ω) =

{
ϕ∈PSH(M,ω0)∩L∞(M)

∣∣∣ (ω0+
√
−1∂∂̄ϕ)n

Ω
∈Lp(M)

}
.

Following the arguments of Song-Tian in [14], we prove the smoothing prop-
erty for the Chern-Ricci flow.

Theorem 1.3. Suppose that

ω′0 = ω0 +
√
−1∂∂̄ϕ0

for some ϕ0 ∈ PSHp(ω0,Ω), p > 1. Assume that ω0 satisfies

∀ u ∈ PSH(M,ω0) ∩ L∞(M),

∫
M

(ω0 +
√
−1∂∂̄u)n =

∫
M
ωn0 ,(1.3)

then there exists a unique family of smooth Hermitian metrics ω(t, ·) on
(0, T )×M such that

(i) ∂
∂tω = −Ric(ω), for t ∈ (0, T ).

(ii) There exists ϕ ∈ C0([0, T )×M) ∩ C∞((0, T )×M) such that ω = ω̂t +√
−1∂∂̄ϕ and ϕ(t)→ ϕ0 in L∞(M) as t→ 0+.

In particular, ω(t)→ ω′0 in the sense of currents as t→ 0+.

When (M,ω0) is a Kähler manifold, the result is contained in the work
of Song and Tian [14] (see also [1]). When M is a compact complex surface
with a Gauduchon metric ω0, condition (1.3) is satisfied and the above result
follows. The proof of Theorem 1.3 is given in Section 5.
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2. Construction of the weak solution

In this section, we construct the solution in Theorem 1.2 explicitly. We will
follow the construction of Song-Weinkove for the Kähler-Ricci flow [15].

Without loss of generality, assume that M contains only one exceptional
curve E for simplicity. Assume that the condition (1.2) holds for a Gaudu-
chon metric ωN on N . Define

ω̂t = (1− t

T
)ω0 +

t

T
π∗ωN ,

which are smooth nonnegative forms on [0, T ]. Let Ω = ef/Tωn0 . (From now
on, we will write n instead of 2 whenever our calculations hold for n ≥ 2.)
If ϕ solves the parabolic complex Monge-Ampère equation

∂ϕ

∂t
= log

(ω̂t +
√
−1∂∂̄ϕ)n

Ω
, ϕ|t=0 = 0(2.1)

for t < T , then ω = ω̂t +
√
−1∂∂̄ϕ solves the Chern-Ricci flow (1.1) on [0, T ).

By Lemma 3.3 of [21], there exists a uniform constant C such that
|ϕ| ≤ C and ϕ̇ ≤ C, where we write ϕ̇ for ∂ϕ

∂t . Then it follows that as t→ T−,
ϕ(t) converges pointwise on M to a bounded function ϕT with

ωT = ω̂T +
√
−1∂∂̄ϕT ≥ 0.

In particular, ω(t)→ ωT in the sense of currents as t→ T−. From Lemma
5.1 of [15] ϕT must be constant on E since

√
−1∂∂̄ϕT |E = ωT |E ≥ 0. Thus

ψT = (π−1)∗ϕT is a bounded function on N which is smooth on N \ {y0} as
π is the blow down map contracting E to y0. Then

ω̃T = ωN +
√
−1∂∂̄ψT ≥ 0.(2.2)

Lemma 2.1. There exists p > 1 such that ω̃nT /ω
n
N ∈ Lp(N). Moreover, ψT

is continuous on N .

Proof. The argument of Lemma 5.2 in [15] shows that ω̃nT /ω
n
N ∈ Lp(N). The

continuity of ψT then follows from the results in [8] and Dinew-Ko lodziej
[2]. �

Given a smooth volume form ΩN on N , now we will construct a family of
functions ψT,ε on N which converge to ψT in L∞(N). For sufficiently small
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ε > 0 and K large enough, define

Ωε = (π|−1
M\E)∗

(
|s|2Kh ωn(T − ε)

ε+ |s|2Kh

)
+ εΩN on N \ {y0}.

and Ωε|y0 = εΩN |y0 . Here s is a holomorphic section of the line bundle [E]
vanishing along the exceptional curve E to order 1. Choose h to be a smooth
Hermitian metric on [E] as in [20] with curvature Rh = −

√
−1∂∂̄ log h such

that for sufficiently small ε > 0, π∗ωN − εRh > 0( see [6] for an argument
of this.) Then the volume form Ωε ∈ Ck(N) for a fixed constant k as π is
the blow down map and K can be chosen to be sufficiently large. Moreover,
Ωε converges to ω̃nT in C∞ on compact subsets of N \ {y0} as ε goes to
zero. By the result of Tosatti and Weinkove [19], there exist unique ψT,ε ∈
Ck(N) ∩ C∞(N \ {y0}) such that

(ωN +
√
−1∂∂̄ψT,ε)

n = CεΩε, sup
N
ψT,ε = 0

where the constants Cε are chosen so that the integrals of both sides of
the above equation match. Normalize ψT such that sup

N
ψT = 0 and write

fε = CεΩε/ΩN and f = ω̃nT /ΩN . Note that Cε → 1 as ε→ 0, then by the
definition of Ωε we have

lim
ε→0
‖fε − f‖L1(N) = 0.

By Lemma 2.1 and the stability result in [8], we have

lim
ε→0
‖ψT,ε − ψT ‖L∞(N) = 0.(2.3)

Let χ =
√
−1∂∂̄ log ΩN , then there exists T ′ > T such that

ω̂t,N = ωN + (t− T )χ

are smooth Gauduchon metrics for t ∈ [T, T ′]. For convenience, we will still
write ω̂t for ω̂t,N . Consider the parabolic complex Monge-Ampère equations

∂ϕε
∂t

= log
(ω̂t +

√
−1∂∂̄ϕε)

n

ΩN
, ϕε|t=T = ψT,ε

on [T, T ′]. Then we have the following proposition.

Proposition 2.1. There exists ϕ ∈ C0([T, T ′]×N) ∩ C∞((T, T ′]×N)
such that
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(i) ϕε → ϕ in L∞([T, T ′]×N).

(ii) ϕ is the unique solution of the equation

∂ϕ

∂t
= log

(ω̂t +
√
−1∂∂̄ϕ)n

Ω
, for t ∈ (T, T ′), ϕ|t=T = ψT .(2.4)

in C0([T, T ′]×N) ∩ C∞((T, T ′]×N).

Proof. With Lemma 2.1, the proposition follows from Lemma 5.1 and Propo-
sition 5.3 in the last section. �

To prove smooth convergence of ω(t) on compact subsets of N \ {y0} as
T → T+, we need uniform estimates for ωε(t) = ω̂t +

√
−1∂∂̄ϕε on [T, T ′]×

N \ {y0}, independent of ε. To obtain these estimates, we need the bounds
at time T , i.e. the bounds for ω̃T,ε = ωN +

√
−1∂∂̄ψT,ε. We will prove these

in Section 4.

3. Higher order estimates as t → T−

In this section, we will prove a third order estimate and a bound for |Ric |,
which will be used to obtain the bounds for ω̃T,ε in the next section.

As t→ T−, the smooth convergence of ω(t) on compact subsets of M \
{E} follows from Theorem 1.1 of [21]. In particular, C∞ a priori estimates
for ω(t) on compact subsets away from the exceptional curves have already
been obtained. However, we need more precise higher order global estimates
on M as t→ T− to obtain the bounds for ω̃T,ε.

By Lemma 2.3 and 2.4 in [21], there exist positive constants C and K
such that

|s|2Kh
C

ω0 ≤ ω(t) ≤ C

|s|2Kh
ω0.(3.1)

We may assume that |s|2h ≤ 1 on M for convenience. By Lemma 2.1 of Guan-
Li [7], we can choose local coordinates around a point such that at this point

(g0)ij̄ = δij , ∂i(g0)jj̄ = 0(3.2)

for all i, j and (gij̄) is diagonal. Now choose such a coordinate system around
a point. Following an argument in [18], we can get the inequality,

|∇ trω0
ω|2g

trω0
ω

≤
∑
i,j,k

gīigjj̄∂kgij̄∂k̄gjī +
∑
i,j

gīigīi|∂j(g0)ij̄ |2.(3.3)
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To see this, first applying the Cauchy-Schwarz inequality

|∇ trω0
ω|2g =

∑
i

gīi

∑
j

∂igjj̄

(∑
k

∂īgkk̄

)
(3.4)

=
∑
i

gīi

∣∣∣∣∣∣
∑
j

∂igjj̄

∣∣∣∣∣∣
2

≤
∑
i

gīi

∑
j

gjj̄

∑
j

gjj̄ |∂igjj̄ |2


= (trω0
ω)

∑
i,j

gīigjj̄∂igjj̄∂īgjj̄

 .

Note that ω = ω0 + θ(t) for a closed (1,1) form θ(t). Hence

∂igjj̄ − ∂jgij̄ = ∂i(g0)jj̄ − ∂j(g0)ij̄ .

Using (3.2), we get

∂igjj̄ = ∂jgij̄ − ∂j(g0)ij̄ .

Similarly ∂īgjj̄ = ∂j̄gjī − ∂j̄(g0)jī. Then (3.4) gives

|∇ trω0
ω|2g

trω0
ω

≤
∑
i,j

gīigjj̄∂jgij̄∂j̄gjī − 2 Re

∑
i,j

gīigjj̄∂jgij̄∂j̄(g0)jī

(3.5)

+
∑
i,j

gīigjj̄∂j(g0)ij̄∂j̄(g0)jī

=
∑
i,j

gīigjj̄∂jgij̄∂j̄gjī − 2 Re

∑
i,j

gīigjj̄∂igjj̄∂j̄(g0)jī


−
∑
i,j

gīigjj̄∂j(g0)ij̄∂j̄(g0)jī
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≤
∑
i,j

gīigjj̄∂jgij̄∂j̄gjī − 2 Re

∑
i 6=j

gīigjj̄∂igjj̄∂j̄(g0)jī


≤
∑
i,j

gīigjj̄∂jgij̄∂j̄gjī +
∑
i 6=j

gjj̄gjj̄ |∂igjj̄ |2 +
∑
i 6=j

gīigīi|∂j(g0)ij̄ |2

≤
∑
i,j,k

gīigjj̄∂kgij̄∂k̄gjī +
∑
i,j

gīigīi|∂j(g0)ij̄ |2.

Thus we get the inequality (3.3). We will use it to prove our third order
estimate.

Let ∇g0 and (Γ0)kij be the Chern connection and Christoffel symbols

of g0. Denote ∇,Γkij ,∆ and | · | the Chern connection, Christoffel symbols,
complex Laplacian and the norm associated to g = g(t). It is convenient to
compute using Φ k

ij = Γkij − (Γ0)kij as in [11] (see also [13]). Consider

S = |∇g0g|2 = gip̄gjq̄gkr̄Φ
k

ij Φ r̄
p̄q̄ .

Proposition 3.1. There exist positive constants λ and C such that for
t ∈ [0, T ),

S ≤ C

|s|2λh
.

Proof. Let

H =
S

(|s|−αh − trω0
ω)2

+ |s|βh trω0
ω −At,

where α and β are constants to be determined and at least large enough
such that

1

2
|s|−αh < |s|−αh − trω0

ω < |s|−αh

and

|∇|s|βh| ≤ C|s|
3

4
β

h , |∆|s|βh| ≤ C|s|
β

2

h .
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Computing the evolution of H,

(
∂

∂t
−∆

)
H =

1

(|s|−αh − trω0
ω)2

(
∂

∂t
−∆

)
S(3.6)

− 2S

(|s|−αh − trω0
ω)3

(
∂

∂t
−∆

)
(|s|−αh − trω0

ω)

+
4 Re∇S · ∇(|s|−αh − trω0

ω)

(|s|−αh − trω0
ω)3

−
6S|∇(|s|−αh − trω0

ω)|2

(|s|−αh − trω0
ω)4

−A

+

(
∂

∂t
−∆

)
(|s|βh trω0

ω).

From [13] and (3.1), we have the estimates

(
∂

∂t
−∆

)
S ≤ C|s|−α1

h (1 + S3/2)− 1

2
|∇Φ|2,(3.7)

and (
∂

∂t
−∆

)
trω0

ω ≤ −
|s|α2

h S

C
+ C|s|−α2

h − 1

2

∑
i,j,k

gjj̄gīi∂kgij̄∂k̄gjī.(3.8)

Also, by (3.3)

|∇ trω0
ω|2

trω0
ω

≤
∑
i,j,k

gjj̄gīi∂kgij̄∂k̄gjī + C|s|−α3

h .

Compute

(
∂

∂t
−∆

)
(|s|βh trω0

ω)

= |s|βh

(
∂

∂t
−∆

)
trω0

ω − (trω0
ω)∆|s|βh − 2 Re(∇|s|βh · ∇ trω0

ω)

≤ − 1

C ′
|s|2βh S + C ′.
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In the last inequality we use

2|Re(∇|s|βh · ∇ trω0
ω)|

≤ C +
1

C
|∇|s|βh|

2|∇ trω0
ω|2

≤ C +
1

C
|∇|s|βh|

2(trω0
ω)

∑
i,j,k

gīigjj̄∂kgij̄∂k̄gjī + C|s|−α3

h


≤ C +

1

2
|s|βh

∑
i,j,k

gīigjj̄∂kgij̄∂k̄gjī.

for β large enough. Then fix β. Together with (3.7) and (3.8)we get(
∂

∂t
−∆

)
H ≤ C|s|2α−α1

h (1 + S3/2)− 1

2
|s|2αh |∇Φ|2

+ C0|s|3αh |∆|s|−αh |S + C0|s|3α−α2

h S − |s|3α+α2

h

S2

C0

+ 4 Re
∇S · ∇(|s|−αh − trω0

ω)

(|s|−αh − trω0
ω)3

+

(
− 1

C ′
|s|2βh S + C ′

)
−A.

As

|∇S| ≤ 2S1/2|∇Φ|, |∇ trω0
ω| ≤ C|s|−α4

h S1/2

and |∇|s|−αh | ≤ C|s|
−α−α5

h , we have∣∣∣∣∣4 Re
∇S · ∇(|s|−αh − trω0

ω)

(|s|−αh − trω0
ω)3

∣∣∣∣∣ ≤ CS1/2|∇Φ|(|s|2α−α5

h + |s|3α−α4

h S1/2)

≤ 1

2
|s|2αh |∇Φ|2 + C1(|s|2α−2α5

h S + |s|4α−2α4

h S2).

Also

C|s|2α−α1

h S3/2 ≤ |s|3α+α2

h

S2

2C0
+ C1|s|α−2α1−α2

h S.

By choosing α and then A sufficiently large, we have(
∂

∂t
−∆

)
H ≤ 0.

Thus H has a uniform upper bound and we obtain the desired estimate
for S. �
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Proposition 3.2. There exist positive constants λ and C such that for
t ∈ [0, T ),

|Ric | ≤ C

|s|2λh
.

Proof. First, we have the evolution equation(
∂

∂t
−∆

)
Rjk̄ = ∇k̄T r

lj R
l
r + T r

lj ∇k̄R l
r +R r

lk̄j R
l
r

−R s̄l
lk̄ Rjs̄ +∇q̄T s̄

k̄q̄ Rjs̄ + T s̄
k̄q̄ ∇

q̄Rjs̄

Then it follows from Lemma 3.4 in [10] and Proposition 3.1 that(
∂

∂t
−∆

)
|Ric | = 1

2|Ric |

(
∂

∂t
−∆

)
|Ric |2 + 2|∇|Ric ||2)(3.9)

≤ |s|−α0

h (|∇Ric |+ |Rm |2 + 1)

− |∇Ric |2

|Ric |
+
|∇|Ric ||2

|Ric |
.

for some constant α0 > 0. Consider

H = |s|3αh |Ric |+ |s|4βh S −At,

where α and β are constants to be determined and are at least large enough
such that

|∇|s|3αh | ≤ C|s|2αh , |∆|s|3αh | ≤ C|s|2αh(3.10)

and

|∇|s|4βh | ≤ C|s|
3β
h , |∆|s|4βh | ≤ C|s|

3β
h .(3.11)

Assume that H achieves maximum at a point (t0, z0), t0 > 0 and |Ric | > 1
at (t0, z0). By (3.7) and the estimate for S, we have(

∂

∂t
−∆

)
S ≤ C|s|−βh −

1

2
|∇Φ|2,(3.12)
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for sufficiently large β. Together with (3.9),(3.10) and (3.11), we obtain(
∂

∂t
−∆

)
H ≤ |s|2αh (|∇Ric |+ |Rm |2)(3.13)

+ |s|3αh
(
|∇|Ric ||2

|Ric |
− |∇Ric |2

|Ric |

)
− 2 Re

(
∇|Ric | · ∇|s|3αh

)
−∆|s|3αh |Ric |

− 2 Re
(
∇S · ∇|s|4βh

)
+ C|s|3βh −

1

2
|s|4βh |∇Φ|2

−∆|s|4βh S −A.

As ∇H = 0 at (t0, z0), we have

|s|3αh ∇|Ric | = −∇|s|3αh |Ric | − |s|4βh ∇S −∇|s|
4β
h S

Combining with (3.10) and (3.11) and |∇|Ric || ≤ |∇Ric |, we get

|∇|Ric ||2

|s|−3α
h |Ric |

≤ C|s|2αh |∇Ric|+ |∇S||∇Ric|
|s|−4β

h |Ric |
+ C

S|∇Ric|
|s|−3β

h |Ric |
(3.14)

≤ |∇Ric |2

4|s|−3α
h |Ric |

+ C1|s|αh |Ric |+ C2
|s|7βh |∇Φ|2

|s|3αh |Ric |

+ C3
|s|4βh

|s|3αh |Ric |
,

where we use |∇S| ≤ 2S|∇Φ|2 and S ≤ C|s|−βh in the second inequality. Note
that

|Rm |2 ≤ 3

2
|∇Φ|2 + |s|−2α

h

for α large as

∇q̄Φ k
ij = −R k

iq̄j + (R0) k
iq̄j .

Then we have(
∂

∂t
−∆

)
H ≤ C|s|αh |Ric |+ C

|s|7βh |∇Φ|2

|s|3αh |Ric |
+ C

|s|4βh
|s|3αh |Ric |

+ C|s|2βh |∇Φ| − 1

4
|s|4βh |∇Φ|2 + C −A.

Assume at (to, z0), |s|3αh |Ric | ≥ 1 (otherwise, H ≤ 2 and the bound for |Ric |
follows). By (3.1),

|Ric | ≤ |∇Φ|+ |s|−α1

h .
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For α large enough, the term |s|αh |Ric | can be controlled by 1
6 |s|

4β
h |∇Φ|2.

Choosing α and then A sufficiently large, we get(
∂

∂t
−∆

)
H ≤ 0,

therefore we have the uniform upper bound for H and the proposition fol-
lows. �

Remark 3.1. We use global arguments to obtain the estimates in Proposi-
tion 3.1 and Proposition 3.2. They may also follow from the local estimates
of Sherman-Weinkove in [13] .

4. Smooth convergence as t → T+

In this section, we will prove sharper bounds on ϕε and ϕ and then obtain
the smooth convergence of the metrics ω(t) to ω̃T on compact subsets of
N \ {y0} as t→ T+.

Recall that ω̃T,ε = ωN +
√
−1∂∂̄ψT,ε. For simplicity, write ω̃ = ω̃T,ε, ω̂ =

ω̂T = ωN and |s|2h for (π|−1
M\E)∗(|s|2h) in the proof of the following lemma.

Then

ω̃n = (ω̂ +
√
−1∂∂̄ψT,ε)

n = eFεω̂n, where Fε = log

(
CεΩε

ω̂n

)
.

Lemma 4.1. There exist constants λ > 0 and C > 0, independent of ε,
such that

|s|2λh
C

ωN ≤ ω̃T,ε ≤
C

|s|2λh
ωN

on N \ {y0}.

Proof. As ψT,ε is uniformly bounded by (2.3), there exists a constant C0

such that ψT,ε + C0 ≥ 1. Take ε0 > 0 small enough such that ω̂ − ε0Rh ≥ cω̂
for some positive constant c, where Rh is the curvature of the Hermitian
metric. Let ψ̃T,ε = ψT,ε − ε0 log |s|2h and define

H = log trω̂ ω̃ −Aψ̃T,ε +
1

ψ̃T,ε + C0

.

Note that H(y) goes to negative infinity as y tends to y0. Compute at a
point in N \ {y0}. Assume trω̂ ω̃ ≥ 1 at this point. From Section 9 of [20],
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we have

∆ω̃ log trω̂ ω̃ ≥
2

(trω̂ ω̃)2
Re
(
g̃kq̄T̂ ppk∂q̄ trω̂ ω̃

)
(4.1)

− C trω̃ ω̂ − |∆ω̂Fε| − C.

Assume that H achieves a maximum at z0. As ∂q̄H = 0 at z0, that is

∂q̄ trω̂ ω̃

trω̂ ω̃
−A∂q̄ψ̃T,ε −

∂q̄ψ̃T,ε

(ψ̃T,ε + C0)2
= 0,

we get

∣∣∣∣ 2

(trω̂ ω̃)2
Re(g̃kq̄T̂ jjk∇̂q̄ trω̂ ω̃)

∣∣∣∣(4.2)

=

∣∣∣∣∣ 2

trω̂ ω̃
Re(g̃kq̄T̂ jjk(A+

1

(ψ̃T,ε + C0)2
)∂q̄ψ̃T,ε

∣∣∣∣∣
≤

|∂ψ̃T,ε|2ω̃
(ψ̃T,ε + C0)3

+
(ψ̃T,ε + C0)3C ′A2 trω̃ ω̂

(trω̂ ω̃)2
.

If at z0, (trω̂ ω̃)2 ≤ A2(ψ̃T,ε + C0)3, then

H ≤ logA+
3

2
log(ψ̃T,ε + C0)−Aψ̃T,ε +

1

ψ̃T,ε + C0

.

As ψ̃T,ε + C0 ≥ 1, we have an upper bound for H and thus ω̃ is bounded
from above. Otherwise, A2(ψ̃T,ε + C0)3 ≤ (trω̂ ω̃)2 at the maximum point.
Moreover, by the definition of Ωε, it follows from (3.1) and Proposition 3.2
that

|∆ω̂Fε| ≤
C

|s|2β

for uniform constants C and β. As Rh = −
√
−1∂∂̄ log |s|2h on N \ {y0}, by

(4.1) and (4.2) we have
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∆ω̃H = ∆ω̃ log trω̂ ω̃ +
2|∂ψ̃T,ε|2ω̃

(ψ̃T,ε + C0)3
(4.3)

−

(
A+

1

(ψ̃T,ε + C0)2

)
trω̃(ω̃ − ω̂ + ε0Rh)

≥ ∆ω̃ log trω̂ ω̃ + cA trω̃ ω̂ +
2|∂ψ̃T,ε|2ω̃

(ψ̃T,ε + C0)3
− (A+ 1)n

≥ cA trω̃ ω̂ − C trω̃ ω̂ −
(ψ̃T,ε + C0)3C ′A2 trω̃ ω̂

(trω̂ ω̃)2
− C

|s|2λh
≥ (cA− C ′ − C) trω̃ ω̂ −

C

|s|2λh
.

At the maximum point, ∆ω̃H ≤ 0, therefore

trω̃ ω̂ ≤
C

|s|2λh
for sufficiently large A. Then at z0,

trω̂ ω̃ ≤
1

(n− 1)!
(trω̃ ω̂)n−1 ω̃

n

ω̂n
≤ C

|s|2βh
as ω̃n = CεΩε has an upper bound by definition of Ωε and (3.1) holds. Thus
there exists C > 0, independent of ε, such that H ≤ C for sufficiently large
A. Since ψ̃T,ε + C0 ≥ 1, we obtain the desired estimates for ω̃T,ε = ω̃. �

Recall that

ωε(t) = ω̂t +
√
−1∂∂̄ϕε(4.4)

for t ∈ [T, T ′]. From Lemma 5.4 of [15], we have the following volume bound.

Lemma 4.2. There exist constants λ > 0 and C > 0, independent of ε,
such that

ωnε
ΩN
≤ C

|s|2λh
on [T, T ′]× (N \ {y0}).

With Lemma 4.1 and Lemma 4.2, the upper bound for ω(t) can be
obtained by using the argument of Tosatti-Weinkove [21] (see also [12]).
For simplicity, we write ω̂ = ωN , ω̃ = ωε in the proof of the following lemma.
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Lemma 4.3. There exist constants λ > 0 and C > 0, independent of ε,
such that on [T, T ′]× (N \ {y0}),

|s|2λh
C

ωN ≤ ωε ≤
C

|s|2λh
ωN .

Proof. Take ε0 > 0 small enough such that ω̂t − ε0Rh ≥ cω̂ for any t ∈ [T, T ′]
for some constant c > 0. Let ϕ̃ε = ϕε − ε0 log |s|2h. By Proposition 2.1, there
exists a positive constant C0, such that ϕ̃ε + C0 ≥ 1. Define

H = log trω̂ ω̃ −Aϕ̃ε +
1

ϕ̃ε + C0
,

where A is a positive constant to be determined. We have

H|t=T ≤ |s|2Aε0h log trωN ω̃T,ε −AψT,ε + 1.

By Lemma 4.1, H is uniformly bounded from above at time T . Moreover,
H(t, y) tends to negative infinity as y tends to y0, for any t ∈ [T, T ′]. Com-
pute at a point in N \ {y0} with trω̂ ω̃ ≥ 1. From Proposition 3.1 in [20],(

∂

∂t
−∆ω̃

)
log trω̂ ω̃ ≤

2

(trω̂ ω̃)2
Re
(
g̃kq̄T̂ pkp∂q̄ trω̂ ω̃

)
+ C trω̃ ω̂.(4.5)

Assume H achieves its maximum at (t0, z0), we have ∂q̄H = 0 at this
point, thus ∣∣∣∣ 2

(trω̂ ω̃)2
Re
(
g̃kq̄T̂ pkp∂q̄ trω̂ ω̃

)∣∣∣∣(4.6)

≤
∣∣∣∣ 2

trω̂ ω̃
Re

(
g̃kq̄T̂ pkp

(
A+

1

(ϕ̃ε + C0)2

)
∂q̄ϕ̃ε

)∣∣∣∣
≤ |∂ϕ̃ε|2ω̃

(ϕ̃ε + C0)3
+ CA2(ϕ̃ε + C0)3 trω̃ ω̂

(trω̂ ω̃)2
.

If at (t0, z0), (trω̂ ω̃)2 ≤ A2(ϕ̃ε + C0)3, then

H ≤ logA+
3

2
log(ϕ̃ε + C0)−Aϕ̃ε +

1

ϕ̃ε + C0
.
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As ϕ̃ε + C0 ≥ 1, we have an upper bound for H and thus ω̃ is bounded from
above. Otherwise, A2(ϕ̃ε + C0)3 ≤ (trω̂ ω̃)2 at the maximum point. Comput-
ing the evolution of H, it follows from (4.5) and (4.6) at (t0, z0)(

∂

∂t
−∆ω̃

)
H ≤ C trω̃ ω̂ −

(
A+

1

(ϕ̃ε + C0)2

)
ϕ̇ε

+

(
A+

1

ϕ̃ε + C0)2

)
trω̃(ω̃ − ω̂t + ε0Rh)

≤ C trω̃ ω̂ + (A+ 1) log
ΩN

ω̃n
+ C + (A+ 1)n

−A trω̃(ω̂t − ε0Rh).

As ω̂t − ε0Rh ≥ cω̂ and
(
∂
∂t −∆ω̃

)
H ≤ 0 at this point, we have

trω̃ ω̂ ≤ C log
ΩN

ω̃n
+ C1.

for A large enough. Then at (t0, z0),

trω̂ ω̃ ≤
1

(n− 1)!
(trω̃ ω̂)n−1 det ω̃

det ω̂

≤ C ω̃n

ΩN

(
log

ΩN

ω̃n

)n−1

+ C ′

≤ C

|s|2βh

as ω̃n/ΩN ≤ C
|s|2λh

by Lemma 4.2. Hence there exists C > 0, independent of ε,

such that H ≤ C for sufficiently large A. Since ϕ̃ε + C0 ≥ 1, we see that ω̃ is
uniformly bounded from above. The lower bound follows from an argument
similar to the proof of Lemma 2.3 in [21]. �

Proof of Theorem 1.2. The existence and uniqueness is given by Proposi-
tion 2.1 and Theorem 1.3 (the proof is in the next section). The characteri-
zation of the maximal time TN follows from Theorem 1.2 in [20]. By Lemma
4.3, for any compact subset K ⊂ N \ {y0}, there exists a positive constant
CK such that

ωN
CK
≤ ω(t) ≤ CKωN on [T, T ′]×K.

The local estimates of Gill [5] then gives uniform C∞ estimates for ω(t) on
compact subsets of N \ {y0}. The smooth convergence follows from this and
we finish the proof. �
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5. Proof of Theorem 1.3

In this section, we prove the smoothing property for the Chern-Ricci flow
with rough initial data. We follow the arguments in Song-Tian [14] closely.
Using the same notations as in the introduction, assume that ω0 satisfies the
condition (1.3), then by the same arguments as in Section 4 of [10], there
exist functions ψj ∈ PSH(M,ω0) ∩ C∞(M) such that

lim
j→∞

‖ψj − ϕ0‖L∞(M) = 0.(5.1)

Write ω0,j = ω0 +
√
−1∂∂̄ψj . The Chern-Ricci flow starting at ω0,j can be

reduced to a parabolic complex Monge-Ampère equation. First denote

T = sup{t ≥ 0|∃ψ ∈ C∞(M), ω0 − tRic(ω0) +
√
−1∂∂̄ψ > 0}.

Then for any T ′ < T , there exists ψT ′ ∈ C∞(M)) such that

β = ω0 − T ′Ric(ω0) +
√
−1∂∂̄ψT ′ > 0.

Fix T ′ < T and define smooth Hermitian metrics

ω̂t =

(
1− t

T ′

)
ω0 +

t

T ′
β = ω0 + tχ

on [0, T ′], where χ = 1
T ′

√
−1∂∂̄ψT ′ − Ric(ω0). Let Ω be a volume form sat-

isfying
√
−1∂∂̄ log Ω = ∂

∂t ω̂t = χ. It follows that if ϕj solves the parabolic
complex Monge-Ampère equation

∂ϕj
∂t

= log
(ω̂t +

√
−1∂∂̄ϕj)

n

Ω
, ϕj(0) = ψj(5.2)

for t ∈ [0, T ′], then ωj = ω̂t +
√
−1∂∂̄ϕj solves the Chern-Ricci flow starting

at ω0,j = ω0 +
√
−1∂∂̄ψj . We will show uniform C∞ bounds for ϕj and prove

Theorem 1.3.
Let

F =
(ω0 +

√
−1∂∂̄ϕ0)n

Ω
∈ Lp(M).

We use C,C ′, Ci, . . . to denote uniform constants depending only on ω0,
‖ϕ0‖L∞(M) and ‖F‖Lp(M) and varying from line to line.

First we have the following two lemmas from [14] (Lemma 3.1 and 3.2).
The proof is exactly the same as in [14].
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Lemma 5.1. There exists C > 0 such that for any t ∈ [0, T ′],
‖ϕj‖L∞(M) ≤ C.

Moreover, {ϕj} is a Cauchy sequence in C0([0, T ′]×M), i.e.,

lim
j,k→∞

‖ϕj − ϕk‖L∞([0,T ′]×M) = 0.

Lemma 5.2. There exists C > 0 such that

tn

C
≤ (ω̂t +

√
−1∂∂̄ϕj)

n

Ω
≤ e

C

t .

for any t ∈ [0, T ′].

For convenience, we write ω′ = ωj the solution of the Chern-Ricci flow
starting at ω0,j and g′, ∆′, | · |g′ , . . . the notations corresponding to ωj for
a fix j. All the bounds obtained in the following lemmas are independent of
j.

To prove the second order estimate, we will need the following proposi-
tion. It follows from Proposition 3.1 in [20] as (T0)kil̄ = (T0,j)kil̄, where T0

and T0,j are the torsions corresponding to ω0 and ω0,j .

Proposition 5.1. (Tosatti-Weinkove) Assume that at a point trω0
ω′ ≥ 1,

then(
∂

∂t
−∆′

)
log trω0

ω′ ≤ 2

(trω0
ω′)2

Re(g′pq̄(T0)ipi∂q̄ trω0
ω′) + C trω′ ω0

at this point for some constant C depending only on g0.

Lemma 5.3. There exists C > 0 such that for t ∈ (0, T ],

trω0
ω′ ≤ e

C

t .

Proof. Let

H = t log trω0
ω′ + eΨ,

where Ψ = A( supϕj
[0,T ′]×M

− ϕj) and A is a constant to be chosen later. Assume

that H achieves its maximum at (t0, z0) and trω0
ω′ > 1 (otherwise we obtain

the upper bound for trω0
ω′ directly). Choose coordinates around (t0, z0) such
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that at this point, (g0)ij̄ = δij and (g′
ij̄

) is diagonal. First we have(
∂

∂t
−∆′

)
H = t

(
∂

∂t
−∆′

)
log trω0

ω′ + log trω0
ω′ −AeΨϕ̇j

+AeΨ∆′ϕj −A2eΨ|∇ϕj |2g′ .

It follows from Proposition 5.1 that(
∂

∂t
−∆′

)
log trω0

ω′ ≤ 2

(trω0
ω′)2

Re(g′kk̄(T0)iki∂k̄ trω0
ω′) + C trω′ ω0.

At (t0, z0), ∇k̄H = 0 gives

t
∂k̄ trω0

ω′

trω0
ω′
−AeΨ∂k̄ϕj = 0.

Then

2t

(trω0
ω′)2

Re(g′kk̄(T0)iki∂k̄ trω0
ω′) ≤ 2AeΨ

trω0
ω′
|Re(g′kk̄(T0)iki∂k̄ϕj)|(5.3)

≤ eΨ(A2|∇ϕj |2g′ + C1 trω′ ω0).

Also

trω0
ω′ ≤ 1

(n− 1)!
(trω′ ω0)n−1 (ω′)n

ωn0
.

Combining all the above inequalities, we get(
∂

∂t
−∆′

)
H(5.4)

≤ C1e
Ψ trω′ ω0 + Ct trω′ ω0 + log trω0

ω′

+AneΨ −AeΨ trω′ ω̂t −AeΨϕ̇j

≤ −eΨ trω′(Aω̂t − C1ω0 − Ctω0) + (1−AeΨ) log
(ω′)n

ωn0
+ (n− 1) log trω′ ω0 + C2

≤ −C trω′ ω0 − C3 log t+ C4.

for A large enough. Here we use Lemma 5.2 in the last inequality. Then at
(t0, z0),

C5

(
ωn0

(ω′)n

) 1

n−1

(trω0
ω′)

1

n−1 ≤ C trω′ ω0 ≤ −C3 log t+ C4.
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So

log trω0
ω′ ≤ log

(
(log

1

t
+ C6)n−1

(
(ω′)n

ωn0

))
+ C7 ≤

C8

t
+ C9.

Thus H is uniformly bounded for t ∈ (0, T ] and we obtain the required esti-
mate. �

Now let S = |∇g0g′|2g′ . For convenience we still denote Φ k
ij = Γ

′k
ij−(Γ0)kij ,

then

S = |Φ|2g′ = g′ip̄g′jq̄g′kr̄Φ
k

ij Φ r̄
p̄q̄ .

Lemma 5.4. There exists C > 0 and λ > 0 such that for t ∈ (0, T ′],

S ≤ Ce
λ

t .

Proof. By the evolution equation for trω0
ω′ in [20] and Lemma 5.3, we have(

∂

∂t
−∆′

)
trω0

ω′ ≤ −C1e
−α
t S + C2e

α

t

and (
∂

∂t
−∆′

)
S ≤ e

β

t (S3/2 + 1)− 1

2
(|∇′Φ|2g′ + |∇′Φ|2g′).

for some positive constants α and β. Take λ1 > 0 such that 1
2e

λ1
t < e

λ1
t −

trω0
ω′ < e

λ1
t . Let

H =
S

(e
λ1
t − trω0

ω′)2
+ e−

λ2
t trω0

ω′.

Compute(
∂

∂t
−∆′

)
H =

1

(e
λ1
t − trω0

ω′)2

(
∂

∂t
−∆′

)
S

+
2S

(e
λ1
t − trω0

ω′)3

(
∂

∂t
−∆′

)
trω0

ω′

− 4 Re∇′ trω0
ω′ · ∇′S

(e
λ1
t − trω0

ω′)3
− 6S|∇′ trω0

ω′|2

(e
λ1
t − trω0

ω′)4

+
2λ1

t2 e
λ1
t S

(e
λ1
t − trω0

ω′)3
+ e−

λ2
t (

∂

∂t
−∆′) trω0

ω′ +
λ2

t2
e−

λ2
t trω0

ω′
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≤ 4e−
2λ1
t e

β

t (S3/2 + 1)− 1

2
e−

2λ1
t (|∇′Φ|2g′ + |∇′Φ|2g′)

+
(
−2C1e

−α
t e−

3λ1
t S2 + 16C2e

α

t e−
3λ1
t S
)

+ 32e−
3λ1
t |Re∇′ trω0

ω′ · ∇′S|

+ C3e
−λ1

t S +
(
−C1e

−α
t e−

λ2
t S + C2e

α

t e−
λ2
t

)
+ C4

where we choose λ2 large enough such that 2λ2

t2 e
−λ2

t trω0
ω′ ≤ C4 for some

constant C4. Note that |∇′ trω0
ω′|g′ ≤ 1

64e
γ

t S1/2 for some γ > 0 and |∇′S|g′ ≤
2S1/2|∇′Φ|g′ , we have

32e−
3λ1
t |Re∇′ trω0

ω′ · ∇′S| ≤ e−
3λ1
t e

γ

t S|∇′Φ|g′

≤ 1

2
e−

2λ1
t |∇′Φ|2g′ +

1

2
e−

4λ1
t e

2γ

t S2.

Also we have

4e−
2λ1
t e

β

t S3/2 ≤ C1e
−α
t e−

3λ1
t S2 +

4

C1
e
α

t e
2β

t e−
λ1
t S.

Take λ2 sufficiently large such that e
α

t e−
λ2
t < 1, then fix λ2. Let λ1 ≥ α+ λ2

be large enough such that(
∂

∂t
−∆′

)
H ≤ −1

2
C1e

−α
t e−

λ2
t S + C

for some constant C. Assume thatH achieves its maximum at (t0, z0), t0 > 0,
then at this point

0 ≤ −1

2
C1e

−α
t e−

λ2
t S + C.

It follows that H is bounded by some constant. Therefore S ≤ Ce
λ

t for some
constants C > 0 and λ > 0. �

In addition, to bound the derivatives of ωj in the t-direction, it is sufficient to
bound |Ric(g)| which follows from the proof of Lemma 3.4 in [10]. Then by
the standard parabolic estimates [9], we obtain all the higher order estimates.

Proposition 5.2. For any 0 < ε < T ′ and k ≥ 0, there exists Cε,T ′,k > 0,
such that

‖ϕj‖Ck([ε,T ′]×M) ≤ Cε,T ′,k.

The proposition below follows from the same arguments for the proof of
Proposition 3.3 in [14]. For reader’s convenience, we provide the proof here.
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Proposition 5.3. There exists a function

ϕ ∈ C0([0, T )×M) ∩ C∞((0, T )×M)

such that ϕ is the unique solution of the equation

∂ϕ

∂t
= log

(ω̂t +
√
−1∂∂̄ϕ)n

Ω
, for t ∈ (0, T ), ϕ|t=0 = ϕ0.(5.5)

Proof. By Lemma 5.1, ϕj is a Cauchy sequence in C0([0, T ′]×M) and so
we can define ϕ = limj→∞ ϕj which is in C0([0, T ′]×M). Then it follows
from Proposition 5.2 that for any 0 < ε < T ′ < T , ϕj converges to ϕ in
C∞([ε, T ′]×M). Therefore ϕ ∈ C∞((0, T )×M) satisfying the above equa-
tion on (0, T ). Note that

lim
t→0+

‖ϕ(t, ·)− ϕ0(·)‖L∞(M) = 0

as ϕj(0) = ψj and ψj → ϕ0 in L∞(M) as j →∞. Then ϕ|t=0 = ϕ0 and we
have the existence of a solution ϕ ∈ C0([0, T )×M) ∩ C∞((0, T )×M) for
equation (5.5). To prove the uniqueness, we assume that there is another
solution ϕ̃ ∈ C0([0, T )×M) ∩ C∞((0, T )×M) of equation (5.5). Let ψ =
ϕ̃− ϕ. Then ψ solves the equation

∂ψ

∂t
= log

(ω̂t +
√
−1∂∂̄ϕ+

√
−1∂∂̄ψ)n

(ω̂t +
√
−1∂∂̄ϕ)n

, for t ∈ (0, T ), ψ|t=0 = 0.

At any given time t, the maximum of ψ is achieved at some point z ∈
M , then dψmax(t)

dt ≤ 0 a.e. in [0, T ). Similarly we have dψmin(t)
dt ≥ 0 a.e. in

[0, T ). As both ψmax(t) and ψmin(t) are absolutely continuous on ([0, T )
with ψmax(0) = ψmin(0) = 0, we have ψmax(t) ≤ 0 ≤ ψmin(t) for t ∈ [0, T ).
Hence ψ(t) = 0 for t ∈ [0, T ). �

Now we can prove the smoothing property for the Chern-Ricci flow with
rough initial data.

Proof of Theorem 1.3. If ϕ is a solution of (5.5), then taking
√
−1∂∂̄ of

(5.5) shows that ω = ω̂t +
√
−1∂∂̄ϕ solves ∂

∂tω = −Ric(ω) on (0, T ) and
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limt→0+ ‖ϕ(t, ·)− ϕ0(·)‖L∞(M) = 0. Conversely, if ω is a solution, then

∂

∂t
(ω − ω̂t) =

√
−1∂∂̄ log

ωn

Ω
.

Thus ω(t) must be of the form ω(t) = ω̂t +
√
−1∂∂̄ϕ for some ϕ solving the

equation

√
−1∂∂̄

(
∂ϕ

∂t
− log

(ω̂t +
√
−1∂∂̄ϕ)n

Ω

)
= 0.(5.6)

Proposition 5.3 gives a solution of the above equation. Suppose that there
exists another solution ϕ̃ ∈ C∞((0, T )×M) ∩ C0([0, T )×M) of equation
(5.6). Then

∂ϕ̃

∂t
= log

(ω̂t +
√
−1∂∂̄ϕ̃)n

Ω
+ f(t)

with limt→0+ ϕ̃(t) = ϕ0 for some smooth function f(t). So we get that ϕ =
ϕ̃−

∫ t
0 f(s)ds which is the unique solution of the equation (5.5). Therefore

ϕ̃ = ϕ+
∫ t

0 f(s)ds. Then

ω = ω̂t +
√
−1∂∂̄ϕ̃ = ω̂t +

√
−1∂∂̄ϕ

and we prove the uniqueness. �
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[17] T. D. Tô, Regularizing properties of complex Monge-Ampère flows II:
Hermitian Manifolds, arXiv:1701.04023.

[18] V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère
equation on Hermitian and balanced manifolds, Asian J. Math. 14
(2010), no. 1, 19–40.

[19] V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on
compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4,
1187–1195.

[20] V. Tosatti and B. Weinkove, On the evolution of a Hermitian metric by
its Chern-Ricci form, J. Differential Geom. 99 (2015), 125–163.

[21] V. Tosatti and B. Weinkove, The Chern-Ricci flow on complex surfaces,
Compos. Math. 149 (2013), no. 12, 2101–2138.

[22] V. Tosatti and B. Weinkove, and X. Yang, Collapsing of the Chern-Ricci
flow on elliptic surfaces, Math. Ann. 362 (2015), no. 3-4, 1223–1271.

[23] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and
the complex Monge-Ampère equation I, Comm. Pure Appl. Math. 31
(1978), 339–411.

Department of Mathematics, Zhejiang Normal University

Jinhua, 321004, Zhejiang, China

E-mail address: nie@zjnu.edu.cn

Received January 18, 2017


	Introduction
	Construction of the weak solution
	Higher order estimates as tT-
	Smooth convergence as tT+
	Proof of Theorem 1.3
	Acknowledgements
	References

