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Howe finiteness conjecture for

covering groups

Caihua Luo

In this paper, we prove Howe finiteness conjecture in the context
of finite central extensions of connected, reductive p-adic groups.

1. Introduction

Let G be a connected reductive group over a p-adic field F of characteristic
0. Let G = G(F ), and G̃ be a finite central extension of G by µn, i.e.

1→ µn → G̃
p→ G→ 1.

We say a representation π̃ of G̃ is genuine (resp. anti-genuine) if

π̃(εx̃) = επ̃(x̃) (resp. ε−1π̃(x̃))

for all ε ∈ µn, x̃ ∈ G̃, similarly for test functions. Throughout this paper,
the preimage of a subset H of G in G̃ will be denoted by H̃, i.e. H̃ = p−1(H).

Let W be a compact subset of G, WG the G-conjugate invariant subset
{gxg−1 : g ∈ G, x ∈ W}. We say a closed invariant subset Ω̃ of G̃ is compact
modulo conjugation if p(Ω̃) ⊂ WG for some compact W.

The purpose of this article is to extend Howe finiteness conjecture to
finite central covering groups. Let S (Ω̃) be the set of invariant distributions
on G̃ supported on Ω̃. If K is a compact-open subgroup of G which splits in
G̃, let HK,−− be the K-bi-invariant Hecke algebra of compactly supported
anti-genuine functions on G̃.

Theorem (Howe finiteness conjecture). Assume K is a compact-open
subgroup of G which splits in G̃, and Ω̃ is invariant, compact modulo con-
jugation. Then the space of distributions in S (Ω̃) restricting to HK,−− is
finite-dimensional.

Key words and phrases: Covering groups, Howe finiteness conjecture, p-adic
groups.
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1760 Caihua Luo

As a corollary of Harish-Chandra’s and Kazhdan’s density theorems (see
[Li12, Theorem 5.8.10]), we have an equivalent version of Howe finiteness
conjecture concerning orbital integrals (see [Clo85, §5]) that is what we will
prove in this article:

Proposition. Assume T ⊂ G is a Cartan subgroup, ωT a compact subset
of T . For t̃ ∈ T̃Bonreg := {t̃ ∈ T̃reg : Ad(t̃)|T̃ = id}, let O(·, t̃) be the linear form
on HK,−− defined by the orbital integral at t̃. Then these orbital integrals
O(·, t̃), t̃ ∈ ω̃T ∩ T̃Bonreg , span a finite-dimensional space in the dual of HK,−−.

Note that Howe finiteness conjecture for connected reductive groups has
been proved first by L.Clozel, later by D.Barbasch and A.Moy using Bruhat-
Tits theory. As the reduction step in [BM00] seems not so easy to be gen-
eralized, we would follow L.Clozel’s argument (see [Clo89]). Notice that the
main ingredients in [Clo89] are as follows:

• L.Clozel’s “compact trace” formula.

• Finiteness of elliptic representations with K fixed vectors.

Thus the aim of this article is to generalize the above ingredients to covering
groups.

2. An integration formula à la Clozel

Recall that G is a connected reductive group over a p-adic field F of charac-
teristic 0, G = G(F ), and G̃ is a finite central extension of G by µn. Let A0

be a maximal split torus in G, P0 a minimal parabolic subgroup containing
A0, Φ the set of roots of G relative to A0, ∆ the set of simple roots associated
to P0, we define

A+
0 := {x ∈ A0 : |α(x)| ≤ 1, ∀α ∈ ∆}.

Recall Deligne’s construction in [Del76, Cas77]. Assume g ∈ G is regular
semi-simple, let T = ZG(g)0. Note that T is isogenous to Ts × Ta with Ts its
maximal split subtorus and Ta its maximal anisotropic subtorus. Namely,
there is a positive integer n such that for each t ∈ T we have tn = sa with
s ∈ Ts and a ∈ Ta. Applying the decomposition to g, one gets an associated
sg ∈ Ts. On the other hand, there exists y ∈ G such that ysgy

−1 ∈ A+
0 . Let

Ω = {α ∈ ∆ : |α(ysgy
−1)| = 1}, and define Pg = MgNg to be the parabolic

subgroup y−1PΩy, here PΩ ⊃ P0 is the unique parabolic subgroup associated
to Ω ⊂ ∆. We may then say g is Mg-compact. If Mg = G, we say g is compact
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for short, and denote by Gc the set of compact regular semi-simple elements,
G̃c = p−1(Gc).

If f ∈ C∞c (G̃) and P is a parabolic subgroup of G, let f̄ (P ) denote the
constant term of f along P :

f̄ (P )(m̃) = δP (m)1/2

∫
N
f̄(m̃n)dn,

where

f̄(g̃) =

∫
K̃0

f(k̃g̃k̃−1)dk̃, δp(m) = |det(Ad(m)|n)|,

where K0 is a good maximal compact subgroup of G in the sense of Bruhat-
Tits, andN lifts to G̃ in a unique way in the sense of [Li14, Proposition 2.2.1].

If P = MN is a parabolic subgroup of G, let AM be the split component
of the center of M , ∆(N,AM ) the set of reduced simple roots of N with
respect to AM , X(M) = Hom(M, Gm), and aM = Hom(X(M), R). Let

HM̃ : M̃
p−→M

HM−→ aM

be the composed Harish-Chandra map such that

e〈χ, HM̃ (m̃)〉 = |χ(m)|

for all m̃ ∈ M̃, χ ∈ X(M). We will denote by M̃+(N) (resp. +M̃(N)) the
set of m̃ ∈ M̃ such that α(HM̃ (m̃)) < 0 (resp. ωα(HM̃ (m̃)) < 0) for all α ∈
∆(N,AM ), here {ωα}α stands for the dual basis of a∗M := Hom(aM ,R) with
respect to the coroot basis {α∨}α of aM (cf. [Art78, P.916]). Set χN to be
the characteristic function of M̃+(N), and χ̂N the characteristic function of
+M̃(N) as in [Clo90, P.259].

If π̃ is an admissible representation of finite length of G̃, we denote by
π̃N the normalized Jacquet module of π̃.

Fix a minimal parabolic subgroup P0 of G, and the Levi decomposition
P0 = M0N0, let P be the set of standard parabolic subgroups of G with
respect to P0 = M0N0. If P = MN ∈P, π̃ is a genuine admissible repre-
sentation of finite length of M̃ , and f ∈ C∞c,−−(M̃), we set

〈trace π̃, f〉c =

∫
M̃c

χπ̃(m̃)f(m̃)dm̃.

Here χπ̃(m̃) denotes the Harish-Chandra character of π̃ [Li12]; we choose
Haar measure dg̃ on G̃ compatible with dg on G, i.e. mes(K̃0) = mes(K0) =
1. If we want to specify M̃ in this formula, we will write 〈trace π̃, f〉M̃,c.
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We will write Greg for the set of regular semisimple elements of G. If X
is any subset of G, we write Xreg for X ∩Greg.

Proposition 1 (Clozel’s integration formula). Assume π̃ is a genuine
admissible representation of finite length of G̃. Then, if f ∈ C∞c,−−(G̃):

trace π̃(f) =
∑
P∈P
P=MN

〈
trace π̃N , χN f̄

(P )
〉
M̃,c

.

Proof. We give the proof in Appendix A.2 which is an easy modification of
Clozel’s argument in [Clo90]. Note that one may also follow Clozel’s argu-
ment in [Clo89, Proposition 1] once we have the following three ingredients
which in its own right is important and will be used later on:

• Weyl’s integration formula for G̃:

〈trace π̃, f〉 =
∑
T⊂G

T mod G

∫
t̃∈T̃Bonreg

t mod G

θπ̃(t̃)O(f, t̃)dt̃

where θπ̃(t̃) = ∆G(t)χπ̃(t̃), ∆G(t) = |det(1−Ad(t)|Lie G/Lie Gt)|1/2,
and

O(f, t̃) = ∆G(t)

∫
G̃t\G̃

f(g̃−1t̃g̃)dg̃

provided t̃ ∈ T̃Bonreg , i.e. the character T̃
[t̃, ·]→ C× is trivial.

Note that this follows from the decomposition:

G̃reg =
⋃
T̃reg

⋃
t̃∈T̃reg

⋃
g∈T\G

g̃−1t̃g̃.

• Descent formula for orbital integral (see [Clo85, Lemma 1], [Li14,
Proposition 3.2.2]):

For t̃ ∈ T̃reg ⊂ M̃ , OG̃(f, t̃) = OM̃ (f̄ (P ), t̃).

Note that this follows from Langlands decomposition G = MNK0,
and the relation

|det(1−Ad(t)|LieN )| = δ
1/2
N (t)

∆G(t)

∆M (t)
.
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• Casselman’s character formula [Cas77]:

For t̃ ∈ G̃reg with Pt = P = MN , θπ̃(t̃) = θπ̃N (t̃).

The proof is an easy modification of Casselman’s argument in [Cas77].
For the convenience of the reader, we would give the proof in Ap-
pendix A.1. �

Corollary 2 (Clozel, Waldspurger). [Clo90, P.259]

〈trace π̃, φ〉c =
∑
P∈P

(−1)aP−aG
〈
trace π̃N , χ̂N φ̄

(P )
〉
M̃
.

Proof. For the convenience of readers, we should write down the short proof.
We first recall Clozel’s integration formula for covering groups:

trace π̃(φ) =
∑
P∈P
P=MN

〈
trace π̃N , χN φ̄

(P )
〉
M̃c

.

By descent formula, we also have:〈
trace π̃N , χ̂N φ̄

(P )
〉
M̃

=
∑
P ′⊂P

P ′=M ′N ′

〈
trace π̃N ′ , χ̂Nχ

M̃
N ′ φ̄

(P ′)
〉
M̃ ′c
,

where χM̃N ′ is the analogue of χN for the subgroup N ′ ∩M of M̃ . Let
εP = (−1)aP−aG , the right-hand side of the identity in the corollary can
be rewritten as:∑

P ′

∑
P :

P ′⊂P⊂G

εP

〈
trace π̃N ′ , χ̂Nχ

M̃
N ′ φ̄

(P ′)
〉
M̃c

.

Notice that the inner summation term
∑
P

εP χ̂Nχ
M̃
N ′ equals to 0 if P ′ 6= G,

1 otherwise, by a basic Arthur’s formula [Art78, Lemma 6.1], whence the
identity in the corollary holds. �

3. K-finiteness of elliptic representations

Recall Harish-Chandra’s character theory in [Li12, Theorem 4.3.2], if π̃ is an
irreducible tempered representation of G̃, χπ̃ would be a locally integrable
function on G̃, smooth on G̃reg. LetGrel be the set of regular elliptic elements
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of G, i.e. the set of regular elements contained in some elliptic torus. We say
π̃ is elliptic if p(supp(χπ̃)) ∩Grel 6= ∅. Let Π2,−(G̃) and Πell,−(G̃) be the set
of genuine irreducible discrete series and tempered elliptic representations
of G̃ respectively.

Recall Harish-Chandra’s map HG : G→ aG, let 0G be the kernel of HG,
and ΛG its image.

Lemma 3 (K-Finiteness). Assume K is a compact-open subgroup of G
which splits in G̃. Then there is a finite set of representation of finite length
of 0G̃ such that, if π̃ ∈ Πell,−(G̃) has a vector fixed by K, π̃|0G̃ belongs to
that set.

Proof. We follow the two steps argument as in [Clo89]:

• For π̃ ∈ Π2,−(G̃)χ which have the central character χ, the lemma holds
by Harish-Chandra’s Plancherel theorem which is stated as follows
[Wal03, Li12]:

Let C(G̃)χ be the space of Schwartz-Harish-Chandra functions on
G̃ with central character χ, 0C(G̃)χ(resp. 0C(G̃//K)χ) the subspace
of (resp. K-bi-invariant) cusp forms i.e. f (P ) = 0 for every proper

parabolic subgroup P of G. Then 0C(G̃)χ = L2
disc(G̃)χ i.e. the discrete

part of L2(G̃)χ. Moreover, dim 0C(G̃//K)χ <∞.

• By Knapp-Zuckerman classification theorem of tempered representa-
tions (see [Wal03, Proposition III.4.1]), it suffices to prove the following
Lemma 4. �

Let P = MN be a parabolic subgroup of G, we have AM the split com-
ponent of the center of M , and X = Hom(AM , Gm). Fix a uniformizer $
of p− adic field F , let CM = HomZ(X, $Z), CM̃ = C̃M ∩ Z(M̃). Consider

CM as a subgroup of M , we then know that 0MCM (resp. 0M̃CM̃ ) is a

subgroup of finite index in M (resp. M̃).

Lemma 4. There exists a finite set XM̃ of unitary characters of CM̃ such

that, for any genuine discrete series δ̃ of M̃ , if π̃ = indG̃
M̃N

(δ̃ ⊗ 1) contains
an elliptic submodule, then the central character ωδ̃ belongs to XM̃ .

Proof. The argument is the same as in [Clo85, Lemma 4] once the following
property of elliptic representations holds for G̃:

Keypoint. Let Wδ̃ be the stabilizer of δ̃ in W (G,AM ). If Wδ̃ ⊂W (M1, AM )
for a parabolic subgroup P1 = M1N1 ⊃ P , then all irreducible sub-
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representations of π̃ are induced from an irreducible sub-representations of

π̃1 = indM̃1

M̃(N∩M1)
(δ̃ ⊗ 1).

This is equivalent to saying

dim HomG̃(π̃, π̃) = dim HomM̃1
(π̃1, π̃1).

As Frobenius reciprocity says that

dim HomG̃(π̃, π̃) = dim HomM̃ (π̃N , δ̃),

dim HomM̃1
(π̃1, π̃1) = dim HomM̃ ((π̃1)N∩M1

, δ̃).

Note that the unitary central character part of any Jacquet module is tem-
pered (see [Wal03, Lemme III.3.2]), and discrete series is projective in the
category of tempered representations (see [Wal03, Corollaire III.7.2]), then
it suffices to show that the δ̃ − isotypic part π̃N,δ̃ of π̃N is isomorphic to
(π̃1)N∩M1,δ̃

. This follows from the transitivity and exactness properties of
Jacquet functor, i.e.

π̃N ' (π̃N1
)N∩M1

� (π̃1)N∩M1
,

and the geometric lemma:

(π̃N,δ̃)s.s =
⊕
w∈WG

δ̃

w.δ̃, ((π̃1)N∩M1,δ̃
)s.s =

⊕
w∈WM1

δ̃

w.δ̃.

For the convenience of readers, we continue the proof of the lemma as follows
which is almost a copy of Clozel’s proof in [Clo85, Lemma 4].

Suppose that π̃ = indG̃
M̃N

(δ̃ ⊗ 1) contains an elliptic submodule, then
there is no P1 6= G satisfying the condition Wδ̃ ⊂W (M1, AM ) by the above
property of elliptic representations. Therefore for all M1 $ G which contains
M , there exists w ∈Wδ̃ such that w /∈W (M1, AM ), We want to show that
those central characters χ = χδ̃ belong to a finite set determined by Wδ̃.

Recall that W acts on CM and CM̃ . As wδ̃ = δ̃ for w ∈Wδ̃, we have
wχ = χ. The map H : M → aM realizes an isomorphism of CM with a lattice
LM ⊂ aM . So the group of characters of CM identifies with a∗M,C/L

∗
M , where

L∗M = {λ ∈ a∗M,C : λ(LM ) ⊂ 2πiZ}.

Assume that the cardinality of the set

(A) {χ ∈ Homgenuine(CM̃ ,C
×) : wχ = χ, ∀w ∈Wδ̃}
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is infinite. We fix one of such characters χ0, then for χ in (A), one knows
that χχ−1

0 is a character on p(CM̃ ) which contains CnM , thus the cardinality
of the set

{χ ∈ Hom(CM ,C×) : wχ = χ, ∀w ∈Wδ̃}

is also infinite. Therefore there are infinitely many fixed points of the action
of Wδ̃ on the complex torus

Hom(CM ,C×) ' a∗M,C/L
∗
M .

On the other hand, such characters on which the action of Wδ̃ is fixed form
a subgroup of the complex torus. Consider the action on the Lie algebra, we
see that there exists a non-zero vector v ∈ a∗M,C fixed by Wδ̃.

As X is the character lattice of AM , we have a∗M,C = X ⊗Z C and W
acts on X. So Wδ̃ fixes a non-trivial sub-lattice of X, this gives rise to a
non-trivial sub-torus H of AM which is fixed by Wδ̃.

Recall that a standard torus of G is a split torus of the form AM ′ for a
Levi subgroup M ′ of G. Let H = H(F ), and A1 the smallest standard torus
of G containing H. It is clear that A1 ⊂ AM . By a lemma of Casselman
[Cas77, Lemma 1.1], the centralizer of H in G is equal to that of A1.

For w ∈Wδ̃, one knows that w centralizes H, then w centralizes A1. Let
M1 be the centralizer of A1 in G. Note that M1 is a Levi subgroup of G
containing M . If ω ∈ G is a representative of w, one would have ω ∈M1.
Thus Wδ̃ is contained in W1 = W (M1, AM ).

By the above Keypoint, this contradicts the hypothesis that π̃= ind(δ̃ ⊗
1) contains an elliptic submodule. Therefore if π̃ contains an elliptic submod-
ule, the set of points fixed by Wδ̃ in Homgenuine(CM̃ ,C

×) is finite, and the
central character χδ̃ belongs to this finite set. According to the finiteness of
the possible Wδ̃, we see that the set of such χδ̃ is finite. �

4. Proof of the covering Howe finiteness conjecture

We now prove the covering Howe finiteness conjecture following the methods
in [Clo89].

We fix a compact-open subgroup K ⊂ G which splits in G̃. Let HK,−−
be the K-bi-invariant Hecke algebra of compactly supported anti-genuine
functions on G̃.

Lemma 5. There exists a finite set X(0G̃,K) of unitary representations
of finite length of 0G̃ such that, if π̃ ∈ Πell,−(G̃) such that the linear form
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f 7→ 〈trace π̃, f〉c does not vanish identically on HK,−−, then π̃|0G̃ belongs

to X(0G̃,K).

Proof. By Corollary 2, it is easy to see that

〈trace π̃, f〉c 6= 0

implies 〈
trace π̃N , χ̂N f̄

(P )
〉
M̃
6= 0

for some M . Note that we have the following good properties for f̄ (P ) and
π̃N .

• For f ∈HK,−−, f̄ (P ) ∈HKM ,−− for some splitting compact-open sub-
group KM of M determined by K [Clo85, Lemma 2].

• If π̃N has KM fixed vector, then π̃ has K ′-invariant vector for some
compact-open splitting K ′ ⊂ G̃. This follows from the well-known fact:

Assume KM is compact-open in M splitting in M̃ , and σ̃, a gen-
uine irreducible representation of M̃ , has non-zero KM -fixed vectors.
Then there exists a compact-open subgroup K ′ of G which splits in G̃
such that all subquotients of π̃ = indG̃

M̃N
(σ̃ ⊗ 1) have non-zero K ′-fixed

vectors. This is a corollary of Jacquet’s lemma [Cas95, BJ13].

Thus the lemma follows from Lemma 3. �

Recall the Harish-Chandra map HG : G→ ΛG, let ω be a finite subset of
ΛG. We will denote by Gc(ω) the inverse image of ω in Gc, and define

〈trace π̃, f〉c,ω =

∫
G̃c(ω)

χπ̃(g̃)f(g̃).

Lemma 6. Assume ω ⊂ ΛG is finite. Then the functionals

f 7→ 〈trace π̃, f〉c,ω

span a finite-dimensional subspace of the dual of HK,−− as π̃ ranges over
Πell,−(G̃).

Proof. The lemma follows by the same argument as in [Clo89, Lemma 6]
once Lemma 5 holds. For the convenience of the reader, we should write
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down the details. We may assume ω = {x}. Note that the characteristic
function 1x of G̃(x) is bi-invariant by any compact-open K. By Lemma 5,

〈trace π̃, f〉c,x = 〈trace π̃, 1xf〉c

vanishes unless π̃|0G̃ belongs to a finite set. Moreover, if χ is an unramified

character of G̃ which is trivial on µn:

〈trace (π̃ ⊗ χ), f〉c,x = χ(x) 〈trace π̃, f〉c,x .

Since the genuine elliptic representations in Lemma 5 form a finite set mod-
ulo twisting by unramified characters, the lemma is clear. �

Proposition. Assume T ⊂ G is a Cartan subgroup, ωT a compact subset
of T . For t̃ ∈ T̃Bonreg , let O(·, t̃) be the linear form on HK,−− defined by the

orbital integral at t̃. Then the orbital integrals O(·, t̃) (t̃ ∈ ω̃T ∩ T̃Bonreg ) span
a finite-dimensional space in the dual of HK,−−.

Proof. The Proposition follows by the same argument as in [Clo89, Propo-
sition 2]. For the convenience of the reader, we recall the details here.

Assume an invariant, compact modulo conjugation set Ω ⊃ ω̃T ∩ T̃Bonreg ,
enlarging Ω if necessary, we may assume that it is open and closed, and
contains Gc,ω, where ω is the image of Ω under the map HG.

• Reduction steps:
(i). By induction and Descent formula of orbital integrals: for non-

elliptic t̃ ∈ Ω̃ ∩ G̃Bonreg , the linear forms f 7→ O(f, t̃) span a finite
subspace of the dual of HK,−−.

(ii). By Lemma 6, there is a subspace of finite codimension H ′ ⊂HK,−−
such that, the linear forms in (i) vanish and

〈trace π̃, f〉c,ω = 0

for all f ∈H ′, and π̃ ∈ Πell,−(G̃).

• Vanishing argument:
In what follows, we would like to prove that all orbital integrals of f ∈
H ′ vanish on Ω̃ ∩ G̃Bonreg . Let g = χΩ̃f , where χΩ̃ is the characteristic

function of Ω̃. Thus it deduces to show the vanishing of all regular
semi-simple orbital integrals of g. This results from Kazhdan’s density
theorem [Li12, Theorem 5.8.10] as follows.
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(iii). For genuine irreducible, tempered, non-elliptic representation π̃ of
G̃, the Weyl integration formula and (i) show that

〈trace π̃, g〉 = 0

(iv). For elliptic π̃,

〈trace π̃, g〉 =
〈
trace π̃, χΩ̃f

〉 (ii)
= 〈trace π̃, f〉c,ω

(ii)
= 0. �
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Appendix A.1: Casselman’s character formula

We generalize the formula to covering groups following the argument in
[Cas77]. For t̃ ∈ G̃reg, let Pt̃ = P̃t, Mt̃ = M̃t.

Lemma (Deligne). There exits a decreasing sequence {Ki} of splitting
compact open subgroups in G̃ which form a basis of neighborhoods of the
identity and such that, where Ni = Nt̃ ∩Ki, Mi = Mt̃ ∩Ki, and N̄i = N̄t̃ ∩
Ki with N̄t̃ the unique opposite nilpotent subgroup of Nt̃:

(a) Ki = N̄iMiNi;

(b) t̃Nit̃
−1 ⊂ Ni, t̃Mit̃

−1 = Mi, t̃
−1N̄it̃ ⊂ N̄i;

(c) If U1 and U2 are any two compact open subgroups of N , then there exists
n ≥ 0 such that t̃nU1t̃

−n ⊂ U2, and similarly for N̄ and t̃−1;

(d) In the anti-genuine Ki-bi-invariant Hecke algebra HKi,−− of G̃, for n ≥
0 :

(µKi t̃Ki)
n = µKi t̃nKi ,

where µKi t̃Ki stands for the anti-genuine characteristic function of
Kit̃Ki which is well-defined resulting from the Lemma (a), (b) and the
splitting of Nt̃.

Proof. Note that t̃ is Mt̃-compact. This follows from [BJ13, Lemma 2.7,
Proposition 2.11]. �
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For any compact subgroup H ⊂ G̃, let PH be the operator

mes(H)−1

∫
H
π̃(h)dh.

Recall that (π̃, V ) is a genuine admissible representation of finite length of G̃.

Lemma (Jacquet’s lemma). (a) The natural map from V Ki to VMi

Nt̃
is

surjective;

For each Ki, there exists a subspace V Ki
t̃
⊂ V Ki such that

(b) The projection from V Ki
t̃

to VMi

Nt̃
is a linear isomorphism;

(c) For each n ≥ 0, V Ki
t̃

is stable with respect to π̃(µKi t̃nKi);

(d) There exists n such that π̃(µKi t̃nKi)V
Ki ⊂ V Ki

t̃
.

Proof. Recall that for any compact subgroup U ⊂ Nt̃, the space V (U) con-
sists of all v ∈ V such that ∫

U
π̃(u)vdu = 0

and V (Nt̃) is the union of all the V (U). Choose a fixed compact open sub-
group U ⊂ Nt̃ such that V (Nt̃) ∩ V Ki ⊂ V (U) and Ni ⊂ U .

Lemma. If t̃nUt̃−n ⊂ Ni and v ∈ V (Nt̃) ∩ V Ki, then π̃(µKi t̃nKi)v = 0.

Proof. This follows from the fact that PNi(π̃(t̃n)v) = 0. �

Choose n to be large enough so that t̃nUt̃−n ⊂ Ni, and define V Ki
t̃

to be

π̃(µKi t̃nKi)V
Ki .

Proof of (a). This follows from an easy modification of the proof in
[Cas95, Theorem 3.3.4].

Proof of (b). Surjectivity part: For u ∈ VMi

Nt̃
, we have π̃Nt̃(t̃

−n)u ∈ VMi

Nt̃
as t̃ normalizes Mi. By Lemma (a), there exists v ∈ V Ki such that its image
in VNt̃ is π̃Nt̃(t̃

−n)u, whence PKi(π̃(t̃n)v) has image u.
Injectivity part: It suffices to show the following statement
let v ∈ V Ki

t̃
, if the projection of v in VMi

Nt̃
is 0, then v = 0.

Note that by definition v = π̃(µKi t̃nKi)v0, for some v0 ∈ V Ki . As the
projection of v in VNt̃ is 0, so v ∈ V (Nt̃), then by the choice of U , v ∈



i
i

“10-Luo” — 2018/1/8 — 11:46 — page 1771 — #13 i
i

i
i

i
i

Howe finiteness conjecture for covering groups 1771

V (U). Notice also that v, up to a constant, is equal to PKi(π̃(t̃n)v0) =
PNi(π̃(t̃n)v0). Thus

0 =

∫
U
π̃(u)vdu

Ni⊂U= π̃(t̃n)

∫
t̃−nUt̃n

π̃(u)v0du,

so v0 ∈ V (Nt̃) as t̃−nUt̃n ⊂ Nt̃, then v = 0 by the above Lemma.
Proof of (c). By Lemma (b), all the spaces π̃(µKi t̃nKi)V

Ki have the same
dimension for large n. Thus part (c) follows from Deligne (d).

Proof of (d). Statement (d) follows immediate from the definition. �

Theorem (Cassselman’s character formula).

For t̃ ∈ G̃reg with Pt = P = MN , θπ̃(t̃) = θπ̃N (t̃).

Proof. Recall that µKi t̃Ki is the anti-genuine characteristic function ofKit̃Ki.
It suffices to prove that

Tr(mes(Kit̃Ki)
−1π(µKi t̃Ki)) = Tr(mes(Mi)

−1δ
1/2
P (t)πN (t̃Mi)).

According to the following fact:
If X and Y are two endomorphisms of a finite-dimensional space such

that Tr(Xn) = Tr(Y n) for n� 0, then Tr(Xn) = Tr(Y n) for all n ≥ 1.
It reduces to prove that

Tr(mes(Kit̃
nKi)

−1π(µKi t̃nKi)) = Tr(mes(Mi)
−1δ

1/2
P (tn)πN (t̃nMi))

for n� 0. But this follows from Jacquet’s lemma which is stated as above.
�

Appendix A.2: Clozel’s integration formula

One may modify the argument in [Clo89]. But here we adapt Rogawski’s
argument in [Clo90]. For P = MN ⊂ G, we denote by n the Lie algebra of
N , and n̄ the Lie algebra of the opposite N̄ . Let

M+
c = {m ∈Mc ∩Greg : χN (m) = 1} = {m ∈M+ ∩Greg : Pm = P},

G(M+
c ) = {gmg−1 : g ∈ G,m ∈M+

c }.

Proposition (Rogawski formula). If f is an integrable funcition on G,∫
G(M+

c )
f(g)dg =

∫
KM+

c N
f(knmn−1k−1)

∆G(m)2

∆M (m)2
dkdmdn.
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Proof. This has been proved in [Clo90, Proposition 2.2]. �

Proposition (Clozel’s integration formula). Assume π̃ is a genuine
admissible representation of finite length of G̃. Then, if f ∈ C∞c,−−(G̃):

trace π̃(f) =
∑
P∈P
P=MN

〈
trace π̃N , χN f̄

(P )
〉
M̃,c

Proof. Note that G̃reg =
⊔

P∈P
G̃(M+

c ). It is then enough to show:

(?)

∫
G̃(M+

c )
f(g̃)trace π̃(g̃)dg̃ =

〈
trace π̃N , χN f̄

(P )
〉
M̃,c

.

The right-hand side of (?) is equal to∫
M+
c

∫
KN

f(k−1mnk)δP (m)1/2trace π̃N (m)dkdndm.

By Casselman’s character formula,

δ
1/2
P (m)trace π̃N (m̃) = trace π̃(m̃).

It reduces to show that the Jacobian Dn̄(m) of the map n 7→ m̃−1n−1m̃n is
equal to

∆G(m)2

∆M (m)2
.

Note that Dn̄(m) = |det(1−Ad(m)|n̄)|, and

∆G(m)2

∆M (m)2
= Dn(m)Dn̄(m) = Dn̄(m)

as m ∈M+
c whence |mα| < 1 for α a root in N , we see that this equals∫
M+
c

∫
KN

f(k−1n−1mnk)
∆G(m)2

∆M (m)2
trace π̃(m)dkdndm

therefore it equals the left-hand side of (?) by the above Rogawski formula.
�
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