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Weierstrass cycles in moduli spaces and

the Krichever map

Jia-Ming (Frank) Liou and Albert Schwarz

We analyze cohomological properties of the Krichever map and use
the results to study Weierstrass cycles in moduli spaces and the
tautological ring.

Let us consider a point p on a smooth projective connected curve C over C
of genus g. We say that a natural number n is a non-gap if there exists a
function that is holomorphic on C \ p and has a pole of order n at the point
p (in other words h0(O(np)) > h0(O((n− 1)p))).

It is obvious that the set of all non-gaps is a semigroup; it is easy to derive
from Riemann-Roch theorem that the number of gaps (the cardinality of the
complement to the set of non-gaps in N) is equal to g. We denote by H the set
consisting of 0 and of all integers n such that h0(O(np)) > h0(O((n− 1)p))
(in other words, we include 0 and all non-gaps into H). One says that H is
the Weierstrass semigroup at p.

One says that a subsemigroup H of N0 such that #(N0\H) = g and 0 ∈
H is a numerical semigroup of genus g; obviously any Weierstrass semigroup
belongs to this class. (Here N0 stands for the semigroup of non-negative
integers). The point p is a Weierstrass point if the first non-gap is ≤ g (i.e.
H 6= {0, g + 1, g + 2, . . . }). There exist only a finite number of Weierstrass
points on a curve. Instead of Weierstrass semigroup H, one can consider a
decreasing sequence of integers such that si is the largest integer with

h0(KC(−sip)) = i.

HereKC denotes the canonical line bundle on C. It follows from the Riemann-
Roch theorem that this sequence (the Weierstrass sequence of the point p
) has the form si = ag−i+1 − 1 if 1 ≤ i ≤ g and si = g − 1− i if i ≥ g + 1.
Here 1 = a1 < · · · < ag denotes the increasing sequence of gaps.

Notice that all these statements remain correct if p is a nonsingular
point of an irreducible (not necessarily smooth) curve and the canonical line
bundle is replaced by the dualizing sheaf ωC . (Every irreducible curve is a
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1740 J.-M. Liou and A. Schwarz

Cohen-Macaulay curve; hence it is not necessary to consider a complex of
sheaves talking about the dualizing sheaf.) 1 Any numerical semigroup of
genus g is a Weierstrass semigroup at a point on an irreducible curve of
(arithmetic) genus g; see Section 3.

Let us consider the moduli spaceMg,1 of non-singular irreducible curves
of genus g with one marked point (one can characterize this space as the
universal curve). 2 If H is a numerical semigroup of genus g, we denote
by MH the subset of Mg,1 consisting of curves with marked points having
Weierstrass semigroupH. The closureWH =MH of the Weierstrass setMH

in Mg,1 is called a Weierstrass cycle. Under some conditions, we calculate
the cohomology class [WH ] dual to this cycle. (Our methods can be used
also to calculate the element of Chow ring specified by Weierstrass cycle).

Our problem is closely related to the problem of the calculation of
the homomorphism induced by the Krichever map k : M̂g → Gr(H). Here

M̂g stands for the moduli space of triples (C, p, z), where C is a complex
connected smooth projective curve of genus g with a point p and a map
z : D → D is an isomorphism from a closed set D onto the closed unit disk
D = {z ∈ C : |z| ≤ 1} obeying z(p) = 0. 3 We use the notation Gr(H) for the
Sato Grassmannian (as defined in [23]) and the notation Grd(H) for index
d component of Grassmannian. The Krichever map sends a triple (C, p, z)
into the space V, the closure of functions on the boundary of the disk D that
can be extended to holomorphic differentials on the complement of D. (A
function f(z) on S1 is considered as a differential f(z)dz restricted to the
boundary of D.) The kernel and the cokernel of π−|V : V → H− are iden-
tified with H0(C,ωC) and H1(C,ωC) respectively (see [18], [23]); hence the
index π−|V is g − 1. Here π−|V stands for the orthogonal projection of V
into H−; the projection is defined with respect to Hermitian inner product
〈f1, f2〉 =

∫
S1 f1(z)f2(z)dz/2π. Hence the image of the Krichever map lies in

the component Grg−1(H). The Krichever map commutes with the natural

action of S1 on M̂g and on Gr(H). Thus it induces a homomorphism of the
S1-equivariant cohomology of the connected component Grg−1(H) of Gr(H)

into the S1-equivariant cohomology of M̂g. The latter is isomorphic to the
conventional cohomology ofMg,1 (see [10] for more detail). In [10], we have

1All curves we consider are reduced irreducible projective curves. (in other words
we work with projective integral curves)

2One can consider this space as an orbifold or as a moduli space of a stack.
However, we are interested only in cohomology over C, therefore it is sufficient to
consider it as a topological space.

3The embedding into Grassmannian induces topology on M̂g. Of course, this
topology can be described without the reference to Grassmannian.
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Weierstrass cycles in moduli spaces and the Krichever map 1741

calculated the images of a set of multiplicative generators under the homo-
morphism induced by the Krichever map in the S1-equivariant cohomology
of Grassmannian; in the present paper, we will give an explicit formula for
this homomorphism on additive generators of this cohomology. In the paper
[11], we identified the S1-equivariant cohomology of Grassmannian with the
ring of shifted symmetric functions (see also [9]). We describe the homomor-
phism induced by the Krichever map on this ring; we specify the answers
for various additive generators of S1-equivariant cohomology.

Weierstrass cycles WH are related to intersections of Schubert cycles in
the Grassmannian with the image of Krichever map. This allows us to obtain
the information about classes [WH ] from the analysis of the homomorphism
induced by the Krichever map in the S1-equivariant cohomology. The same
technique is used to obtain relations in the tautological rings of moduli
spaces. We obtain also similar results for the moduli spaces of irreducible
(possibly singular) curves with embedded disks.

In a separate paper [14], we show how to use the ideas of present pa-
per to obtain estimates for dimensions of Weierstrass cycles. We perform
calculations for moduli spaces of irreducible curves of low genera.

1. Krichever Map

In the introduction, we have described the Krichever map k : M̂g → Gr(H)

of the moduli space M̂g into Segal-Wilson version of Sato Grassmannian
(see [23] for more detail). This construction can be generalized to projec-
tive integral curves (the marked point p should be non-singular, the disk
D should consist of non-singular points, instead of holomorphic differentials
one should consider sections of the dualizing sheaf of C). This follows from
the results of [23] and from the remark that the dualizing sheaf of Cohen-

Macaulay curve is a torsion-free rank one sheaf. We will denote by ĈMg

the moduli space of triples (C, p, z) where C is a projective integral curve
of genus g, and p is a nonsingular point, and z is a local coordinate system
around p sending a closed set D containing p onto D with z(p) = 0; the
extension of the Krichever map to this space will be also denoted by k. The
extended Krichever map is an embedding of ĈMg into Grassmannian (this

follows from the results of [23]); we can define the topology on ĈMg using
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this embedding. The image of this embedding is called the Krichever locus. 4

Notice that a reasonable (separable) moduli space of singular curves
(even of Gorenstein curves) does not exist; see [8]. It is important that

we consider curves with embedded disks. Identifying the points of ĈMg

corresponding to the same curve C with different embedded disks we obtain
a non-separable space.

We have used the dualizing sheaf in the construction of Krichever map;
however, as it was shown in [23], one can use any torsion-free rank one
sheaf. 5

Using q-differentials, one can construct a more general Krichever map
kq : M̂g → Gr(H) for each q ∈ Z; this corresponds to using the q-th power
of dualizing sheaf. It is clear that k1 = k. In general the map kq for q > 1 or
q < 0 cannot be defined for general irreducible curves, but it can be defined
for Gorenstein curves where the dualizing sheaf is an invertible sheaf (is a
line bundle).

It is easy to check that the images of any triple (C, p, z) under kq and
k1−q are closed subspaces of L2(S1) orthogonal with respect to bilinear inner
product

(1.1) (f1, f2) =
1

2π

∫
S1

f1(z)f2(z)dz;

in other words, we have

(1.2) k1−q(C, p, z) = (kq(C, p, z))
⊥

where ⊥ denotes orthogonal complement (see [22]) with respect to the bilin-
ear inner product. In particular, for q = 1,

(1.3) k0(C, p, z) = (k1(C, p, z))
⊥.

One should emphasize that (1.3) is correct for all irreducible curves, but
to make sense of (1.2) we should assume that C is a Gorenstein curve. All
maps kq are S1-equivariant; one can study the induced homomorphisms
on the S1-equivariant cohomology. The answers are formulated in terms of

4The Krichever map can be defined also for reducible curves, but in this case this
map is not an embedding and it is not continuous. In particular, the Krichever map
on the space of nodal curves with disks is discontinuous.

5Notice that our definition of the Krichever locus is not quite standard. Usually
this locus is defined as the image of the general Krichever map.
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lambda-classes and psi-classes (see [10] for the analysis of these problems for
non-singular curves) .

The Hodge bundle E on ĈMg is defined as a bundle having the space
of holomorphic sections of dualizing sheaf as a fiber. (See a rigorous defini-
tion below.) This is an S1-equivariant vector bundle whose S1-equivariant
Chern classes are called lambda-classes and denoted by λ1, . . . , λg. Restrict-

ing them to M̂g, we obtain conventional lambda-classes. (Recall, that the

S1-equivariant cohomology of M̂g coincides with cohomology of universal
curveMg,1, see [10].) Lambda-classes can be considered as elementary sym-
metric functions of lambda-roots (of Chern roots of the Hodge bundle).

S1-equivariant cohomology can be regarded as an algebra over polyno-
mial ring C[u], where u = c1(OP∞(1)). The psi-class ψ ∈ HS1(ĈMg) will be

defined as −u. It was shown in [10] that restricting to M̂g we obtain the
standard definition of psi-class.

The subring of the ring HS1(ĈMg) generated by lambda- classes and psi-
class will be called tautological ring. It will follow from our results that the
tautological ring can be characterized as the image of S1-equivariant coho-
mology of Grassmannian by the homomorphism k∗ induced by the Krichever
map. We will prove some relations in the tautological ring; these relations
can be restricted to relations in the tautological ring of the universal curve.

Let us consider submanifolds Grld of Grd(H) consisting of points W such
that the orthogonal projection πl : W → z−lH− is surjective. (Here l ≥ 0).
The action of S1 on Grd(H) generates an action on Grld for each l ≥ 0. The
kernels of the projection πl : W → z−lH− can be considered as fibers of an
equivariant vector bundle El over Grld. This bundle has rank d+ l. Using

the Krichever map, we can embed ĈMg into Gr1g−1; the Hodge bundle is
a pullback of the S1-equivariant vector bundle E1. (This statement can be
considered as a rigorous definition of the Hodge bundle.)

It is proved in [9] and [11] that the S1-equivariant cohomology ring of
Grassmannian Grd(H) can be identified with the ring Λ∗(z‖u) of “polyno-
mial” functions of variables (zi)i∈N and the variable u that become sym-
metric with respect to the variables {xi}, where xi = zi + (d+ 1− i)u, for
i ≥ 1. These functions are called shifted symmetric functions [2], [11].

The ring Λ∗(z‖u) can be identified with the ring Λ(x‖u) of functions
α(u, x1, x2, . . . ) in variables (xi)i∈N and in u that are symmetric with re-
spect to the variables (xi)i∈N, and can be obtained from a polynomial
α̃(u, z1, . . . , zN ) ∈ C[u, z1, . . . , zN ], by means of substitution zi = xi − (d+
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1− i)u for i ≥ 1. ( Hence α(u, x1, x2, . . . ) = α̃(u, z1, . . . , zN ). The function
α is defined on sequences (xi)i∈N obeying xi = (d+ 1− i)u for i� 0)

Let k = k1 : ĈMg → Grg−1(H) be the Krichever map. Let α be a S1-
equivariant cohomology class of Grg−1(H) represented by a function α(u,
x1, . . . , xi, . . . ) symmetric with respect to (xi) that becomes a polynomial
α̃(u, z1, . . . , zN ) ∈ C[u, z1, . . . , zN ] with zi = xi − (g − i)u for i ≥ 1 and for
some N � 0. We will prove the following statements:

Theorem 1.1. The classes {−k∗xi : 1 ≤ i ≤ g} are Chern roots of the bun-
dle E∨ dual to the Hodge bundle E and k∗xi = −(g − i)ψ for i > g (or equiv-
alently, k∗zi = 0 for all i > g.) It follows that α(−ψ, k∗(x1), . . . , k∗(xi), . . . )
is well defined. We prove that

k∗α = α(−ψ, k∗(x1), . . . , k∗(xi), . . . ).

In other words

k∗α = αg(ψ, k
∗x1, . . . , k

∗xg).

Here we obtain αg from α̃ by setting

αg(ψ, k
∗x1, . . . , k

∗xg) = α̃(k∗u, k∗z1, . . . , k
∗zN )

where zi = xi − (g − i)u for i ≥ 1.

Proof. Denote d = g − 1. Let Hi,j be the linear subspace of H spanned by
{zs : i ≤ s ≤ j} and denote Hij the product bundle Hi,j ×Grld . We consider
the action of S1 on Hi,j defined by

(1.4) (t, (f, V )) 7→ (t−1f(t−1z), t(V )).

Here V is a point in Grd(H), f is vector in Hi,j and t ∈ S1; Here we define
t(V ) as the space of functions t−1f(t−1z) for f(z) ∈ V. Then Hij is a S1-

equivariant vector bundle over Grld . Then the total S1-equivariant Chern
classes of the bundle Hi,j is given by the formula

cT (Hi,j) =

j∏
m=i

(1− (m+ 1)u).

Let fln be the inclusion maps Grld ↪→ Grnd and Grld ↪→ Grd(H) respectively.
The induced map of fln and fl on the equivariant cohomology are denoted
by f∗ln and f∗l respectively.
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Let {x1, . . . , xd+l} be the S1-equivariant Chern roots of E∨l . The S1-
equivariant cohomology H∗S1(Grld) of Grld can be identified with the algebra
Λ(x1, . . . , xd+l‖u) of polynomials in x1, . . . , xd+l, u over C symmetric with re-
spect to {x1, . . . , xd+l}. The inclusion map fln : Grld ↪→ Grnd induces an alge-
bra homomorphism f∗ln : Λ(x1, . . . , xd+n‖u)→ Λ(x1, . . . , xd+l‖u). The pro-
jective limit of the projective system (Λ(x1, . . . , xd+l‖u), f∗ln) is the S1-
equivariant cohomology H∗S1(Grd(H)). It can be identified with the ring
Λ(x‖u) defined above. Let α be an S1-equivariant cohomology class in
H∗S1(Grd(H)) represented by a function α(u, x1, . . . ) in Λ(x‖u). To compute
k∗α, we only need to compute α(k∗u, k∗x1, . . . ).

The Krichever map k : ĈMg → Grg−1(H) are composition of maps:

ĈMg

lk−−−−→ Grlg−1
fl−−−−→ Grg−1(H),

where lk : ĈMg → Grlg−1 is the modified Krichever map. Notice that the

pull back bundle lk∗El on ĈMg has a orthogonal direct sum decomposition:

lk∗El = 1kE1 ⊕ k∗H−l,−1.

This implies that {−kxi : 1 ≤ i ≤ d+ l} forms equivariant Chern roots of the
direct sum bundles 1kE1 ⊕ k∗H−l,−1. Hence we can set k∗xi = −(g − i)ψ for
i ≥ g + 1 and {kxi : 1 ≤ i ≤ g} the equivariant Chern roots of the bundle
1k∗E1. This proves our assertion. �

Schubert cycles Σµ specify S1-equivariant cohomology classes ΩT
µ corre-

sponding to Okounkov-Olshanski shifted Schur functions s∗µ. Let us recall
the definition of the shifted Schur functions following [2]. The factorial Schur
polynomial depending on partition µ and variables {z1, . . . , zn} is given by
the formula:

ntµ(z1, . . . , zn) =
det[(zi � µj + n− j)]ni,j=1

det[(zi � n− j)]ni,j=1

,

where the symbol (z � i) stands for the i-th falling factorial power of the
variable z:

(z � i) =

{
z(z − 1) · · · (z − i+ 1), i = 1, 2, . . . ;

1, i = 0.

After the change of variables z′i = zi − n+ i for 1 ≤ i ≤ n, we obtain the
shifted Schur polynomials ns∗µ(z′1, . . . , z

′
n) = ntµ(z1, . . . , zn). The shifted
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Schur polynomials satisfy the stability conditions n+1s∗µ(z1, . . . , zn, 0) =
ns∗µ(z1, . . . , zn) which allows us to define the shifted Schur functions
s∗µ(z1, z2, . . . ) in the sequence of variables {z1, z2, . . . }. The stability con-
dition expressed in terms of factorial Schur functions looks as follows: given
any g ∈ Z,

n+1tµ(X1 + (n− g) + 1, . . . , Xn + (n− g) + 1, 0)

= ntµ(X1 + (n− g), . . . , Xn + (n− g))

for n > l(µ). Here Xi = z′i − i+ g for any i ≥ 1. For more details, see [2].
It follows from the results of [10] that the equivariant Schubert class in
H∗S1(Grg−1(H)) corresponding to the partition µ is given by the formula:

ΩT
µ = s∗µ(z1, z2, . . . )u

|µ| = ntµ

(
x1 + (n− g)u

u
, . . . ,

xn + (n− g)u

u

)
u|µ|,

for all n > l(µ). Here (zi) is the sequence of variables defined by zi = (xi +
(i− g)u)/u for all i, and |µ|, the weight of a partition µ, is defined to be∑

i µi. Note that xi+(i−g)u = 0 for all i sufficiently large in H∗S1(Grg−1(H))
and thus the sequence of variables (zi) defined by zi = (xi + (i− g)u)/u
makes sense in s∗µ. Using this statement and the Theorem 1.1, we obtain

Corollary 1.1.

k∗ΩT
µ = gs∗µ(z1, . . . , zg)(−ψ)|µ| = gtµ

(
z′1, . . . , z

′
g

)
(−ψ)|µ|

where {z1, . . . , zg} is the set of variables defined by zi = (k∗xi − (i− g)ψ)/
(−ψ) for 1 ≤ i ≤ g and {z′1, . . . , z′g} is the set of variables defined by z′i =
(k∗xi − (n− g)ψ)/(−ψ) for 1 ≤ i ≤ g. and n is a positive integer such that
n > l(µ).

The factorial Schur function gtµ (X1 + (n− g), . . . , Xg + (n− g)) is an
inhomogeneous symmetric function; we will represent it as a sum of homo-
geneous polynomials:

gtµ (X1 + (n− g), . . . , Xg + (n− g)) =
∑
i

tiµ (X1, . . . , Xg) ,

where tiµ(X1, . . . , Xg) is a homogeneous symmetric polynomial of degree i
in X1, . . . , Xg. Hence we can write

(1.5) k∗ΩT
µ =

∑
i

tiµ(k∗x1, . . . , k
∗xg)(−ψ)|µ|−i.
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Shifted Schur functions form a basis in the space of all shifted symmetric
functions, and therefore we can say that conversely Theorem 1.1 follows from
Corollary 1.1.

Denote Ψµ the l(µ)× l(µ) matrix whose ij-th entry is given by

(Ψµ)ij =



∑
a+b=µi+j−i ha(k

∗x1, . . . , k
∗xg)eb(0, 1, 2, . . . , µi − i+ g − 1)ψb,

if µi − i+ g ≥ 1;∑
a+b=µi+j−i ea(k

∗x1, . . . , k
∗xg)hb(0, 1, 2, . . . , i− µi − g)ψb,

if µi − i+ g ≤ 0.

We can also consider another matrix (of the size l(µ′)× l(µ′)) defined
by

(Ψ′µ)ij =



∑
a+b=µi+j−i ea(k

∗x1, . . . , k
∗xg)hb(0, 1, 2, . . . , µ

′
i − i+ g − 1)ψb,

if µ′i − i+ g ≥ 1;∑
a+b=µi+j−i ha(k

∗x1, . . . , k
∗xg)eb(0, 1, 2, . . . , i− µ′i − g)ψb,

if µ′i − i+ g ≤ 0.

Here µ′ denotes the conjugate partition of µ. Using the determinant formula
for double Schur functions, we obtain

k∗ΩT
µ = det Ψµ = det Ψ′µ.

If l(µ) ≤ g, µi − i+ g > 1 for 1 ≤ i ≤ g. Thus

k∗ΩT
µ = det

 ∑
a+b=µi+j−i

ha(k
∗x1, . . . , k

∗xg)ea(1, 2, . . . , µi − i+ g − 1)ψb


1≤i,j≤l(µ)

.

Similarly, if l(µ) ≤ g and µ′i − i+ g > 1, we can also obtain the dual formula

k∗ΩT
µ = det

 ∑
a+b=µ′

i+j−i
ea(k

∗x1, . . . , k
∗xg)hb(1, 2, . . . , µ

′
i − i+ g − 1)ψb


1≤i,j≤l(µ′)

.

These two formulas are useful when we compute the cohomology classes of
the Weierstrass cycles.
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We can consider also cohomology classes ps corresponding to symmetric
functions

ps(u, x1, . . . , xn, . . . ) =

∞∑
i=1

{xsi − (−1)s(i− d− 1)sus}

(these classes constitute a multiplicative system of generators of equivariant
cohomology ). Applying Theorem 1.1, we obtain

Corollary 1.2.

k∗ps = chs(E)−
g∑
i=1

(i− g)sψs,

where chs(E) stands for the s-th component of the Chern character of Hodge
bundle E.

All statements proved above are valid not only for the space ĈMg, but

also for its S1-invariant subspaces, in particular, for the subspace M̂g con-

sisting of smooth curves. For M̂g, some of our statements can be simplified.
For the moduli space of pointed smooth curves [20], the Mumford for-

mula

(1.6) c(E)c(E∗) = 1

implies that ha(x1, . . . , xg) = (−1)aλa. Hence the Ψ-matrix can be expressed
in the form:

(1.7) (Ψµ)ij =



∑
a+b=µi+j−i(−1)aeb(0, 1, 2, . . . , µi − i+ g − 1)λaψ

b,

if µi − i+ g ≥ 1;∑
a+b=µi+j−i(−1)ahb(0, 1, 2, . . . , i− µi − g)λaψ

b,

if µi − i+ g ≤ 0.

If we are working with the moduli space M̂g, the Chern character of the
Hodge bundle can be expressed in terms of kappa-classes [20]. Therefore we
obtain:

Corollary 1.3.

k∗ps =

{∑g
i=1(i− g)2rψ2r, if s = 2r;

B2rκ2r/2r −
∑g

i=1(i− g)2r−1ψ2r−1, if s = 2r − 1.
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2. Weierstrass cycles

The Schubert cells ΣS on Gr(H) are labeled by decreasing sequences of in-
tegers S : s1 > s2 > · · · such that the sets S+ = {si : i ≥ 1} ∩ Z+ and S− =
Z− \ {si : i ≥ 1} are both finite sets6. The virtual cardinality of a sequence
S is defined as d = #S+ −#S−. The closure of ΣS is the Schubert cy-
cles ΣS . Given a sequence S, we define its corresponding partition µ by
µi = si + i− d, for all i, where d is the virtual cardinality of S. The equiv-
ariant Schubert class of ΣS in H∗S1(Gr(H)) is ΩT

µ where µ is the partition
corresponding to S. For more details, see [10] and [11].

Theorem 2.1. A point k(C, p, z) of the Krichever locus belongs to the
Schubert cell ΣS defined by the Weierstrass sequence S at the point p.

(See [1] where this statement is attributed to Mumford.)
Assume that H is a numerical semigroup of genus g. Let Aalg

H be the
linear subspace of H generated by elements of the form {z−h : h ∈ H} whose
closure is denoted by AH . Suppose that {h1, . . . , hl} is a generating set of
H. Then Aalg

H = C[[z−h1 , . . . , z−hl ]]. The affine curve SpecAalg
H is called a

monomial curve. Let us consider the filtration in C((z)) by {z−nC[[z]] : n ∈
Z}. There is a natural filtration of Aalg

H from the filtration of C((z)). Then

we obtain the associated graded algebra gr(Aalg
H ) from the filtration of Aalg

H .
The complete irreducible curve CH also called a monomial curve is given by
Proj(grAalg

H ) and is the one point completion of SpecAalg
H .In other words,

CH = SpecAalg
H ∪ {p}, where p is a smooth point so that z(p) = 0. We can

check that AH = k0(CH , p, z) and thus Aalg
H is the space of meromorphic

functions on C with the only possible pole at p. Since z−h ∈ Aalg
H , we see

that H is the Weierstrass semigroup at p. Hence every numerical semigroup
of genus g is a Weierstrass semigroup of a smooth point on an irreducible
curve of genus g.

The Weierstrass sequence S of (C, p, z) in ĈMg is closely related to
the Weierstrass semigroup H of (C, p). Let ς : Z→ Z be the translation
operator: ς(n) = n+ 1, for n ∈ Z. Then H = Z− ς(S) or equivalently S =
ς−1(Z−H).

Given a numerical semigroup H of genus g let S be a sequence defined by
S = ς−1(Z−H). By (1.3), we have HS = k0(CH , p, z)

⊥ = k(CH , p, z), where
HS is the closed subspace of H generated by {zs : s ∈ S}. Since HS belongs

6Here Z+ and Z− are subsets consisting of nonnegative integers and of negative
integers respectively.
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to ΣS and HS = k(CH , p, z), HS belongs to the intersection of k(ĈMg) and
the Schubert cell ΣS . We conclude that:

Theorem 2.2. The intersection of k(ĈMg) and ΣS is nonempty if and
only if the set H = Z− ς(S) is a numerical semigroup of genus g.

Let us consider the closure ΣS of a Schubert cell ΣS . A point k(C, p, z)
belongs to ΣS if and only if the Weierstrass sequence (si(p)) at p obeys the
relation si(p) ≥ si for all i.

Lemma 2.1. Let H be a numerical semigroup of genus g and S = ς(Z−
H). Then si ≤ 2g − 2i for 1 ≤ i ≤ g and si = g − i− 1 for i ≥ g + 1.

Proof. This statement follows from [15], Lemma 3.2.. �

Let Z be the sequence defined by zi = 2g − 2i for 1 ≤ i ≤ g and zi =
g − i− 1 for i ≥ g + 1. Then Z− ς(Z) is the numerical semigroup of genus

g generated by 2. Hence HZ ∈ k(ĈMg) ∩ ΣZ . If S is any sequence so that
si ≤ 2g − 2i for 1 ≤ i ≤ g and si ≤ g − i− 1, then zi ≥ si for all i and thus
HZ ∈ k(ĈMg) ∩ ΣS .

Proposition 2.1. The set k(ĈMg) ∩ ΣS is nonempty if and only if the
sequence S obeys si ≤ 2g − 2i for 1 ≤ i ≤ g and si ≤ g − i− 1.

Proof. We have seen that if S obeys the relations, HZ ∈ k(ĈMg) ∩ ΣS .

Thus k(ĈMg) ∩ ΣS is nonempty. Conversely, assume that k(ĈMg) ∩ ΣS

is nonempty. Then there exists a sequence S′ = (s′i) such that s′i ≥ si and

k(ĈMg) ∩ ΣS′ 6= φ. By the theorem 2.2, H ′ = Z− ς(S′) is a numerical semi-
group of genus g. By the Lemma 2.1, s′i ≤ 2g − 2i for 1 ≤ i ≤ g and s′i =
g − i− 1 for i ≥ g + 1. Hence si ≤ s′i ≤ 2g − 2i for 1 ≤ i ≤ g and si ≤ s′i =
g − i− 1 for i ≥ g + 1 which completes the proof. �

Let us say that a set Γ ⊂ X is a support of a cohomology class ξ ∈ H∗(X)
if the restriction of this class to X \ Γ is trivial (i.e. ι∗(ξ) = 0 where ι∗ stands
for the homomorphism of cohomology groups induced by the embedding
X \ Γ→ X.). If we consider the G-equivariant cohomology of G-space X,
we can apply this notion to the G-invariant subset Γ. If X is a manifold and
Γ is a submanifold then Γ is a support of the cohomology class that is dual to
Γ; this cohomology class is denoted by [Γ]. This statement remains correct
in the framework of equivariant cohomology and in the case when Γ is a
subvariety of a complex manifold X. Conversely, if a submanifold Γ having
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codimension k is a support of a k-dimensional cohomology class ξ of the
manifold X, then this cohomology class is proportional to the cohomology
class dual to Γ :

(2.1) ξ = const[Γ]

The same is true if X is a complex manifold and Γ is an irreducible subva-
riety. If Γ is a reducible subvariety and is a support of a cohomology class
having the dimension equal to the real codimension of Γ, then this class is
a linear combination of classes dual to irreducible components of Γ. Similar
statements are true in equivariant cases.

These results are well known but we were not able to find an appropriate
reference. See, however, [12] and [5]. Under some conditions one can apply
these statements in the case when X is infinite-dimensional and Γ has finite
codimension.

In particular, Schubert cycle Σµ is a support of the S1-equivariant coho-
mology class ΩT

µ corresponding to Okounkov-Olshanski shifted Schur func-
tions s∗µ.

Let us consider a G-equivariant map f : Y → X between G-manifolds.
If an equivariant cohomology class ξ ∈ H∗G(X) has a support that does not
intersect f(Y ), then f∗(ξ) = 0. Applying this remark to the Krichever map,
we obtain the following statement.

If the intersection of ΣS and the Krichever locus k(ĈMg) is empty, then
the homomorphisn k∗ determined by the Krichever map sends the equiv-
ariant cohomology class ΩT

µ into the trivial equivariant cohomology class.

Using Theorem 1.1, we obtain a relation in the tautological ring of ĈMg:

(2.2) det Ψµ = 0.

Here µ stands for a partition corresponding to the sequence S. In particular,
the above relation is satisfied if the sequence violates the relations si ≤
2g − 2i for 1 ≤ i ≤ g and si ≤ g − i− 1 for i ≥ g + 1. This relation can be
expressed also in terms of shifted Schur functions or factorial Schur functions

(2.3) gs∗µ(z1, . . . , zg) = gtµ

(
−k
∗x1 − lψ
ψ

, . . . ,−k
∗xg − lψ
ψ

)
= 0,

where zi = (k∗xi − (i− g)ψ)/(−ψ) for 1 ≤ i ≤ g and l ≥ l(µ)− g + 1. Prob-
ably, the most convenient way to express the relations we found is to use
the functions tiµ (homogeneous components of factorial Schur functions) as
in (1.5):
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Theorem 2.3. If µ is a partition corresponding to such a sequence S that
one cannot find a Weierstrass sequence S′ obeying S′ ≥ S then∑

i

(−ψ)|µ|−itiµ(k∗x1, . . . , k
∗xg) = 0.

Of course, these relations are valid also in the case when we restrict
ourselves to smooth curves; we obtain relations in the tautological ring of
the universal curve Mg,1. Using pull-push formula we get relations in Mg:

(2.4)
∑
i

(−1)|µ|−iκ|µ|−i−1t
i
µ(k∗x1, . . . , k

∗xg) = 0.

However, in the tautological rings of Mg,1 and Mg there exist other rela-
tions, in particular, the relations following from the Mumford formula (1.6).
Notice that using (1.6) one can get the relations (2.2) on Mg,1 with the
Ψ-matrix defined by (1.7).

The theorem 2.3 gives an estimate of the tautological ring of the space
ĈMg from above (Precise statements can be found below). To obtain an
estimate of this ring from below, one can consider the restriction of this
ring to the fixed points of the S1-action. Since the fixed points of the S1-
action on Gr(H) are of the form HS , the fixed points on ĈMg correspond
to the monomial curves. For each Weierstrass sequence S, the inclusion map
{HS} → ĈMg induces a homomorphism on the equivariant cohomology:

evS : H∗S1(ĈMg)→ H∗S1({HS}) ∼= C[ψ].

The ring homomorphism evS obeys evS(ψ) = ψ and evS(λi) = ei(s1 + 1, . . . ,
sg + 1)ψi for all 1 ≤ i ≤ g. Taking the direct sum of all evS we obtain a
ring homomorphism ev =

⊕
S evS , where S runs over all the Weierstrass

sequences.
The tautological ring of ĈMg denoted by R = R(ĈMg) is the Q-

subalgebra of H∗S1(ĈMg) generated by λ1, . . . , λg and ψ. Consider the free
polynomial algebra Q[Λ1, . . . ,Λg,Ψ] generated by commuting variables
Λ1, . . . ,Λg,Ψ. The ring homomorphism ε : Q[Λ1, . . . ,Λg,Ψ]→ R sending
Λi → λi and Ψ→ ψ induces an isomorphism Q[Λ1, . . . ,Λg,Ψ]/ ker ε ∼= R.
The tautological ring R is the quotient ring of Q[Λ1, . . . ,Λg,Ψ] by the
ideal of tautological relations Itau = ker ε. Restricting ev to R, we obtain
a ring homomorphism from R to

⊕
S C[ψ]. We obtain a homomorphism

Q[Λ1, . . . ,Λg,Ψ]→
⊕

S C[ψ] whose kernel is denoted by Iev. It is obvious
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that the ideal Itau is contained in Iev. We obtain a surjective homomor-
phism

(2.5) R→ Q[Λ1, . . . ,Λg,Ψ]/Iev.

Let I be the ideal of Q[Λ1, . . . ,Λg,Ψ] generated by k̃∗ΩT
µ , where k̃∗ΩT

µ is the

polynomial in Q[Λ1, . . . ,Λg,Ψ] whose image in R is k∗ΩT
µ with the property

that ΩT
µ is the equivariant Schubert class of the Schubert cycles Σµ such

that the intersection of Σµ and k(ĈMg) is empty. We also know that I is
contained in Itau and thus we have a surjective homomorphism

(2.6) Q[Λ1, . . . ,Λg,Ψ]/I → R.

Recall that the Hilbert-Poincare series P (A, t) of a graded algebra A is
the generating function of hi(A) = dimAi:

P (A, t) =

∞∑
i=0

hi(A)ti.

By (2.6) and (2.5), we have the following estimates

hi(A/Iev) ≤ hi(R) ≤ hi(A/I).

In [14], we present the Hilbert-Poincare series of Q[Λ1, . . . ,Λg,Ψ]/I and
of Q[Λ1, . . . ,Λg,Ψ]/Iev and estimate hi(R) for curves of genus g ≤ 6.

Every point V in the Krichever locus is contained in the closed sub-
space H′ of H spanned by {zi : i 6= −1}. The space H′ has a natural polar-
ized structure coming from the polarized structure of H. This means that
the Krichever map k sends ĈMg to Grg(H′). Schubert cells in Grg(H′) are
labeled by sequences S obeying si = g − 1− i for i� 0; we will use the
notation Σ′S for these cells. It is easy to check that Σ′S = ΣS

⋂
Grg(H′).

Assume that k−1Σ′S is nonempty. Then a point (C, p, z) ∈ k−1Σ′S if

and only if p has the Weierstrass sequence S. The Weierstrass cycle ŴS =
k−1Σ

′
S

⋂
ĈMg in ĈMg is a support of the cohomology class k∗ΩT

µ , where ΩT
µ

is the equivariant cohomology class corresponding to the Schubert cycle Σ
′
S

in the equivariant cohomology of Grassmannian Gr(H′). Of course this state-

ment can be applied also to the Weierstrass cycle ŴS
⋂
M̂g = k−1Σ

′
S

⋂
M̂g

in M̂g. We have mentioned that the equivariant cohomology of M̂g can be
identified with cohomology of Mg,1 by means of the forgetful map π. We
obtain that the Weierstrass cycle WS inMg,1 is a support of the cohomology
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class (π∗)−1k∗ΩT
µ . In the case when the codimension of the Weierstrass cycle

WS equals to the dimension of the equivariant cohomology class ΩT
µ (in this

case, one says that the Weierstrass cycle has expected dimension), we obtain
information about the cohomology class dual to WS . (We can use the rela-
tion between the notion of support and the notion of its dual class; see (2.1).)
Namely, if we assume that the Weierstrass cycle WS is irreducible, then the
dual cohomology class [WS ] is proportional to (π∗)−1k∗ΩT

µ . If we impose

stronger condition that the intersection of the Krichever locus k(M̂g) and

the Schubert cycle Σ
′
S is in general position, we can say that the coefficient

of proportionality is equal to 1. If the Weierstass cycle WS is reducible, we
can say that (π∗)−1k∗ΩT

µ is a linear combination of cohomology classes dual
to irreducible components of WS .

Using the calculation of k∗ΩT
µ in Section 2, we obtain the information

about [WS ] in terms of shifted Schur functions or factorial Schur functions:

Theorem 2.4. If the complex codimension of WS is equal to |µ| =
∑
µi

(i.e. the cycle has expected dimension), then

[WS ] = const gs∗µ(z1, . . . , zg)(−ψ)|µ|(2.7)

= const gtµ

(
−k
∗x1
ψ

, . . . ,−k
∗xg
ψ

)
(−ψ)|µ|,

where const is a non-zero constant, µ is the partition corresponding to the
sequence S and z1, . . . , zg are the formal variables defined by zi = (k∗xi −
(i− g − 1)ψ)/(−ψ) for 1 ≤ i ≤ g.

In the paper [14] we have analyzed the Weierstrass cycles in the case
of low genera g ≤ 6. We have found that the majority of Weierstrass cycles
satisfy the conditions of the theorem ( all Weierstrass cycles for g ≤ 4 have
expected dimension and 9 out of 11 Weierstrass cycles have expected dimen-
sion for g = 5). In all these cases we calculated corresponding cohomology
classes using (2.7).

To prove the theorem we notice that the complex codimension of Σ
′
S in

Grg(H′) is equal to |S| =
∑i0

i=1(si + i− g) +
∑∞

i=i0+1(si + i− g + 1), where
i0 is the index so that si0 ≥ 0 and si0+1 < 0. (If si < 0 for all i, we set i0 =
0.) We associate to S a partition µ = (µi) by µi = si + i− g for 1 ≤ i ≤ i0
and µi = si + i− g + 1 if i ≥ i0 + 1; then the codimension is equal to |µ|.
The partition corresponding to a Weierstrass sequence has length at most
g by the Riemann-Roch theorem. Therefore the factorial Schur function
g+1tµ(X1 + l, . . . , Xg + l, 0) = gtµ(X1 + l, . . . , Xg + l) is already in stable
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range for l = 0. To check that the constant in (2.7) does not vanish we use
Serre’s theorem [21].

Again it is more convenient to use homogeneous components of factorial
Schur functions. Then

(2.8) [WS ] = const
∑
i

(−ψ)|µ|−itiµ(k∗x1, . . . , k
∗xg),

Notice that in the case when the codimension of WS is not equal to |µ|
the RHS of (2.7) makes sense, but is not related to [WS ]. One can define
“virtual Weierstrass cycle” as a homology class dual to the RHS of (2.7) .
It is interesting to notice that the multiplication rule of Schubert classes in
the equivariant cohomology of Grassmannian (see [11],[17]) gives a multipli-
cation rule for “virtual Weierstrass cycles”.

One can consider Weierstrass cycles in Mg defined as images of Weier-
strass cycles in Mg,1 by the forgetful map. In other words, we define W ′S
as a subvariety consisting of curves C ∈Mg containing at least one point
with Weierstrass sequence S. Using the pull-push formula, we obtain the
following expression for the corresponding cohomology classes

(2.9) [W ′S ] = const
∑
i

(−1)|µ|−iκ|µ|−i−1t
i
µ(k∗x1, . . . , k

∗xg).

Here µ stands for the partition corresponding to S and κb = π∗ψ
b+1 are the

kappa-classes. This expression is valid if W ′S has the expected dimension ,
i.e. the expression holds if the complex codimension of W ′S inMg equals to
|µ| − 1.

In a separate paper [14], we have applied the results of the present paper
to the moduli space of irreducible curves of low genera. We estimate the
dimension of Weierstrass cycles from below; using the calculations of [15]
and [16], we show that for g ≤ 6, this estimate either coincides with the
exact dimension or differs by one. If our estimate coincides with the exact
dimension, we are able to calculate the homology class of a Weierstrass cycle
up to a constant factor; we performed this calculation for g ≤ 6. We compare
the relations in the tautological ring obtained in the present paper with the
description of the tautological ring of Mg obtained by Faber [4].
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