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Howe finiteness conjecture for
covering groups

CAIHUA Luo

In this paper, we prove Howe finiteness conjecture in the context
of finite central extensions of connected, reductive p-adic groups.

1. Introduction

Let G be a connected reductive group over a p-adic field F' of characteristic
0. Let G = G(F'), and G be a finite central extension of G by iy, i.e.

1=, =GB aG—1.
We say a representation 7 of G is genuine (resp. anti-genuine) if
7(eT) = em(T) (resp. € '7(%))

for all e € pup, T € G, similarly for test functions. Throughout this paper,
the preimage of a subset H of G in G will be denoted by H, i.e. H = p~'(H).

Let W be a compact subset of G, W& the G-conjugate invariant subset
{gzg™': g € G, v € W}. We say a closed invariant subset Q of G is compact
modulo conjugation if p(Q) C WC for some compact W.

The purpose of this article is to extend Howe finiteness conjecture to
finite central covering groups. Let .% (Q) be the set of invariant distributions
on G supported on . If K is a compact-open subgroup of G’ which splits in
@, let % —_ be the K-bi-invariant Hecke algebra of compactly supported
anti-genuine functions on G.

Theorem (Howe finiteness gonject}u‘e). Assume K is a compact-open
subgroup of G which splits in G, and € is invariant, compact modulo con-

Jugation. Then the space of distributions in /() restricting to Hix —_ is
finite-dimensional.

Key words and phrases: Covering groups, Howe finiteness conjecture, p-adic
groups.
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As a corollary of Harish-Chandra’s and Kazhdan’s density theorems (see
[Lil2] Theorem 5.8.10]), we have an equivalent version of Howe finiteness
conjecture concerning orbital integrals (see [Clo85l §5]) that is what we will
prove in this article:

Proposition. Assume T C G is a Cartan subgroup, wr a compact subset
of T. Fort € T,}gg" i= {1 € Tyeg : Ad(t)| 7 = id}, let O(-,1) be the linear form
on Ak —— defined by the orbital integral at t. Then these orbital integrals
O(-,t), teorn TTBB‘;", span a finite-dimensional space in the dual of 5 .

Note that Howe finiteness conjecture for connected reductive groups has
been proved first by L.Clozel, later by D.Barbasch and A.Moy using Bruhat-
Tits theory. As the reduction step in [BM0Q] seems not so easy to be gen-
eralized, we would follow L.Clozel’s argument (see [Clo89]). Notice that the
main ingredients in [Clo89] are as follows:

e L.Clozel’'s “compact trace” formula.

e Finiteness of elliptic representations with K fixed vectors.

Thus the aim of this article is to generalize the above ingredients to covering
groups.

2. An integration formula a la Clozel

Recall that G is a connected reductive group over a p-adic field F' of charac-
teristic 0, G = G(F), and G is a finite central extension of G by - Let Ag
be a maximal split torus in G, Fy a minimal parabolic subgroup containing
Ap, ® the set of roots of G relative to Ay, A the set of simple roots associated
to Py, we define

Al ={z € Ay : |a(z) <1, Va € A}.

Recall Deligne’s construction in [Del76l [Cas77]. Assume g € G is regular
semi-simple, let T = Z5(g)°. Note that T is isogenous to T, x T, with T} its
maximal split subtorus and T, its maximal anisotropic subtorus. Namely,
there is a positive integer n such that for each t € T' we have t" = sa with
s € Ts and a € T,. Applying the decomposition to g, one gets an associated
sg € Ts. On the other hand, there exists y € G such that ysgy*1 € Aar. Let
Q={aeA:|alysyy )| =1}, and define P, = M,;N, to be the parabolic
subgroup 3y~ ! Poy, here Py D Py is the unique parabolic subgroup associated
to 2 C A. We may then say g is My-compact. If M, = G, we say g is compact
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for short, and denote by G the set of compact regular semi-simple elements,
G(c :p_l(GC)' - -

If f € C®(G) and P is a parabolic subgroup of G, let f(") denote the
constant term of f along P:

FP) () = o5 1/2/fmn

where
fg) = - flkgk™")dk,  5y(m) = |det(Ad(m)|x)],
where Ky is a good maximal compact subgroup of G in the sense of Bruhat-
Tits, and N lifts to G in a unique way in the sense of [Lil4] Proposition 2.2.1].
If P = M N is a parabolic subgroup of G, let Aj; be the split component
of the center of M, A(N, Aps) the set of reduced simple roots of N with
respect to Ayr, X(M) = Hom(M, G,), and apr = Hom(X (M), R). Let

H Vi . M L) M M anr
be the composed Harish-Chandra map such that

el M) — [y (m)

for all m € M, x € X(M). We will denote by M*(N) (resp. TM(N)) the
set of m € M such that a(H;(m)) <0 (resp. wo(Hy(m)) <0) for all o €
A(N, Anr), here {wq }o stands for the dual basis of a}, := Hom(ap, R) with
respect to the coroot basis {a"}, of aps (cf. [Art78, P.916]). Set xn to be
the characteristic function of Mt (N), and ¥y the characteristic function of
+M(N) as in [Clo90, P.259].

If 7 is an admissible representation of finite length of G, we denote by
7y the normalized Jacquet module of 7.

Fix a minimal parabolic subgroup Py of G, and the Levi decomposition
Py = MgNy, let & be the set of standard parabolic subgroups of G with
respect to Py = MoNy. If P=MN € &, 7 is a genuine admissible repre-
sentation of finite length of M, and f € Cgf’,,(]\;[ ), we set

(trace 7, f), — / 2 () f () din.

c

Here X7 (1) denotes the Harish-Chandra character of 7 [Lil2]; we choose
Haar measure d§ on G compatible with dg on G, i.e. mes(Ko) = mes(Ky) =
1. If we want to specify M in this formula, we will write (trace T, f) .
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We will write Gq for the set of regular semisimple elements of G. If X
is any subset of G, we write X4 for X N Gyey.

Proposition 1 (Clozel’s integration formula). Assume 7 is a genuine
admissible representation of finite length of G. Then, if f € C, o _(G):

trace w(f) = E <trace wn, xnfE >M

Pez
P=MN

Proof. We give the proof in Appendix A.2 which is an easy modification of
Clozel’s argument in [Clo90]. Note that one may also follow Clozel’s argu-
ment in [Clo89, Proposition 1] once we have the following three ingredients
which in its own right is important and will be used later on:

e Weyl’s integration formula for G:

(trace 7, f) = Z /e . O(f,t)dt

reg

TCG
T mod G t mod G

where 0z(1) = Ag(t)xz(1), Aca(t) = |det(1— Ad(t)|rie crie o),
and

O(f. ) = A1) /G Rl

provided ¢ € TBo" j.e. the character T [—>] C* is trivial.

reg

Note that this follows from the decomposition:

Geo=U U U

Trey €T, 9€T\G

e Descent formula for orbital integral (see [Clo85, Lemma 1], [Lil4l
Proposition 3.2.2]):

For i € Tpeg C M, OS(f,7) = OM(fP) ).

Note that this follows from Langlands decomposition G = M N K,
and the relation

Ag(t)

det(1 = Ad(t) Lien)| = 03 5 - -
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e Casselman’s character formula [Cas77]:
For € Greg with P, = P = MN, 0x(f) = 0z, (%).

The proof is an easy modification of Casselman’s argument in [Cas77].
For the convenience of the reader, we would give the proof in Ap-
pendix A.1. O

Corollary 2 (Clozel, Waldspurger). [Clo90, P.259]

(trace T, ¢), = Z (—=1)er—ac <t7“ace ﬁ'N,)Qng(P)>M.

Pe»

Proof. For the convenience of readers, we should write down the short proof.
We first recall Clozel’s integration formula for covering groups:

trace 7(¢) = Z <trace TN, XN(;E(P)> .

M.
pPe”
P=MN

By descent formula, we also have:

<trace N, XN@E(P)>M = Z <tmce TN, XNX%Q_S(P/)>M ;

P'CP N
P'=M'N’

where X]\NZ’ is the analogue of yn for the subgroup N'NM of M. Let
ep = (—1)%77% the right-hand side of the identity in the corollary can
be rewritten as:

> Y e {trace e i)
P/ P: MC
P'CPCG
Notice that the inner summation term ZGPXNXAN;II equals to 0 if P’ # G,

P
1 otherwise, by a basic Arthur’s formula [Art78, Lemma 6.1], whence the
identity in the corollary holds. O

3. K-finiteness of elliptic representations
Recall Harish-Chandra’s character theory in [Lil2, Theorem 4.3.2], if 7 is an

irreducible tempered representation of G, x# would be a locally integrable
function on G, smooth on G.¢4. Let G,.¢; be the set of regular elliptic elements
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of G, i.e. the set of regular elements contained in some elliptic torus. We say
7 is elliptic if p(supp(xz)) N Gre # 0. Let Ty _(G) and My (G) be the set
of genuine irreducible discrete series and tempered elliptic representations
of G respectively.

Recall Harish-Chandra’s map Hg : G — ag, let °G be the kernel of Hg,

and Ag its image.

Lemma 3 (K-~Finiteness). Assume K is a compact-open subgroup of G
which splits in G. Then there is a finite set of representation of finite length
of °G such that, if @ € ey (G) has a vector fized by K, Ttloe belongs to
that set.

Proof. We follow the two steps argument as in [Clo89]:

e For 7 € Il _(G), which have the central character y, the lemma holds
by Harish-Chandra’s Plancherel theorem which is stated as follows
[Wal03, Lil2):

Let C(é)x be the space of Schwartz-Harish-Chandra functions on
G with central character x, °C(G)y (resp. °C(G//K),) the subspace
of (resp. K-bi-invariant) cusp forms i.e. fP) =0 for every proper

parabolic subgroup P of G. Then °C(G), = L2, (G)y i.e. the discrete

~ 2 disc

part of L*(G)y. Moreover, dim °C(G//K), < co.
e By Knapp-Zuckerman classification theorem of tempered representa-
tions (see [Wal03| Proposition II1.4.1]), it suffices to prove the following
Lemma [l O

Let P = M N be a parabolic subgroup of G, we have Aj; the split com-
ponent of the center of M, and X = Hom(Ay, Gy,). Fix a uniformizer w
of p — adic field F, let Cyy = Homz(X, w?), C;; = Cy N Z(M). Consider
Cum as a subgroup of M, we then know that YMCys (resp. OMC'M) is a
subgroup of finite index in M (resp. M).

Lemma 4. There exists a finite set Xy of unitary characters of Cy; such
that, for any genuine discrete series & of M, if & = ind%N((S ® 1) contains
an elliptic submodule, then the central character ws belongs to X ;.

Proof. The argument is the same as in [C10857~ Lemma 4] once the following
property of elliptic representations holds for G:

Keypoint. Let W be the stabilizer of § in W(G, An). If W5 € W (M, Apr)
for a parabolic subgroup P = MiNy D P, then all irreducible sub-
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representations of T are induced from an irreducible sub-representations of

This is equivalent to saying
dim Homg (7, &) = dim Homy; (71, 71).
As Frobenius reciprocity says that

dim Homg (7, ) = dim Hom (7, 5),

dim Homy; (71, 71) = dim Hom g ((71) N, s 5).

Note that the unitary central character part of any Jacquet module is tem-
pered (see [Wal03, Lemme II1.3.2]), and discrete series is projective in the
category of tempered representations (see [Wal03, Corollaire II1.7.2]), then
it suffices to show that the 0 — isotypic part ﬁN,S of 7 is isomorphic to
(71) Ny 1,5+ This follows from the transitivity and exactness properties of
Jacquet functor, i.e.

N = (TN, N, — (1) Na

and the geometric lemma:

(Fni)ss = D wd (F)xengi)ss = D wo

TUEWG UJEWgM1

For the convenience of readers, we continue the proof of the lemma as follows
which is almost a copy of Clozel’s proof in [Clo85, Lemma 4].

Suppose that 7 = ind%N(S ® 1) contains an elliptic submodule, then
there is no Py # G satisfying the condition W5 C W (M, Apr) by the above
property of elliptic representations. Therefore for all M; ;Ct G which contains
M, there exists w € W5 such that w ¢ W (M, Apr), We want to show that
those central characters X = x; belong to a finite set determined by Wj.

Recall that W acts on Cj; and Cj;. As wé =6 for w e W5, we have
wy = X. Themap H : M — ayy reahzes an isomorphism of C'y; with a lattice
Ly C apy. So the group of characters of C'y; identifies with a*M7C /L%, where

Ly ={\ € ajyc: MLy) C 2milZ}.
Assume that the cardinality of the set

(A) {X € Homgenuine(CMy(CX) Twyx =X, Yw € WS}
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is infinite. We fix one of such characters yg, then for y in (A), one knows
that xxo s a character on p(C 7) Which contains C7;, thus the cardinality
of the set

{x € Hom(Cy,C*) s wx = x, Yw € W;}

is also infinite. Therefore there are infinitely many fixed points of the action
of W5 on the complex torus

Hom(Cyr,C*) ~ ajyc/Liy-

On the other hand, such characters on which the action of Wj is fixed form
a subgroup of the complex torus. Consider the action on the Lie algebra, we
see that there exists a non-zero vector v € aj; ¢ fixed by Wi.

As X is the character lattice of Ajys, we have ayc =X ®z C and W
acts on X. So Wj fixes a non-trivial sub-lattice of X, this gives rise to a
non-trivial sub-torus H of Aj; which is fixed by Wj.

Recall that a standard torus of G is a split torus of the form A, for a
Levi subgroup M’ of G. Let H = H(F), and A; the smallest standard torus
of G containing H. It is clear that Ay C Ap;. By a lemma of Casselman
[Cas77, Lemma 1.1], the centralizer of H in G is equal to that of A;.

For w € W5, one knows that w centralizes H, then w centralizes A;. Let
M be the centralizer of A; in GG. Note that M; is a Levi subgroup of G
containing M. If w € G is a representative of w, one would have w € M;.
Thus W; is contained in Wy = W (M, Apy).

By the above Keypoint, this contradicts the hypothesis that 7= md(g ®
1) contains an elliptic submodule. Therefore if 7 contains an elliptic submod-
ule, the set of points fixed by Wj in Homgenuine(Cyy, C*) is finite, and the
central character x; belongs to this finite set. According to the finiteness of
the possible W5, we see that the set of such x; is finite. O

4. Proof of the covering Howe finiteness conjecture

We now prove the covering Howe finiteness conjecture following the methods
in [Clo89].

We fix a compact-open subgroup K C G which splits in G. Let S, ——
be the K-bi-invariant Hecke algebra of compactly supported anti-genuine
functions on G.

Lemma 5. There exists a finite set X (Oé, K~) of unitary representations
of finite length of °G such that, if & € Uy, —(G) such that the linear form
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f = (trace 7, f),. does not vanish identically on Hy,——, then 7|,z belongs
to X(°G, K).

Proof. By Corollary [2] it is easy to see that

(trace 7, f), #0
implies
t =~ oo FP)
< race AN, XN f >M #0

for some M. Note that we have the following good properties for f*) and
TN-
o For f € Jx __, ) e H,,—— for some splitting compact-open sub-
group Kjs of M determined by K [Clo85, Lemma 2].

o If 75 has K); fixed vector, then 7 has K’-invariant vector for some
compact-open splitting K’ C G. This follows from the well-known fact:
Assume Kjpr is compact-open in M splitting in M, and &, a gen-
wine irreducible representation of M, has non-zero Ky;-fized vectors.
Then there exists a compact-open subgroup K' of G which splits in G
such that all subquotients of T = ind]\G;[N(ﬁ ® 1) have non-zero K'-fized
vectors. This is a corollary of Jacquet’s lemma [Cas95, [BJ13].

Thus the lemma follows from Lemma [3l |

Recall the Harish-Chandra map Hg : G — Ag, let w be a finite subset of
Ag. We will denote by G.(w) the inverse image of w in G, and define

G.(w)

(trace T, f)., = / x#(9)f(9)-

Lemma 6. Assume w C Ag is finite. Then the functionals

f = (trace 7, f>c,w

span a finite-dimensional subspace of the dual of #k —_ as T ranges over
ey, — (G).

Proof. The lemma follows by the same argument as in [Clo89, Lemma 6]
once Lemma [5| holds. For the convenience of the reader, we should write



1768 Caihua Luo

down the details. We may assume w = {x}. Note that the characteristic
function 1, of G(x) is bi-invariant by any compact-open K. By Lemma 5,

(trace 7, f),, = (trace 7, 1,f),

vanishes unless 7,5 belongs to a finite set. Moreover, if x is an unramified
character of G which is trivial on pu,:

(trace (7 ® x), f>cz = x(z) (trace T, f>c,a:'

Since the genuine elliptic representations in Lemma 5 form a finite set mod-
ulo twisting by unramified characters, the lemma is clear. U

Proposition. Assume T'C G is a Cartan subgroup, wy a compact subset
of T. Fort € TTB;‘Q’", let O(-,t) be the linear form on Hi __ defined by the

orbital integral at t. Then the orbital integrals O(-,t) (f € &r N Tg‘g’”) span
a finite-dimensional space in the dual of 5 —_.

Proof. The Proposition follows by the same argument as in [Clo89, Propo-

sition 2|. For the convenience of the reader, we recall the details here.
Assume an invariant, compact modulo conjugation set £ D & N Tf;gn,

enlarging 2 if necessary, we may assume that it is open and closed, and

contains G, where w is the image of {2 under the map Hg.

e Reduction steps:
(i). By induction and Descent formula of orbital integrals: for non-

elliptic ¢ € Q ﬁ@iog", the linear forms f+— O(f,t) span a finite
subspace of the dual of s __.
(ii). By Lemma@7 there is a subspace of finite codimension 7" C % __

such that, the linear forms in (if) vanish and

(trace 7, f)., =0

for all f € #”, and 7 € My _(G).
e Vanishing argument:
In what follows, we would like to prove that all orbital integrals of f €
A vanish on an G;Be‘;”. Let g = xgaf, where xg is the characteristic
function of €. Thus it deduces to show the vanishing of all regular
semi-simple orbital integrals of g. This results from Kazhdan’s density
theorem [Lil2, Theorem 5.8.10] as follows.
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(iii). For genuine irreducible, tempered, non-elliptic representation 7 of
G, the Weyl integration formula and (i) show that

(trace w, g) =0
(iv). For elliptic 7,

(L

IS

(trace 7, g) = (trace 7, xgf) = (trace 7, Few
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Appendix A.1: Casselman’s character formula

We generalize the formula to covering groups following the argument in
[CasT7]. For t € Gyeg, let P; = Py, My = M;.

Lemma (Deligne). There exits a decreasing sequence {K;} of splitting

compact open subgroups in G which form a basis of neighborhoods of the

identity apd such that, where N; = NN K;, M; = M; N K;, and N; = N; N

K; with N; the unique opposite nilpotent subgroup of Nj:

(a) Ki = NzMzNz’

(b) tNNZ{_l C N, EMitN_l = M;, tN_lNitNC Ni;

(¢) If Uy and Uy are any two compact open subgroups (Zf N, then there exists
n >0 such that t"U;t™" C Us, and similarly for N and 1

(d) In the anti-genuine K;-bi-invariant Hecke algebra i, —— of G, forn >
0:
(Hgir)" = K ik,

where 7, stands for the anti-genuine characteristic function of
KitK; which is well-defined resulting from the Lemma (a), (b) and the
splitting of Nj.

Proof. Note that ¢ is M;z-compact. This follows from [BJI3, Lemma 2.7,
Proposition 2.11]. O



1770 Caihua Luo
For any compact subgroup H C G, let 2y be the operator
mes(H)l/ 7(h)dh.
H

Recall that (7, V) is a genuine admissible representation of finite length of G.

Lemma (Jacquet’s lemma). (a) The natural map from VEi to V% is
surjective;

For each K;, there exists a subspace ViKi C VEi such that
(b) The projection from VEK to V% is a linear isomorphism;

K. - . .
(¢) For eachn >0, V" is stable with respect to (Mg g, );

i

(d) There exists n such that ﬁ—(/’LKitN"Ki)VKi - VfK

Proof. Recall that for any compact subgroup U C Nj, the space V(U) con-
sists of all v € V' such that

/Ufr(u)vdu =0

and V' (NN;) is the union of all the V(U). Choose a fixed compact open sub-
group U C Nj such that V(N;) N VE: c V(U) and N; C U.

Lemma. If{"Ut™" C N; and v € V(Ny) N V5, then 7ty jng,)v = 0.

Proof. This follows from the fact that 2y, (7(")v) = 0. O

Choose n to be large enough so that {"Ut™" C N;, and define VtK to be
e, )V

Proof of @ This follows from an easy modification of the proof in
[Cas95, Theorem 3.3.4].

Proof of (]EI) Surjectivity part: For u € V]{{’i, we have 7y, (17")u € VJS{
as t normalizes M;. By Lemma @, there exists v € Vi such that its image
in Vi, is Ay, (£7™)u, whence P, (7(f")v) has image w.

Injectivity part: It suffices to show the following statement

let v e VEK", if the projection of v in V% 15 0, then v = 0.

Note that by definition v = 7 (g 7., )vo, for some vy € VEi As the

i

projection of v in Vi, is 0, so v € V(NN;), then by the choice of U, v €
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V(U). Notice also that v, up to a constant, is equal to Py (F(t")vg) =
P (7 (") vg). Thus

0= / 7(u)vdu el ﬁ(f”)/ 7 (u)vodu,
U t-nuUtn

so vy € V(N;) as t "Ut" C Nj, then v = 0 by the above Lemma.

Proof of H By Lemma (b)), all the spaces 7(u K, in Ki)VKi have the same
dimension for large n. Thus part follows from Deligne @

Proof of (d). Statement (d) follows immediate from the definition. O

Theorem (Cassselman’s character formula).
For t € Geg with P, = P = MN, 0z(f) = 0z, (7).

Proof. Recall that i 75 is the anti-genuine characteristic function of KitK;.
It suffices to prove that

Tr(mes(Kii K;) "' m(ig i) = Tr(mes(M;) " 6 (¢)mn (EM;)).

According to the following fact:

If X and Y are two endomorphisms of a finite-dimensional space such
that Tr(X™) =Tr(Y"™) forn> 0, then Tr(X") =Tr(Y") for alln > 1.

It reduces to prove that

Tr(mes(Ki" K;) "'t e, ) = Tr(mes(M;) 6> (") mn (M)

for n > 0. But this follows from Jacquet’s lemma which is stated as above.
O

Appendix A.2: Clozel’s integration formula

One may modify the argument in [Clo89]. But here we adapt Rogawski’s
argument in [Clo90]. For P = M N C G, we denote by n the Lie algebra of
N, and n the Lie algebra of the opposite V. Let
M ={me M. N Greg: xn(m) =1} = {mGM"'ﬂG,«eg : P,, = P},
G(MF)={gmg': g€ G me M}

Proposition (Rogawski formula). If f is an integrable funcition on G,

_ ey Acm)?
/G (Mj)f(g)dg— /K Mij(knmn K1) Ry (e dhdmdn.
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Proof. This has been proved in |Clo90) Proposition 2.2]. O

Proposition (Clozel’s integration formula). Assume 7 is a genuine
admissible representation of finite length of G. Then, if f € C’go__(G):

trace w(f) = Z <t7‘ace N, XNf(P)>M

Pe ,
P=MN

Proof. Note that Gy = || G(MZF). It is then enough to show:
Pez

i = (3)dd = - 7(P)
() /G ) f(@)trace 7(§)dg = <trace N, XN >M

,C

The right-hand side of (x) is equal to
/ f (k™ mnk)dp(m)*trace 7y (m)dkdndm.
M JKEN

By Casselman’s character formula,

51/2

b (m)trace Tn(m) = trace 7(m).

1 1

It reduces to show that the Jacobian Dg(m) of the map n +— m™'n™"'mn is

equal to

/M+ o f(klnlmnk)AM((m);trace 7t(m)dkdndm

therefore it equals the left-hand side of (x) by the above Rogawski formula.
O
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