
i
i

“2-Bockle” — 2018/1/2 — 12:23 — page 1605 — #1 i
i

i
i

i
i

Math. Res. Lett.
Volume 24, Number 6, 1605–1632, 2017

On the number of irreducible mod ` rank

2 sheaves on curves over finite fields

Gebhard Böckle and Chandrashekhar B. Khare

Let X be a smooth, geometrically connected, projective curve of
genus g over a finite field Fq of characteristic p. Consider primes
` different from p. We formulate some questions related to a well
known counting formula of Drinfeld in [7]. Drinfeld counts rank
2, irreducible `-adic sheaves on Xn = X ×Fq Fqn as n varies. We
would like to count rank 2, irreducible mod ` sheaves on Xn as n
varies. Drinfeld’s `-adic count gives an upper bound for the mod
` count. We conjecture that Drinfeld’s count is the correct asymp-
totic for the count of rank 2, irreducible mod ` sheaves on Xn as
n varies, and (n, `) = 1. The conjecture is an invitation to finding
good lower bounds on the number of irreducible rank 2, mod `
sheaves on Xn.

We produce a lower bound on the mod ` count, which is weaker
than the one conjectured, by counting “dihedral” mod ` sheaves.
We make a deformation theoretic study of the number of `-adic
sheaves which lift the pull backs Fn to Xn, of a given mod ` sheaf
Fn0

on Xn0
, as we ranger over n with n0|n.

1. Introduction

1.1. `-adic representations of π1(X)

Let X be a smooth, geometrically connected, projective curve of genus g
over a finite field Fq of characteristic p. Consider primes ` different from p.
Let Q be an algebraic closure of Q and we fix an embedding ι` : Q ↪→ Q`. In
Theorem 1 of [7], a formula is given for the cardinality T (X, 2, qn, `) of the set
of irreducible two dimensional `-adic representations ρ : π1(X)→ GL2(Q`)
which are fixed by Frobnq , where X = X ×Fq Fq is the base change of X to

an algebraic closure Fq of Fq and π1 denotes the fundamental group.
Denote by U(X) the set of (isomorphism classes of) irreducible represen-

tations π1(X)→ GL2(Q`). It carries an action of the geometric Frobenius

1605



i
i

“2-Bockle” — 2018/1/2 — 12:23 — page 1606 — #2 i
i

i
i

i
i
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Frobq, and we let T (X, 2, qn, `) be the cardinality of U(X)Frobnq , the sub-
set of fixed points of U(X) under Frobnq . It is easy to see [5, 1.2] that the

set U(X)Frobnq is in natural bijection with equivalence classes under twist-
ing by continuous characters Gal(Fq/Fqn)→ Q`

∗
of isomorphism classes of

2-dimensional `-adic representations of π1(Xn), with Xn = X ×Fq Fqn the
base change of X to Fqn , which remain irreducible on restriction to π1(X).

Recall that a q-Weil number α of weight j ≥ 0 is an algebraic integer α
such that for any embedding ι : Q→ C one has |ι(α)| = qj/2. As a corollary
of [7, Theorem 1], Drinfeld deduces:

Theorem 1.1. If g > 1, then there exists an integer k, and integers m1, . . . ,
mk, and Weil numbers µ1, . . . , µk of weights j in the range 0 ≤ j/2 < 4g − 3
such that

T (X, 2, qn, `) = q(4g−3)n +

k∑
i=1

miµ
n
i .

This is a Lefschetz like formula and suggests that one is actually counting
Fqn-valued points of a geometrically irreducible variety MX of dimension
4g − 3 that is defined over Fq. The number 4g − 3 is suggestive as it is
the dimension of the moduli space of irreducible two-dimensional unitary
representations of the fundamental group of a compact Riemann surface of
genus g > 1. Deligne in [5, 1.5 and Conj. 2.15] suggests instead that there
may be a variety MX in characteristic 0 and a suitable endomorphism V on
its cohomology such that the Lefschetz fixed point point formula applied to
the action of V n on `-adic cohomology gives the formula of Theorem 1.1.

Drinfeld’s method of proof of Theorem 1.1 is to count everywhere unram-
ified cuspidal automorphic representations of GL2(AXn), where AXn is the
adeles of the function field of Xn, via the trace formula. A theorem of Drin-
feld shows that an irreducible representation π1(Xn)→ GL2(Q`) arises from
an everywhere unramified cuspidal automorphic representation of GL2(AXn)
with respect to the fixed embedding ι`. The leading term of Drinfeld’s for-
mula comes from the trivial (central) term, i.e. the orbital integral of the
identity, of the geometric side of the trace formula.

1.2. Mod ` representations of π1(X)

We would like to consider a similar counting problem for mod ` sheaves.
Let U(X) be the set of (isomorphism classes of) irreducible representations
π1(X)→ GL2(F`), and consider the cardinality T (X, 2, qn, `) of the sub-

set of fixed points U(X)
Frobnq of U(X). We again see that T (X, 2, qn, `) is
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the number of equivalence classes under twisting by continuous characters
Gal(Fq/Fq)→ F`

∗
of (isomorphism classes) of 2-dimensional representations

of π1(Xn)→ GL2(F`) which remain irreducible on restriction to π1(X).
We also denote by T ′(X, 2, qn, `) and by T ′(X, 2, qn, `) the cardinality of

equivalence classes under twisting by continuous characters π1(Xn)→ Q`
∗

and π1(Xn)→ F`
∗
, respectively, of isomorphism classes of 2-dimensional `-

adic and mod ` representations of π1(Xn) that remain irreducible on restric-
tion to π1(X).

A. de Jong has shown in [4] that the deformation rings of mod ` represen-
tations of π1(Xn) that are absolutely irreducible when restricted to π1(X)
are finite flat complete intersections over Z`. This implies a lifting result and
one has:

Lemma 1.2 ([4, 3.6 Remark(c)]). Every irreducible two dimensional
mod ` representation ρ̄ : π1(X)→ GL2(F`) which is fixed by Frobnq lifts to

an (irreducible) representation ρ̄ : π1(X)→ GL2(Q`) which is fixed by Frobnq .
In particular, we have the inequality

T (X, 2, qn, `) ≤ T (X, 2, qn, `).

The following guess on the size of T (X, 2, qn, `) is based on our expec-
tation that asymptotically with n, the number of rank 2, mod ` sheaves
on Xn, and the number of rank 2, `-adic sheaves on Xn, is the same. In
other words, we expect few congruences mod ` between representations in
U(X)Frobnq as we vary n. For any fixed `, as n→∞ this would imply that
everywhere unramified automorphic forms for GL2(AXn) have Hecke field
that is typically unramified the over prime `. We refer to Subsection 4.2 for
a classical analog.

Conjecture 1.3. We have

limn→∞
T (X, 2, qn, `)

T (X, 2, qn, `)
= 1,

where n runs through all positive integers prime to `, and

limn→∞
T ′(X, 2, qn, `)

T ′(X, 2, qn, `)
= 1,

where n runs through all positive integers.

The difference in the two statements above is due to the fact that if n
is allowed to be divisible by high powers of `, there are mod ` congruences
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between characters π1(Xn)→ Q`
∗
. We refer the reader to formulas (3.3) and

(3.4) in Section 3 where quotients describing the asymptotics of counting
mod ` versus `-adic characters are made explicit in a comparable context
(though with different constants).

The difficulty of the conjecture lies in the fact that we do not have a
method to produce good lower bounds on T (X, 2, qn, `). We explore two
different paths towards Conjecture 1.3. As by de Jong’s result we know that

the reduction map U(X)Frobmq → U(X)
Frobmq is surjective, we could approach

the conjecture by studying the orders of the fibers of this map. In §2 we
make a modest beginning by studying the fiber of the maps U(X)Frobmq →
U(X)

Frobmq at the restrictions of a fixed representation ρ̄ : π1(Xn)→ GL2(F`)
to π1(Xm). Thus given a ρ̄ : π1(Xn)→ GL2(F`) which remains irreducible
on restriction to π1(X) we make a qualitative (deformation theoretic) study
in §2 of the cardinality Nρ̄,m of the inverse image of ρ̄ under the reduction

map U(X)Frobmq → U(X)
Frobmq , for varying m ∈ N such that n|m. We show

that if we vary through m such that m
n is prime to ` then Nρ̄,m is bounded

independently of m (cf. Theorem 2.3). We also analyze the case when m
n is a

power of ` where the answer is very different (see Theorem 2.7 for the precise
statement). Our deformation theoretic methods do not yield any information
about Nρ̄,m as we vary over both m and ρ̄, and thus do not directly address
Conjecture 1.3.

The second approach we could take take towards the conjecture is to

produce lower bounds on U(X)
Frobmq by explicitly constructing elements of

U(X)
Frobmq . This is the approach we take in §3. In Theorem 3.13 of §3 we

count the number of dihedral representations in U(X)
Frobmq for varying m

which gives a weak lower bound towards the conjecture.
In §4 we compare counting rank 2, irreducible, mod ` sheaves over Xn,

with counting 2-dimensional mod ` representations ρ̄ : Gal(Q/Q)→ GL2(F`)
that are irreducible, odd and unramified outside `. This has been studied
computationally in [2].

2. Asymptotic results on universal deformation rings

We use Mazur’s article [15] as a general reference for the basics of defor-
mation theory that we use in this section. Let G be a profinite group that
satisfies Mazur’s finiteness condition Φ`, i.e., for every open normal subgroup
H of G, the maximal abelian quotient of exponent ` is a finite group. Let
F be a finite field of characteristic `. Let ρ̄ : G→ GLm(F) be a continuous
representation.



i
i

“2-Bockle” — 2018/1/2 — 12:23 — page 1609 — #5 i
i

i
i

i
i
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Let H ⊂ G be a normal open subgroup. Denote by ad the adjoint rep-
resentation of G, respectively H, associated to ρ̄, respectively ρ̄|H . The co-
homology groups H i(G, ad) and H i(H, ad) for i ≥ are finite dimensional F
vector spaces by our finiteness condition Φ`. Assume that the canonical ho-
momorphism F→ Endρ̄(H)(Fm) is an isomorphism. For ? ∈ {G,H} denote
by R? the universal deformation ring for deformations of ρ̄|? in the sense of
Mazur, which exists under the assumption just made.

Lemma 2.1. Suppose that

1) the restriction map H1(G, ad)→ H1(H, ad) is an isomorphisms,

2) the restriction map H2(G, ad)→ H2(H, ad) is injective,

Then the canonical homomorphism π : RH → RG is an isomorphism.

Proof. Observe first that by the injectivity in assumption 1, the map on
mod ` cotangent spaces induced from π is surjective. Because RH and RG
are complete noetherian local rings with residue field F, it follows that π is
surjective. Denote by I the kernel of π. If I is non-zero, we choose an ideal
n of RH contained in I such that I/n ∼= F and consider the induced short
exact sequence

(2.1) 0→ I/n→ RH/n→ RG → 0.

There is an obstruction class θ in H2(G, ad) to lifting the universal defor-
mation ρG : G→ GLn(RG) from RG to RH/n. Upon restriction to H this
class vanishes, and so from assumption 2 we deduce θ = 0. It follows that
the sequence (2.1) is split. But then the homomorphism on cotangent spaces
induced from π is not an isomorphism, contradicting assumption 1. Thus I
is zero and π is an isomorphism. �

Remark 2.2. If ` does not divide m, there is an obvious variant of Lemma
2.1 for deformations with fixed determinant, whose formulation, we leave to
the reader.

Theorem 2.3. Let ρ̄ : π1(X)→ GLm(F) be a continuous representation
that is absolutely irreducible when restricted to π1(X). For each n ≥ 1 de-
note by ρn : π1(Xn) −→ GLm(Rn) the universal deformation in the sense of
Mazur of the restriction ρ̄|π1(Xn). Then there exists an n0 prime to ` such
that for any multiple n of n0 with n prime to `, the canonical homomorphism
Rn → Rn0

is an isomorphism.
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Proof. We wish to apply Lemma 2.1 with G = π1(Xn0
) and H = π1(Xn)

for n0|n. Because ` is different from p, the group π1(X) satisfies Mazur’s
condition Φ`, and hence so does π1(Xn) for every n; this also implies that
the groups Hj(π1(X), ad) below are finite-dimensional vector spaces over F.
Since ρ̄|π1(Xn) is absolutely irreducible, it remains to verify assumptions 1
and 2 of Lemma 2.1, for n0 chosen suitably.

We begin with an application of the Hochschild-Serre spectral sequence
to 0→ π1(X)→ π1(Xn)→ GFqn → 1. Since GFqn

∼= Ẑ has cohomological di-
mension 1, we obtain for all j ≥ 0 a short exact sequence

0→ H1(GFqn , H
j(π1(X), ad))

→ Hj+1(π1(Xn), ad)→ H0(GFqn , H
j(π1(X), ad))→ 0.

To have shorter formulas, we abbreviate Φ = Frobq. Recall that for a GFqn -
module M the cohomology H i(GFqn ,M) for i = 0, 1 is isomorphic to the
GFqn invariants and covariants of M respectively. They are given as the
Φn fixed points MΦn of M and the quotient M/(1− Φn) := M/(1− Φn)M ,
respectively. Restriction from GFqn0

to GFqn on cohomology is then described
by the following explicit diagram

0 // Hj(π1(X), ad)/(1− Φn0) //

τ
��

Hj+1(π1(Xn0
), ad) //

res
��

Hj(π1(X), ad)Φn0 //

ι
��

0

0 // Hj(π1(X), ad)/(1− Φn) // Hj+1(π1(Xn), ad) // Hj(π1(X), ad)Φn // 0,

where ι is the inclusion homomorphism and τ is induced from the ac-
tion of 1 + Φn0 + · · ·+ Φn0(n/n0−1) on Hj(π1(X), ad). The action of Φ on
Hj(π1(X), ad) is a linear automorphism. Since ad is finite of characteristic `
we may choose n′ ≥ 1 such that Φn′ is unipotent. Let n0 denote the minimal
such choice. Suppose now that n/n0 is not divisible by `. Then the number
of summands of τ is of order prime to `, and since they are unipotent and
commute with each other, we deduce that τ is an isomorphism. Observ-
ing further that 1− Φn = (1− Φn0)τ , we see that the kernels of 1− Φn and
1− Φn0 agree, and so also ι is an isomorphism. The assertion of Theorem 2.3
now follows from Lemma 2.1. �

Remark 2.4. The above theorem is an affirmative solution to a question of
Hida raised over number fields. He asks whether in prime-to-` (cyclotomic)
towers the deformation rings of residual representations stabilize. This ques-
tion is being investigated by Geunho Gim in his UCLA PhD thesis.
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Corollary 2.5. Suppose we are in the situation of Theorem 2.3. Denote
by Lρ̄,n the set of lifts up to isomorphism of ρ̄ to an `-adic representation.
Then Lρ̄,n is independent of n as long as n0|n and n/n0 is not divisible by
`, i.e., restriction from π1(Xn0

) to π1(Xn) defines a bijection Lρ̄,n0
→ Lρ̄,n

for any such n.

Another way to rephrase the corollary is to say that the number of congru-
ences to a fixed ρ̄ is constant for all multiples n of n0 as long as n/n0 is of
order prime to `.

Theorem 2.3 concerns prime-to-` towers. The following lemma prepares
the analysis of the general situation.

Lemma 2.6. Let 1→ H → G
π→ Z → 1 be a short exact sequence of profi-

nite groups such that Z is procyclic, torsion free. There exists a continuous
splitting s : Z → G of π. Suppose H satisfies Mazur’s finiteness condition
Φ`. Let ρ̄ : G→ GLm(F) be a continuous representation of degree m prime
to ` such that the natural map F→ EndH(Fm) is an isomorphism. For any
closed subgroup H ′ of G containing H denote by R0

H′ the universal ring for
deformations of ρ̄|H′ whose determinant is the Teichmüller lift of det ρ̄|H′.
Then

1) The canonical homomorphism canH,G : R0
H → R0

G is surjective.

2) Let ρH : H → GLm(R0
H) be the universal deformation represented by

R0
H . For σ ∈ Z define ρσH : H → GLm(R0

H), h 7→ ρH(s(σ)hs(σ)−1).
There is a unique homomorphism ασ : R0

H → R0
H such that

(2.2) GLm(R0
H)

ασ

��

H

ρH 44

ρσH
**
GLm(R0

H).

commutes up to conjugation, and, if I ⊂ R0
H denotes the ideal gener-

ated by {r − ασ(r) | r ∈ R0
H , σ ∈ Z}, then R0

H → R0
G factors via R0

H/I
and the induced map R0

H/I → R0
G is an isomorphism.

3) The canonical map R0
H → lim

←−U
R0
π−1(U) is an isomorphism where U⊆

Z ranges over all open subgroups.
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4) If for all open subgroups U ⊂ Z the ring R0
π−1(U) is flat over Z` and

reduced, then lim
−→U

SpecR0
π−1(U)[1/`] is Zariski dense in SpecR0

H , the

rings R0
H [1/`] and R0

H are reduced, and R0
H is flat over Z`.

5) The conjugation action of Z on H/Ker(ρH) via s factors via a virtual
pro-` quotient Z̄ of Z.

6) If the conjugation action of Z on H/Ker(ρH) via s is trivial, then
R0
H → R0

G is an isomorphism.

Proof. Let us first observe that a continuous splitting s : Z → G exists. In
the same way that one proves that the profinite completion Ẑ is isomorphic
to
∏
`′ Z`′ where `′ ranges over all prime numbers, one shows Z ∼=

∏
`′ Z`′ for

the procyclic group Z where Z`′ is the pro-`′ completion of Z. Because Z is
torsion free, each Z`′ is either trivial or isomorphic to Z`′ . Denote by g an
element of G whose image in Z is a topological generator, and denote by Z ′

the profinite completion of gZ in G. Then with similar notation as above we
have Z ′ ∼=

∏
`′ Z
′
`′ , and moreover the surjective map Z ′ → Z is a surjection

on each component. From the local shape of the Z`, we see that we can
choose h inside Z ′ ⊂ G such that the completion of hZ maps isomorphically
to Z. The inverse is a continuous section as wanted.

To prove part 1 it suffices to prove injectivity for the induced map on
mod ` tangent spaces, i.e. for the restriction homomorphism H1(G, ad0)→
H1(H, ad0), which is part of the inflation restriction sequence

0→ H1(G/H,H0(H, ad0))→ H1(G, ad0)(2.3)

→ H1(H, ad0)G/H → H2(G/H,H0(H, ad0)).

Because ` is prime to m, the isomorphism F→ EndH(Fm) yields H0(H, ad0)
= 0, and part 1 follows.

We next prove part 2, which follows the proof of [4, 3.13 Lemma]. Let
mH denote the maximal ideal of R0

H . For each σ ∈ Z choose Aσ ∈ GLm(R0
H)

whose reduction modulo mH is equal to ρ̄(s(σ)). Then h 7→ Aσρ
σ
H(h)A−1

σ ,
H → GLm(R0

H), is a deformation of ρ̄|H of determinant equal to the Te-
ichmüller lift of det ρ̄|H . Hence there exists a unique homomorphism ασ :
R0
H → R0

H such that (2.2) commutes up to conjugacy with Aσρ
σ
H( )A−1

σ

in place of ρσH . This proves the existence of ασ. Its uniqueness is a conse-
quence of the universality of R0

H . Observe that ασ is an isomorphism as
can be checked on tangent spaces. Next we show that the canonical map
canH,G : R0

H → R0
G factors via R0

H/I: denote by ρG : G→ GLm(R0
G) the

universal deformation for R0
G. Then for all σ ∈ Z one has ρσG = BσρGB

−1
σ
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with Bσ = ρG(s(σ)). One deduces that canH,G ◦ ασ = canH,G, which shows
that canG,H factors via R0

H/I. The map induced on tangent spaces from
R0
H/I → R0

G is described by the central arrow in (2.3), which we know to
be an isomorphism. To see that R0

H/I → R0
G is an isomorphism it thus suf-

fices to construct a deformation ρ̂H : G→ GLm(R0
H/I) of ρ̄ that extends ρH ,

since the latter yields a splitting of R0
H/I → R0

G. For the details, we refer to
the proof of [4, 3.13 Lemma]. Alternatively, one can obtain ρ̂H by extending
the results of [11, Subsec. 4.3.5] to a profinite setting: since ρ̄ is given as a
representation of G, the obstruction described in [11, Thm. 4.35(5)] will lie
in H2(Z, 1 + mH); the multiplicative group 1 + mH is pro-` and the mod `
cohomological dimension of the procyclic, torsion free group Z is at most 1.

For part 3, let IU denote the ideal of R0
H defined in item 2 if one replaces

G by π−1(U). By part 2, it remains to prove that
⋂
U IU = 0 where the

intersection is over all open subgroups U of Z. For this it suffices to show
that for all t > 0 there is a U such that mt

H ⊃ IU . To see the latter, we
consider the quotient

ρH/m
t
H : H → GLm(RH/m

t
H).

This representation factors via a finite quotient, say Ht, of H. Because the
action of Z on Ht via s and conjugation is continuous, there is an open
subgroup U of Z such that U acts trivially on Ht. This implies that ασ
mod mt is the identity for all z ∈ U and hence that IU is contained in mt

H .
To see part 4, let J ⊂ R0

H be the radical ideal such that the Zariski clo-
sure of lim

−→U
SpecR0

π−1(U)[1/`] in SpecR0
H agrees with SpecR0

H/J . Because

each R0
π−1(U) is reduced the kernel of the canonical map R0

H → R0
π−1(U)[1/`]

contains J . But the map factors via R0
H → R0

π−1(U) → R0
π−1(U)[1/`], and by

flatness of R0
π−1(U) over Z`, the ideal J lies in the kernel of R0

H → R0
π−1(U).

From the proof of part 3, we deduce that J = 0. This proves the density
assertion as well as the reducedness of R0

H and R0
H [1/`]. The vanishing of J

also implies that R0
H → R0

H [1/`] is injective, and this proves the flatness of
R0
H over Z`.

To prove part 5, let P ` be the kernel of the homomorphism from Ker(ρ̄|H)
to its pro-` completion. Then P ` is a characteristic subgroup of H, that is
closed. The quotient H/P ` is thus a virtual pro-` group that satisfies Mazur
finiteness condition Φ`; moreover it surjects onto Ker(ρH)/H. By [6, Ch. 5]
the automorphism group Aut(H/P `) is in a natural way a profinite group
that is virtually pro-`. Conjugation by elements of Z via s defines a closed
subgroup of Aut(H/P `), and from this part 5 is clear.
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For the last assertion it suffices to show that under the hypothesis of
part 6 one has ασ = idR0

H
for all σ ∈ Z for the maps in 3. This is clear, since

the hypothesis implies that ρσH = ρH for all σ ∈ Z. �

For n ≥ 1 define Fqn`∞ = lim
−→t

Fqn`t and Xn`∞ = X ×Spec Fq SpecFqn`∞ .

Theorem 2.7. Suppose that the representation ρ̄ : π1(X)→ GLm(F) is ab-
solutely irreducible when restricted to π1(X). For an integer n ≥ 1 and t ∈
{0,∞} denote by ρn`t : π1(Xn`t) −→ GLm(R0

n`t) the universal deformation
in the sense of Mazur for deformations of the restriction ρ̄|π1(Xn`t )

whose
determinant is the Teichmüller lift of det ρ̄|π1(Xn`t )

. Define similarly ρ∞ :

π1(X) −→ GLm(R0
∞). Suppose that ` does not divide m and that ` > 2 if

m > 2. Let n ≥ 1. Then the following hold:1

1) The ring R0
n is reduced and finite flat over Z`.

2) There is a canonical isomorphism R0
n`∞ → lim

←−t
R0
n`t, and lim

−→t
SpecR0

n`t

is Zariski dense in SpecR0
n`∞.

3) There exists an n0 such that for all multiples n of n0 one has a canon-
ical isomorphism R0

∞ → R0
n`∞.

4) If gX denotes the genus of X, then R0
∞ is formally smooth over W (F)

of relative dimension

(2.4) dimH1(π1(X), ad0) = (2gX − 2)(m2 − 1) = (2gX − 2) dim ad0 .

Proof. Under the stated hypotheses on `, the finite flatness in part 1 fol-
lows from [4, 1.3 Theorem] for m ≤ 2 and [9] for m > 2. To see reduced-
ness, observe that by finite flatness the ring R0

n[1/`] is a finite Q`-algebra.
Let ρ : π1(Xn)→ GLm(Q`) be any irreducible representation. Then by [12,
Thm. 1], one has H2(π1(Xn), ad0

ρ) = 0 which in turn yields H1(π1(Xn), ad0
ρ)

1For m > 2, our proof makes use of [9]. It is stated in [9, 1.4], that [9] relies on
two results whose proofs do not exist in the published literature: a derived theory of
perverse étale sheaves with Fq((t))-coefficients, and a sheaf-function correspondence
compatible with inverse image, direct image and tensor product. We learned from
[17] that the first result is known in the meanwhile by the theory of the pro-étale
site of Bhatt and Scholze, cf. [1]. The second result about the geometric Satake
isomorphism for the affine Grassmannian over finite fields and torsion coefficients
is still unpublished. Over C the latter result is treated in [16] by Mirković and
Vilonen.
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= 0, and hence that ρ has no non-trivial deformations. This shows that
R0
n[1/`] is a product of fields, and hence is reduced.

The proof of part 2 is a direct consequence of Lemma 2.6, part 4, where
for the short exact sequence 1→ H → G→ Z → 1 one takes 1→ π1(X)→
π1(X)→ GFq → 1. Next, by Lemma 2.6, part 5, there exists n0 > 1 such that
Gal(Fq/Fn0`∞) acts trivially on π1(X)/Ker(ρ∞). If one applies Lemma 2.6,
part 6, to the sequence 1→ π1(X)→ π1(Xn`∞)→ Gal(Fq/Fn`∞)→ 1 for
any n with n0|n, part 3 follows.

We finally prove part 4. The proof of the relative formal smoothness is
given in [4, 3.11 Lemma]. To compute the relative dimension one first ob-
serves that dimH1(π1(X), ad0) is equal to the Euler-Poincaré characteristic
of ad0 as a sheaf on π1(X), because the relevant H0 and H2 terms vanish;
the former by absolute irreducibility, the latter by Poincaré duality. The
Euler-Poincaré characteristic is then evaluated to the number given in (2.4)
by the Theorem of Grothendieck-Ogg-Shafarevich, [18], using that ad0 is
lisse on X. �

To give a concrete interpretation of Theorem 2.7, fix a representation
ρ̄ : π1(X)→ GLm(Fq) whose restriction to π1(X) is absolutely irreducible.
Because of part 1 of the theorem, for every n and t, the ring R0

n`t [
1
` ] is

a product of fields. By the Theorem of Lafforgue, [14, Théorème (p. 2),
Théorème. VI.9], each factor corresponds to a cuspidal automorphic repre-
sentation of GLm(AXn`t ). By parts 2–4, the number of such factors tends to
∞ as t→∞. This means that the number of cuspidal automorphic repre-
sentations for GLm(AXn`t ) of fixed central character the Teichmüller lift of
det ρ̄ that are congruent modulo ` to the given ρ̄ also converges to ∞ for
t→∞. However the theorem makes no quantitative assertions. For instance
it sheds no light on the Q`-dimension of R0

n`t [
1
` ].

3. Dihedral representations

In the following, we denote by E an algebraically closed field of characteris-
tic different from 2 and from p. Unless indicated otherwise, E will carry the
discrete topology. We call a continuous representation ρ of a profinite group
G over E dihedral, if there exists an index 2 subgroup H of G and a charac-
ter χ : H → E∗ such that ρ = IndGH χ where χ satisfies χ 6= χc; here c is any
element in G \H and χc : H → E∗ is the character h 7→ χ(chc−1) (which is
independent of the chosen c). We note right away that ρ is induced from
exactly two such characters, namely χ and χc. The condition χ 6= χc implies
that the image of G under ρ is non-abelian. Without further mentioning, we
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assume in the following that all representations are continuous. Because E is
discrete, all representations we consider have image of finite order. In the fol-
lowing we write Hom(·, ·) for the group of homomorphisms between abelian
groups and Homcts(·, ·) for the subgroup of continuous homomorphisms, if
both groups carry a topology.

The aim of this section is to deduce asymptotic formulas for the number
of dihedral representations of π1(Xn), that remain dihedral after restriction
to π1(X), as n varies, up to certain twist that we shall specify below. Such
representations are induced from characters χ : π1(Yn)→ E∗ for geometri-
cally irreducible double covers Y → X, and we shall count the latter up to
twisting. As recalled from [5, 1.2] in the introduction, this number is the
same as the number of dihedral representations of X that are fixed by the
n-th power of the q-Frobenius.

3.1. `-power torsion of abelian varieties

Let A be an abelian variety over Fq of dimension gA. We collect some simple
facts on the behavior of the size of the `-power torsion of A(Fqn) for n→
∞. The results below are inspired by the behavior of |qn − 1|−1

` for n→
∞, where qn − 1 is the cardinality of the set of Fqn-rational points of the
multiplicative scheme Gm. The results are probably well-known, but we
could not locate a reference. For background on abelian varieties, we refer
to the forthcoming book [8], and there in particular to Chapter 12.

By πA we denote the Frobenius of A relative to Fq. We regard πA as
an element of the Q-endomorphism ring D = EndQ(A). We write chA for
the characteristic polynomial of πA. It is the unique monic polynomial in
Z[T ] of degree 2gA such that for all n ∈ N one has chA(n) = deg([n]A −
πA), where [n]A is the multiplication by n map on A and deg the degree
of an endomorphism, with the convention that the degree is zero if the
endomorphism is not finite. For any prime number ` 6= p, the polynomial
chA is also the characteristic polynomial of the endomorphism on the `-adic
Tate module of A induced by πA. The roots of chA in Q we denote by αi,
i = 1, . . . , 2gA. They are q-Weil numbers of weight one.

The group A(Fqn) is the kernel of the isogeny id−πnA : A→ A. The de-
gree of this isogeny is

#A(Fqn) = deg(id−πnA) =

2gA∏
i=1

(1− αni ).
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Denote by K the splitting field of chA over Q. We fix a prime ` different
from p and a place λ of K above `. By Kλ we denote the completion of K at
λ, by kλ the residue field of Kλ, by $λ a uniformizer of Kλ and by | |λ the
valuation on Kλ that extends the valuation | |` on Q` with |`|` = 1

` . The field
Kλ is unramified over Q` for almost all `. If this holds for `, one may take
$λ = `. Choosing λ enables us to analyze the factors (1− αni ) separately
because |

∏
i(1− αni )|` =

∏
i |1− αni |λ.

We have α#kλ−1
i ≡ 1 (mod $λ) for all i = 1, . . . , 2gA. We denote by h`

the smallest divisor of #kλ − 1 such that

αh`i ≡ 1 (mod $λ) for all i = 1, . . . , 2gA.

It follows that αh` `
j

i → 1 for j →∞. Let j` ≥ 0 be the smallest integer such
that ∣∣αh` `j`i − 1

∣∣
λ
< `

−1

`−1 < 1 for all i = 1, . . . , 2gA.

Note that j` = 0 whenever K/Q is unramified above ` and ` > 2.
For each divisor d of h` and each j ≥ 0 we define N`,d,j as #A[`∞](F

qd`
j ),

and gd as the number of i ∈ {1, . . . , 2gA} such that αdi ≡ 1 (mod $λ). Then
gh` = 2 dimA ≥ gd for all d.

Proposition 3.1. For n ∈ N define j = − log` |n|`, i.e., as the largest in-
teger j such that `j |n. Then

#A[`∞](Fqn) =

∣∣∣∣∣
2gA∏
i=1

(1− αni )

∣∣∣∣∣
−1

λ

= N`,gcd(n,h`),j .

Moreover for j ≥ j` one has N`,gcd(n,h`),j+k = `kggcd(n,h`)N`,gcd(n,h`),j.

Proposition 3.1 means that #A[`m](Fqn) depends only on the subgroup
of Z/(h`) generated by n and the `-divisibility of n, and the contribution of
the `-divisibility behaves regularly for |n|−1

` sufficiently large.

Proof of Proposition 3.1. The two points that require proof are:

1) For j ≥ 0 and n ≥ 1 prime to ` one has |1− αn`ji |λ = |1− αgcd(n,h`)`j

i |λ.

2) For n a divisor of h` and j ≥ j` one has

|1− αn`ji |λ =

{(
1
`

)j−j` · |1− αn`j`i |λ, if |1− αni | < 1,

1, if |1− αni | = 1.
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If αni 6≡ 1 (mod $`), then the left and right hand sides above take the value
1, and so the equalities are clear. So let us assume from now on that αni ≡ 1
(mod $`). Then the left and right and sides take values in the open interval
(0, 1); the value 0 is impossible since αi is a q-Weil number of weight 1, and
in particular not a root of unity.

For the equality in part 1 observe that n′ := n/ gcd(n, h`) is prime to `.

Since α
gcd(n,h`)`j

i ≡ 1 (mod $`) raising the element α
gcd(n,h`)
i to the power

n′ does not change its distance to 1, and this proves part 1.
Regarding equality in part 2, observe first, that by the just discussed part

1, we can on both sides replace n by h` without changing the valuations.

By the definition of j` we have |αh` `
j`

i − 1|λ <
(

1
`

) 1

`−1 . By induction on j −
j` ≥ 0 one easily deduces the equality in 2: for the induction one shows by
the binomial theorem that |(1 + ε)` − 1|λ = |(1 + `ε)− 1|λ = |`|`|ε|λ if ε ∈
Kλ satisfies |ε|λ <

(
1
`

) 1

`−1 , i.e., |ε`|λ < |ε`|λ. �

3.2. Counting dihedral representations up to twisting

In this subsection, we fix the following abstract setting: G is a profinite
group and H ⊂ G is an index 2 subgroup such that one has commutative
diagram with exact rows

(3.1) 0 //M ′ //

��

Hab //

��

Ẑ // 0

0 //M // Gab κ // Ẑ // 0,

in which M and M ′ are finite abelian groups. We shall give elementary for-
mulas and estimates for the number of non-abelian dihedral representations
ρ over E of G induced from H in terms of M and M ′. Recall that dihedral
means that ρ = IndGH χ, where χ : H → E∗ is a character such that χ 6= χc,
and where c is a fixed element of G \H. By κ we also denote the composite
G→ Gab κ→ Ẑ.

Definition 3.2. Let ρ and ρ′ be representations of G (or of H) over E.
We call ρ and ρ′ strongly twist-equivalent over G (over H), and write

ρ ≈ ρ′, if there is a character χ0 : G→ E∗ (or χ0 : H → E∗) that is trivial
on Kerκ (or Kerκ|H) such that ρ′ ∼= ρ⊗ χ0.

We call ρ stably irreducible if the restriction ρ to the kernel of κ : G→ Ẑ
is irreducible.
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Lemma 3.3. Let χ : H → E∗ be a character and set ρ = IndGH χ.

1) The order of Im(ρ) is invertible in E and hence ρ is semisimple.

2) The representation ρ is stably irreducible if and only if χ|M ′ 6= χc|M ′.

3) The restriction map χ 7→ χ|M ′ defines a bijection

{characters χ : H → E∗}/≈ → {characters χ1 : M ′ → E∗}.

4) Suppose ρ is stably irreducible. Then for any character χ′ : H → E∗

one has the following equivalences

IndGH χ ≈ IndGH χ
′ over G ⇐⇒ χ′ ≈ χ or χ′ ≈ χc over H

⇐⇒ χ′|M ′ = χ|M ′ or χ′|M ′ = χc|M ′ .

5) The strong twist-equivalence classes of stably irreducible dihedral repre-
sentations of G over E are in bijection with (unordered) pairs {χ1, χ

c
1}

of characters χ1 : M ′ → E∗ such that χ1 6= χc1.

Proof. Because E is discrete, Im(χ) ⊂ E∗ is a finite subgroup. As such its
order is prime to charE. Since also charE 6= 2 = [G : H], the first half of
part 1 holds. The second half follows from Maschke’s theorem.

For part 2, let G0 and H0 be the kernels of G→ Ẑ and H → Ẑ from
(3.1), respectively. Then the restriction of IndGH χ to G0 is isomorphic to
IndG0

H0
(χ|H0

), and the latter is irreducible if and only if χ|H0
6= χ|cH0

. Because
χ is abelian, the restriction χ|H0

factors via the quotient M ′ of H0, and part
2 follows.

The surjectivity in part 3 is clear, since the horizontal sequences in (3.1)
are split. The injectivity is straightforward from the definitions.

The left expression in part 4 is equivalent to the existence of a character
χ0 : Ẑ→ E∗ such that IndGH χ ≈ IndGH χ

′ ⊗ (χ0 ◦ κ). This is equivalent to
χ′ ⊗ (χ0 ◦ κ|H) being equal to χ or χc, which is defined to mean χ′ ≈ χ or
χ′ ≈ χc. The second equivalence in part 4 follows from part 3. Finally part
5 is immediate from parts 3 and 4. �

One has a short exact sequence 1→ Hab → G/[H,H]→ Z/2→ 1. The
element c chosen above maps to the generator of Z/2, and conjugation by c
acts on Hab as an endomorphism of order 2. For any subgroup H ′ ⊂ Hab,
we denote by [c,H ′] the subgroup of Hab generated by the commutators
[c, h′], h′ ∈ H ′. Note that [c,Hab] maps to 0 under κ and hence [c,Hab] is
a subgroup of M ′. We let M ′− be the subgroup of M ′ on which c acts by
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multiplication with −1. For the next three results, we introduce the index

(3.2) e = [[c,Hab] : [c,M ′]].

Lemma 3.4. Let χ1 : M ′ → E∗ be a character.

1) χ1 = χc1 if and only if [c,M ′] lies in the kernel of χ1.

2) χ1 extends to a character of G/[H,H], i.e., of M , if and only if [c,Hab]
lies in the kernel of χ1.

3) One has 2M ′− ⊂ [c,M ′−] ⊂ [c,M ′] ⊂ [c,Hab] ⊂M ′−.

4) The index e from (3.2) is 1 or 2.

5) The map Hom(M,E∗)→ {χ1 ∈ Hom(M ′, E∗) | χc1 = χ1}, χ 7→ χ|M ′
has kernel of order 2 and image of index e, with e from part 4.

Proof. For part 1 note that χc1 · χ
−1
1 = id if and only if for all h ∈M ′ we have

χ1(chc−1h−1) = 1, and the latter is equivalent to [c,M ′] ⊂ Kerχ1. To see
part 2, note that since c generates G/H ∼= Z/(2), and since Hab = H/[H,H]
is abelian, the commutator subgroup of G/[H,H] is [c,Hab], and now part 2
is immediate.

For part 3, let h ∈ Hab and note that c2 ∈ Hab. The inclusion on the right
now follows from c[c, h]c−1 = cchc−1h−1c−1 = hch−1c−1 = [h, c] = [c, h]−1;
note that [c,Hab] ⊂M ′ had been observed right before the lemma. It re-
mains to show the inclusion on the left. Let m′ ∈M ′−, so that cm′c−1 =
m′−1. Then [c,m′−1] = cm′−1c−1m′ = (m′)2, which completes part 3.

To see part 4, note that by part 3 the quotient M̄ := [c,Hab]/[c,M ′] is
a finite elementary abelian 2 group. Now if h ∈ Hab maps to 1 in Z under
κ, then it follows that [c, h] is a generator of M̄ , and this gives part 4.

Regarding part 5, note first that the map is well-defined, since conjuga-
tion by c acts trivially on Gab ⊃M . Next observe that the kernel of the map
in part 5 consists of inflated homomorphisms from M modulo the image of
M ′. The latter quotient is isomorphic to G/H ∼= Z/(2), and so the kernel in
part 5 has order 2. The assertion on the cokernel is immediate from parts 1,
2 and 4. �

Combining Lemmas 3.3 and 3.4 directly gives the following result.

Corollary 3.5. The number of strong twist-equivalence classes of stably
irreducible dihedral representations of G over E is

1

2
(# Hom(M ′, E∗)− e

2
# Hom(M,E∗)).
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Specializing Corollary 3.5 to E = Q` and to E = F`, and using the du-
ality between a finite abelian group and its group of characters, as well
as ` 6= 2, yields the following consequence.

Corollary 3.6. The number of strong twist-equivalence classes of stably
irreducible dihedral representations of G over Q` is 1

2(#M ′ − e
2#M).

The number of strong twist-equivalence classes of stably irreducible di-
hedral representations of G over F` is 1

2(#M ′/M ′` −
e
2#M/M`), where for a

finite abelian group A by A` we denote its `-primary part.

The last lemma in this section concerns the number of lifts to Q` of a
given dihedral representation of G over F`. Let Z` be the ring of integers of
Q`. We begin with the following well-known result:

Proposition 3.7. Any representation ρ : G→ GLn(Q`) is conjugate to a
representation ρ′ whose image lies in GLn(Z`). The semisimplification of the
reduction of ρ′ to GLn(F`) is independent of the chosen ρ′.

By ρ̄ we will denote the semisimplification of a reduction of a represen-
tation ρ : G→ GLn(Q`).

Proof. By [13, Remark 9.0.7] the image of ρ lies in GLn(F ) for some finite
extension F of Q`. If OF is its ring of integers, then by [11, p. 37] a conjugate
of ρ takes values in GLn(OF ). The independence of the reduction follows
from [3, Thm. 30.16], a result due to Brauer and Nesbitt. �

For the following lemma, we remark that any finite order character χ
to Q∗` can be written uniquely as a product χ = χ`χ

`, where χ` has order a
power of ` and χ` has order prime to `.

Lemma 3.8. 1) The map Hom(M ′,Q∗` ) −→ Hom(M ′,F∗` ), χ 7−→ χ̄, is
an epimorphism of abelian groups with kernel {χ ∈ Hom(M ′,Q∗` ) | χ =
χ`}. We have χ = χ`.

2) The reduction of IndGH χ is IndGH χ̄. The map

{IndGH χ |χ ∈ Homcts(H,Q
∗
` )}/≈

−→ {IndGH χ̄ | χ̄ ∈ Homcts(H,F
∗
` )}/≈, ρ 7→ ρ̄,

between strong twist-equivalence classes is surjective. The fibers of sta-
bly irreducible representations IndGH χ̄ have cardinality #M`.
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Proof. Part 1 is obvious. For the first claim of part 2, let χ be in
Homcts(H,Q

∗
` ). By compactness of H the image of χ lies in Z∗` . Now IndGH χ

can be described explicitly by

h 7→
(
χ(h) 0

0 χc(h)

)
⊂ GL2(Z`) c 7→

(
0 1
1 0

)
for h ∈ H. It is then clear that IndGH χ maps to IndGH χ̄ under reduction.
The explicit description also makes it apparent that without passing to
strong twist-equivalence classes, the map in part 2 is surjective. Moreover,
for a homomorphism χ0 : Ẑ→ Z∗` the twist (IndGH χ)⊗ χ0 is isomorphic to
IndGH(χ⊗ χ0), and so reduction preserves strong-twist equivalence classes.
This completes the proof of the second assertion of part 2.

Let finally χ̄ ∈ Homcts(H,F
∗
` ) be such that IndGH χ̄ is stably irreducible.

Then any lift χ ∈ Homcts(H,Q
∗
` ) is also stably irreducible. Furthermore,

any two lifts differ by multiplication by a continuous character G→ Q∗` of
`-power order. After passing to twist equivalence classes, the fiber of IndGH χ̄
will be in bijection with the characters from M to Q∗` of `-power order, and
hence (non-canonically) with the `-primary part M` of M . This completes
the proof. �

Remark 3.9. Observe that the two numbers in Corollary 3.6 do not differ
by a factor of #M`. This is so because the mod ` reduction of a dihedral
representation may become a sum of characters.

3.3. Growth of `-adic and mod `-systems of dihedral
representations

Suppose in the following that ` is a prime different from 2, and that the
genus g of X is at least 2.

We begin by recalling the main theorem of unramified geometric class
field theory for X first formulated by Lang and Weil.

Theorem 3.10 ([20, Ch. VI]). There is a commutative diagram

0 // Pic0(X)(Fq)

'
��

// Pic(X)(Fq)

[x]7→Frobx
��

deg // Z

n7→FrobnFq
��

// 0

0 // Ker(s∗) // πab
1 (X)

s∗ // GFq
// 0,
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where the left vertical map is an isomorphism, the central and right vertical
maps are injective with dense image, the central homomorphism is charac-
terized by sending any (Weil) divisor [x], for x ∈ |X|, to the well-defined
Frobenius automorphism Frobx ∈ πab

1 (X), and the homomorphism s∗ arises
from the structure morphism s : X → SpecFq by functoriality of étale fun-
damental groups.

We call a character of π1(X) a character of the base if it is the inflation
of a character of GFq under s∗. Then the above theorem has the following
immediate consequence.

Corollary 3.11. The homomorphism Pic(X)(Fq)→ πab
1 (X) of the previ-

ous theorem induces a bijection{
finite order characters

Pic0(X)(Fq)→ Q∗`

}
←→

{
characters of π1(X)ab → Q∗`

up to twists by characters of the base.

}
Let f : X ′ → X be an unramified degree 2 Galois cover of X by a smooth

projective curve X ′ that is again geometrically connected over Fq. Note that
the genus of X ′ is 2g − 1. We write {1, c} for AutX(X ′). The automorphism
c induces an involution c∗ on the Jacobian Pic0(X ′) of X ′. To relate the
above to the axiomatic setting of 3.2, we display the following commutative
diagram with exact rows:

0 // Pic0(X ′)(Fqn) //

��

π1(X ′n)ab //

��

GFqn
// 0

0 // Pic0(X)(Fqn) // π1(Xn)ab // GFqn
// 0.

Before we state results on counting dihedral representation of π1(Xn)
over Q` and F` for n→∞, we collect some basic results on the number
of unramified degree 2 Galois covers f : X ′n → Xn, when n varies: From
Theorem 3.10 it follows that for each n the set of degree 2 unramified Galois
covers of X is in bijection with the index 2 subgroups of

Pic0(X)(Fqn)⊗ Z/2⊕Gal(Fq2n/Fqn) ∼= πab
1 (Xn)⊗ Z/2.

Let X
(i)
n → Xn, i = 1, 2 be two such covers, and suppose that χi : π1(X

(i)
n )→

E∗ are two characters, such that

Ind
π1(Xn)

π1(X
(1)
n )

χ1 ≈ Ind
π1(Xn)

π1(X
(2)
n )

χ2.
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Then there is an isomorphism X
(1)
2n
∼= X

(2)
2n as coverings of Xn. Hence if we

wish to count unramified dihedral representation of π1(Xn) up to (strong)
twist equivalence, then the relevant quadratic covers of Xn are labelled by
the index two subgroups of Pic0(X)(Fqn)⊗ Z/2. The number of such labels
is this equal to # Pic0(X)[2](Fqn)− 1.

To organize the above, for a non-trivial homomorphism β : π1(X)→
{±1} we denote by nβ the smallest n such β has an extension to π1(Xnβ)→
{±1}. Note that all n such that β extends to π1(Xn) are multiples of nβ.

By fβ : X
(β)
nβ → Xnβ we denote the corresponding unramified degree 2 cover.

The number of such β is 22g − 1 where g is the genus of X. For positive
integers n,m we define δm|n to be 1 if m divides n and 0 otherwise. For each
β define eβ ∈ {1, 2} according to Lemma 3.4 part 4. Then we deduce from
Corollary 3.6:

Proposition 3.12. Let ` be an odd prime. The number of stably irreducible
dihedral representation of π1(Xn) over Q∗` up to twist by characters of the
base is ∑

β

δnβ |n

2

(
# Pic0(X(β)

nβ )(Fqn)−
eβ
2

# Pic0(X)(Fqn)
)
.

The number of stably irreducible dihedral representation of π1(Xn) over
F∗` up to twist by characters of the base is

∑
β

δnβ |n

2

(
#

Pic0(X
(β)
nβ )(Fqn)

Pic0(X
(β)
nβ )(Fqn)`

−
eβ
2

# Pic0(X)(Fqn)

# Pic0(X)(Fqn)`

)
.

From the Weil conjecture for curves we obtain sequences of real con-
stants (cn) and (cβ,n) for n ∈ N that satisfy |cn| ≤ q−n/2 and |cβ,n| ≤ q−n/2,
respectively, such that

# Pic0(X)(Fqn) = qgn(1− cn)2g and

# Pic0(X(β)
nβ )(Fqn) = q(2g−1)n(1− cβ,n)4g−2.

From Proposition 3.1 we obtain

• integers h` > 0 and hβ,` > 0,

• for every divisor d of h` or hβ,` integers gd ≥ 0 and gβ,d ≥ 0 such that
gh` = 2g > gd for d a proper divisor of h` and gβ,hβ,` = 4g − 2 > gd for
d a proper divisor of hβ,`,
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• for any d and j ≥ 0 let Nd,j = `−gdj# Pic0(X)[`∞](Fqd`j ) and Nβ,d,j =

`−gβ,dj# Pic0(X
(β)
nβ )(Fqd`j ),

• some j` ≥ 0 such that for all j ≥ j` one has2

Nd,j = Nd,j` and Nβ,d,j = Nβ,d,j` ,

such that for any n ≥ 0 and j(= j(n)) = − log` |n|` one has

# Pic0(X)[`∞](Fqn) = Ngcd(n,h`),j`
gdj ,

# Pic0(X(β)
nβ )[`∞](Fqn) = Nβ,gcd(n,hβ,`),j`

gβ,dj .

Theorem 3.13. Let ` be an odd prime.

1) The number of stably irreducible dihedral representation of π1(Xn) over
Q∗` up to twist by characters of the base is

q(2g−1)n ·
∑
β

δnβ |n

2

(
(1− cβ,n)4g−2 −

eβ
2
q−n(g−1)(1− cn)2g

)
.

2) The number of stably irreducible dihedral representation of π1(Xn) over
F∗` up to twist by characters of the base is

q(2g−1)n ·
∑
β

δnβ |n

2

(
(1− cβ,n)4g−2

Nβ,gcd(n,hβ,`),j
q−jggcd(n,hβ,`)logq `

−
eβ
2

(1− cn)2g

Ngcd(n,h`),j
q−jggcd(n,h`)logq `

)
,

where as before j = − log` |n|` is the largest integer such that `j |n – in
particular 0 ≤ j ≤ log` n.

Remark 3.14. We make some remarks that may help to better parse the
expressions in Theorem 3.13 parts 1 and 2: Let us note first that some of the
constants introduced above depend on `. We did not want to add this extra
term into the notation. The constants in formula 1, cn, nβ, eβ, cβ,n and c̃β,n
do not depend on `. The constants h..., g... and N... from Proposition 3.1 do
depend on `.

2The constants N... as defined here differ by some `-powers from those in Propo-
sition 3.1.
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The expression in part 1 is independent of `. The coefficient of its leading
term q(2g−1)n is 1

2

∑
β δnβ |n. It depends on the non-vanishing of δnβ |n, where

nβ is the minimal n, so that a certain 2-torsion subgroup of Pic0(X) is
defined over Fqnβ . There are 22g − 1 choices for β; say the set of such is B. For
each divisor d of nB = lcm(nβ, β ∈ B) one obtains a different coefficient Cd
of the leading term. So asymptotically for n→∞ and fixed d = gcd(n, nB),
the expression in 1 behaves like

Cdq
n(2g−1)(1 +O(q−n/2)).

If min(nβ, β ∈ B) > 1, then C1 = 0, and in fact the entire expression is zero
for all n such that gcd(n, nB) = 1. I.e., within the so defined congruence
classes, the expression is also zero asymptotically for n→∞. Note also the
expression in part 1 is a Lefschetz like formula in the sense of Definition 4.1.

The second expression is more involved. There are finitely many struc-
tural constants since the Nd,j and Nβ,d,j become constant for j →∞. This
allows one to group all n again into finitely many congruence classes (that
depend on nB, h` and hβ,` and j`) within which these structural constants
are in fact constant. Within such a congruence class for n (that is in fact of
the form gcd(n, nB,`) = d), one can write the expression in 2 as

C ′dq
(2g−1)(n−2j logq `)+jg

′
d logq `(1 +O(q−n/2+c′d log` n)),

where j is the largest integer such that `j divides n. The quantity g′d lies
between 0 and 4g − 2, and for certain d it does assume the value 4g − 2. This
simply corresponds to the fact that (for all β and all dihedral representations
counted for that β) a given mod ` representation has roughly `2j(2g−1−g′d)

distinct lifts.
If one fixes j = j0 and considers n→∞ (within the fixed congruence

class), then the growth in part 2 is slightly but consistently slower than that
in part 1. Asymptotically the quotient of the two expressions is

(3.3)
Cd
C ′d

`j0(4g−2−g′d)

This is in line with Theorem 2.3 and Corollary 2.5.
If on the other hand one considers a sequence of the form n = n0`

k with
k →∞, the quotient above takes the form

(3.4)
Cd
C ′d

`k(4g−2−g′d) =
Cd
C ′d

q(4g−2−g′d) logq(n/n0),
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i.e., it grows logarithmically in n in the exponent, or polynomially in n. This
can be seen as a quantitative refinement of Theorem 2.7.

The effect of changing ` does not qualitatively change the behavior of
the expression in part 2 for n→∞. For `� 0, the constants N... simplify as
explained before Proposition 3.1: for all but finitely many ` one has j` = 0.
However the quantities h?,` typically grow with `, and for each `, the g? will
be new constants about which we cannot say anything.

Corollary 3.15. Given any prime ` there are infinitely many n such that

T (X, 2, qn, `) < T (X, 2, qn, `).

Proof. This is a consequence of Lemma 1.2 and Theorem 3.13. �

4. Miscellaneous remarks

We end with some remarks and by comparing the situation to counting mod
` eigenforms of level one.

4.1. Lefschetz like formulas

Definition 4.1. We say that the counting function n 7→ T (X, 2, qn, `) sat-
isfies a Lefschetz-like formula if there exist complex numbers mi,` and µi,`
for i between 1 and k`, with mi,`, µi,` independent of n but may be dependent

on `, such that T (X, 2, qn, `) =
∑k`

i=1mi,`µ
n
i,` for all n ≥ 1.

We show that there cannot be a Lefschetz-like formula for T (X, 2, qn, `)
for infinitely many ` with the number k` in the formula bounded indepen-
dently of `. A Lefschetz like formula of this sort should mean roughly that
T (X, 2, qn, `) is counting the number of Fqn points of a variety X` which
might depend on ` but whose dimension and dimensions of cohomologies is
bounded as ` varies.

Proposition 4.2. There is no infinite set X of primes ` 6= p, such that
we have a Lefschetz like formula for n 7→ T (X, 2, qn, `) for all ` ∈ X with k`
bounded independently of `.

Proof. Assume on the contrary that there is an infinite set X which violates
the statement of the proposition. Let k′ ≥ k + 1, with k from Theorem 1.1
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be a constant, such that for all ` ∈ X we have a Lefschetz like formula

T (X, 2, qn, `) =

k∑̀
i=1

mi,`µ
n
i,` for all n ≥ 1,

for suitable complex numbers mi,`, µi,`, i = 1, . . . , k`, independent of n, but
possibly dependent on `, such that µ1,`, . . . , µk`,` are pairwise distinct and

non-zero, and k` ≤ k′. The sequence n 7→ a`(n) :=
∑k`

i=1mi,`µ
n
i,` is what is

called a generalized power sum. The numbers mi,` and µi,` are uniquely
determined by this sequence; this follows from the asymptotics for the dif-
ference of two sequences for n→∞.

As explained in [21, § 2], the sequence (a`(n))n≥0 is a recurrence sequence
with minimal polynomial s`(X) =

∏m
i=1(X − µi,`); and in fact the argument

indicated there shows that s`(X) is the minimal polynomial of the sequence.
In particular it is determined by (a`(n))1≤n≤2k` . Knowing the µi,`, one can
solve for the mi,` by using the values (a`(n))1≤n≤k` , and hence these k` + k`
structural constants are determined by (a`(n))1≤n≤2k` . In particular, if we
have T (X, 2, qn, `) = T (X, 2, qn, `) for all n ≤ 2k`, then from the above we
deduce that k` = k + 1, mi,` = mi and µi,` = µi for mi, µi as in Theorem 1.1
and i = 1, . . . , k`, and mk+1,` = 1 and µk+1,` = q4g−3.

Now from de Jong’s lifting result Lemma 1.2 any representation in
T (X, 2, qn, `) lifts to a representation in T (X, 2, qn, `). Since clearly for any
fixed n, there are only finitely many ` for which two distinct representation in
T (X, 2, qn, `) can have isomorphic reductions, there exists an `0 such that for
all ` > `0 and all n ≤ 2k′ we have the equality T (X, 2, qn, `) = T (X, 2, qn, `)
required in the previous paragraph. But then the Lefschetz like formula with
structural constants as in Theorem 1.1 shows that for almost all ` ∈ X we
have T (X, 2, qn, `) = T (X, 2, qn, `) for all n ≥ 1. This however contradicts
Corollary 3.15 deduced from our explicit formulas on the number of dihe-
dral representations. �

The proposition and its proof do not rule out the possibility

T (X, 2, qn, `) = T (X, 2, qn, `)

for `� 0 and all n with (n, `) = 1.

4.2. Analogy with mod ` modular forms

Let us recall an analogous situation studied by T. Centeleghe in [2]. He
counts the number N(GQ, 2, `) of irreducible mod ` representations ρ̄ : GQ →
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GL2(F`) that are odd and unramified outside `. By Serre’s conjecture these
arise from newforms of level 1 and weight between 2 and `+ 1, up to twisting
by powers of the mod ` cyclotomic character χ.

Thus N(GQ, 2, `) is finite and is bounded above by

(`− 1)

(
`+1∑
k=2

dimC(Sk(SL2(Z)))

)

and this number is roughly `3/48. The conjecture here is that this is the
correct asymptotic with `. Something in fact stronger should be true to
reflect the hypothesis that the number of congruences mod ` is negligible.

By an argument due to Serre, one can prove a lower bound like `2/8,
using roughly the fact that by bounds of Carlitz, at most `/4 of the Bernoulli
numbers Bk (k between 2 and `+ 1) are divisible by `. For weights k with
2 ≤ k ≤ `+ 1, and such that ` does not divide Bk, it is not hard to see that
all newforms in Sk(SL2(Z)) give rise to irreducible mod ` representations.
This together with the fact that at most two twists of irreducible mod `
representations arising from cusp forms can have Serre weight ≤ `+ 1 shows
that N(GQ, 2, `) ≥ `2/48.

Note that a more constructive proof using induced dihedral representa-
tions may sometimes give no lower bounds when ` is 1 mod 4 (there are
no unramified outside `, odd, 2-dimensional mod ` dihedral representations
when ` is 1 mod 4), or poor lower bounds like `3/2/2 when ` is 3 mod 4 (as
the class group of Q(

√
(−`) has order around

√
`). Serre’s non-constructive

proof does better, but still falls well short of the conjectured asymptotic.

Question 4.3. Is there an analog of Serre’s lower bound, and his style of
argument, in the present geometric case which improves the lower bound on
T (X, 2, qn, `) (for fixed ` and varying n) that we have obtained via counting
dihedral representations in Theorem 3.13?

4.3. Congruences between cusp forms and Eisenstein series

We pose a question related to producing irreducible liftings of reducible
Galois representations ρ̄ : π1(X)→ GL2(F).

It is known that given any pair of characters χ1, χ2 : GQ → F∗ such that
χ1χ2 is odd, there is a newform f of weight k ≥ 2 and level N , the prime to
` part of the product of the conductors of χ1 and χ2, such that the `-adic
representation ρf,ι : GQ → GL2(Q`) attached to f has reduction whose semi
simplification is χ1 ⊕ χ2. This is proved by using Ramanujan’s Θ-operator on
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mod ` modular forms whose effect on q-expansions of mod ` modular forms
is given by Θ(

∑
n anq

n) =
∑

n nanq
n. The proof, cf. Theorem 1 of [10] for

instance, is to start with a mod ` Eisenstein series E = Eχ1,χ2
which is an

eigenform for Hecke operators Tr for primes r, (r,N`) = 1, with eigenvalue
χ1(r) + χ2(r) and observe that f = Θ`−1E is a mod ` cuspidal form with
the same Hecke eigenvalues. Note that the weight of f can be as large as
`2 − 1.

Motivated by this we can ask for analogs in our present function field
case. Let χ : π1(X)→ F`

∗
be a character that factors thorough the Galois

group of a geometric cover of X.
Given an irreducible `-adic representation ρ : π1(X)→ GL2(Q`) such

that the semi simplification of a reduction of it is given by 1⊕ χ. Then a
standard argument using lattices and going back to Ribet [19, Prop. 2.1]
shows that H1(π1(X),F`(χ)) and H1(π1(X),F`(χ−1)) are both non-zero.
Conversely:

Question 4.4. Suppose H1(π1(X),F`(χ)) and H1(π1(X),F`(χ−1)) are both
non-zero. Then is there an irreducible `-adic representation ρ : π1(X)→
GL2(Q`) such that the semisimplification of a reduction of an integral model
of it is given by 1⊕ χ?
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