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Convexity for twisted conjugation

E. Meinrenken

Let G be a compact, simply connected Lie group. If C1, C2 are
two G-conjugacy classes, then the set of elements in G that can
be written as products g = g1g2 of elements gi ∈ Ci is invariant
under conjugation, and its image under the quotient map G→
G/Ad(G) = A is a convex polytope. In this note, we will prove
an analogous statement for twisted conjugations relative to group
automorphisms. The result will be obtained as a special case of a
convexity theorem for group-valued moment maps which are equiv-
ariant with respect to the twisted conjugation action.

1. Introduction

Let G be a compact connected Lie group, with maximal torus T , and let
g, t be their Lie algebras. Fix a positive Weyl chamber t+ ⊆ t, and denote
by p : g→ t+ the quotient map, with fiber p−1(ξ) = Oξ the adjoint orbit of
ξ. For any r > 1, the set

(1) {(ξ1, . . . , ξr) ∈ t+ × · · · × t+
∣∣ ∃ζi ∈ Oξi : ζ1 + · · ·+ ζr = 0}

is a convex polyhedral known as the Horn cone. Fixing ξ1, . . . , ξr−1, the
Horn cone describes the set of adjoint orbits contained in the sum of adjoint
orbitsOξ1 + · · ·+Oξr−1

. For the case of G = U(N), the projection p(ζ) signi-
fies the set of eigenvalues of a Hermitian matrix ζ, hence the Horn cone thus
describes the possible eigenvalues of sums of Hermitian matrices with pre-
scribed eigenvalues. The defining inequalities for the u(n)-Horn cone were
obtained by Klyachko [14], who gave a description in terms of the Schu-
bert calculus of the Grassmannian. This was extended to arbitrary compact
groups by Berenstein-Sjamaar [7]. See Ressayre [20] and Vergne-Walter [23]
for recent developments.

Suppose in addition that G is simply connected. Let A ⊆ t+ be the Weyl
alcove. Then A labels the set of conjugacy classes in G, in the sense that
there is a quotient map q : G→ A, with fiber q−1(ξ) = Cξ the conjugacy
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1798 E. Meinrenken

class of exp(ξ). As observed in Meinrenken-Woodward [17, Corollary 4.13],
the set

(2) {(ξ1, . . . , ξr) ∈ A× · · · × A
∣∣ ∃gi ∈ Cξi : g1 · · · gr = e}

is a convex polytope. Put differently, this polytope describes the conjugacy
classes arising in products of a collection of prescribed conjugacy classes.
In the case of G = SU(n), it describes the possible eigenvalues of products
of special unitary matrices with prescribed eigenvalues; these eigenvalue in-
equalities were determined, in terms of quantum Schubert calculus on flag
manifolds, by Agnihotri-Woodward [1] and Belkale [5]. (See also Belkale-
Kumar [6].) This was extended to general G by Teleman-Woodward [22].

In this note we will show that there are similar polytopes for twisted
conjugations. Recall that the twisted conjugation action relative to a group
automorphism κ ∈ Aut(G) is the action

(3) Ad(κ)
g (a) = g a κ(g−1).

As we will explain, it suffices to consider automorphisms κ defined by Dynkin
diagram automorphisms. These automorphisms preserve t, with fixed point
set tκ, and there is a convex polytope (alcove) A(κ) ⊆ tκ with a quotient

map q(κ) : G→ A(κ) whose fiber (q(κ))−1(ξ) = C(κ)
ξ is the κ-twisted conjugacy

class of exp(ξ).

Theorem 1.1. Let κ1, . . . , κr be diagram automorphisms with κr ◦ · · · ◦
κ1 = 1. Then the set

(4) {(ξ1, . . . , ξr) ∈ A(κ1) × · · · × A(κr)
∣∣ ∃gi ∈ C(κi)

ξi
: g1 · · · gr = e}

is a convex polytope.

It would be interesting to obtain an explicit description of the defining
inequalities of the polytopes (4). (In Section 5, we will work out the case of
G = SU(3) and r = 3 by direct computation.) Note that these polytopes (4)
arise if one considers products of conjugacy classes of disconnected compact
Lie groups K; indeed each conjugacy class of K is a finite union of twisted
conjugacy classes of the identity component G = K0.

We will obtain Theorem 1.1 as a special case of a convexity result for
group-valued moment maps that are equivariant under twisted conjugation.
Examples of such spaces are the twisted conjugacy classes, or components of
moduli spaces of flat connections for disconnected groups on surfaces with
boundary. We have (cf. Theorem 4.4):
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Convexity for twisted conjugation 1799

Theorem 1.2. Let (M,ω,Φ) be a compact, connected q-Hamiltonian G-
space with a κ-twisted equivariant moment map Φ: M → G. Then the fibers
of the moment map are connected, and the image

∆(M) := q(κ)(Φ(M)) ⊆ A(κ)

is a convex polytope.

In a very recent paper, Boalch and Yamakawa [10] independently con-
sidered twisted group-valued moment maps in the context of twisted wild
character varieties, generalizing earlier results of Boalch [8, 9]. In particular,
their work has a discussion of twisted moduli spaces, similar to Section 3.2.
I also learned about a forthcoming article by Alex Takeda, using twisted
group-valued moment maps in the setting of shifted symplectic geometry.

2. Twisted conjugation

We begin by reviewing some background material on twisted conjugation
actions. References include Baird [4], Kac [13], Mohrdieck [18], Mohrdieck-
Wendt [19], and Springer [21].

2.1. Twisted conjugation

Let Aut(G) be the group of automorphisms of a Lie group G, and let
Inn(G) ∼= G/Z(G) be the normal subgroup of inner automorphisms Ada, a ∈
G. The quotient group is denoted Out(G)=Aut(G)/ Inn(G). For κ∈Aut(G),
define the κ-twisted conjugation action as

Ad(κ)
g (h) = ghκ(g−1).

Its orbits C ⊆ G are called the κ-twisted conjugacy classes. In terms of the
semi-direct product Go Aut(G), the twisted conjugation action can be re-
garded as an ordinary conjugation,

(g, 1)(h, κ)(g−1, 1) = (ghκ(g−1), κ).

For this reason, we will sometimes use the notation Gκ for the space G,
regarded as a G-space under κ-twisted conjugation. For later reference, we
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note that if κ1, κ2 are two automorphisms, then

(5) Ad(κ2κ1)
g (h1h2) = Ad(κ1)

g (h1) Ad
(κ2)
κ1(g)(h2)

for all g, h1, h2 ∈ G.
The differential of κ ∈ Aut(G) at the group unit is an automorphism

of the Lie algebra g, still denoted by κ. The generating vector fields for the
κ-twisted conjugation action are ξG = κ(ξ)L − ξR for ξ ∈ g. In terms of right
trivialization of the tangent bundle, we have ξG(h) = (Adh ◦κ− I)ξ. Hence,
the Lie algebra of the stabilizer of h ∈ G is

(6) gh = ker(Adh ◦κ− I),

while the tangent space to the twisted conjugacy class C = Ad
(κ)
G (h) is

(7) ThC = ran(Adh ◦κ− I),

in right trivialization ThG = g.
Suppose κ′ = Ada ◦κ for some a ∈ G. Then the corresponding twisted

conjugations are related by right multiplication ra : G→ G:

ra ◦Ad(κ′)
g = Ad(κ)

g ◦ ra.

That is, g 7→ ga−1 defines a G-map Gκ→ Gκ′. In particular, if C is a κ-
twisted conjugacy class then C′ = ra−1(C) is a κ′-twisted conjugacy class.

Example 2.1. Suppose κ1, . . . , κr ∈ Aut(G), and let Ci be κi-twisted con-
jugacy classes. Then the subset

C1 · · · Cr := {h1 · · ·hr| hi ∈ Ci} ⊆ G

is invariant under κ := κr · · ·κ1-twisted conjugation. This follows by induc-
tion from (5). Let κ′i = Adai ◦κi for some ai ∈ G, and put C′i = ra−1

i
(Ci) and

κ′ = κ′r · · · κ′1. Then the problem of finding hi ∈ Ci with product h1 · · ·hr in
a prescribed κ-twisted conjugacy class C is equivalent to a similar problem
for the C′i.

To see this, let u1, . . . , ur+1 be inductively defined as ui+1 = aiκi(ui)
with u1 = e, and put a = ur+1. Then κ′ = Ada ◦κ, hence C′ = ra−1(C) is
a κ′-twisted conjugacy class. A straightforward calculation shows that if
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Convexity for twisted conjugation 1801

hi ∈ Ci satisfy h := h1 · · ·hr ∈ C, then the elements

h′i = Ad(κi)
ui (hi) a

−1
i ∈ C

′
i

have product h′ = ha−1 ∈ C′.

2.2. Diagram automorphisms

Let G be a compact and simply connected Lie group, with maximal torus T
and Weyl group W = NG(T )/T . Fix a positive Weyl chamber t+ ⊆ t, with
corresponding alcove A ⊆ t+. The walls of the Weyl chamber are defined by
the simple roots α1, . . . , αl ∈ t∗. Let α∨i ∈ t be the simple coroots, and let
ei, fi ∈ gC be the Chevalley generators, for i = 1, . . . , l.

Consider an automorphisms of the Dynkin diagram, given by a bijection
i 7→ i′ of its set of vertices preserving all Cartan integers: 〈αi, α∨j 〉 = 〈αi′ , α∨j′〉.
Any diagram automorphism defines a unique Lie algebra automorphism κ ∈
Aut(gC) such that κ(ei) = ei′ , κ(fi) = fi′ . This automorphism preserves the
real Lie algebra g ⊆ gC, and exponentiates to the Lie group G. We will
refer to the resulting κ ∈ Aut(G) itself as a diagram automorphism. Every
element of Out(G) = Aut(G)/ Inn(G) is represented by a unique diagram
automorphism, and the resulting splitting Out(G) ↪→ Aut(G) identifies

Aut(G) = Inn(G) o Out(G).

That is, any automorphism of G can be written as κ′ = Ada ◦κ with a ∈ G
and κ ∈ Out(G). To understand the orbit structure of κ-twisted conjugation
actions, it hence suffices to consider the case that κ ∈ Aut(G) is a diagram
automorphism. In particular, κ preserves T , with fixed point set T κ ⊆ Gκ.
Let tκ, tκ be the kernel and range of κ|t − I : t→ t. Then tκ is the Lie algebra
of T κ, and tκ = (tκ)⊥ is the orthogonal space in t (relative to a W -invariant
metric). Put Tκ = exp(tκ). Then T = T κ Tκ, with finite intersection

T κ ∩ Tκ.

Let W κ ⊆W the subgroup of elements w whose action on t commutes with
κ. For a ∈ G, denote by Ga the stabilizer under the κ-twisted adjoint action.
For Propositions 2.2 and 2.3 below, see [19], [21], and references therein.

Proposition 2.2. Let κ ∈ Aut(G) be a diagram automorphism. Then:

a) The group Gκ contains T κ as a maximal torus, with Weyl group W κ.
The intersection tκ+ = tκ ∩ t+ is a positive Weyl chamber for Gκ.
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1802 E. Meinrenken

b) Every κ-twisted conjugacy class C ⊆ G intersects the torus T κ in an
orbit of the finite group (T κ ∩ Tκ) oW κ. Here T κ ∩ Tκ acts by multi-
plication on T κ.

c) For all a ∈ T κ, the stabilizer group Ga under the twisted conjugation
action contains T κ as a maximal torus.

Let Λ = exp−1
T (e) ⊆ t be the integral lattice of T . Since G is simply

connected, it coincides with the coroot lattice of (G,T ). The fixed point set
Λκ ⊆ tκ is the integral lattice of T κ. It is contained in the lattice,

Λ(κ) = exp−1
Tκ(T κ ∩ Tκ).

Proposition 2.3. There is a unique closed convex polytope A(κ) ⊆ tκ+, con-
taining the origin, such that Gexp ξ = T κ for elements ξ ∈ int(A(κ)), and such
that the map

A(κ) exp−−→ G −→ G/Ad
(κ)
G

is a bijection. Furthermore,

a) The cone over A(κ) is tκ+.

b) For each open face σ ⊆ A(κ), the stabilizer group Gσ := Gexp ξ of ele-
ments ξ ∈ σ does not depend on ξ, The stabilizer groups satisfy Gσ ⊇ Gτ
for σ ⊆ τ .

c) The group W
(κ)
aff = Λ(κ) oW κ is an affine reflection group, generated by

reflections across the facets of A(κ), and having A(κ) as a fundamental
domain.

Clearly, if κ = 1 then A(κ) is just the usual Weyl alcove, parametrizing
the set of (untwisted) conjugacy classes in G. Note that in general, Λ(κ), A(κ)

are different from the coroot lattice and alcove of (gκ, tκ). The group W
(κ)
aff is

the Weyl group of the twisted affine Lie algebra defined by κ, see Kac [13].

2.3. Slices

The conjugation action of G on itself has distinguished slices, labeled by
the faces of the alcove. We will generalize this fact to twisted conjugation
actions.
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Convexity for twisted conjugation 1803

Lemma 2.4. Let κ ∈ Aut(G), where G is compact. Let C ⊆ G be the κ-
twisted conjugacy class of an element a ∈ Gκ. Then

(8) TaG = Ta(Ga)⊕ TaC.

Proof. Pick an Aut(G)-invariant inner product on g, defining a bi-invariant
Riemannian metric on the Lie group G which is also invariant under κ. Since
κ(a) = a, we have a ∈ Ga, and we obtain TaGa = ga in right trivialization.
On the other hand, by (6) and (7) we have TaC = ran(Ada ◦κ− I) = g⊥a in
right trivialization. Since the two spaces are orthogonal, the Lemma follows.

�

Using again that κ(a) = a, the twisted conjugation action of a on G restricts

to the usual conjugation action on Ga. In particular, Ga is a Ad
(κ)
a -invariant

submanifold of G. The Lemma shows that any sufficiently small invariant
open neighborhood of a in Ga is a slice for the twisted conjugation action.

If G is also simply connected, and κ is a diagram automorphism, there

is a specific ‘largest’ slice, as follows. For any face σ ⊆ A(κ), let A
(κ)
σ be the

relatively open subset of A(κ) given as the union of faces τ ⊆ A(κ) such that
σ ⊆ τ . Put

(9) Uσ = Ad
(κ)
Gσ

exp(A(κ)
σ ),

a subset of Gσ ⊆ G.

Proposition 2.5. The subset Uσ ⊆ Gσ is open, and invariant under the
twisted conjugation action of Gσ. The map

(10) G×Gσ Uσ → G, [(g, a)] 7→ Ad(κ)
g a

is an embedding as an open subset of G. That is, Uσ is a slice for the twisted
conjugation action.

Proof. Pick ζ ∈ σ, and put c = exp ζ so that Gc = Gσ. For all ξ ∈ tκ and
g ∈ Gσ,

(11) Ad(κ)
g exp(ξ) = Ad(κ)

g (exp(ξ − ζ)c) = Adg(exp(ξ − ζ)) c.

It follows that Uσ = U ′σ c where

U ′σ = AdGσ exp
(
A(κ)
σ − ζ

)
.
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Equation (11) also shows that for ξ ∈ A
(κ)
σ ⊆ tκ, the stabilizer of exp(ξ) under

the twisted conjugation action of G (which lies in Gσ, by definition of A
(κ)
σ )

equals the stabilizer of exp(ξ − ζ) under the usual conjugation action of Gσ.

Consequently, A
(κ)
σ − ζ is a relatively open subset of an alcove of (Gσ, T

κ).
It follows that U ′σ is open in Gσ, and hence Uσ is open in Gσ.

We next show that the map (10) is injective. Thus suppose Ad
(κ)
g a =

Ad
(κ)
g′ a

′, where a, a′ ∈ Uσ and g, g′ ∈ G. Since a, a′ are in the same twisted
conjugacy class, there is a unique ξ ∈ Aσ and elements h, h′ ∈ Gσ such that

a = Ad
(κ)
h exp(ξ), a′ = Ad

(κ)
h′ exp(ξ).

We thus obtain

Ad
(κ)
gh exp(ξ) = Ad

(κ)
g′h′ exp(ξ),

which implies ghk = g′h′ for some k ∈ Gexp ξ ⊆ Gσ. Setting u = h′k−1h−1 ∈
Gσ, we obtain g′ = gu−1, while a′ = Ad

(κ)
u a. That is, [(g, a)] = [(g′, a′)].

To complete the proof, it suffices to show that (10) has surjective differ-
ential. By equivariance, it is enough to verify this at elements [(e, a)] with

a ∈ exp(A
(κ)
σ ) ⊆ T κ. The range of the differential of (10) at such a point con-

tains TaGσ + TaC. Since Ga ⊆ Gσ, hence TaGa ⊆ TaGσ, Lemma 2.4 shows
that this is all of TaG. �

3. q-Hamiltonian spaces

Let G be a Lie group, with an invariant inner product · on its Lie algebra
g, and let η ∈ Ω3(G) be the bi-invariant closed 3-form

η =
1

12
θL · [θL, θL] =

1

12
θR · [θR, θR]

where θL, θR ∈ Ω1(G, g) are the left, right invariant Maurer-Cartan forms.
Suppose κ ∈ Aut(G) is an automorphism. It will be convenient to denote
the group G, viewed as a G-manifold under κ-twisted conjugation, by Gκ.

3.1. Gκ-valued moment maps

A q-Hamiltonian G-space with Gκ-valued moment map is a G-manifold M ,
together with an G-invariant 2-form ω and a G-equivariant smooth map
Φ: M → Gκ. These are required to satisfy the following axioms:

a) dω = −Φ∗η,
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b) ι(ξM )ω = −1
2Φ∗(κ(ξ) · θL + ξ · θR),

c) ker(ω) ∩ ker(TΦ) = 0.

These axioms generalize the G-valued moment maps from [3]. In terms of
equivariant de Rham forms, the first two properties may be combined into

a single condition dGω = −Φ∗η
(κ)
G , where

η
(κ)
G (ξ) = η − 1

2(κ(ξ) · θL + ξ · θR).

is a closed equivariant 3-form on Gκ.

Example 3.1 (Twisted conjugacy classes). κ-twisted conjugacy classes
C ⊆ G are q-Hamiltonian G-spaces, with the Gκ-valued moment map given
as the inclusion. The 2-form is uniquely determined by the moment map
condition (b), and is given by

ω(ξC , τC) = 1
2((Adφ ◦κ)− (Adφ ◦κ)−1)ξ · τ.

Note that the twisted conjugacy classes can be odd-dimensional. For ex-
ample, in the case of G = SU(3) with κ given by complex conjugation, the
generic stabilizer under twisted conjugation is a circle, and hence the generic
twisted conjugacy classes are 7-dimensional.

Example 3.2 (Twisted moduli spaces). These are associated to any
compact oriented surface with boundary, with marked points on the bound-
ary components, with a prescribed homomorphism from the fundamental
groupoid into Aut(G). This will be discussed in Section 3.2 below.

Example 3.3. Further examples are created by fusion: Suppose Mi for
i = 1, 2 are two q-HamiltonianG-spaces withGκi-valued moment map. Then
M1 ×M2 with the new G-action g.(m1,m2) = (g.m1, κ1(g).m2) and the 2-
form

ω = ω1 + ω2 + 1
2Φ∗1θ

L · Φ∗2θR

becomes a q-Hamiltonian G-space with Gκ2κ1-valued moment map Φ1Φ2.
Properties (a) and (b) may be verified directly; for property (c) it is best to
use the Dirac-geometric approach as in Remark 3.5.

For example, if C is a κ-twisted conjugacy class in G, and M is a q-
Hamiltonian G-space with (non-twisted) G-valued moment map, then the
fusion product M × C is a q-Hamiltonian G-space with Gκ-valued moment
map. Also, if Ci ⊆ G are κi-twisted conjugacy classes, for i = 1, . . . , r, then
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their fusion product C1 × · · · × Cr is a q-Hamiltonian space with Gκ-valued
moment map, where κ = κr · · ·κ1. See example 2.1.

Remark 3.4. Let L(κ)G be the twisted loop group, consisting of paths
g : R→ G with the property that g(t+ 1) = κ(g(t)) for all t. There is a
notion of Hamiltonian L(κ)G-space generalizing that of a Hamiltonian LG-
space [17], and by the same proof as for κ = 1 [3] one sees that there is a
1-1 correspondence between Hamiltonian L(κ)G-spaces with proper moment
maps and κ-twisted q-Hamiltonian G-spaces.

Remark 3.5. The definition of Gκ-valued moment maps has a Dirac-
geometric interpretation, similar to [11] and [2]. Using the notation from [2],
let A = TGη be the standard Courant algebroid over G, with the Courant
bracket twisted by the closed 3-form η. It has a canonical trivialization
A = G× (g⊕ g), where g stands for g with the opposite metric. Any La-
grangian Lie subalgebra s ⊆ g⊕ g defines a Dirac structure Es = G× s ⊆ A.
Taking s to be the diagonal, one obtains the Cartan-Dirac structure E∆ = E.
Taking s = {(ξ, κ(ξ)| ξ ∈ g} for κ ∈ Aut(G), one obtains a Dirac structure
Es = E(κ) generalizing the Cartan-Dirac structure. As a Lie algebroid, it
is the action Lie algebroid for the κ-twisted conjugation action. For a q-
Hamiltonian space (M,ω,Φ) with Gκ-valued moment map, the pair (Φ, ω)
defines a full morphism of Manin pairs, (TM,TM) 99K (A, E(κ)). Conversely,
such a morphism defines a g-action on M for which the underlying map
Φ: M → G is equivariant, and it also defines an invariant 2-form on M sat-
isfying the axioms above. The Dirac-geometric approach explains many of
the properties of Gκ-valued moment maps; for example the fusion construc-
tion finds a conceptual explanation in terms of a Dirac morphism

(MultG, ς) : (A, E(κ1))× (A, E(κ2))→ (A, E(κ2κ1))

with the 2-form ς = 1
2 pr∗1 θ

L · pr∗2 θ
R. See [2, Section 4.4].

3.2. Twisted moduli spaces

Let Σ = Σr
h be a compact, connected, oriented surface of genus h with r > 0

boundary components, and let V = {x1, . . . , xr} be a collection of base points
on the boundary components, xi ∈ (∂Σ)i ∼= S1. Let

π1(Σ,V)⇒ V



i
i

“12-Meinrenken” — 2018/1/16 — 0:27 — page 1807 — #11 i
i

i
i

i
i

Convexity for twisted conjugation 1807

denote the fundamental groupoid, consisting of homotopy classes λ of paths
for which both the initial point s(λ) and the end point t(λ) are in V. Suppose
we are given a groupoid homomorphism (‘twist’)

κ ∈ Hom
(
π1(Σ,V),Aut(G)

)
.

Such a κ may be obtained by assigning elements of Aut(G) to a system of
free generators of the fundamental groupoid, and extending by the homo-
morphism property. Let

(12) M = Homκ

(
π1(Σ,V), G

)
be the space of κ-twisted homomorphisms, consisting of maps λ 7→ φλ such
that

φλ1◦λ2
= φλ1

κλ1
(φλ2

)

whenever s(λ1) = t(λ2). (The space M may be regarded as a certain moduli
space of flat connections.) 1 The group Map(V, G) = G× · · · ×G act on the
space (12) as

(g.φ)λ = gt(λ) φλ κλ(g−1
s(λ)).

Let κ1, . . . , κr ∈ Aut(G) be the values of κ on the oriented boundary loops
λ1, . . . , λr. Then M is a q-Hamiltonian Gr-space, with a Gκ1 × · · · ×Gκr-
valued moment map Φ given by evaluation on boundary loops. We won’t
describe the 2-form here, since for the case that κ takes values in diagram
automorphisms it may be regarded as a component of the moduli space of
flat Go Out(G)-bundles – see Section 3.4 below.

Remark 3.6. This construction also gives new examples of non-twisted q-
Hamiltonian spaces. For example, take Σ = Σ1

1 be the surface of genus 1 with
one boundary component. Its fundamental group(oid) has free generators
α, β, with the boundary loop given as αβα−1β−1. Attach an automorphism
σ ∈ Aut(G) to β, and 1 to α, and extend to a homomorphism κ as above.
Then the corresponding M is G×G, with elements (a, b) corresponding to
holonomies along α, β. The group G acts on a by conjugation and on b by
κ-twisted conjugation. The boundary holonomy is a G-valued moment map

(a, b) 7→ abκ(a−1)κ(b−1),

a twisted group commutator.

1Alternatively, Homκ is the lift of κ to the space M̃ = Hom
(
π1(Σ,V), Go

Aut(G)
)
.
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Remark 3.7. Let K be a disconnected group with identity component G =
K0. The space Hom(π1(Σ,V),K) is a moduli space of flat K-bundles over Σ,
with framings at the base points. This space is disconnected, in general. The
conjugation action of K on its identity component defines a group homomor-
phism K → Aut(G). Hence, any element x ∈ Hom(π1(Σ,V),K) determines
an element κ ∈ Hom(π1(Σ,V),Aut(G)), and the connected component con-
taining x is identified with a connected component of Homκ(π1(Σ,V), G).

The example giving rise to the convex polytope in Theorem 1.1 is ob-
tained from the r-holed sphere Σ = Σr

0. Here π1(Σ,V) is freely generated by
λ1, . . . , λr−1, represented by oriented boundary loops based at x1, . . . , xr−1,
together with µ1, . . . , µr−1 represented by non-intersecting paths connecting
these points to xr. The element λr represented by the remaining boundary
loop satisfies

(13)

r−1∏
i=1

µiλiµ
−1
i = λ−1

r .

Given κ ∈ Hom(π1(Σ,V),Aut(G)), we denote by κi the images of the λi’s,
and by σi the images of the µi’s. Then

(14)

r−1∏
i=1

σiκiσ
−1
i = κ−1

r .

We find Homκ(π1(Σ,V), G) = G2r−2, consisting of tuples (d1, . . . , dr−1, a1,
. . . , ar−1), where di are holonomies attached to the λi, and ai are attached
to the µi. The holonomy dr around the r-th boundary loop is determined
from

(15)

r−1∏
i=1

(ai, σi)(di, κi)(ai, σi)
−1 = (dr, κr)

−1.

Lemma 3.8. Let κ1, . . . , κr be holonomies attached to the boundaries of
Σr

0, with κrκr−1 · · ·κ1 = 1. Then there is an extension to a homomorphism

κ ∈ Hom(π1(Σ,V),Aut(G)),

in such a way that the moment map image of M = Homκ(π1(Σ,V), G) con-
sists of all (d1, . . . , dr) ∈ Gr for which there exists (g1, . . . , gr) with gi ∈
Ad

(κi)
G (di) and

∏r
i=1 gi = e.
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Proof. Using the notation above, put σ1 = 1, σ2 = κ−1
1 , . . . , σr−1 =

κ−1
1 · · ·κ

−1
r−2. Equation (14) becomes the condition κrκr−1 · · ·κ1 = 1. Intro-

ducing

a′1 = a1, a
′
2 = κ1(a2), a′3 = κ2(κ1(a3)), . . .

the equation for the holonomies becomes

r∏
i=1

a′idiκi((a
′
i)
−1) = e

where we put a′r = e. That is
∏
gi = e where

gi = a′idiκi((a
′
i)
−1) ∈ Ad

(κi)
G (di).

The moment map for M is the map taking (d1, . . . , dr−1, a1, . . . , ar−1) to
(d1, . . . , dr), with dr determined from the condition

∏
i gi = e. �

3.3. Basic properties of Gκ-valued moment maps

The following statement extends a well-known property of moment maps in
symplectic geometry.

Proposition 3.9. Let (M,ω,Φ) be a q-Hamiltonian G-space with Gκ-valued
moment map. For all m ∈M we have

ker(TmΦ)ω = Tm(G ·m), ran(Φ∗θR)m = g⊥m.

(For any subspace V ⊆ TmM , the notation V ω means the set of all v ∈ TmM
such that ω(v, w) = 0 for all w ∈ V .)

Proof. In terms of A = AdΦ(m) ◦κ, the moment map condition gives

(16) ι(ξM )ωm = −1
2((A+ I)ξ) · (Φ∗θR)m.

In particular, for ξ ∈ gm, we get that

1
2((A+ I)ξ) · (Φ∗θR)m = 0.

But gm ⊆ gΦ(m) = ker(A− I), so A acts as the identity on gm. Hence we

obtain ξ · (Φ∗θR)m = 0, proving ran(Φ∗θR)m ⊆ g⊥m. On the other hand, it is
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immediate from the moment map condition that ker(TmΦ)ω ⊇ Tm(G ·m).
Equality of both inclusions follows by a dimension count:

dim(G ·m) ≤ dim(ker(TmΦ)ω)

= dimTmM − dim(ker(TmΦ))

= dim(ran(Φ∗θR)m)

≤ dim g⊥m = dim(G ·m).

Here we used ker(ω) ∩ ker(TΦ) = 0 for the first equality sign. �

Proposition 3.10. The map g→ TmMgiven by the infinitesimal action
restricts to an isomorphism,

ker(AdΦ(m) ◦κ+ I)
∼=−→ ker(ωm).

Proof. Here, the Dirac-geometric viewpoint from Remark 3.5 is convenient.
Let TGη be as in that remark. The subspace

E1 = {TΦ(v) + α ∈ TGη| v ∈ TmM, α ∈ T ∗Φ(m)G, Φ∗α = ι(v)ωm}

is the ‘forward image’ of TmM ⊆ TM = TM ⊕ T ∗M under the linear Dirac
morphism (TmΦ, ωm); in particular it satisfies E1 = E⊥1 . The axioms show
that E1 contains the space

E =

{
ξG +

1

2
θR · (A+ I)ξ

∣∣ ξ ∈ g

}
(everything evaluated at Φ(m)). Here ξG are the generating vector fields for
the κ-twisted conjugation,

ξG = κ(ξ)L − ξR = ((A− I)ξ)R.

But it is easily checked that E = E⊥, which together with E ⊆ E1 implies
E1 = E. In particular, taking α = 0 in the definition of E1 we see that

(TmΦ)(kerωm) =
{
ξG(Φ(m))

∣∣ (A+ I)ξ = 0
}
.

Since ker(ωm) ∩ ker(TmΦ) = 0, the map TmΦ is injective on ker(ωm). Con-
sequently, ker(ωm) = {ξM (m) | (A+ I)ξ = 0}. �
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3.4. Changing κ by inner automorphisms

Let (M,ω,Φ) be a q-Hamiltonian G-space with Gκ-valued moment map.
Suppose

κ′ = Ada ◦κ.

Then the manifold M with the same G-action and 2-form, but with a shifted
moment map Φ′ = ra−1 ◦ Φ, is a q-Hamiltonian G-space with Gκ′-valued
moment map. For this reason, if G is compact and simply connected, it
usually suffices to consider the case of diagram automorphism κ ∈ Out(G).
But for κ ∈ Out(G), the q-Hamiltonian G-spaces with Gκ-valued moment
map are simply q-Hamiltonian spaces with moment maps valued in the
disconnected group Go Out(G), whose image is contained in the component
G× {κ}. (The only wrinkle is that we only consider the action of the identity
component G of this group, but this doesn’t affect the theory from [3].) In
this sense, the examples considered above are not new, at least forG compact
and simply connected. For instance, in the fusion procedure 3.3, first apply
the automorphism κ1 to the second space, thus obtaining (M2, ω2,Φ

′
2) with

the new G-action m 7→ κ1(g).m, and a Gκ′-valued moment map Φ′2 = κ−1
1 ◦

Φ2, where κ′ = κ−1
1 κ2κ1. Since

(Φ1, κ1)(κ−1
1 ◦ Φ2, κ2) = (Φ1Φ2, κ2 ◦ κ1),

we recognize the fusion product 3.3 as a standard fusion product [3] for
q-Hamiltonian G-spaces with Go Out(G)-valued moment maps.

4. Convexity properties

We now turn to the convexity properties of Gκ-valued moment maps. The
arguments are mostly straightforward adaptations of those in [17] and [15].
Throughout, we will assume that G is compact and simply connected, and
that κ ∈ Aut(G) is a diagram automorphism. We denote by A(κ) ⊆ tκ the
alcove, and by

q(κ) : G→ A(κ)

the quotient map, with fibers (q(κ))−1(ξ) the κ-twisted conjugacy classes of
exp(ξ). Recall from 2.3 the definition of the slices Uσ. Let κσ denote the
restriction of κ to Gσ.

Proposition 4.1 (Cross-section theorem). Let (M,ω,Φ) be a connected
q-Hamiltonian G-space with Gκ-valued moment map. For any face σ ⊆ A(κ),
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the pre-image Yσ = Φ−1(Uσ) is a q-Hamiltonian Gσκσ-space, with the pull-
back of ω as the 2-form and the restriction of Φ as the moment map.

The proof is parallel to the result for non-twisted q-Hamiltonian spaces,
see [3], which in turn is a version of the cross-section theorem for Hamiltonian
spaces, due to Guillemin-Sternberg [12] and Marle [16].

Recall that for any connectedG-manifoldM , the principal stratumMprin

is the set of all points whose stabilizer is subconjugate to any other stabilizer.
It is connected, and open and dense in M .

Proposition 4.2. Let (M,ω,Φ) be a connected q-Hamiltonian G-space with
Gκ-valued moment map. Then:

a) The stabilizer Gm of any point m ∈Mprin is an ideal in GΦ(m).

b) All points in Mprin ∩ Φ−1(exp(A(κ))) have the same stabilizer H.

c) The image q(κ)(Φ(Mprin)) is a connected, relatively open subset of

(x+ h⊥) ∩ A(κ),

where h is the Lie algebra of H, and x is any point of q(κ)(Φ(Mprin)).

Proof. The parallel statements for ordinary HamiltonianG-spaces are proved
in [15, Section 3.3]. In particular, if N is a connected Hamiltonian G-space,
with moment map Ψ: N → g∗, then for each n ∈ Nprin, the stabilizer Gn is
an ideal in GΦ(n), and the stabilizer H = Gn of points in Nprin ∩Ψ−1(t∗+) is
independent of n. We will use cross-sections Yσ to reduce to the Hamiltonian
case. As noted in the proof of Proposition 2.5, the automorphism κσ = κ|Gσ
is inner, and is given by Ada−1 for any choice of a ∈ exp(σ). Hence, Yσ be-
comes a q-Hamiltonian Gσ-space with (untwisted) Gσ-valued moment map
ra−1 ◦ Φσ. Furthermore, this then becomes an ordinary Hamiltonian Gσ-
space with a moment map

Φ0,σ : Yσ → gσ ∼= g∗σ, m 7→ log(Φσ(m)a−1).

We conclude that for all m ∈ (Yσ)prin = Yσ ∩Mprin, the stabilizer Gm is an
ideal in the stabilizer of Φ0,σ(m) under the adjoint action. The latter co-
incides with stabilizer of Φ(m) = exp(Φ0,σ(m))a under twisted conjugation.
Hence Gm is an ideal in GΦ(m). Since the flow-outs of all the Yσ’s under
twisted conjugation cover M , this proves (a).
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The map Mprin ∩ Φ−1(exp(A(κ)))→Mprin/G is surjective, and has con-
nected fibers GΦ(m).m = GΦ(m)/Gm. Since the target of this map is con-

nected, it follows that Mprin ∩ Φ−1(exp(A(κ))) is connected. Consider the
decomposition of each Yσ into its connected components Y i

σ . Passing to
the corresponding Hamiltonian Gσ-space as above, and using the general
results for connected Hamiltonian spaces, we see that all points of Y i

σ ∩
Mprin ∩ Φ−1(exp(A(κ))) have the same stabilizer. Since the union of these
sets, over all σ, i, covers Mprin ∩ Φ−1(exp(A(κ))), it follows that all points of
this intersection have the same stabilizer, proving (b).

Each q(κ)(Φ(Mprin) ∩ Y i
σ) is a connected, relatively open subset of (x+

h⊥) ∩ A
(κ)
σ , for any choice of x ∈ q(κ)(Φ(Mprin) ∩ Y i

σ). (Once again, this fol-
lows from the corresponding statement for Hamiltonian spaces, see [15, Sec-
tion 3.3].) This implies (c). �

Theorem 4.3 (Principal cross-section). Let (M,ω,Φ) be a connected
q-Hamiltonian G-space with Gκ-valued moment map. Then there exists a
unique open face σ of A(κ) such that

q(κ)(Φ(M)) ⊆ q(κ)(Φ(M)) ∩ σ.

(Equality holds if M is compact.) Alternatively, σ is characterized as the
smallest face such that the corresponding cross-section Yσ satisfies Φ(Yσ) ⊆
exp(σ). This principal cross-section Yσ is a connected q-Hamiltonian T κ-
space, with the restriction of Φ as the moment map, and

M = G · Yσ.

Proof. Using the notation from the previous proposition, let σ be the low-
est dimensional face of A(κ) whose closure contains (x+ h⊥) ∩ A(κ). Since
q(κ)(Φ(Mprin)) is a relatively open subset of (x+ h⊥) ∩ A(κ), its intersection
with σ is non-empty. It follows that q(κ)(Φ(M)) ∩ σ = q(κ)(Φ(Yσ)). That
is, Φ(Yσ) ⊆ exp(σ) ⊆ T κ, so that Yσ may be regarded as a q-Hamiltonian
T κ-space, for the restriction of the moment map.

By construction, G · Yσ = Φ−1((q(κ))−1(σ)). The difference

(17) Mprin − ((G · Yσ) ∩Mprin) = Mprin −
(
Φ−1((q(κ))−1(σ)) ∩Mprin

)
is the union over all Φ−1((q(κ))−1(τ)) ∩Mprin where τ ranges over proper
faces of σ. But those are submanifolds of codimension at least 3, hence re-
moving them will not disconnect Mprin. Thus (G · Yσ) ∩Mprin is connected,
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which implies that G · Yσ = G×Gσ Yσ is connected, and therefore Yσ is con-
nected. �

Note that since the principal cross-section Yσ is a q-Hamiltonian T κ-space,
it is in particular symplectic.

Theorem 4.4. Let (M,ω,Φ) be a compact, connected q-Hamiltonian G-
space with Gκ-valued moment map. Then the fibers of the moment map Φ
are connected, and the image

∆(M) := q(κ)(Φ(M)) ⊆ A(κ)

is a convex polytope.

Proof. The principal cross-section Y = Yσ is a connected q-Hamiltonian T κ-
space, with the restriction ΦY = Φ|Y as its moment map. We can regard Y
as an ordinary Hamiltonian T κ-space, with a moment map ΦY,0 = q(κ) ◦ ΦY

that is proper as a map to σ ⊆ tκ.
Since σ is convex, [15, Theorem 4.3] shows that ΦY,0 has connected fibers,

and its image is a convex set of the form

q(κ)(Φ(Y )) = ΦY,0(Y ) = P ∩ σ,

where P is some convex polytope in σ. But then q(κ)(Φ(M)) = q(κ)(Φ(Y )) =
P . Finally, if x ∈ q(κ)(Φ(M)), then the same argument as in [15] shows that
for any open ball B around x, the pre-image Φ−1((q(κ))−1(B)) is connected.
By a continuity argument [15, Lemma 5.1] this implies that Φ−1(x) is con-
nected. �

We obtain Theorem 1.1 as a special case:

Proof of Theorem 1.1. Consider again the twisted moduli space for the r-
holed sphere Σr

0, corresponding to κi ∈ Out(G) with κrκr−1 · · ·κ1 = 1, as
in Lemma 3.8. We had found that the moment map image consists of all
(d1, . . . , dr) for which there exist elements gi ∈ G in the κi-twisted conjugacy
class of di, such that g1 · · · gr = e. Hence, by Theorem 4.4 the set (4) is a
convex polytope. �

5. An example

We will illustrate Theorem 1.1 in a simple setting, were the resulting poly-
tope can be computed by hand. Let G = A2

∼= SU(3), with its standard
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maximal torus T consisting of diagonal matrices, and its usual choice of
positive roots. We denote by α, β the simple roots, and let γ = α+ β be
their sum. The fundamental alcove A ⊆ t is defined by the inequalities
〈α, ξ〉 ≥ 0, 〈β, ξ〉 ≥ 0, 〈γ, ξ〉 ≤ 1. Let κ ∈ Aut(G) be the nontrivial diagram
automorphism of G given by κ(α) = β and κ(β) = α.

The Lie algebra tκ consists of all ξ such that 〈α, ξ〉 = 〈β, ξ〉; it is thus the
line spanned by the coroot γ∨. The alcove A(κ) is ‘half’ of the intersection
A ∩ tκ, i.e. it consists of elements of tκ with 〈γ, ξ〉 ∈ [0, 1

2 ]. We thus label the

κ-twisted conjugacy classes by a parameter s ∈ [0, 1
2 ], where C(κ)

s contains
exp(ξs) for a unique ξs ∈ Aκ with 〈γ, ξs〉 = s.

Consider the setting of Theorem 1.1, with r = 3. Unless all κi = 1, two
of the automorphisms κ1, κ2, κ3 have to be κ, and the third is the identity.
We may assume κ1 = κ2 = κ and κ3 = 1. Hence,

A(κ1) × A(κ2) × A(κ3) =
[
0,

1

2

]
×
[
0,

1

2

]
× A.

Proposition 5.1. For G = A2
∼= SU(3) with its non-trivial diagram au-

tomorphism κ, the polytope of all (s1, s2, ξ) ∈
[
0, 1

2

]
×
[
0, 1

2

]
× A such that

there exists (g1, g2, g3) ∈ C(κ)
s1 × C

(κ)
s2 × Cξ with g1g2g3 = e, is given by the in-

equalities 0 ≤ si ≤ 1
2 together with

|s1 − s2| ≤ 〈α+ β, ξ〉 ≤ 1 |s1 − s2| ≤ 1− 〈α, ξ〉 ≤ 1,

|s1 − s2| ≤ 1− 〈β, ξ〉 ≤ 1.

Proof. The problem of computing this polytope is equivalent to computing

the moment polytope of the fusion product C(κ)
s1 × C

(κ)
s2 for any s1, s2. This

fusion product is an untwisted q-Hamiltonian G-space, with action

h · (g1, g2) =
(
h g1 κ(h)−1, κ(h)g2 h

−1
)

and moment map (g1, g2) 7→ g1g2; its moment polytope is a 2-dimensional

convex polytope inside A. Observe that the set of g1g2 with gi ∈ C(κ)
si is invari-

ant under left-translation by central elements c ∈ Z(G) ∼= Z3. This follows
from

Adκc−1(g) = c−1gκ(c) = c−1gc2 = cg.

Left multiplication of the center on G induces an action on the set of conju-
gacy classes, and the resulting action of Z3 on the alcove A is by ‘rotation’.

Hence, the moment polytope is invariant under ‘rotations’ of the alcove.
If s1 = s2 = 0, this implies that the moment polytope must be all of A,
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since it contains the origin. If at least one of s1, s2 is non-zero, the moment
polytope does not contain the origin. Using standard results from symplectic
geometry, applied to the symplectic cross-section, it is cut out from the
alcove by affine half-spaces orthogonal to 1-dimensional stabilizer groups.
But the generic stabilizer for the twisted conjugation action of G on itself
is T κ, and all other 1-dimensional stabilizers are W -conjugate to T κ. (The
fixed point set of T is trivial.) Together with the rotational symmetry, it
follows that the moment polytope is cut out from the alcove by inequalities
of the form r ≤ 〈γ, ξ〉, r ≤ 1− 〈α, ξ〉, r ≤ 1− 〈β, ξ〉, for some 0 < r < 1

2 .
To find r, it suffices to determine the fixed point set of T κ on the product of
twisted conjugacy classes, and takes its image under the multiplication map.
Since the action of T κ is just ordinary conjugation, and since T κ contains
regular elements, the fixed point set for each factor is

C(κ)
si ∩ T = exp(ξsi + tκ) ∪ exp(−ξsi + tκ),

and the image under multiplication is exp(ξ±s1±s2 + tκ) ⊆ T . We conclude
r = |s1 − s2|. �
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groups, Astérisque 327 (2009), 131–199.

[3] A. Alekseev, A. Malkin, and E. Meinrenken, Lie group valued moment
maps, J. Differential Geom. 48 (1998), no. 3, 445–495.

[4] T. Baird, Classifying spaces of twisted loop groups, Alg. Geom. Topology
16 (2016), no. 1, 211–229.

[5] P. Belkale, Local systems on P1 − S for S a finite set, Compositio Math.
129 (2001), no. 1, 67–86.



i
i

“12-Meinrenken” — 2018/1/16 — 0:27 — page 1817 — #21 i
i

i
i

i
i

Convexity for twisted conjugation 1817

[6] P. Belkale and S. Kumar, The multiplicative eigenvalue problem and
deformed quantum cohomology, Advances in Math. 288, (2016), 1309–
1359

[7] A. Berenstein and R. Sjamaar, Coadjoint orbits, moment polytopes, and
the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433–466.

[8] P. Boalch, Quasi-Hamiltonian geometry of meromorphic connections,
Duke Math. J. 139 (2007), 369–405.

[9] P. Boalch, Geometry and braiding of Stokes data; Fission and wild char-
acter varieties, Annals of Math. 179 (2014), 301–365.

[10] P. Boalch and D. Yamakawa, Twisted wild character varieties, preprint,
arXiv:1512.08091.

[11] H. Bursztyn and M. Crainic, Dirac structures, momentum maps, and
quasi-Poisson manifolds, The breadth of symplectic and Poisson geom-
etry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston, MA, 2005,
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