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and 3—manifolds
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Our main result is that for all sufficiently large x¢ > 0, the set of
commensurability classes of arithmetic hyperbolic 2— or 3—orbifolds
with fixed invariant trace field £ and systole bounded below by xg
has density one within the set of all commensurability classes of
arithmetic hyperbolic 2— or 3—orbifolds with invariant trace field
k. The proof relies upon bounds for the absolute logarithmic Weil
height of algebraic integers due to Silverman, Brindza and Ha-
jdu, as well as precise estimates for the number of rational quater-
nion algebras not admitting embeddings of any quadratic field hav-
ing small discriminant. When the trace field is Q, using work of
Granville and Soundararajan, we establish a stronger result that
allows our constant lower bound xg to grow with the area. As an
application, we establish a systolic bound for arithmetic hyperbolic
surfaces that is related to prior work of Buser—Sarnak and Katz—
Schaps—Vishne. Finally, we establish an analogous density result
for commensurability classes of arithmetic hyperbolic 3—orbifolds
with a small area totally geodesic 2—orbifolds.

1. Introduction

Given a closed, orientable surface X, of genus g > 2, the moduli space of hy-
perbolic metrics on 3, is denoted by M. This (3g — 3) complex dimensional
moduli space is a central object of interest in several fields. The present ar-
ticle is concerned with the subset of arithmetic hyperbolic points. It follows
from work of Borel [2] that the set of arithmetic hyperbolic structures com-
prise a finite set in M. These very special hyperbolic metrics naturally arise
in connection to algebraic and geometric extremal problems; for instance,
Hurwitz surfaces that achieve the maximal possible order isometry group
are always arithmetic.

Associated to a hyperbolic metric is a discrete, faithful representation
Phol: T1(24) — PSL(2,R) with image that we denote by I'. By seminal work
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of Margulis [22], a hyperbolic metric is arithmetic if and only if [Comm(T") :
I'] = oo, where the commensurator Comm(I") is given by

Comm(I') = {n € PSL(2,R) : [[':T], I'":T,] < oo}

and I =y~ 'I'y, T n =T NI There are several (conjectural) characteri-
zations of arithmeticity based on algebraic information about I' and geo-
metric information about the metric itself (see Cooper—Long—Reid [7], 25],
Geninska-Leuzinger [12], Lafont-McReynolds [18], Luo—Sarnak [20], and
Schmutz [27]). These characterizations function through symmetries and
it is not entirely clear what makes arithmetic hyperbolic surfaces special
geometrically through the above lenses.

One well-known conjecture regarding the special geometric nature of
arithmetic hyperbolic surfaces is the Short Geodesic Conjecture. For a hy-
perbolic surface M € M,, we denote the systole of M by Sys(M), and re-
call that this is the length of the shortest closed geodesic on M. The Short
Geodesic Conjecture asserts that there exists a constant C' > 0, indepen-
dent of genus, such that if M is an arithmetic hyperbolic surface, then
Sys(M) > C. There is an analogous conjectural uniform lower bound for
the systole of arithmetic hyperbolic 3—orbifolds. That Short Geodesic Con-
jecture for arithmetic hyperbolic 3—orbifolds is slightly stronger than the
Salem Conjecture (see [2I], §12.3]) that asserts a uniform lower bound on
the set of Mahler measures of the Salem polynomials.

In order to state our main results, we require some additional notation
and terminology. In §2| we will define the volume Vi of a commensurability
class € of arithmetic orbifolds. This volume is defined in terms of the volume
of a distinguished representative of the class which arises in a natural way
from a maximal order in the quaternion algebra associated to € and allows
us to count the number of commensurability classes with bounded volume.
Define N (V') to be the number of commensurability classes C of arithmetic
hyperbolic 2-orbifolds (respectively, 3—orbifolds) with invariant trace field k
and Ve < V. Given zp > 0, define Ni(V;x) to be the number of classes €
with invariant trace field k£, Ve < V, and which have a representative M € €
satisfying Sys(M) < z. We will make use of standard asymptotic notation
from analytic number theory throughout. We will use interchangeably the
Vinogradov symbol, f < g, and the Landau Big-Oh notation, f = O(g), to
indicate that there is a constant C' > 0 such that |f| < C'|g|. Moreover, we
will write f < g to indicate that f < g and g < f. Lastly, we write f = o(g)
if limg oo % =0 and f ~g if lim; %
symbols will indicate dependence of the implied constants.

*! = 1. Any subscripts on these
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Theorem 1.1. For all sufficiently large zo, we have Nj,(V;20)=<V/log(V )=
as V tends to infinity, where the implied constants depend only on k and xg.

By establishing that N (V') < V, we deduce the following density result
from Theorem [I.1]

Corollary 1.2. For all sufficiently large xq, and for every totally real num-
ber field k (respectively, number field with exactly one complezx place), we
have limy _, o %‘f)‘)) =0.

It is straightforward to see that there is a uniform lower bound for the
systoles of arithmetic hyperbolic 2—orbifolds with fixed invariant trace field
k. As a result, for small values of 2y we will have Ni(V;xg) =0 for all V,
in which case the statement of Corollary is trivially satisfied. However,
for z¢ sufficiently large, Ni(V;zp) is unbounded as V' tends to infinity. Our
main result says that regardless of how large we fix our notion for “short”
with regard to the systole, the density of commensurability classes that have
a representative with a short geodesic is always zero.

If we restrict to the class of arithmetic hyperbolic surfaces arising from
quaternion algebras over Q, we can allow our notion of short to grow with
the area of the surface while still maintaining density one. Namely, with
density one the systole has order of magnitude at least loglog(Vy).

Theorem 1.3. Within the set of all commensurability classes of arithmetic
hyperbolic surfaces with invariant trace field Q there s, for all € >0, a
density one subset of classes € such that

1 24
Sys(H?/T') > <8 - e> log log (Wch>
holds for allT' € ¥ .

If I' is a maximal arithmetic lattice with invariant trace field Q which
has minimal co-area in its commensurability class, one can deduce from
Theorem that with density one we have

1 24
(1) Sys(H?/T") > (§ —¢)loglog (V) ,
™
where V' is the co-area of I'. As the systole is non-decreasing in covers, we

see for those commensurability classes, we have that as a uniform lower
bound. In particular, we can compare with the prior systolic estimates



1500 B. Linowitz, et al.

of Buser—Sarnak [4] and Katz—Schaps—Vishne [17]. In [4], Buser and Sarnak
proved that if I' is a cocompact arithmetic Fuchsian group defined over Q

then there is a constant ¢ = ¢(I") such that systole of the congruence cover
I'[I] satisfies

2) Sys(H2/T[T]) >  log (g(H2/T(1])) — c.

where g(-) denotes genus. This result was subsequently extended to arbi-
trary cocompact arithmetic Fuchisan groups in [I7]. Both [4] and [I7] made
extensive use of careful trace estimates, whereas we use counting arguments
that take advantage of the basic tools of multiplicative number theory. One
component of the argument is a bound for a negative moment of L(1, x), as
x ranges over quadratic Dirichlet characters; we extract this bound from the
detailed study made by Granville-Soundararajan [I3] of the distribution of
these L—values. Theorem provides a density one lower bound with order
of magnitude loglog, which is not as good as which has order of magni-
tude log. On the other hand, holds without a depth requirement, while
becomes non-trivial only once the level is sufficiently big. Important here
is that our method provides non-trivial bounds on the systole growth of a
density one subset of commensurability classes of maximal arithmetic hy-
perbolic surfaces. That yields a depth-free bound on a density one set of
classes.

Remark. It is our use of the work of Granville-Soundararajan [13] that
forces us to restrict to arithmetic surfaces with invariant trace field Q.

One may view totally geodesic surfaces as an analogue of geodesics in
hyperbolic 3—orbifolds. With this motivation, our final result is an analogous
density result for small area totally geodesic 2—orbifolds in commensurability
classes of arithmetic hyperbolic 3—orbifolds.

Theorem 1.4. LetV >0 and ky,..., k. be the invariant trace fields of the
arithmetic hyperbolic 2—orbifolds with area at most V. The set of commen-
surability classes of arithmetic hyperbolic 3—orbifolds having a representative
containing a totally geodesic 2—orbifold with area at most V' has density zero
within the set of all commensurability classes of arithmetic hyperbolic 3—
orbifolds that have invariant trace field given as a quadratic extension of
some k;.

Obtaining uniform lower bounds on the area of the smallest totally
geodesic 2—orbifold is trivial since the area of any finite type hyperbolic 2—
orbifold is uniformly bounded from below. However, a 2—orbifold can arise as
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a totally geodesic 2—orbifold in infinitely many incommensurable arithmetic
hyperbolic 3-orbifolds and so the above density result is non-trivial.

The aforementioned density results are established using counting results
that are of independent interest. In our prior work [19], the main input from
analytic number theory came in the guise of Tauberian theorems for Dirich-
let series. Such results give a convenient method for translating information
about singular points into asymptotic estimates. The main novelty in this
paper is the use of mean value estimates for multiplicative functions that
are valid uniformly, instead of merely asymptotically. As with the counting
results from [19], these methods potentially have a much broader range of
applications to other algebraic and geometric counting problems, and sub-
sequently broader geometric applications. Indeed, this paper serves as an
illustration of these applications.

2. Preliminaries

Notation. Throughout this paper k will denote a number field of signature
(r1(k),r2(k)). In practice k will be either totally real or else contain a unique
complex place. The ring of integers of k will be denoted by Of. Given an
ideal I of Oy, we will denote by |I| its norm. The set of prime ideals of Oy
will be denoted &).. The degree of k will be denoted by ny, the discriminant
by Ay, the associated Dedekind zeta function by (x(s) and the regulator by
Regy,. If L/k is a finite extension then we will denote by Ay, the relative
discriminant.

Let k£ be a number field and B be a quaternion algebra over k. The
set of primes of k which ramify in B will be denoted by Ram(B). The
subset of Ram(B) consisting of the finite (respectively infinite) primes of k
which ramify in B will be denoted by Ram(B) (respectively Ramq(B)).
We define the discriminant disc(B) of B to be the product of all primes
in Ram(B). Finally, disc;(B),disco(B) will denote the product of all the
primes in Ram¢(B), Ramy(B).

Let H?, H? denote real hyperbolic 2—-, 3-space. For a lattice T’ <
PSL(2,R), PSL(2,C), let M =H?/T, H?/T denote the associated finite
volume hyperbolic 2— or 3—orbifold. The orbifold M is a manifold precisely
when I' is torsion-free (i.e., has no non-trivial elements of finite order). We
will refer to any non-trivial element of I' of finite order as a torsion ele-
ment.



1502 B. Linowitz, et al.

Arithmetic manifolds. In this section we describe the construction of
arithmetic lattices in PSL(2,R) and PSL(2, C). For a more detailed expo-
sition we refer the reader to Maclachlan—Reid [21].

Let T';,I'y be subgroups of PSL(2,C). We say that I'y and I'y are di-
rectly commensurable if 'y N I'y has finite index in both I'y and I's. We
say that I'y and I's are commensurable in the wide sense if I'] is di-
rectly commensurable with a PSL(2, C)—conjugate of I's. Note that I';, I’y
are commensurable in the wide sense if and only if the associated hyperbolic
orbifolds My, My have a common finite cover.

We begin by reviewing the construction of arithmetic Fuchsian groups.
Let k£ be a totally real field and B a quaternion algebra over k& which is
unramified at a unique real place v of k. We therefore have an identification
B, = B ®; ky, = M(2,R). Let O be a maximal order of B and O! the multi-
plicative group consisting of those elements of O having reduced norm one.
We denote by I'y, the image in PSL(2, R) of O'. The group T'}, is a discrete
subgroup of PSL(2,R) having finite covolume. A subgroup I' of PSL(2,R)
is an arithmetic Fuchsian group if it is commensurable in the wide sense
with a group of the form I'}, for some totally real field k, quaternion algebra
B over k and maximal order O of B. We will denote by % (k, B) the set of
all discrete subgroups of PSL(2, R) commensurable with T'},.

The construction of arithmetic Kleinian groups is very similar. Let & be
a number field with a unique complex place v and B a quaternion algebra
over k which is ramified at all real places. Let O be a maximal order of B and
F%Q the image in PSL(2, C) of O! under the identification B, = B ®y, k, =
M(2,C). A subgroup I' of PSL(2, C) is an arithmetic Kleinian group if
it is commensurable in the wide sense with a group of the form I'{, for some
number field k£ having a unique complex place, quaternion algebra B over k
ramified at real primes and maximal order O of B.

Given two arithmetic lattices I'1, 'y arising from (k;, B;), we know that
I'y and I's will be commensurable in the wide sense precisely when ki = ko
and By = By [21, Thm 8.4.1]. We will make use of this fact many times
throughout the remainder of this paper.

Throughout this paper we will be interested in counting the number of
commensurability classes of arithmetic hyperbolic surfaces or 3—manifolds
with a specified property. We will count these commensurability classes as
follows. Let €(k, B) be a commensurability class of arithmetic hyperbolic
surfaces or 3-manifolds. We define the volume of €' (k, B) to be Vi, p) :=
covol(I'y) where O is a maximal order in B. A result of Borel [2] (see also
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[21, Ch 11.1]) shows that

87| Al C(2
Vi (k) = covol(Ty) = |(47r|2)”k() H (Ipl = 1)
pldisc; (B)

when € (k, B) is a commensurability class of arithmetic hyperbolic surfaces
and that

Apl? (2
Vit = covolty) = ' T (vl-)

pldiscs (B)

when %' (k,B) is a commensurability class of arithmetic hyperbolic 3—
manifolds. Note that this definition does not depend on the choice of max-
imal order [21), p. 336]. It is with respect to this notion of volume that all
of our counting results for commensurability classes of arithmetic manifolds
will be based. We note that this definition is slightly different than existing
notions in the literature, where the volume of the commensurability class
% (k, B) would be defined as the minimal volume achieved by a representa-
tive of € (k, B).

Setting Sys(C(k, B)) = infyscc(r,p) Sys(M), there are infinitely many
orbifolds in the commensurability class that realize Sys(C(k, B)). We will
prove that Sys(C(k, B)) can always realized by a manifold.

Lemma 2.1. Given an arithmetic hyperbolic 2— or 3—orbifold M and a
closed geodesic ¢ on M, there exists a finite manifold cover M' — M such
that c lifts to M'. In particular, there exists a finite manifold cover M' — M
such that Sys(M) = Sys(M').

Proof. By definition of arithmeticity, there is a pair (k, B) such that I' =
79™ (M) is commensurable with PO! where O is a maximal order in B.
Associated to ¢ is a I'-conjugacy class of hyperbolic elements [y] C T and
it suffices to find a torsion-free, finite index subgroup I'y < I" with v € I".
Now, every torsion element n € I' must have eigenvalues that are roots of
unity that are contained in extensions of k of uniformly bounded degree.
Consequently, there is a bound on the order of the torsion elements that
depends only on the degree of k, and we let T" be the least common mul-
tiple of these orders. If A, is an eigenvalue of v and L = k(\y), then L/k
is a quadratic extension, A, € O}, and I' < PSL(2,0p,) (up to squares). By
[16, Thm 2.3], for any sufficiently large m € N, there exists a prime ideal
p in Of, such that the image of A\, in Or/p has multiplicative order m. If
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rp: I' = PSL(2,0L/p) is given by reducing the matrix coefficients modulo
p, then r,(y) has order m when m is odd. For any odd m that is relatively
prime with 7', if m is sufficiently large, the characteristic p of O /p will also
be relatively prime with T'. Selecting such a m and reducing modulo a suf-
ficiently large power of p, we can ensure for any torsion element 1 € I' that
the order of r,¢(n) is equal to the order of 7. To see this assertion, observe
that there are only finitely many possibilities for the characteristic polyno-
mials of the torsion elements n € I' and that the characteristic polynomial
of 7y¢(n) equals the characteristic polynomial of 7 modulo p’. Since every
torsion element 7 € I has characteristic polynomial different from (¢t — 1)?
and there are only finitely possibilities for these characteristic polynomials,
there exists £y € N such that the characteristic polynomial modulo p® is
not (t —1)? for every torsion element in I'. For any ¢ > /5, we know that
rpe(n) # 1 for every torsion element and so the order of ry.(n) will equal the
order of 7. Returning to the proof, as the order of ry.(v) is mp® for some
¢’ >0 and mp” is relatively prime to T', we see that rye(n) & (rpe(v)) for ev-
ery torsion element 7 € I'. Hence, 7”3_41(<sz (’y)>) is a finite index, torsion-free
subgroup of I' that contains ~. O

Remark. There are infinitely many manifolds in C(k, B) that realize
Sys(C(k, B)) since the covers M, associated to r;,zl(<rpe(fy)>) are manifolds
with Sys(M) = Sys(My) for all sufficiently large ¢. Moreover, Lemma
holds for any complete, finite volume hyperbolic 2— or 3-orbifold. In the
case of a hyperbolic 2—orbifold, note that one can deform the holonomy rep-
resentation associated to the hyperbolic structure to obtain a new hyperbolic
structure such that the invariant trace field is algebraic.

3. Absolute logarithmic Weil heights and lengths of closed
geodesics

3.1. Bounds for absolute logarithmic Weil heights

In this section we count the number of commensurability classes of arith-
metic hyperbolic 2— and 3-orbifolds which have a fixed invariant trace field
k and possess a representative with a closed geodesic of length less than
xg. Our proof will make use of several important facts about absolute log-
arithmic Weil heights of algebraic integers, hence we begin by defining the
relevant terms.

Let L be a number field, p € &1, a prime ideal and |[-[, the associ-
ated valuation normalized so that for each a € L, we have [], |af, =
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|Normy, /q(a)| and [lyew, lal, = 1. We define the logarithmic height of
a relative to L to be hp(a) =3 5, log(max{l,|a|,}). The absolute
logarithmic Weil height of « is h(a) = [L : Q] 'hr(a) and is indepen-
dent of the field L. We will make repeated use of the fact that height of
a relative to Q(«) is the logarithm of the Mahler measure of the minimal
polynomial of a.. The following height bounds will play an important role in
the proof of this section’s main result.

Theorem 3.1 (Silverman [30]). Let L/k be a quadratic extension of
number fields with norm of relative discriminant ’AL/k‘ and « be a primitive
element for the extension. Then the absolute logarithmic Weil height h(«)
of a satisfies h(a)) > —(r(k)+ra(k)) log(2) 4 ﬁ log ‘AL/k‘-

2’!’Lk

Theorem 3.2 (Brindza [3], Hajdu [14]). Let L be a number field of
degree ny, > 2 with unit group rank ri and regulator Regy. If L is not an

imaginary quadratic field, then there exists a system of fundamental units
{ui,...,ur, } of L such that h(u;) < 6”Ln‘2"L Reg; holds for all 1 < i <rp.

In order to proceed we now translate the height bounds of Theorems[3.1
and |3.2|into facts about the lengths of closed geodesics on certain arithmetic
orbifolds.

Proposition 3.1. Let k be a totally real number field (respectively number
field with a unique complex place) of degree ny, and B be a quaternion algebra
over k which is unramified at precisely one real place of k (respectively rami-
fied at all real places of k). If Sys(C(k, B)) < xq, then there exists a quadratic
extension L/k which embeds into B and satisfies |AL/k| < e2(mtao)

Proof. We give a proof in the case that k has a unique complex place. The
proof in the totally real case is similar and will be left to the reader. Suppose
therefore that I' is an arithmetic Kleinian group in the commensurability
class defined by (k, B) such that the hyperbolic 3-orbifold H3/I" contains a
closed geodesic of length £(y) < xp, where v € T is the associated hyperbolic
element. It is known [2I, Ch 8] that in this case the subgroup I'® of T
generated by squares is derived from a quaternion algebra in the sense that
I'® is contained in a group of the form I }9 for some maximal order O of B.
Note that T'® contains the element ~2, hence the quotient orbifold contains
a closed geodesic of length 2/(y). Denote by A2 the unique eigenvalue of >
with |Ay2| > 1. The length of the closed geodesic associated to ~2 is equal to
twice the logarithm of the Mahler measure of the minimal polynomial of 2
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[21, Lemma 12.3.3], which is equal to the height of 4 relative to Q(A,2). In
particular, we see that [Q(M\y2) : Q] € {ny,2ny} (see [0, Lemma 2.3]), and
so the absolute logarithmic Weil height h(vy?) of 72 satisfies z¢ > 2nih(v?).
As the field L = k()\,2) is a quadratic extension of k& which embeds into B
(see [21}, Ch 12]), the proposition follows from Theorem [3.1] O

Proposition 3.2. Let k be a totally real number field (respectively number
field with a unique complex place) of degree ny and absolute value of dis-
criminant |Ag| and B be a quaternion algebra over k which is unramified at
precisely one real place of k (respectively ramified at all real places of k). If
B admits an embedding of a quadratic extension L/k which satisfies

flfo 1/2n}€
A <
‘ L/k‘ <4 . 620 (2nk)10”k+1 ‘Ak|4nk>

and which is not totally complex in the case that k is totally real, then
Sys(C(k,B)) < xp.

Proof. As in the proof of Proposition we will prove Proposition in
the case that k£ has a unique complex place and leave the totally real case
to the reader. As every real place of k ramifies in B, the Albert—Brauer—
Hasse—Noether theorem implies that L is totally complex. It now follows
from Dirichlet’s unit theorem that every system of fundamental units of L/k
contains a fundamental unit ug € OF such that uf ¢ O; for any n > 1. Let
o denote the nontrivial automorphism of Gal(L/k) and define u = ug /o (up).
It is clear that Normyp,/;(u) = 1 and that u" & O} for any n > 1.

Theorem [3.2| above, along with Lemmas 4.4, 4.5 of [19] and elementary
properties of Weil heights, shows that we may assume that u satisfies

h(u) < 2627 (2n,) 0% [Ap ™ < 2627 (20) 10 | AL |A L[

Let O be a maximal order of B which contains the quadratic order O[u]
and let v denote the image in I’%Q of u. The proposition now follows from
[21, Lemma 12.3.3] and the fact that the logarithm of the Mahler measure
of the minimal polynomial of v is at most 2ngh(u). O

3.2. A mean value theorem and applications
Let k be a number field. A complex-valued function f defined on the (non-

zero) ideals of Oy is multiplicative if f(ab) = f(a)f(b) whenever a and
b are coprime. When k = Q, the following mean value theorem appears as
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Theorem 01 in [I5] Ch 0], and the proof is sketched in Exercise 01 there.
For details, see |29, p. 58]. The argument for general number fields k can
be carried out in precisely the same way, simply by replacing the sums over
natural numbers with sums over integral ideals, and so we omit it.

Proposition 3.3. Let k be a number field with a nonnegative-valued mul-

tiplicative function f on the ideals of Oy. Suppose there are constants A > 0
and B > 0 for which the following hold: For all y > 0,

(3) > f(p)loglp| < Ay,
[pI<y
and
(1) Y I gl < .
= v

(Here the sums on p are over nonzero prime ideals of Oy.) Then for all
x> 1,

> fla) <(A+B+1)— Z |a|

la|<z ‘ |<z

x fk) | f¥?)
S(A+B+1)logx 11 <1+ o] + v + )

Suppose that at prime power ideals, the values of f are bounded by a
constant depending at most on k. Then , hold with constants A and
B depending only on k. Indeed, the bound leléy log |p| <k y is a crude

consequence of Landau’s prime ideal theorem. Moreover, since log |[p”| <
o[/,

Zzloi!jp <<ZZ’P| 2V/3<<Z|p‘ 4/3.

p v>2 p v>2

The final sum on p is bounded above by (x(4/3). Thus, we can choose a
constant B, depending on k, such that holds.
The following sieve lemma is a simple consequence of Proposition

Lemma 3.4. Let k be a number field, and let & be a set of prime ideals of
Oy. Suppose g is a nonnegative-valued multiplicative function on the ideals
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of O, and that the values of g on prime power ideals are Oy(1). Then for
T > 2,

Y g <wz [] <1+g(p‘L|—l> 1] (1_;!)'

la|<z [p|<z [p|<z
a squarefree p¢ P pe?
ged(a,2)=1

Here ‘ged(a, P) =17 denotes the condition that a not be divisible by any
member of .

Remark. The case when g is identically 1 is particularly important. In
that case, Lemma shows that the number of squarefree a with |a| < x
and ged(a, ) =11is

(5) <xz [] <1 - |M>

[p|<z
pES

Proof of Lemmal[34 Let f(a) = g(a)u(a)?Lycd(a,2)=1, where Lycq(q o)1 de-
notes the charactistic function detecting those ideals for which ged(a, #) =
1. Then f is multiplicative and its values at prime power ideals are Og(1).

Applying Proposition

S a3 s T (1+57)

la|<z la|<z [pl<z
a squarefree p¢»
ged(a,22)=1

. 1 1 . . .
We now use the estimate gz <k H|p| < |(1- p), which is a crude version

of Mertens’ theorem for number fields. (For a sharper, asymptotic version,
see [26].) Inserting this above gives

S ) <<kw< 11 (1‘\;) <1+!§°p|)>> (E OW;I))

la|<z lp|<z
a squarefree pg¢ P pe?
ged(a,22)=1
-1 1
<o I (0 5) I (=)
pl<a P ey P
p¢ P pe?
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Define a multiplicative function ® on the non-zero integral ideals of k as

follows:
1
O(a) = |al [ ] <1 - !M) .
pla

Theorem 3.3. Let L/k be a quadratic extension of number fields and x >
2. The number of quaternion algebras B over k with ®(discs(B)) < x and
which admit an embedding of L is <y, 1, W.

Proof. Since B is determined by its discriminant disc(B), it is enough to es-
tablish the stated upper bound for the number of possible values of disc(B).
Since k has finitely many infinite places, there are only O (1) possibilities
for the infinite component of disc(B). Thus, it will suffice to show that the
given conditions restrict disc;(B) to a set of size Oy 1 (z/(logx)'/?). Let &
denote the set of prime ideals of k£ that split in L.

In what follows, we use 0 to denote a squarefree ideal of Oy, not divisible
by any member of &. Since discy(B) is such an ideal, it suffices to show the
stated bound for the number of d with ®(d) < z.

We begin by estimating a second moment. Using Lemma [3.4] we have
for any y > 3 that

© 3 (&) <« Il (1+ PP (),

[0|<y Ip|<y [p|<y
pg P pEP

Now

(ol/BE)2 -1 @pl-1) (1
o (ol -2 <|p|2>'

1
Noting that Z M < oo and that 1+t < exp(t) for all real ¢, we deduce
p
that the first right-hand product in @ satisfies

H (1+W§|))2_1> < exp (ZO(@)) < 1.

Ip|<y p
pg s

To handle the second product, we can use the Chebotarev density theorem,
according to which the primes of k that split in L have density % From a
version of that theorem with a reasonable error term (e.g., the version of the
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theorem given in [28]), along with partial summation, we have

> ‘p, floglog|y\ +Ork(1).

Ip|<y
peP

Since log (1 — I%|> = —|—;| + O g;), it follows that the second right-hand
2), and so collecting everything,

product above is Of, x((logy)~*

P \? y
2 (¢>(0)> SEL (g )72

[o|<y

We now return to counting 0 with ®(9) < z. Taking y = z in the last
estimate and noting that the summands are all at least 1, we see there are
only O(x/(logz)'/?) possible 2 with |3 < z. Now let y = 2‘x, where £ is a
nonnegative integer. Observe that if [0 > y but ®(0) < =, then (|0]/®(0))?
(y/x)? = 4%. Hence,

#{0: 0] € (y,2y],P(0) < z _43 T < | )

[o|<2y
. 2ty oL@
4¢ log(2€+1$)1/2 2t (log x)1/2'

Summing on ¢, we find that the total number of 0 with [0 > = but ®(d) < x
is also O(x/(logz)'/?). O

3.3. Proof of Theorem

Let zo be a positive real number and k be a number field which is totally
real (respectively has a unique complex place). Recall that N (V'; xg) is the
number of commensurability classes C of arithmetic hyperbolic 2-orbifolds
(respectively 3—orbifolds) with invariant trace field k, Ve < V, and Sys(C) <
x¢. To prove Theorem we must show that for all sufficiently large xg that
Ni(V;x0) < V/1og(V)z, where the implied constants depend only upon k
and x.

Proof of Theorem[1.1. We give a proof in the case of arithmetic hyperbolic
2-orbifolds and leave the 3-orbifold case to the reader. Borel [2, §7.3] has
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shown that the covolume of F}D is

(7) covol(Th) = 8 [ Al Q(Z(:giidiSCf(B))v

where ®(discs(B)) = [I,aisc,(m) (Ip] —1). It follows from Proposition
that Ni(V;xp) is at most the number of isomorphism classes of quaternion
algebras B over k which satisfy ®(discs(B)) < ¢V and admit an embed-
ding of some quadratic extension L/k with norm of relative discriminant
‘AL/k‘ < e2(mt20) Here ¢, is a positive constant depending only on k and
which can easily be made explicit via . A theorem of Datskovsky—Wright
[8] shows that as x — oo the number of quadratic extensions L/k with
‘AL/k‘ < xis ~ ﬁ’;@)x, where kj is the residue at s = 1 of the Dedekind
zeta function (x(s) of k and ry is the number of complex places of k.
Theorem shows that for a fixed quadratic extension L of k, the
number of quaternion algebras B over k with discriminant satisfying

®(discy(B)) < x and which admit an embedding of L is less than 1 5(””) .
og(z)2
for some constant 67, depending on L and k. Let L1, ..., L, be the quadratic

extensions of k satisfying ‘ALi/k‘ < e2(ut20) and define § := max;—1,..r0r,-
The discussion above shows that for sufficiently large g,

Ne(V;x0) <x 62x°5V/ log(V)% Lhozo V/ log(V)%.

We now prove that for sufficiently large o, Ni(V;z0) >0, V/ log(V)=.
Let zg be large enough that there exists a quadratic extension L of k which
has signature (2,n; — 1) and satisfies

A < .
| L/k’ (4 . 621 (an)lonk-l—l ’Ak‘4nk>

A minor modification to the proof of Theorem 1.7 of [19] shows that the
number of quaternion algebras B over k which are unramified at a unique
real place of k, admit an embedding of L and which satisfy |discs(B)| <V
is

(8) > V/log(V)z,

as V' — o0o. We sketch the proof for the convenience of the reader. Counting
B is equivalent to counting possible values of disc(B), since disc(B) deter-
mines B (up to isomorphism). Since L has signature (2,n; — 1), exactly one
real place of k splits in L. Let vy,...,v,,—1 be a list of the non-split real
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places. Since L is to embed into B, the condition that B is unramified at
a unique real place of k forces disco(B) to be the product of the v;. The
requirements on disc¢(B) are that discy(B) be a squarefree ideal of Oy, that
p(discs(B)) = (—1)™~! (so that disc(B) is the product of an even number
of places), and that discy(B) not be divisible by any prime ideal of O, that
splits in L (so that L embeds into B). Our count of B is therefore given by
the sum of the coefficients of n™*, for n < V, in the Dirichlet series

T 3 (1) + (=1)™'u(2)) £ (d)

[ol° ’
0

where f(0) is the characteristic function of those 0 not divisible by any
prime ideal of Oy that splits in L. This series has nonnegative coeflicients
and is easily seen to converge for R(s) > 1. Moreover, one can show that
our series is also analytic for R(s) > 1, except for a “pole” of order 1/2
at s =1 with positive “residue”. Here “pole” and “residue” are meant in
the sense required for the application of Delange’s Tauberian theorem [10].
(Intuitively, this last claim is coming from the fact that asymptotically half
the primes of k split in L.) We refer to [19] for details. Equation is now
an immediate consequence of Delange’s theorem.

Proposition shows that each commensurability class €' (k, B), we have
Sys(C(k, B)) < xg. Observing that |discs(B)| > ®(discs(B)) we see that each
of these classes ¢'(k, B) satisfies

81 |A 5( 2)®(discs(B
Vi (r,3) = covol(T'g) = Akl (ZETQ))NE £(B))

87 |Ak|? ¢(2) |disc(B))|
(4m2)a

< ¢ |disc¢(B)| < ¢V,

where ¢ is a positive constant which depends only on k. The theorem fol-
lows. (|

Remark. We note that in our applications of results from [19] that one
must take into account that in [I9] the discriminant of a quaternion algebra
B over k is defined to be the formal product of all infinite primes of k
ramifying in B with the square of the product of all finite primes of k
ramifying in B, whereas the present paper defines disc(B) to be the product
of all primes of k (finite or infinite) ramifying in B.
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3.4. Proof of Corollary

We are now ready to prove Corollary [I.2] using Theorem

Proof of Corollary[1.2 In light of Theorem it suffices to show that as
V — oo, the number Ni (V) of commensurability classes € of arithmetic
hyperbolic 2-orbifolds (3—-orbifolds) having invariant trace field k and Vi <
V satisfies

(9) Ni(V) >V,

where the implied constant depends only on k. Indeed, we would have
N;{,(X‘;f)o) < 1og(x1/ 7z, and hence verify the density zero claim. As above we
will give a proof in the case of arithmetic hyperbolic 2—orbifolds and leave
the case of arithmetic hyperbolic 3—orbifolds to the reader.

Let k be a totally real field, B a quaternion algebra over k in which a
unique real place splits and O a maximal order of B. If for some V > 0, we

have |discs(B)| < L;)nk, then it follows from (|7)) that we must have
87| Ak]2Ck(2)

(10) Vi := covol(T'y) <V,

where ¢ = € (k, B).

A slight modification of [I9, Thm 1.5] shows that as V' — oo, the number
N quat (V') of quaternion algebras B over k which are unramified at a unique
real place of k and have |disc¢(B)| < ¢V satisfies

(11) Ni.quat(V) >V,

where the implied constant depends only on k. We sketch the proof of .
Fix a list of all of the real places of k, with one excluded (chosen arbitrarily),
say v, ..., Un,—1. We will count B which have disco, (B) equal to the product
of the v;. The only requirements on discy(B) are that discs(B) be squarefree
with p(discf(B)) = (—1)™ ! and |discs(B)| < cV. It follows that our count
of B is bounded below by the sum of the coefficients of n™% with n < ¢V in
the Dirichlet series

3 3(p()* + (=)™ 'u(2))
3 [ol°

Clearly, the coefficients of this Dirichlet series are nonnegative. Moreover, it

is straightforward to prove (by relating the series to that for (x(s) and using
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known properties of the latter) that our series converges for (s) > 1 and is
analytic for (s) > 1, except for a simple pole at s = 1 with positive residue.
Delange’s theorem now implies that the sum of the coefficients of n™* for
n < X is asymptotic to a positive constant multiple of X, as X — oco. Taking
X = ¢V, equation follows.

From and , we obtain (@ as needed. O

Note that in the proof of Corollary we showed that Ni(V) > V. It
is also the case that Ni(V) < V. Indeed, minor modifications to the proof
of Theorem show that the number of quaternion algebras B over k with
d(discy(B)) < Vis <, V. The formula for the volume of €' (k, B) now shows
that N(V) < V, giving us the following.

Corollary 3.5. For any totally real number field k (respectively, number
field with ezxactly one complex place), we have Ni(V') <V, where the implied
constant depends upon k.

4. Systolic growth of arithmetic hyperbolic surfaces

The main geometric goal of this section is the proof of Theorem

4.1. Counting quaternion algebras into which few quadratic
fields embed

We start with a counting result that we will use with Proposition |3.1|in our
proof of Theorem

Theorem 4.1. Let h(z) be any function which is o(log(z)?), NQ.quat ()
be the number of quaternion algebras B over Q with discf(B) < x and
NQ.quat (%3 1) be the number of quaternion algebras B over Q with disc¢(B) <
x and which do not admit an embedding of any quadratic field having abso-
lute value of discriminant less than h(z). Then as x — 00, Nq yy0r(Ti h) ~

NQ’qmt(x) .

To prove Theorem 4.1} we require the following lemma.

Lemma 4.1. Let K be a quadratic field. The number Nq quat(z; K) of
quaternion algebras B over Q with discy(B) < = which admit an embedding
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of K satisfies

P ETVRE (O
NQ,quat(7; K) < (log x)1/2 <¢(|AK) pl:[a: 1 P |

Here the implied constant is absolute.

Proof. Since B is an algebra over Q, the squarefree integer discy(B) deter-
mines B. Moreover, if K embeds into B, then discy(B) is not divisible by
any prime from &, where &2 is the set of rational primes that split in K. If
p is a rational prime not dividing Ag (equivalently, unramified in K), then
(ATK) =1 or —1, according to whether p is split or inert in K, respectively;

hence,
1 A 1 if
2 P 0 otherwise.

Since discy(B) < x, equation (with £ = Q) shows that the number of
possibilities for B is

M
1+ (82)) /2 1
coq (- ) (1o )

Using that log(1 4+ t) =t + O(t?) for |t| < 3,

(T ()08 o)

and similarly

(3 )l o)

Now exponentiate. Keeping in mind that

1 1 1\"|Ag] 1
H<1_p><<logx’ H<1_p> ~ o(|Ak])’ Zﬁ“’o’

p<z p|AK
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we see that the final expression in is

<O%QW<J§%QMHIO‘«§»Ui

p<z

where the implied constants are absolute. O
We now prove Theorem

Proof of Theorem[/.1. Let H be a parameter assumed to satisfy H < log x.
Let K be a quadratic field with |Ag| < H, and let x(:) = (A—K) be the as-
sociated quadratic Dirichlet character. Let us estimate the Fuler product
factor appearing in the upper bound of Lemma Since

(i) 0(3)

and p—12 < 00, we see that

13) L] (1—9‘;@) =1] <1—X§)p)> < exp (—fo))

p<z p>z p>z

Since x is a primitive character of conductor |Ag|, and |Ax| < H <logz,
the prime number theorem for progressions implies that » 7 x(p) <
T/(logT)?, uniformly for T > x. (Here we use [9, eq. (8), p.123], along
with the bound 8; < 1—¢/ ¢*/?1og? ¢ coming from Dirichlet’s class num-
ber formula.) Hence, by partial summation, % = O(1). With ,
the above yields

p>x

11 <1 - X;p)> < L(1,x)7%

p<z

It now follows from Lemmathat the number Nq guat(H; K) of quater-
nion algebras B/Q that admit an embedding of some quadratic field K with
|Ax| < H satisfies

e Akl N (AR
NQ,quat(H; K) < (log x)1/2 Z <¢(|AK|)> L(L( ’ >) ‘

|Ak|<H

By Cauchy—Schwarz, the sum on A is

1/2 1/2
|Agk| Ag) 1
< 12K L, (2K .
(mKSH¢0AKD> (AEQH ( ( ~)’ )
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The first sum is O(H). In fact, it is well-known that the arithmetic function
n/¢(n) has finite moments of every order (see, e.g., [24, Ex 14, p. 42]).
From [I3, Thm 2] (with z = —1), and the subsequent comment there about
Siegel’s theorem, the second sum on Ag is also O(H). We conclude that
NQquat(H; K) < ﬁ. Finally, let H = h(z). Since h(z) = o((log x)'/?),
our upper bound is o(z). Since NQ guat(x) > = from [19, Thm 1.5], the
theorem follows. O

Remark. The above argument is similar to the proof of [I1, Lemma 2.6].

4.2. Applications to the systole growth of arithmetic
hyperbolic surfaces

Recall that for a hyperbolic 2—orbifold M, we denote the systole of M by
Sys(M), which is the length of the shortest closed geodesic on M.

Theorem 4.2. Let S' be the set of all arithmetic Fuchsian groups of the
form F}Q where O is a maximal order of an indefinite quaternion division
algebra over Q and S™™ be the set of all maximal arithmetic Fuchsian
groups with invariant trace field Q which have minimal covolume within
their commensurability class. Then for all € > 0 the following are true:

(i) The set of T € S* such that

Sys(H?/T) > Cl — e> log log (i Vol (H? /F)>

has density one in S'.

(ii) The set of T € S™" such that
, 1 24 ,
Sys(H*/T") > 17 ¢ loglog [ — Vol(H=/T)
T

has density one in S™™.
Proof. Let h(z) = log(z)2 ¢ and B be an indefinite quaternion division al-
gebra over Q which does not admit an embedding of any quadratic field
with absolute value of discriminant less than h(discs(B)). Note that by
Theorem and its proof, the set of such quaternion algebras has den-
sity one within the set of all indefinite quaternion division algebras over
Q. Let O be a maximal order in B so that I'}, € ¢(Q, B) and I be
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the element of ¢(Q, B) with minimal covolume. We remark that because
every indefinite quaternion algebra defined over Q has type number 1,
there is a one-to-one correspondence between arithmetic Fuchsian groups
of the form F%o, arithmetic Fuchsian groups of the form I'"™" and commen-
surability classes €(Q, B). The first assertion now follows from Proposi-
tion Theorem and equation . The second assertion follows from

the same reasoning along with the fact that (see [2] and [5 Lemma 4.1])
[Fm'm . F%Q] — ol+# Ramf(B)' 0

As a consequence of Theorem we obtain Theorem The details
are as follows.

Proof of Theorem[1.3. In light of Theorem it suffices to show that for all
I' e ¢(Q, B), where ¢ (Q, B) lies within a set of commensurability classes of
density one, that Sys(H?/T") > & Sys(H?/T"™"). To that end, let 7 € T be a
hyperbolic element whose associated geodesic has length ¢(). The subgroup
'@ generated by squares of elements in I' is contained in I‘%Q for some
maximal order O of B (see [21, Ch 8]). As ™" is derived from the normalizer
N(O) of O in B*, we see that up to isomorphism 7% € I'® ¢ Iy, c rmin,
As £(v%) = 2£(v), the corollary follows from Theorem [4.2 O

5. Theorem [1.4} Totally geodesic surfaces of small area

Theorem is an immediate consequence of the following theorem.

Theorem 5.1. Let k be a totally real field and € (k, By) be a commen-
surability class of arithmetic hyperbolic surfaces with invariant trace field
k. The set of commensurability classes of arithmetic hyperbolic 3—orbifolds
with a representative containing a totally geodesic 2—orbifold in € (k, Bp)
has density zero within the set of all commensurability classes of arithmetic
hyperbolic 3—orbifolds with invariant trace field a quadratic extension of k.

Proof. Recall that the volume of a commensurability class ¢ = ¢ (L, B) of
arithmetic hyperbolic 3-orbifolds with invariant trace field L is

(14) Ve = covol(Ty) = Al C(L4(732);I;E(iilscf(3)) ’

where O is a maximal order of B. The results of [21, Ch 9.5] show that a
representative of ¥ = € (L, B) contains a primitive totally geodesic surface
in € (k, Bo) if and only if L is a quadratic field extension of k£ with a unique
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complex place and By ®y L = B. The theorem of Datskovsky—Wright [8]
shows that the number of such ¢'(L, B) with Vi(f, p) <V is < Vs for large
V', where the implied constant depends on %'(k, By). Suppose now that L
is a fixed quadratic extension of k which has a unique complex place. Then
there exists a constant d7, > 0 such that the number of quaternion algebras
B over L such that Vig(r, gy < V' is > .V for large V' (see [19, Thm 1.5] and
the remark which follows the proof of Theorem , which already proves
the theorem. O

The following is an immediate consequence of Theorem the fact that
there are only finitely many arithmetic hyperbolic 2—orbifolds of bounded
volume [2] and the fact that all totally geodesic 2—orbifolds of an arithmetic
hyperbolic 3-orbifold must have the same invariant trace field (which must
be the maximal totally real subfield of the invariant trace field of the 3—
orbifold).

Corollary 5.1. For all V > 0 the set of commensurability classes of arith-
metic hyperbolic 3—orbifolds with a representative containing a totally geodesic
2-orbifold with area less than V' has density zero within the set of all com-
mensurability classes of arithmetic hyperbolic 3—orbifolds.

Remark. For a commensurability class C(L, B) of arithmetic hyperbolic 3—
orbifolds, we can consider the minimal area of a totally geodesic, immersed
2-orbifold in M as we vary M € C(L, B). As in the case of systoles, there
are infinitely many 3-orbifolds in C(L, B) that contain a totally geodesic,
immersed 2—orbifold of minimal area. Unlike Lemma these 3—orbifolds
might never be manifolds. This can fail for the trivial reason that the min-
imal area totally geodesic, immersed 2-orbifolds in M € C(L, B) need not
be manifolds. If there is a minimal area totally geodesic 2-manifold, then
there exists a 3-manifold M € C(L, B) that contains this 2-manifold as a
totally geodesic submanifold. This follows from the non-trivial fact that the
fundamental groups of complete, finite volume, hyperbolic 3—orbifolds are
subgroup separable [I, Cor 9.4]; see [23, §7.3] for a discussion of how this
follows from subgroup separability.
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