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We use the Jacquet–Langlands correspondence to generalize well-
known congruence results of Mazur on Fourier coefficients and L-
values of elliptic modular forms for prime level in weight 2 both to
nonsquare level and to Hilbert modular forms.

A celebrated result of Mazur says that, for N a prime and p a prime dividing
(the numerator of) N−1

12 , there exists a cusp form f ∈ S2(N) = S2(Γ0(N))
congruent to the Eisenstein series E2,N of weight 2 and level N mod p
[Maz77, II(9.6)]. Further, if p is odd, one has a congruence for the algebraic
part of the central L-value L(1, fK) = L(1, f)L(1, f ⊗ ηK), where ηK is the
quadratic character associated to a quadratic field K/Q [Maz79]. For in-
stance, if N = 11 and K is not split at 11, there is one cusp form f ∈ S2(N)
and one gets that Lalg(1, fK) 6≡ 0 mod 5 if and only if 5 - hK . (If K splits
at 11, the root number is −1 so L(1, fK) = 0). A form of Mazur’s L-value
result was reproved by Gross [Gro87] for K/Q imaginary quadratic using
quaternion algebras and the height pairing, whereas Mazur used modular
symbols. Ramakrishnan pointed out to me that one can also deduce this
from his average L-value formula with Michel [MR12]. (Note Gross’s argu-
ment also involves an averaging type procedure, so these two arguments are
not entirely different in spirit.)

In this article, we use the Jacquet–Langlands correspondence and an
explicit L-value formula to extend these results of Mazur both to more
general levels and to parallel weight 2 Hilbert modular forms over a totally
real field F with K/F a quadratic CM extension. For simplicity, we only
state our results precisely for F = Q in this introduction.

We first discuss the Hecke eigenvalue congruence result and a nonva-
nishing L-value result, and will state the more precise result on L-value
congruences below in Theorem B.
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Theorem A. Let N be a nonsquare, and write N = N1N2 where (N1, N2) =
1 and N1 has an odd number of prime factors, all of which occur to odd expo-
nents. Let p be a prime dividing (the numerator of) 1

12ϕ(N1)N2
∏
q|N2

(1 +

q−1) and p a prime of Q above p. Then there exists f ∈ S2(N) which is
an eigenform for all Tn with (n,N) = 1 and is congruent to the Eisenstein
series E2,N mod p away from N .

Suppose moreover N = N1 with N1 squarefree and that p|ϕ(N1)
24 . Then we

can take f to be a newform such that f ≡ E2,N mod p (as q-expansions). If
K/Q is an imaginary quadratic field not split at any prime dividing N such
that p - hK , then there exists such an f with L(1, fK) 6= 0.

Here E2,N is the Eisenstein series of weight 2 and level N defined by
E2,N (z) =

∑
d|N µ(d)dE2(dz), where µ is the Möbius function and E2 is

the weight 2 Eisenstein series for SL(2,Z) normalized so that the Fourier
coefficient of q is 1.

The statement about congruence away from N means that f and E2,N

have the same Hecke eigenvalues mod p for T` for any prime ` - N . If N = N1

is squarefree, then E2,N has constant term ϕ(N)
24 , and the only reason we need

to assume p|ϕ(N)
24 rather than p|ϕ(N)

12 in the second part is so the constant
term of E2,N will be 0 mod p. E.g., if N = 73 there is a rational newform
f ∈ S2(73) all of whose Hecke eigenvalues match with those of E2,73 mod
2, but the constant term of E2,73 is 1 mod 2 so they are not congruent as
q-expansions.

Note E2,N = E2,N ′ where N ′ =
∏
p|N p is the “powerfree part” of N so

E2,N really has level N ′, and E2,N is an eigenfunction of the Hecke operators
T` on M2(N) for all primes ` having eigenvalue `+ 1 when ` - N and eigen-
value 1 when `|N . One might prefer to replace E2,N with a form whose T`
eigenvalue is 0 when `2|N and look for a congruence mod ` as well. However,
since we do not know the exact level of f in general, this does not make a
difference for the statement of the theorem. Still, we give non-squarefree ex-
amples below where one can replace E2,N with a different Eisenstein series
to get a congruence of all Fourier coefficients.

The Hecke eigenvalue congruence in the N = N1 squarefree case of The-
orem A was also proved by Ribet (unpublished, announced in 2010) under
the additional assumptions p - N and p ≥ 5. In fact, Ribet also obtained
a converse (there are no other such p - N with p ≥ 5) and more generally
addressed finding newforms congruent to E2,N away from N with specified
pi-th Fourier coefficient api ∈ {±1} for each pi|N . This was studied fur-
ther by Yoo in [Yooa], which also explains Ribet’s work in detail. (When
N = N1 is squarefree, our Theorem A only concerns finding newforms with



i
i

“11-Martin” — 2018/1/16 — 0:40 — page 1777 — #3 i
i

i
i

i
i

Jacquet–Langlands correspondence and Eisenstein congruences 1777

api = 1 for each pi|N .) Their arguments involve studying Eisenstein ideals
using Jacobian calculations and then appealing to the Jacquet–Langlands
correspondence. See also [Yoob] for related results when N is not squarefree.

In contrast, our proof follows from using a (generalized) Eichler mass
formula to construct a quaternionic cusp form φ “of level N” on the definite
quaternion algebra B ramified at each prime dividing N1 such that φ ≡
1 mod p. (Here φ is just a function on a certain finite set of ideal classes with
the cuspidality criterion amounting to a linear relation among the values
of φ.) In addition to our method being more straightforward, we have no
trouble dealing with N not squarefree and arbitrary p, or extending this to
Hilbert modular forms as in Theorem 2.1 (though in the Hilbert modular
case we make a simplyfing assumption that our totally real field F satisfies
hF = h+F — see Remark 2.2). We do not get a converse or consider api = −1,
though see Remark 2.4 regarding the converse.

Here are some simple consequences of Theorem A.

Corollary 1. If p > 2, then there exists f ∈ S2(p3) such that f and E2,p3 =
E2,p are congruent mod p away from p, for p a prime above p in Q.

For example, when p = 3, there is a unique normalized (new)form f ∈
S2(27), which has Fourier expansion∑

anq
n = q − 2q4 − q7 + 5q13 + 4q16 − 7q19

− 5q25 + 2q28 − 4q31 + 11q37 + 8q43 + · · ·

and it satisfies a` ≡ `+ 1 mod 3 for all primes ` 6= 3. In fact we have f(z) ≡
E2,3(z)− E2,3(3z) mod 3. (Note the constant term of the right hand side is
0.)

We remark that the analogous statement of the corollary is not true in
level p2 — e.g., for N = N1 = 25, then prime p = 5 divides the numerator
of 1

12φ(N1), but S2(25) = {0}.
In the case of p = 2, the theorem says that there exists f ∈ S2(32) which

is congruent to E2,2 mod 2 away from 2. Here S2(32) is 1 dimensional, and
spanned by the form∑

anq
n = q − 2q5 − 3q9 + 6q13 + 2q17 − q25

− 10q29 − 2q37 + 10q41 + 6q45 − 7q49 + · · · .

In fact, f(z) ≡ E2,2(z)− E2,2(2z) mod 2.



i
i

“11-Martin” — 2018/1/16 — 0:40 — page 1778 — #4 i
i

i
i

i
i

1778 Kimball Martin

Corollary 2. Let p, q be distinct primes with p > 3. Then there exists f ∈
S2(qp

2) such that f and E2,q are congruent mod p away from pq, for p a
prime of Q above p.

For instance, S2(50) = S2(50)new has dimension 2, and one eigenform
f ∈ S2(50) has Fourier expansion

q + q2 − q3 + q4 − q6 − 2q7 + q8 − 2q9

− 3q11 − q12 + 4q13 − 2q14 + q16 + 3q17 + · · ·

In this case it happens that f and E2,50 are congruent mod 5 everywhere
away from 5, and f(z) ≡ E2,10(z)− E2,10(5z) mod 5.

The L-value result at the end of Theorem A is a direct generalization
of [Gro87, Cor 11.8], and follows from our proof of Theorem 2.1 and Wald-
spurger’s formula [Wal85] — see Proposition 3.1. The p = 2 case (not treated
by Mazur) has consequences in the spirit of Goldfeld’s conjecture:

Example 3. Let C be the unique-up-to-isogeny elliptic curve over Q of
conductor N = 17. Then among negative prime discriminants −d, the cen-
tral value L(1, C−d) for the quadratic twist C−d is nonzero exactly 50% of
the time.

In fact, we can say precisely when L(1, C−d) 6= 0 for −d < 0 a prime
discriminant. We know C is associated to the unique normalized form f ∈
S2(17). We take p = 2 in our theorem and conclude L(1, fK) 6= 0 when 17 is
inert in K = Q(

√
−d) and 2 - hK . However, for d prime, Gauss’ genus theory

implies 2 - hK . Thus, if 17 is inert in K, L(1, fK) = L(1, C)L(1, C−d) 6= 0.
On the other hand, if 17 is split in Q(

√
−d), then L(1, C−d) = 0 because

the root number is −1. In particular, at least 50% of these prime quadratic
twists C−d have finitely many rational points.

Now we discuss congruences of L-values. Let K/Q be a quadratic ex-
tension and χ an ideal class character of K. Let L(s, f, χ) denote the twist
L(s, fK ⊗ χ) of the base change fK of f to K (a degree 2 L-function over K),
or equivalently L(s, f × θχ) the degree 4 Rankin–Selberg L-function over Q
of f times the GL(2) theta series θχ attached to χ. When χ = 1 is trivial,
this L-function is just L(s, f, 1) = L(s, fK) = L(s, f)L(s, f ⊗ ηK).

Given a congruence of modular forms, say as in Theorem A, we expect
a congruence of algebraic parts of the special L-values L(1, f, χ). In the case
where one of the modular forms is an Eisenstein series, this was studied
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by Vatsal and Heumann [Vat99], [HV14] (after Mazur [Maz79] and Stevens
[Ste82]) using modular symbols.

The Jacquet–Langlands correspondence, together with an explicit L-
value formula of earlier joint work with Whitehouse [MW09], also yields a
congruence of central L-values when one starts with a congruence of quater-
nionic modular forms. We just consider the case where one of these quater-
nionic modular forms is constant (i.e., corresponds to E2,N ) but the same
approach can also be used when one starts with two quaternionic cusp forms
which are congruent mod p.

Theorem B. Suppose N is squarefree product of an odd number of primes
and f ∈ S2(N) corresponds via Jacquet–Langlands to a quaternionic cusp
form φ of level N such that φ ≡ 1 mod pr for a prime p of Q above p. Then
we may normalize Lalg(1, f, χ) so that (i) it is an algebraic integer, and
(ii) there exist an algebraic integer cφ invertible mod p such that, for any
imaginary quadratic field K inert at each prime dividing N and any ideal
class character χ of K, we have

Lalg(1, f, χ) ≡

{
|cφ|2h2K mod pr χ = 1,

0 mod p χ 6= 1.

Given f , the normalization of Lalg(1, f, χ) depends on K and φ in a
simple way, and does not depend on χ — see (3.5). The integer cφ can also
be determined in a simple way from φ.

Note this L-value congruence can be viewed as a congruence between
Lalg(1, f, χ) and Lalg(1, E2,N , χ), though we have not written it in this form.
For instance, if χ is trivial, then L(1, E2,N , χ) is essentially L(0, ηK)L(1, ηK),
which is essentially h2K .

Vatsal and Heumann [Vat99], [HV14] show that if f is congruent to E2,N

mod pr, p > 2 and p - N , then there is a congruence of special values be-
tween algebraic parts of L(1, f, χ) and L(1, E2,N , χ). In fact they treat higher
weights, other Eisenstein series and non-central special values (when k ≥ 4).
However their normalization of algebraic parts of special values makes use
of canonical periods, which are only defined up to p-adic units, whereas our
normalization determines Lalg(1, f, χ) uniquely. On the other hand, we do
not require any restriction on p, and we can easily treat Hilbert modular
forms also.

Our method is similar in spirit to Gross’s approach [Gro87], and also
an approach by Quattrini [Qua11] using half-integral weight modular forms.
(These works also make use of definite quaternion algebras.) In fact we get
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a period congruence, which is stronger than the L-value congruence as the
period also accounts for the sign of the “square root” of Lalg(1, fK).

The main deficiency in our result is that we require a congruence of
quaternionic modular forms, which is a priori stronger than a congruence of
elliptic (or Hilbert) modular forms. However, we expect that these two no-
tions of congruence are equivalent (see Remark 2.4 and (3.3)). This issue is
also present in Quattrini’s approach, who used work of Emerton [Eme02] to
show these notions are equivalent when r = 1 and N is prime [Qua11, Thm
3.6]. Hence our Theorem B covers the case addressed in [Maz79]. We can
also show that, for r = 1, under the hypotheses of Theorem A, if there is a
unique cuspidal newform f ≡ E2,N mod p, then it corresponds to a quater-
nionic form φ ≡ 1 mod p. The difficulty in general is separating quaternionic
eigenforms with congruent eigenvalues.

Now we outline the contents and briefly remark on other related litera-
ture.

In Section 1, we explain some preliminaries on weight 2 quaternionic
modular forms for totally definite quaternion algebras B over totally real
number fields F . These will be functions on the finite set of ideal classes
Cl(O), for some order O of B.

In Section 2, we use the Eichler mass formula to show the existence of a
quaternionic cusp form φ congruent to the constant function 1 modulo suit-
able primes. Then we apply the Jacquet–Langlands correspondence to get a
Hilbert cusp form f corresponding to φ whose Hecke eigenvalues are congru-
ent to those of a Hilbert Eisenstein series associated to the constant function
on Cl(O). This (Theorem 2.1) is the first main result, which specializes to
the Hecke eigenvalue congruence statements in Theorem A.

We note recent work of Berger, Klosin and Kramer [BKK14] gives an
algebraic approach to counting congruences of Hecke eigenvalues in more
general settings, which yields a refinement of Mazur’s congruence of Fourier
coefficients result for S2(N) with N is prime. In the case of Hilbert modular
forms, some results are already known about finding primes of congruence
between two cusp forms, e.g., the work of Ghate [Gha02] generalizing a result
of Hida [Hid81] for elliptic cusp forms, but we are not aware of results along
the lines of Theorem 2.1 guaranteeing the existence of Hilbert cusp forms
congruent to Eisenstein series.

Then in Section 3, we use Waldspurger’s formula [Wal85] relating cen-
tral L-values to periods on quaternion algebras. This immediately gives the
nonvanishing L-value statement in Theorem A. To get the precise congru-
ence in Theorem B, we use a more explicit version of Waldspurger’s formula
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from [MW09]. That L-value formula applies to arbitrary quadratic exten-
sions K/F (F totally real or not), but we need to restrict to K/F CM here
in order for the relevant period to lie on the definite quaternion algebra B.
Again, we are not aware of such L-value congruences in the Hilbert modular
case.

On the other hand, there are some existence results of a different nature
about even weight cusp forms with Lalg(1, f, χ) 6≡ 0 mod p using average
value formulas, e.g., the aforementioned work of Michel and Ramakrishnan
[MR12] for elliptic cusp forms and joint work of File and Pitale with the
present author [FMP17] for Hilbert cusp forms (though excluding parallel
weight 2 for simplicity). These results are of just the form that for a given
p and any suitably large level N, there exists some f ∈ Sk(N) such that
Lalg(1, f, χ) 6≡ 0 mod p, but the bound on the level depends on K. I am
not aware of any other results on the vanishing of Lalg(1, f, χ) mod p for χ
nontrivial when the sign of the functional equation is +1.
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1. Quaternionic modular forms

Throughout, we fix the following notation. Let F be a totally real number
field of degree d, and oF its ring of integers. Let N = N1N2 be a nonzero
integral ideal in oF such that N1 = pe11 · · · perr and N2 = qf11 · · · q

fs
s where the

pi’s and qj ’s are distinct prime ideals of oF , ei, fj ∈ N, each ei is odd, and
r ≡ d mod 2. Note that N can be any nonzero ideal when d is even, and
N can be any ideal which is not a square when d is odd. The letter ` will
denote a finite prime of F .

Denote by B the unique (up to isomorphism) totally definite quaternion
algebra over F ramified at each pi and no other finite prime. Let O be an
order of level N in B such that Oqi

is conjugate to R0(q
fi
i ), the subring
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of M2(oF,qi
) with lower left entry 0 mod qfii , for 1 ≤ i ≤ s. Note this is

an Eichler order if N1 is squarefree — otherwise it is the intersection of
an Eichler order of level

∏
pi ·N2 with an order, which is unique up to

isomorphism, of level N1.
We want to work with a certain space of automorphic forms on B×.

Adelically, we will be looking at functions on

(1.1) Cl(O) = B×\B̂×/Ô× = B×\B×(AF )/(Ô× ×B×∞).

Here Cl(O) can naturally be viewed as the (finite) set of invertible (locally
principal) right ideal classes of O. We denote the class number #Cl(O) by
h(O). Let I1, . . . , Ih be a set of representatives for the right ideal classes of
O, and let x1, . . . , xh be a corresponding set of representatives for the double
coset classes B×\B̂×/Ô×.

We consider the space of (weight 2, or weight 0, depending on conven-
tion) quaternionic modular forms on O defined by

M(O) = {φ : Cl(O)→ C},

a complex vector space of dimension h(O). To work adelically, we will typ-
ically view φ ∈M(O) as a function on B̂× which is left invariant by B×

and right invariant by Ô×. For simplicity, we will work with the subspace
of forms with trivial central character:

(1.2) M = M(O, 1) = {φ ∈M(O) : φ(z) = φ(1) for z ∈ F̂×}.

Note that M(O, 1) = M(O) if F has class number 1, because in this case
F̂× = F×ô×F ⊂ B×Ô×. In general M is a complex vector space of dimen-
sion h(O)− (m− 1) where m is size the image of the map Cl(oF )→ Cl(O)
induced from inclusion A×F → B×(AF ), so we always have h(O)− hF + 1 ≤
dimM≤ h(O). When hF is odd, composing with the reduced norm shows
the map Cl(oF )→ Cl(O) is injective so dimM = h(O)− hF + 1.

We make M into an inner product space by defining

(φ, φ′) =

∫
A×FB×\B×(AF )

φ(g)φ′(g) dg = (4π2)d
∫
F̂×B×\B̂×

φ(g)φ′(g) dg,

where dg denotes the Haar measure on the relevant quotient induced by
the product of local Tamagawa measures on B×v and F×v and the counting
measure on B×. The inner product converges by compactness.
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We can write

F̂×B×xiÔ× =
⊔
z

B̂×zxiÔ×,

where z ∈ F̂×/(F̂× ∩B×xiÔ×x−1i ). The latter set is finite of size at most
hF since F×ô×F ⊂ F̂× ∩B×xiÔ×x

−1
i . Denote its cardinality by ci.

Since φ and φ′ are right invariant by Ô×, we may write

(φ, φ′) =
∑
i

ω−1i φ(Ii)φ′(Ii), φ, φ′ ∈M(O),

where φ(Ii) = φ(xi) and

ωi = (4π2)−dvol(F̂×B×\F̂×B×xiÔ×)−1ci.

Note

vol(F̂×B×\F̂×B×xiÔ×) = vol(F̂×B×\F̂×B×xiÔ×x−1i )

= vol(ô×FB
×\B×x̂iO×x−1i )

ci
hF

.

Since O`(Ii) = xiÔ×x−1i ∩B×, we have

(1.3) ωi =
[O`(Ii)× : o×F ]

vol(Ô×/ô×F )

hF
(4π2)d

.

One can obtain the following Tamagawa volume computations from
[Vig80].

First, vol(o×Fv
) = ∆

− 1

2

Fv
for v <∞.

For finite v - N, we have

vol(O×v /o×Fv
) = (1− q−2v )vol(o×Fv

)3 = L(2, 1Fv
)−1vol(o×Fv

)3.

For v = pi|N1, we have

vol(O×v /o×Fv
) = (1− q−1v )−1q−eiv L(2, 1Fv

)−1vol(o×Fv
)3.

For v = qj |N2, we have that

[GL2(oF,qj
) : R0(q

fj
j )×] = qfjv (1 + q−1v ),

and therefore

vol(O×v /o×Fv
) = q−fjv (1 + q−1v )−1L(2, 1Fv

)−1vol(o×Fv
)3.
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Putting together the local measures gives

(1.4) vol(Ô×/ô×F ) =
∆
−3/2
F

N(N)ζF (2)

∏
v|N1

1

1− q−1v

∏
v|N2

1

1 + q−1v
.

Note that computing (φ, φ) for the constant function φ0 = 1 gives∑
ω−1i = (φ0, φ0) = (2π)2dvol(F̂×B×\B̂×) = vol(B×A×F \B

×(AF )) = 2.

If we put wi = [O`(Ii)× : o×F ] = (2π)2dvol(Ô×/ô×F )
hF

ωi and define the normal-
ized paring

[φ, φ′] =
hF

(2π)2dvol(Ô×/ô×F )
(φ, φ′)(1.5)

=
∑

w−1i φ(Ii)φ′(Ii), φ, φ′ ∈M(O),

then we recover a generalized form of the usual Eichler mass formula,

m(O) =
∑

w−1i = [φ0, φ0](1.6)

= 21−2dπ−2d|∆F |3/2hF ζF (2)N(N)
∏
v|N1

(1− q−1v )
∏
v|N2

(1 + q−1v )

= 21−dhF |ζF (−1)|N(N)
∏
v|N1

(1− q−1v )
∏
v|N2

(1 + q−1v ).

Here N(N) is the level (reduced norm) of N. The rational number m(O) is
called the mass of O. When F = Q, N = (N1) and N2 = (N2), this simplifies
to

(1.7) m(O) =
∑

w−1i =
ϕ(N1)

12
N2

∏
p|N2

(1 + p−1).

Now we want to define the Eisenstein and cuspidal subspaces ofM. The
Eisenstein space will be generated by the one-dimensional representations
of B̂×, which all factor through the reduced norm map N : B̂× → F̂+. The
reduced norm induces a surjective map N : Cl(O)→ Cl+(oF ) to the narrow
class group of F . Define the Eisenstein subspace E of M to be the sub-
space of all φ ∈M which factor through N , and the cuspidal space S to be
the orthogonal complement of E in M. We can describe S in terms of our
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normalized pairing (1.5) by

S = {φ ∈M : [φ, ψ ◦N ] = 0 for all characters ψ : Cl+(oF )/Cl(oF )→ C}.

One has in the usual way Hecke operators T` for each prime ` - N, which
commute with each other and are self-adjoint with respect to the inner
product. One can also describe the action on M (or M(O)) in terms of
(generalized) Brandt matrices. HenceM, and also S, has a basis consisting
of eigenforms for each such T`. Via the Jacquet–Langlands correspondence,
each eigenform φ ∈ S transfers to an eigenform f ∈ S2(N), the space of
parallel weight 2 Hilbert modular forms of level N, with the same Hecke
eigenvalues away from N.

Suppose now `|N1 but `2 - N1. Then one can define a Hecke operator by
(T`φ)(x) = φ(x$B`

) where $B`
is a uniformizer for B`. This corresponds to

the double coset O`$B`
O` = $B`

O`. Now one has bases forM and S which
are eigenforms for all T` with ` - N2 and `2 - N1, and the Jacquet–Langlands
lift of such an eigenform φ will be a modular form f ∈ S2(N) which, at all
such `, is new and is an eigenform for T` with the same eigenvalue as φ.

We refer the reader to [Hid06, Chap 2] or [DV13] for details.

2. Congruence with Eisenstein series

We keep the notation of the previous section.
For f ∈M2(N) (resp. φ ∈M) which is an eigenfunction of the Hecke

operator T`, let λ`(f) (resp. λ`(φ)) denote the corresponding eigenvalue.
Let E be the normalized Eisenstein series on M2(N) whose Hecke eigen-

values are λ`(E) = N(`) + 1 for ` - N and λ`(E) = 1 for `|N. When F = Q,
this is the E2,N explicitly constructed in the introduction. Recall φ0 = 1 ∈ E .
Then φ0 is an eigenform for the Hecke operators T` because the Brandt ma-
trices have constant row sums, and in fact λ`(E) = λ`(φ0) when ` - N2 and
`2 - N1.

The field of rationality of an eigenform φ ∈M is the field Q(φ) gener-
ated by its Hecke eigenvalues. We may normalize φ so that all values of φ
are integers in Q(φ), in which case we say φ is integral. Let Q(N) be the
compositum of the fields of rationality Q(φ) of all eigenforms in φ ∈M.
Note this is a subfield of the compositum of all Q(f) where f ranges over
eigenforms in S2(N).

If φ, φ′ are integral and p is an ideal of a suitable rationality field, we
write φ ≡ φ′ mod p if φ(I) ≡ φ′(I) mod p for all I ∈ Cl(O). If φ, φ′ are
eigenforms, then φ(I) ≡ φ′(I) mod p implies their Hecke eigenvalues are
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also congruent mod p because the Hecke operators act by integral Brandt
matrices. We expect the converse to generally be true, though do not know
how to show it. See Remark 2.4 and (3.3) below.

Denote by h+F the narrow class number of F .

Theorem 2.1. Assume h+F = hF . Let num be the numerator of m(O). Sup-
pose p|num and p is a prime above p in Q(N). Then there exists an eigenform
f ∈ S2(N) such that λ`(f) ≡ λ`(E) mod p for all ` with ` - N2 and `2 - N1.
If N = N1 is squarefree, we may take f to be a newform.

Proof. First we show there exists an integral φ ∈ S such that φ ≡ 1 mod p.
Consider φ ∈M(O) integral with φ ≡ 1 mod p so, for each Ii ∈ Cl(O),
φ(Ii) = 1+pai for some ai ∈ Z. Order our ideals so that I1, . . . , Im rep-
resent each of the ideal classes in the image of the map Cl(oF )→ Cl(O).
Recall m ≤ hF . Then, by (1.2), φ ∈M just means: (i) a1 = · · · = am. More-
over, φ ∈ S if in addition [φ, φ0] = 0, i.e., φ ∈ S if and only if (i) holds and
we have (ii) m(O) = −p

∑h
i=1w

−1
i ai.

We claim there exist ai ∈ Z such that these conditions hold. Let w =∏h
i=1wi and w∗i = w

wi
. We can rewrite (ii) as

∑
w∗i = −p

∑
w∗i ai. To also

account for (i), put w′1 = w∗1 + · · ·+ w∗m, b1 = a1 and w′i = w∗i+m−1, bi =
ai+m−1 for 2 ≤ i ≤ k := h−m+ 1. Note M 6= E means h > m, i.e., k ≥ 2.
Then (i) and (ii) are achievable if and only if

∑k
i=1w

′
i = −p

∑k
i=1 biw

′
i is

solvable for bi ∈ Z. For this, it suffices to show gcd(w′1, . . . , w
′
k) divides

p−1
∑k

i=1w
′
i, which is obvious at primes away from p. Say pj ‖ gcd(w′1, . . . ,

w′k). Then p|num implies wp|
∑
w′i = wm(O), and therefore pj+1|

∑
w′i. This

proves the claim and gives us our desired φ. Note this argument also shows
that p|num implies M 6= E .

Now let Φ be the set of integral φ ∈ S which are congruent to a nonzero
multiple of φ0 mod p. Fix a basis of eigenforms φ1, . . . , φs of S. Let r be
minimal such that, after a possible reordering of the φi’s, there exists φ ∈ Φ
with φ = c1φ1 + · · ·+ crφr, ci ∈ Q(N). Say φ ≡ cφ0 mod p. Then, for ` such
that ` - N2 and `2 - N1,

[T` − λ`(φj)]φ ≡ (λ`(φ0)− λ`(φj))cφ0 mod p,

and thus [T` − λ`(φj)]φ ∈ Φ unless λ`(φ0) ≡ λ`(φj) mod p. (Note [T` −
λ`(φj)]φ ∈ Φ is also integral because T`φ is, so it makes sense to consider
this mod p.) However, [T` − λ`(φj)]φ is a linear combination of φ1, . . . , φj−1,
φj+1, . . . , φr, which would contradict the minimality of r if [T` − λ`(φj)] ∈ Φ.
Hence λ`(φ0) ≡ λ`(φj) mod p for all ` as above and all 1 ≤ j ≤ r.
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Since f has the same Hecke eigenvalues as φ for T` with ` as above, this
yields the theorem. �

Remark 2.2. (a) The reason we assume h+F = hF is to guarantee the ex-
istence of φ ∈ S such that φ ≡ 1 mod p. If h+F 6= hF , one gets an additional
linear constraint [φ, ψ ◦N ] = 0 on the ai’s in the proof for each nontrivial
character ψ of Cl+(oF )/Cl(oF ). Then, at least a priori, one needs to place
some conditions on the wi’s, m(O) and p to guarantee the existence of ai ∈ Z
solving this system of Q-linear equations.

(b) When h+F > 1, there are other Eisenstein series in M(O), and one
might ask for congruences of these Eisenstein series as well. However, such
Eisenstein series which are also eigenforms can be obtained by twisting φ0
by narrow ideal class characters of F , and analogous congruences are just
obtained by twisting both E and f .

We observe that there are often multiple choices for B for a given N.
For instance, if F = Q and N = 11 · 13, we get num = 5 · 7 if we take N1 =
11, N2 = 13 and num = 12 if we take N1 = 13, N2 = 11. Thus one gets
congruences of cusp forms in level 11 · 13 with Eisenstein series modulo the
primes p = 2, 3, 5, 7.

Some examples with F = Q were given in the introduction. Here is a
simple example with F 6= Q.

Example 2.3. Let F = Q(
√

5), which has narrow class number 1. Suppose
N = N2 is one of the two prime ideals with N(N) = 31. Then ζF (−1) = 1

30
and m(O) = 32

60 = 8
15 , so we take p = 2. Here S2(N) is one dimensional and

has rationality field Q. Then for nonzero f ∈ S2(N) our theorem says that
λ`(f) ≡ N(`) + 1 mod 2 for ` 6= N. It is also true that λN(f) ≡ 1 mod 2.
Indeed, the first few nonzero Hecke eigenvalues λ`(f) satisfy the values listed
in the following table:

N(`) 4 5 9 11 11 19 19 29 29 31 31 41 41

λ`(f) −3 −2 2 4 −4 −4 4 −2 −2 −1 8 −6 −6

Remark 2.4. Suppose N = N1 is squarefree. If f ∈ S2(N) such that f ≡
E mod p, we expect (cf. (3.3) below) that f corresponds to a quaternionic
form φ ∈ S such that, after normalization, φ ≡ 1 mod p. Let p be the ra-
tional prime below p. For such a cusp form φ to exist, we need w[φ, φ0] ≡
w[φ0, φ0] ≡ 0 mod p where as before w =

∏
wi. Thus if (p, w) = 1, a congru-

ence f ≡ E mod p should only exist if p|num as in the theorem. If F = Q,
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then no prime > 3 divides w, and this agrees with the converse obtained by
Ribet.

We also note that when p|num, if there is a unique newform f ∈ S2(N)
such that f ≡ E mod p, the above proof implies f corresponds to a quater-
nionic form φ ∈ S with φ ≡ 1 mod p, as we must have r = 1 in the final
paragraph. When r = 1, F = Q and N = N is prime, this is also true by
[Qua11], [Eme02].

3. Quadratic twist L-values

We keep our previous notation, but now assume O is a maximal order of B,
i.e., N = N1 and N is squarefree. For consistency and clarity, we will denote
complete L-functions by L∗(s,−) and incomplete (i.e., the finite part of)
L-functions just by L(s,−). However, we follow the usual convention that
automorphic L-functions are normalized so that s = 1/2 is the central point,
whereas L-functions for f ∈ S2(N) are normalized classically with s = 1 the
central point.

Let K/F be a CM quadratic extension such that each p|N is inert in K.
This means K embeds in B and, since we are now assuming O is maximal,
we may fix an embedding of K into B such that oK ⊂ O. Hence, to each t ∈
Cl(oK) = K×\K̂×/ô×K we can associate the quaternionic ideal class x(t) ∈
Cl(O) via x(t) = B×tÔ×. Fix a character χ of Cl(oK). Put the product of
local Tamagawa measures on A×F and A×K , and the counting measure on K×.
For φ ∈M, define the period

Pχ(φ) =

∫
K×A×F \A

×
K

φ(t)χ(t) dt =
vol(K×A×F \A

×
K)

hK

∑
t∈Cl(oK)

φ(x(t))χ(t),

where dt is the quotient measure. Let ηK denote the quadratic idele class
character of F associated to K/F . Then

vol(K×A×F \A
×
K)

hK
=

2L∗(1, ηK)

hK
=

2d+1
√

∆F

wKhFQK/F
√
|∆K |

,

where QK/F = [o×K : o×Fµ(K)] = 2d−1 RF

RK
, the R∗ denoting a regulator. We

remark QK/F is 1 or 2. Consider the normalized period,

(3.1) P 0
χ(φ) =

∑
t∈Cl(oK)

φ(x(t))χ(t) =
wKhFQK/F

√
|∆K |

2d+1
√

∆F
Pχ(φ).
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Let φ ∈ S be an eigenform. Then φ generates an irreducible cuspidal
automorphic representation π of B×(AF ) with trivial central character. The
period Pχ extends to a linear functional on π via the same defining integral.
Suppose Pχ(φ) 6= 0 so Pχ is a nonzero functional. Then for each place v of
F , πv has a nonzero local K×v -invariant linear functional `v. It is well known
that the functional `v is unique up to scaling, and we normalize the `v’s so
that Pχ =

∏
`v (i.e., this factorization holds factorizable forms in π).

For each finite place v, Gross and Prasad [GP91] defined a test vector
φv ∈ πv such that `v(φv) 6= 0. In our setting, the Gross–Prasad test vector
φv is the (unique up to scaling) vector in πv fixed by O×v . (This is not true
if O is not maximal.) This implies that φ =

∏
φv as a function on B×(AF )

where φv is a suitably normalized (to guarantee convergence) Gross–Prasad
test vector for v <∞ and φv = 1 for v|∞.

The central-value formula in [MW09], refining Waldspurger’s formula
[Wal85], specializes here to

(3.2)
|Pχ(φ)|2

(φ, φ)
=
ζF (2)

2π2d

√
∆F

|∆K |
∏
v|N

(1− q−1v )
L∗(1/2, πK ⊗ χ)

L∗(1, π, Ad)
.

(Note [MW09] uses a slightly different choice of measure on B×(A) there
— a formulation with the present choice of measure is given in [FMP17].)
Observe the left hand side of this formula is invariant under scaling. The
L-functions for π are the same as the L-functions for its Jacquet–Langlands
transfer to GL(2).

We will use this formula to deduce a precise congruence result on L-
values. We remark that Zhang (e.g., [Zha04]), generalizing the work of Gross
[Gro87], also obtained an explicit L-value formula in this setting. It is for-
mulated somewhat differently than (3.2), but presumably Zhang’s formula
can be used in a similar manner. Alternatively one could use half-integral
weight forms and the formula of Baruch–Mao [BM07] (generalizing an earlier
formula of Waldspurger), similar to the approach in [Qua11] for F = Q.

Unfortunately, we are not able to prove that a Hecke eigenvalue congru-
ence implies a congruence of L-values as [Vat99], [HV14] do over Q. Our
method requires starting with a congruence of quaternionic modular forms.
In fact we generally expect the statement

(3.3) λ`(φ) ≡ λ`(φ0) mod p for all ` =⇒ cφ ≡ φ0 mod p for suitable c

to hold, but we do not know how to prove it. As remark earlier, the converse
direction is true. Recall from Remark 2.4 that at least (3.3) is true if there is a
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unique (up to scaling) eigenform φ ∈ S satisfying the above Hecke eigenvalue
congruence, i.e. a unique cuspidal newform f congruent to E). This is also
true if F = Q and N = N is prime ([Qua11, Thm 3.6], relying on [Eme02]).

Our main evidence for believing (3.3) holds more generally is that it
seems necessary to obtain a congruence of L-values for newforms f congruent
to E as in [HV14]. This is because a congruence of L-values would say
that (up to constants) we have |P 0

K(φ)|2 ≡ |P 0
K(φ0)|2 mod p for infinitely

many K. On the other hand, the map Cl(oK)→ Cl(O) appears to behave
essentially randomly, so an infinitude of such congruences would seem to
happen with probability 0 if cφ 6≡ φ0. We remark that the expectation (3.3)
relies on the specific action of the Hecke algebra on M — e.g., if one were
to replace the action of the Brandt matrices on M by diagonal matrices
the analogous statement fails — so (3.3) may be a rather deep arithmetic
statement (indeed, the analysis in [Eme02] is not trivial).

Before deducing our precise congruence result of L-values under a con-
gruence of quaternionic modular forms we observe that we can at least get
some statement about nonvanishing of L-values among forms congruent to
Eisenstein series. For this we can also allow K/F to be ramified at primes
dividing the level.

Proposition 3.1. We continue the hypotheses and notation of Theorem 2.1,
with the further assumption that N = N1 is squarefree. Let K/F be a CM ex-
tension not split at each prime dividing N. If p - hK , then there exists a new-
form f ∈ S2(N) such that λ`(f) ≡ λ`(E) mod p for all ` and L(1, fK) 6= 0.

When F = Q, p > 2, and p - N = N, one can deduce stronger nonvan-
ishing results from Theorem 2.1 using [HV14].

Proof. By the proof of Theorem 2.1, there exists an integral φ ∈ S such that
φ ≡ 1 mod p and φ =

∑
φi where the φi are eigenforms with T`-eigenvalues

congruent to λ`(E) mod p. Now if p - hK , then

P 0(φ) ≡
∑

t∈Cl(oK)

1 ≡ hK mod p

implies P 0(φ) 6= 0. Since P 0(φ) =
∑
P 0(φi) at least one P 0(φi) is nonzero.

Hence, by Waldspurger’s formula [Wal85] (or the more refined (3.2)),
L(1, fi,K) 6= 0 where fi ∈ S2(N) is the newform corresponding to φi via
Jacquet–Langlands. (While we have only stated (3.2) if each prime dividing
N is inert in K, [Wal85] and [MW09] allow these primes to be ramified in
K, with a suitable change in local factors.) �
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From now on we will suppose that we have a newform f ∈ S2(N) cor-
responds to an integral eigenform φ ∈ S such that φ ≡ 1 mod pr for some
r ≥ 1. As remarked above, this holds for r = 1 under the conditions of The-
orem 2.1 if there is a unique cuspidal newform f congruent to E mod p or
if F = Q and N = N is prime.

Consider the Petersson norm on S2(N) normalized so that

(f, f) = 21−2dhF∆2
FN(N)L∗(1, π, Ad),

which corresponds to the definition of (f, f) in [Hid91] (cf. [GG12, Thm
5.16]). Here π is the automorphic representation associated to f . Then (3.2)
becomes

(3.4)
|Pχ(φ)|2

(φ, φ)
=
ζF (2)∆

5/2
F hFN(N)

(2π2)2d
√
|∆K |

∏
v|N

(1− q−1v )
L(1, f, χ)

(f, f)
.

We normalize φ so that the gcd of all values of φ is minimal. This spec-
ifies φ only up to a root of unity in Q(φ), but specifies both |Pχ(φ)|2 and
(φ, φ) uniquely. Now it need not be that φ ≡ 1 mod p, but we will have
φ ≡ cφ mod p for some integer cφ of Q(φ) which is nonzero mod p. With
this normalization, put

(3.5) Lalg(1, f, χ) = |P 0
χ(φ)|2 =

h2Fw
2
KQ

2
K/F

√
|∆K |

4(2π)2d
[φ, φ]

L(1, f, χ)

(f, f)
,

which is an algebraic integer since P 0
χ(φ) is.

Note that our algebraic special value Lalg(1, f, χ) is normalized differ-
ently from what is typically found in the literature. For instance, when
F = Q, Shimura [Shi76] essentially considered the values

A(1, f, χ) = −g(ηK)

(2π)2
L(1, f, χ)

〈f, f〉
,

where g(·) denotes the Gauss sum and 〈f, f〉 = 1
2(f, f) is the usual Petersson

norm. In our case, with F = Q, we see

(3.6) Lalg(1, f, χ) = −
w2
K

8

√
|∆K |

g(ηK)
[φ, φ]A(1, f, χ),

which, for fixed f , just depends on K in a simple way (and not at all on χ).
Note the factor [φ, φ] =

∑
w−1i |φ(Ii)|2 is also algebraic.
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Theorem 3.2. Suppose N = N1 is squarefree and f ∈ S2(N) is a newform
corresponding to a quaternionic form φ ∈ S such that φ ≡ 1 mod pr. Then
there exists an algebraic integer cφ ∈ Q(φ) which is nonzero mod p such that,
for any quadratic extension K/F which is inert at each prime dividing N
and any ideal class character χ of K,

Lalg(1, f, χ) ≡ δχ,1|cφ|2h2K mod pr,

where δχ,1 is 1 if χ = 1 and 0 otherwise. In particular, if pr - h2K , then
L(1, fK) 6= 0.

We do not require p|num as in Theorem 2.1. One could also allow K
to be ramified at primes dividing N1, but then one needs to exclude the
L-factors at such primes (cf. [MW09]).

Moreover, the number cφ can be read off directly from φ (and can be
chosen independent of p), which can be determined from Brandt matrices.
The calculations of cφ and [φ, φ] (and thus the normalization of Lalg(1, f, χ))
may be simpler than the calculation of canonical periods arising in, e.g.,
[HV14].

Proof. With φ normalized as above, we get P 0
χ(φ) ≡ cφP 0

χ(φ0) mod pr, and
P 0
χ(φ0) is either hK or 0 according to whether χ is trivial or not. Now

apply (3.5). �

Finally, we briefly illustrate how one can use L-values to recover informa-
tion about the map Cl(oK)→ Cl(O), and use this to give an example where
L(1/2, fK)alg 6≡ 0 mod p and L(1/2, f, χ) 6= 0 but L(1/2, f, χ) ≡ 0 mod p for
a nontrivial ideal class character χ of K.

Example 3.3. Suppose F = Q, N = 11 and p = 5. Then the quaternion
algebra B ramified at 11 and∞ has class number 2. Write Cl(O) = {x1, x2}.
Then, up to reordering, w1 = 3 and w2 = 2. Here dimS = 1, and we can
define φ ∈ S by φ(x1) = 3 and φ(x2) = −2. This is normalized as we specified
above, and [φ, φ] = 5 and we can take cφ = 3.

Let K = Q(
√
−23), which has class number 3, and O be a maximal order

of B containing oK . Our theorem says that Lalg(1, fK) ≡ −h2K ≡ 1 mod 5,
where f ∈ S2(11) is the unique normalized cusp form. Indeed, one can com-
pute L(1/2, fK)alg = 1. On the other hand, the normalized period for χ = 1
is P 0

1 (φ) =
∑

t∈Cl(oK) φ(x(t)) = 5a− 6, where 0 ≤ a ≤ 3 is the number of

classes of oK mapping to x1. Since |P 0
1 (φ)|2 = 1, we deduce a = 1. Hence

x(t1) = x1 and x(t2) = x(t3) = x2 for some ordering t1, t2, t3 of the ideal
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classes of oK , i.e., the map Cl(oK)→ Cl(O) is surjective with fibers of size
1 and 2 over x1 and x2, respectively.

Now let χ be one of the nontrivial idele class characters. Then the ζi :=
χ(ti)’s are the distinct 3rd roots of unity in some order, and P 0

χ(φ) = 3ζ1 −
2ζ2 − 2ζ3 = 5ζ1. Hence we see Lalg(1, f, χ) is nonzero, but 0 mod 5.

We remark that with f as in the previous example, one can use the
values of φ to conclude Lalg(1, fK) ∈ {(5a− 2hK)2 : 0 ≤ a ≤ hK} for any
imaginary quadratic K unramified at 11.

Remark 3.4. One can similarly use this method to prove that congruences
of quaternionic cusp forms yield congruences of L-values. That is, if φ1
and φ2 are integral quaternionic eigenforms such that φ1 ≡ φ2 mod pr, then
with a suitable definition of algebraic L-values, one will have Lalg(1, f1, χ) ≡
Lalg(1, f2, χ) mod pr. See [DK17] for an approach using half-integral weight
forms to this situation when F = Q.
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Études Sci. Publ. Math. 47 (1977), 33–186 (1978).

[Maz79] B. Mazur, On the arithmetic of special values of L functions, Invent.
Math. 55 (1979), no. 3, 207–240, DOI:10.1007/BF01406841.

[MR12] Philippe Michel and Dinakar Ramakrishnan, Consequences of the
Gross-Zagier formulae: stability of average L-values, subconvexity,
and non-vanishing mod p, Number theory, analysis and geometry,
Springer, New York, 2012, pp. 437–459.



i
i

“11-Martin” — 2018/1/16 — 0:40 — page 1795 — #21 i
i

i
i

i
i

Jacquet–Langlands correspondence and Eisenstein congruences 1795

[Qua11] Patricia L. Quattrini, The effect of torsion on the distribution of
Sh among quadratic twists of an elliptic curve, J. Number Theory
131 (2011), no. 2, 195–211, DOI:10.1016/j.jnt.2010.07.007.

[Shi76] Goro Shimura, The special values of the zeta functions associated
with cusp forms, Comm. Pure Appl. Math. 29 (1976), no. 6, 783–
804.

[Ste82] Glenn Stevens, Arithmetic on modular curves, Progress in Mathe-
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