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Epimorphic subgroups of algebraic groups

Michel Brion

In this note, we show that the epimorphic subgroups of an algebraic
group are exactly the pull-backs of the epimorphic subgroups of its
affinization. We also obtain epimorphicity criteria for subgroups of
affine algebraic groups, which generalize a result of Bien and Borel.
Moreover, we extend the affinization theorem for algebraic groups
to homogeneous spaces.

1. Introduction and statement of the results

The algebraic groups considered in this note are the group schemes of finite
type over a field k. They form the objects of a category, with morphisms
being the homomorphisms of k-group schemes. One of the most basic ques-
tions one may ask about this category is to describe monomorphisms and
epimorphisms. Recall that a morphism f : G→ H is a monomorphism if it
satisfies the left cancellation property: for any algebraic group G′ and for
any morphisms f1, f2 : G′ → G such that f ◦ f1 = f ◦ f2, we have f1 = f2.
Likewise, f is an epimorphism if it satisfies the right cancellation property.

The answer to this question is very easy and well-known for monomor-
phisms: these are exactly the homomorphisms with trivial (scheme-theoretic)
kernel, or equivalently the closed immersions of algebraic groups. Also,
f : G→ H is an epimorphism if and only if so is the inclusion of its scheme-
theoretic image. This reduces the description of epimorphisms to that of the
epimorphic subgroups of an algebraic group G, i.e., of those algebraic sub-
groups H such that every morphism G→ G′ is uniquely determined by its
pull-back to H. The purpose of this note is to characterize such subgroups.

Examples of epimorphic subgroups include the parabolic subgroups of
a smooth connected affine algebraic group G, i.e., the algebraic subgroups
H ⊂ G such that the homogeneous space G/H is proper, or equivalently
projective. Indeed, for any morphisms f1, f2 : G→ G′ which coincide on H,
the map G→ G′, x 7→ f1(x) f2(x−1) factors through a map ϕ : G/H → G′.
But every such morphism is constant: to see this, we may assume k alge-
braically closed; then G/H is covered by rational curves (images of mor-
phisms P1 → G/H), while every morphism P1 → G′ is constant.
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In the category of smooth connected affine algebraic groups over an
algebraically closed field, the epimorphic subgroups have been studied by
Bien and Borel in [2, 3]; see also [10, §23] for a more detailed exposition,
and [4, §4] for further developments. In particular, [2, Thm. 1] presents
several epimorphicity criteria in that setting. Our first result extends most
of these criteria to affine algebraic groups over an arbitrary field. To state
it, let us define affine epimorphic subgroups of an affine algebraic group G
as those algebraic subgroups H ⊂ G that are epimorphic in the category of
affine algebraic groups. (Clearly, epimorphic implies affine epimorphic. In
fact, the converse holds, as we will show in Corollary 3).

Theorem 1. The following conditions are equivalent for an algebraic sub-
group H of an affine algebraic group G:

(i) H is affine epimorphic in G.

(ii) O(G/H) = k.

(iii) For any finite-dimensional G-module V , we have the equality of fixed
point subschemes V H = V G.

(iv) For any finite-dimensional G-module V , if V = V1 ⊕ V2, where V1, V2

are H-submodules, then V1, V2 are G-submodules.

This result is proved in Section 2 by adapting the argument of [2, Thm. 1]
(see also [14, Thm. 13]). When G is smooth and connected, condition (ii) is
equivalent to the k-vector space O(G/H) being finite-dimensional. But this
fails for non-connected groups (just take H to be the trivial subgroup of a
non-trivial finite group G) and for non-smooth groups as well (take G, H as
above with G infinitesimal).

For the category of finite-dimensional Lie algebras over a field of charac-
teristic 0, the equivalence of conditions (i), (iii) and (iv) has been obtained
by Bergman in an unpublished manuscript which was the starting point of
[2]; see [1, Cor. 3.2], and [15] for recent developments based on the (related
but not identical) notion of wide subalgebra of a semi-simple Lie algebra.

Our second result yields an epimorphicity criterion in the category of
all algebraic groups. To formulate it, recall the affinization theorem (see [7,
§III.3.8]): every algebraic group G has a smallest normal algebraic subgroup
N such that the quotient G/N is affine. Moreover, N is smooth, connected,
and contained in the center of the neutral component G0. Also, N is anti-
affine (i.e.,O(N) = k) andN is the largest algebraic subgroup ofG satisfying
this property; we denote N by Gant. The quotient morphism G→ G/Gant
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Epimorphic subgroups of algebraic groups 1651

is the affinization morphism, i.e., the canonical map

ϕG : G −→ SpecO(G).

We may now state:

Theorem 2. The following conditions are equivalent for an algebraic sub-
group H of an algebraic group G:

(i) H is epimorphic in G.

(ii) H ⊃ Gant and O(G/H) = k.

This result is proved in Section 4, after gathering auxiliary results in
Section 3.

Note that the formations of O(G/H) and Gant commute with base
change by field extensions of k. In view of Theorem 2, this yields the first
assertion of the following:

Corollary 3. Let G be an algebraic group, and H an algebraic subgroup.

(i) H is epimorphic in G if and only if the base change Hk′ is epimorphic
in Gk′ for some field extension k′ of k.

(ii) When G is affine, H is epimorphic in G if and only if it is affine
epimorphic.

The second assertion follows readily from Theorems 1 and 2. As a con-
sequence, the epimorphic subgroups of an algebraic group G are exactly the
pull-backs of the epimorphic subgroups of its affinization.

Theorem 2 and Corollary 3 reduce the description of the epimorphic
subgroups of an algebraic group G over k, to the case where G is affine and
k is algebraically closed. When G is smooth, our next result yields further
reductions:

Theorem 4. The following conditions are equivalent for an algebraic sub-
group H of a smooth algebraic group G over an algebraically closed field k:

(i) H is epimorphic in G.

(ii) The reduced subgroup Hred is epimorphic in G.

(iii) The reduced neutral component H0
red is epimorphic in G0 and the nat-

ural map Hred/H
0
red → G/G0 is surjective.
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This result is proved in Section 5.
In view of the above results, the class of homogeneous spaces X = G/H

such that O(X) = k deserves further consideration. These anti-affine ho-
mogeneous spaces feature in an extension of the affinization theorem for
algebraic groups (see [7, III.3.8]), which is our final result. To state it, recall
that a quasi-compact scheme Z is said to be quasi-affine if the affinization
map ϕZ : Z → SpecO(Z) is an open immersion (see [9, II.5.1.2] for further
characterizations).

Theorem 5. Let G be an algebraic group, and H an algebraic subgroup.

(i) There exists a smallest algebraic subgroup L of G containing H such
that G/L is quasi-affine. Moreover, O(G/L) = O(G/H) and the
affinization map

ϕG/H : G/H −→ SpecO(G/H) =: X

is the composition

G/H
u−→ G/L

ϕG/L−→ SpecO(G/L) = X,

where u denotes the canonical morphism.

(ii) The formation of L commutes with base change by arbitrary field ex-
tensions.

(iii) L is the largest subgroup of G containing H such that L/H is anti-
affine.

(iv) L/H is geometrically irreducible.

(v) If G is affine, then L is the largest subgroup of G containing H as an
epimorphic subgroup.

(vi) If G and H are smooth, then so is L.

This result is proved in Section 6. In the setting of smooth affine algebraic
groups over an algebraically closed field, it gives back a statement of Bien
and Borel (see [2, Prop. 1]), proved by Grosshans in [10, §2, §23]; our proof,
based on a descent argument, is somewhat more direct.

Also, Theorem 5 gives back most of the affinization theorem for an arbi-
trary algebraic group G. More specifically, taking for H the trivial subgroup
and using the fact that every quasi-affine algebraic group is affine (see e.g. [8,
VIB.11.11]), we obtain that G has a smallest algebraic subgroup L such that
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Epimorphic subgroups of algebraic groups 1653

G/L is affine, and L is the largest anti-affine subgroup of G; moreover, L is
connected. But the smoothness property of anti-affine algebraic groups does
not extend to homogeneous spaces, as shown by Example 11 at the end of
Section 6.

Returning to the description of all the epimorphic subgroups H of a
smooth algebraic group G over a field k, we may assume (by Theorem 2,
Corollary 3 and Theorem 4) G to be affine and connected, H smooth and
connected, and k algebraically closed; this is precisely the setting of [2, 3].
Even so, the structure of epimorphic subgroups is only partially understood;
a geometric criterion of epimorphicity is obtained in [16] when G is semi-
simple and k has characteristic 0.

The classification of epimorphic subgroups of non-smooth algebraic
groups presents further open problems; see Example 11 again for a construc-
tion of such subgroups H ⊂ G, for which the quotient G/H is non-smooth as
well. Examples with a smooth quotient may be obtained as follows: over any
algebraically closed field k of prime characteristic, there exist rational homo-
geneous projective varieties X such that the automorphism group scheme
AutX is non-smooth (see [5, Prop. 4.3.4]). Let then G denote the neutral
component of AutX , and H the stabilizer of a k-rational point x ∈ X. Then
G is affine, non-smooth, and X ∼= G/H; as a consequence, H is non-smooth
as well. Also, H is epimorphic in G, by Theorem 2 or a direct argument as
for parabolic subgroups. Thus, the description of epimorphic subgroups of
possibly non-smooth algebraic groups entails that of automorphism group
schemes of rational homogeneous projective varieties, which seems to be
completely unexplored.

Notation and conventions. We use the books [7] and [8] as general ref-
erences, and the expository text [6] for some further results.

Throughout this note, we consider schemes over a fixed field k. By an
algebraic group, we mean a group scheme G of finite type over k; we denote
by e = eG ∈ G(k) the neutral element, and by G0 the neutral component of
G. The group law of G will be denoted multiplicatively: (x, y) 7→ xy.

By a subgroup of G, we mean a k-subgroup scheme H; then H is closed
in G. Morphisms of algebraic groups are understood to be homomorphisms
of k-group schemes.

Given a subgroup H ⊂ G and a normal subgroup N / G, we denote by
N oH the corresponding semi-direct product, and by N ·H the scheme-
theoretic image of the morphism

N oH −→ G, (x, y) 7−→ xy.
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Then N ·H is a subgroup of G, and the natural map H/N ∩H → G/N is
a closed immersion with image N ·H/N (see e.g. [8, VIIA.5.3.3]).

2. Proof of Theorem 1

(i) ⇒ (ii): The action of G on itself by right multiplication yields a G-
module structure on the algebra O(G) (see [7, Ex. II.2.1.2]). Moreover,
for any subgroup K ⊂ G acting on O(G) by right multiplication, the nat-
ural map O(G/K)→ O(G)K is an isomorphism, as follows e.g. from [8,
Cor. VIA.3.3.3]. In particular, O(G/H) ∼= O(G)H and O(G)G = k. Thus, it
suffices to show that every f ∈ O(G)H is fixed by G.

Consider the action of G on itself by left multiplication; this yields an-
other G-module structure on O(G), and O(G)H is a G-submodule. By [7,
II.2.3.1], we may choose a finite-dimensional G-submodule V ⊂ O(G)H that
contains f . View V as a vector group (the spectrum of the symmetric al-
gebra of the dual vector space) equipped with a compatible G-action, and
consider the semi-direct product G′ := V oG. Then G′ is an affine algebraic
group; moreover, the maps

f1 : G −→ G′, g 7−→ (0, g), f2 : G −→ G′, g 7−→ (g · f − f, g)

are two morphisms which coincide on H. Thus, f1 = f2, that is, f is fixed
by G.

(ii) ⇒ (iii): Recall from [11, I.3.2] that V H is the subscheme of V asso-
ciated with a linear subspace. So it suffices to show that every v ∈ V H(k)
is fixed by G. Let f ∈ O(V ). Then the assignment g 7→ f(g · v) defines fv ∈
O(G)H ∼= O(G/H) = k. Thus, we have fv(g) = fv(e), that is, f(g · v) = f(v)
identically on G. Since this holds for all f ∈ O(V ), it follows that g · v = v
identically on G.

(iii) ⇒ (iv): Let π : V → V1 denote the projection with kernel V2. Con-
sider the action of G on End(V ) by conjugation; then End(V ) is a finite-
dimensional G-module, and π ∈ End(V )H . As a consequence, π ∈ End(V )G.
It follows that V1 (the image of π) is normalized by G. Likewise, V2 is nor-
malized by G.

(iv) ⇒ (i): Let G′ be an affine algebraic group, and

f1, f2 : G −→ G′

two morphisms which coincide on H. We may view G′ as a subgroup of
GL(V ) for some finite-dimensional vector space V (see [7, II.2.3.3]). This
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yields two linear representations

ρ1, ρ2 : G −→ GL(V )

which coincide on H. Consider the morphism

ρ1 ⊕ ρ2 : G −→ GL(V ⊕ V ).

Then we have with an obvious notation:

V ⊕ V = (V ⊕ 0)⊕ diag(V ),

where V ⊕ 0 is normalized by G, and diag(V ) is normalized by H (as ρ1|H =
ρ2|H). So diag(V ) is normalized by G, that is, ρ1 = ρ2. Thus, f1 = f2.

3. Some auxiliary results

Throughout this section, G denotes an algebraic group, and H ⊂ G a sub-
group. We begin with a series of easy observations.

Lemma 6. Assume that H is epimorphic in G.

(i) If K ⊂ G is a subgroup containing H, then K is epimorphic in G.

(ii) If N / G is a normal subgroup, then H/N ∩H is epimorphic in G/N .

Proof. The assertion (i) is obvious, and implies that N ·H is epimorphic in
G. As a direct consequence, N ·H/N is epimorphic in G/N ; this yields the
assertion (ii). �

Lemma 7. Let H be an epimorphic subgroup of G.

(i) If G is finite, then G = H.

(ii) For an arbitrary G, we have G = G0 ·H.

Proof. (i) Since G is affine and H ⊂ G is affine epimorphic, we have
O(G/H) = k by Theorem 1. As the scheme G/H is finite and contains a
k-rational point x, it follows that this scheme consists of the point x, hence
H = G.

(ii) By Lemma 6 (ii), G0 ·H/G0 is epimorphic in G/G0. Thus, we may
replace G with G/G0, and hence assume that G is finite and étale. Then
H = G by (i). �
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Remark 8. (i) For finite étale groups, Lemma 7 (i) also follows by adapting
the proof of the surjectivity of epimorphisms of abstract groups, given in [13].

(ii) Lemmas 6 and 7 also hold in the category of affine algebraic groups,
with the same proofs.

Lemma 9. Let N / G be a normal subgroup.
If H ⊃ Gant, then H/N ∩H ⊃ (G/N)ant.
Conversely, if H/N ∩H ⊃ (G/N)ant and N is affine, then H ⊃ Gant.

Proof. By [6, Lem. 3.3.6], the natural map Gant/N ∩Gant → (G/N)ant is an
isomorphism. This yields the first assertion.

Conversely, assume that H/N ∩H ⊃ (G/N)ant; equivalently, we have
(H/N ∩H)ant = (G/N)ant. Using [6, Lem. 3.3.6] again, it follows thatGant ⊂
N ·Hant. Thus, it suffices to show that (N ·H)ant = Hant. Using once more
[6, Lem. 3.3.6], it suffices in turn to check that (N oH)ant = Hant. Since N
is affine and N oH ∼= N ×H as schemes, the affinization morphism

ϕNoH : N oH −→ SpecO(N oH)

is identified with

id× ϕH : N ×H −→ N × SpecO(H).

Taking fibers at e yields the desired equality. �

Next, we obtain a result of independent interest, which generalizes (and
builds on) Lemma 7 (i):

Lemma 10. If G is proper and H is epimorphic in G, then H = G.

Proof. The largest anti-affine subgroup Gant is smooth, connected and
proper, that is, an abelian variety. Moreover, the quotient group G/Gant

is proper and affine, hence finite. Thus, using Lemma 6 (ii) and Lemma 7
(i), it suffices to show that H contains Gant.

We now reduce to the case where G and H are smooth. For this, we
may assume that k has prime characteristic p. Denote by Gn (resp. Hn) the
kernel of the nth relative Frobenius morphism of G (resp. H). Then Gn and
Hn are infinitesimal; also, G/Gn and H/Hn are smooth for n� 0 (see [8,
VIIA.8.3]). Using Lemma 6 (ii) again together with Lemma 9, we see that
it suffices to show that H/Hn = H/Gn ∩H contains (G/Gn)ant. This yields
the desired reduction.
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Under this smoothness assumption, G0 = Gant is an abelian variety.
Also, we have G = G0 ·H by Lemma 7 (ii). Thus, G0 ∩H is centralized
by G0 and normalized by H, and hence is a normal subgroup of G. Us-
ing Lemma 6 (ii) again, we may replace G, resp. H with G/G0 ∩H, resp.
H/G0 ∩H, and hence assume in addition that G0 ∩H is trivial.

Under these assumptions, we may identify G with G0 oH. Consider
the diagonal action of H on G0 ×G0 and form the semi-direct product
G′ := (G0 ×G0) oH. Then the maps

f1 : G −→ G′, (x, y) 7−→ (x, e, y),

f2 : G −→ G′, (x, y) 7−→ (x, x, y),

are two morphisms which coincide on H. Thus, f1 = f2. But then G0 must
be trivial. �

4. Proof of Theorem 2

(i) ⇒ (ii): By [6, Thm. 2], G has a smallest normal subgroup N such that
G/N is proper; moreover, N is affine. If H is epimorphic in G, then the
quotient group H/H ∩N is epimorphic in G/N by Lemma 6 (ii). Using
Lemma 10, it follows that H/H ∩N = G/N . So H ⊃ Gant by Lemma 9.
Thus, H̄ := H/Gant is epimorphic in Ḡ := G/Gant by Lemma 6 (ii) again.
In view of Theorem 1, this yields O(Ḡ/H̄) = k. As

O(Ḡ/H̄) ∼= O(Ḡ)H̄ = O(G/Gant)
H ∼= O(G/H),

we obtain O(G/H) = k.
(ii) ⇒ (i): Let again Ḡ := G/Gant and H̄ := H/Gant. Then O(Ḡ/H̄) =

k by the above argument. Using Theorem 1, it follows that H̄ is affine
epimorphic in Ḡ. Together with Lemma 7 (ii) and Remark 8 (ii), this yields
Ḡ = Ḡ0 · H̄, and hence O(Ḡ/H̄) ∼= O(Ḡ0/Ḡ0 ∩ H̄). By Theorem 1 again, it
follows that Ḡ0 ∩ H̄ is affine epimorphic in Ḡ0. Also, note that G = G0 ·H,
since Gant is connected and contained in H.

Let f1, f2 : G→ G′ be morphisms of algebraic groups that coincide on
H. Then f1, f2 pull back to morphisms f0

1 , f
0
2 : G0 → G′0 which coincide on

Gant / G
0 ∩H. Moreover, the common scheme-theoretic image of Gant under

f0
1 , f

0
2 is contained in G′ant / G

′0. This yields morphisms of affine algebraic
groups

f̄0
1 , f̄

0
2 : Ḡ0 → G′0/G′ant



i
i

“4-Brion” — 2018/1/2 — 12:11 — page 1658 — #10 i
i

i
i

i
i

1658 Michel Brion

which coincide on Ḡ0 ∩ H̄. Thus, f̄0
1 = f̄0

2 , that is, the morphism of schemes

ϕ : G0 −→ G′0, x 7−→ f1(x)f2(x)−1

factors through G′ant. We have

ϕ(x y) = f1(x) f1(y) f2(y)−1 f2(x)−1

identically on G0 ×G0. Since G′ant is contained in the center of G′0, it follows
that ϕ is a morphism of algebraic groups.

As f1 and f2 coincide on Gant ⊂ H, the kernel of ϕ contains Gant. Thus,
ϕ factors through a morphism of algebraic groups ψ : Ḡ0 → G′ant. Since Ḡ0

is affine, so is the scheme-theoretic image of ψ. Also, ψ is trivial on Ḡ0 ∩ H̄,
an affine epimorphic subgroup of Ḡ0. Thus, ψ is trivial, that is, f1 and f2

coincide on G0. Since these morphisms also coincide on H, and G = G0 ·H,
we conclude that f1 = f2.

5. Proof of Theorem 4

(i) ⇒ (ii): Recall from Theorem 2 that Gant ⊂ H and O(G/H) = k. Since
Gant is smooth, it is contained in Hred. Thus, using Theorem 2 again, it
suffices to show that O(G/Hred) = k.

The natural map u : G/Hred → G/H lies in a commutative square

G×H/Hred
p1 //

m

��

G

q

��
G/Hred

u // G/H,

where p1 denotes the projection, q the quotient map, and m the pull-back of
the action map G×G/Hred → G/Hred. In fact, this square is cartesian and
consists of faithfully flat morphisms (see e.g. the proof of [6, Prop. 2.8.4]).
As the scheme H/Hred is finite and has a unique k-rational point, the map
p1 is finite and purely inseparable; thus, so is u by faithfully flat descent.
Also, G/Hred and G/H are smooth, since so is G. Thus, the induced map
on rings of rational functions

u# : k(G/H) −→ k(G/Hred)
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is injective, and there exists a positive integer n (a power of the characteristic
exponent of k) such that

k(G/Hred)n ⊂ u#k(G/H).

Also, by normality of G/H, we have u#O(G/H) = u#k(G/H) ∩ O(G/Hred)
and hence

O(G/Hred)n ⊂ u#O(G/H).

Since O(G/H) = k and O(G/Hred) has no non-zero nilpotents, this yields
the desired assertion.

(ii) ⇒ (iii): We may replace H with Hred, and hence assume that H
is smooth. By Lemma 7 (ii), we have G = G0 ·H; thus, the natural map
H/H0 → G/G0 is surjective. Also, Gant is connected, and contained in H
by Theorem 2; hence Gant ⊂ H0. So, using Theorem 2 once more, we are
reduced to checking that O(G0/H0) = k.

Note that

k = O(G/H) = O(G0 ·H/H) ∼= O(G0/G0 ∩H).

Next, consider the natural map

ψ : G0/H0 −→ G0/G0 ∩H.

The finite étale group F := (G0 ∩H)/H0 ⊂ H/H0 acts on G0/H0 by right
multiplication, and ψ is the categorical quotient for that action. Thus,
O(G0/H0)F ∼= O(G0/G0 ∩H), and hence the algebra O(G0/H0) is integral
over O(G0/G0 ∩H) = k. As above, this implies the desired assertion.

(iii) ⇒ (i): This follows by reverting some of the previous arguments.
More specifically, we have

Gant = (G0)ant ⊂ H0
red ⊂ H.

Also, G = G0 ·Hred = G0 ·H and hence

O(G/H) ∼= O(G0/G0 ∩H) ∼= O(G0)G
0∩H ⊂ O(G0)H

0

= k.

Thus, H is epimorphic in G by Theorem 2 again.

6. Proof of Theorem 5

(i) Consider the action of G on O(G) via right multiplication and let L ⊂ G
be the centralizer of the subspace O(G)H ⊂ O(G). In view of [7, II.1.3.6],
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L is represented by a subgroup of G that we will also denote by L. Since
L acts trivially on O(G)H , we have O(G)H ⊂ O(G)L. On the other hand,
H ⊂ L and hence O(G)L ⊂ O(G)H . Thus, O(G)L = O(G)H .

We show that there exists a finite subset F ⊂ O(G)H such that L is the
centralizer CG(F ). Indeed, we may find F such that CG(F ) is minimal among
all such centralizers. Then CG(F ∪ {f}) = CG(F ) for any f ∈ O(G)H , and
hence CG(F ) centralizes the whole subspace O(G)H .

Choose F = {f1, . . . , fn} ⊂ O(G)H such that L = CG(F ). Then L is the
centralizer inG of f1 + · · ·+ fn, viewed as a k-rational point of theG-module
O(G)⊕ · · · ⊕ O(G) =: nO(G). As f1, . . . , fn are contained in some finite-
dimensional G-submodule V ⊂ nO(G), it follows that G/L is isomorphic
to a subscheme of the affine space associated with V (see [7, III.3.5.2]). In
view of [9, II.5.1.2], it follows that G/L is quasi-affine. In other terms, the
affinization map ϕG/L is an open immersion. Since O(G/L) = O(G/H), this
yields the desired commutative triangle

G/H

u

��

ϕG/H

!!
G/L ϕG/L

// X,

where u denotes the natural map, and X = SpecO(G/H) = SpecO(G/L).
Let K be a subgroup of G such that K ⊃ H and G/K is quasi-affine.

Then we have a commutative square of G-equivariant morphisms

G/H
ϕG/H //

v

��

SpecO(G/H) = SpecO(G/L)

ϕv

��
G/K

ϕG/K // SpecO(G/K),

where ϕG/K is an open immersion. Thus, v factors through u, and hence
L ⊂ K.

(ii) In view of [7, I.1.2.6], the formation of the affinization morphism
commutes with arbitrary field extensions. Thus, so does the formation of L.

(iii) Consider a subgroup K of G containing H such that K/H is anti-
affine. Denote by q : G→ G/H the quotient map and by x = q(eG) the base
point. Then the pull-back map O(G)H → O(K)H ∼= O(K/H) = k is identi-
fied with the homomorphism O(G/H)→ k given by evaluation at x. Thus,
K/H ⊂ G/H is contained in the fiber of ϕG/H at x. By (i), this fiber is
L/H ⊂ G/H. It follows that K ⊂ L.
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We now show that L/H is anti-affine. As in the proof of Theorem 4, we
have a cartesian diagram of faithfully flat morphisms

G× L/H p1 //

m

��

G

r

��
G/H

u // G/L,

where p1 denotes the projection, r the quotient map, and m the pull-back of
the action map G×G/H → G/H. Thus, we obtain a canonical isomorphism
of sheaves on G:

r∗(u∗OG/H)
∼=−→ (p1)∗(m

∗OG/H).

Clearly, we have m∗OG/H = OG×L/H and r∗OG/L = OG. Moreover, the nat-
ural map OG/L → u∗OG/H is an isomorphism, since O(G/L) = O(G/H)
and G/L admits a covering by open affine subschemes of the form (G/L)f ,
where f ∈ O(G/L) (see e.g. [9, II.5.1.2]). It follows that the natural map
OG → (p1)∗OG×L/H is an isomorphism as well. In particular, this yields
O(G) = O(G× L/H), and hence O(L/H) = k as desired.

(iv) It suffices to show that the natural map L0/L0 ∩H → L/H is an
isomorphism, as every homogeneous space under a connected algebraic group
is geometrically irreducible (see e.g. [8, VIA.2.6.6]). The quotient L/L0 ·H
is finite and étale (since so is L/L0), and anti-affine (since so is L/H). Thus,
this quotient consists of a unique k-rational point. Hence L = L0 ·H; this
yields the desired assertion.

(v) Let K be a subgroup of G containing H. As K is affine, we have by
Theorem 2 that K/H is anti-affine if and only if H is epimorphic in K. In
view of (ii), this yields the assertion.

(vi) By (ii), we may assume that k is algebraically closed. Then we have
H ⊂ Lred ⊂ L and the natural map G/Lred → G/L is finite, as shown in the
proof of Theorem 4. Since G/L is quasi-affine, so is G/Lred in view of [9,
II.5.1.2, II.5.1.12]. Thus, L = Lred by the minimality of L, i.e., L is smooth.

Example 11. Assume that k has characteristic p > 0. Let Y = G/H be
a smooth anti-affine homogeneous space, where G is affine and H ( G. We
will construct a non-smooth anti-affine homogeneous space X under an al-
gebraic group containing G, such that X contains Y as its largest smooth
subscheme. For this, we use a process of “infinitesimal thickening” of an
arbitrary homogeneous space G/H.

Let M be a finite-dimensional G-module. Viewing M as a p-Lie algebra
with zero bracket and pth power map, we obtain a commutative infinitesimal
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algebraic group Gp(M) of height 1 (see [8, VIIA.8.1.2]). The action of G on
M yields an action on Gp(M) by automorphisms of algebraic groups; we
denote by Gp(M) oG the corresponding semi-direct product.

Next, let N ⊂M be an H-submodule. As above, we may form the semi-
direct product Gp(N) oH; this is a subgroup of Gp(M) oG. Consider the
homogeneous space

X := Gp(M) oG/Gp(N) oH.

The chain of inclusions Gp(N) oH ⊂ Gp(N) oG ⊂ Gp(M) oG yields a
morphism

f : X −→ Gp(M) oG/Gp(M) oH ∼= G/H = Y.

Moreover, f is G-equivariant and its fiber at the base point y ∈ Y (k) is
H-equivariantly isomorphic to Gp(M)/Gp(N). The latter quotient group is
canonically isomorphic to Gp(M/N), by [8, VIIA.8.1.3]. The neutral ele-
ment of Gp(M/N) is fixed by H, and hence yields a section s : Y → X of
f : X → Y . As Gp(M/N) is infinitesimal, f and s induce mutually inverse
homeomorphisms of the underlying topological spaces of X and Y .

We have an isomorphism

O(X) ∼= (O(G)⊗O(Gp(M/N)))H ,

where H acts simultaneously on O(G) by left multiplication, and on
O(Gp(M/N)) via its linear action on M/N . Also, recall from [8, VIIA.7.4]
the canonical isomorphism

O(Gp(M/N)) ∼= Sym(M/N)∗/I,

where Sym(M/N)∗ denotes the symmetric algebra of the dual module of
M/N , and I the ideal generated by the pth powers of all elements of (M/N)∗.

Assume that G is affine. By a theorem of Chevalley (see e.g. [7, II.2.3.5]),
we may choose a finite-dimensional G-module M and a hyperplane N ⊂M
such that H is the stabilizer of N for the G-action on M . In particular, N
is an H-submodule of M ; we denote by L = M/N the quotient line. Then
we have an isomorphism of H-modules

O(Gp(M/N)) ∼=
p−1⊕
i=0

L−i,
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where L−i denotes the ith tensor power of L∗ (in particular, L0 is the trivial
H-module k). Denoting by L the G-linearized invertible sheaf on Y = G/H
associated with the H-module L (as in [11, I.5.8]), we then have

O(X) ∼=
p−1⊕
i=0

(O(G)⊗ L−i)H ∼=
p−1⊕
i=0

Γ(Y,L−i).

Assume in addition that Y is smooth, anti-affine and non-trivial. Then
the section s identifies Y to the largest smooth subscheme of X. It remains
to check that X is anti-affine; for this, we show that Γ(Y,L−i) = 0 for all
i ≥ 1. Consider the G-module Γ(Y,L) = (O(G)⊗ L)H . The exact sequence
of H-modules 0 −→ N −→M −→ L −→ 0 yields a morphism of G-modules
(O(G)⊗M)H → Γ(Y,L). Moreover, we have an isomorphism of G-modules
(O(G)⊗M)H ∼= O(G/H)⊗M = M in view of [11, I.3.6]. This defines a
morphism of G-modules ϕ : M → Γ(Y,L), dual to the immersion of Y into
the projective space of hyperplanes in M . In particular, ϕ(N) is non-zero
and consists of sections σ ∈ Γ(Y,L) that vanish at the base point y, i.e.,
σy ∈ myLy. Choose such a section σ 6= 0 and let τ ∈ Γ(Y,L−i). Then we
have σiτ ∈ Γ(Y,OY ) = k, and σiτ vanishes at y as well. Thus, σiτ = 0, hence
τ = 0 as Y is smooth and geometrically irreducible.
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briques linéaires II, C. R. Acad. Sci. Paris Sér. I, 315 (1992), 1341–
1346.

[4] F. Bien, A. Borel, and J. Kollár, Rationally connected homogeneous
spaces, Invent. math. 124 (1996), 103–127.

https://math.berkeley.edu/~gbergman/papers/unpub/LieEpi.pdf
https://math.berkeley.edu/~gbergman/papers/unpub/LieEpi.pdf


i
i

“4-Brion” — 2018/1/2 — 12:11 — page 1664 — #16 i
i

i
i

i
i

1664 Michel Brion

[5] M. Brion, P. Samuel, and V. Uma, Lectures on the structure of algebraic
groups and geometric applications, CMI Lecture Series in Mathematics
1, Hindustan Book Agency, New Dehli, 2013.

[6] M. Brion, Some structure theorems for algebraic groups, Proc. Symp.
Pure Math. 94, 53–125, Amer. Math. Soc., Providence, RI, 2017.

[7] M. Demazure and P. Gabriel, Groupes algébriques, Masson, Paris, 1970.
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