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Quasihomogeneous free divisors with only

normal crossings in codimension one

Xia Liao and Mathias Schulze

We prove that any divisor as in the title must be normal crossing.

Introduction

Free divisors are maximally singular reduced complex hypersurfaces defined
locally as a determinant of a so-called Saito matrix (see [16, §1]). They occur
classically as discriminants in the base space of versal deformations of iso-
lated complete intersection singularities, where the Saito matrix represents
a basis of liftable vector fields (see [12, (3.16) Cor.]). While there is an abun-
dance of specific situations in which certain hypersurfaces are free divisors,
it is unclear under what geometric conditions a general hypersurface can
be a free divisor. Since free divisors have purely one-codimensional singular
locus, it is natural to ask what singularities can occur in a free divisor in
codimension one. The simplest case to consider is that of free divisors with
only normal crossings in codimension one. However, besides normal crossing
divisors themselves, no such objects are known. This raises the following

Question 1 (Faber [7, Que. 5]). Is a free divisor normal crossing if it is
normal crossing in codimension one?

In a particular case this question was answered positively.

Theorem 2 (Granger–Schulze [10, Thm. 1.8]). A free divisor germ
with smooth normalization is normal crossing if and only if it is normal
crossing in codimension one.
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1478 X. Liao and M. Schulze

For free hyperplane arrangements the statement can be verified directly
by induction on the codimension using the minimal number of generators of
logarithmic derivations along generic arrangements determined by Yuzvin-
sky [21]. As our main result, we shall replace the condition on the normal-
ization in Theorem 2 by quasihomogeneity.

Theorem 3. A quasihomogeneous free divisor germ is normal crossing if
and only if it is normal crossing in codimension one.

A classical example of a hypersurface singularity that is quasihomoge-
neous and normal crossing in codimension one is the Whitney umbrella (see
Figure 1). As a consequence of Theorem 3 it can not be a free divisor.

Figure 1: A real picture of the Whitney umbrella defined by x2 − y2z.

Although we do not know how to remove it, the additional homogeneity
hypothesis is supported by a result of Granger–Schulze [10, Thm. 1.1] and
Faber [7, Rmk. 11]: free divisor germs which are normal crossing in codi-
mension one are Euler homogeneous. By definition a reduced hypersurface
singularity is Euler homogeneous if it admits a defining equation that is
fixed by a derivation. For the stronger notion of quasihomogeneity a diago-
nalizable derivation with positive eigenvalues is needed (see (3.3)). The two
notions of homogeneity coincide in case of isolated hypersurface singulari-
ties (see [15]). Free divisors with isolated singularities are plane curves and
Question 1 becomes vacuous in this case.

There are many examples of highly reducible free divisors such as free hy-
perplane arrangements (see for example [14, §4]) or free discriminants in pre-
homogeneous vector spaces (see [4, 9]). On the other hand, it is empirically
known that irreducible free divisors are rare objects (see [19]). Our result



i
i

“7-Schulze” — 2017/12/21 — 23:31 — page 1479 — #3 i
i

i
i

i
i

Free divisors with normal crossings 1479

supports this observation by deducing reducibility from local reducibility in
codimension one (under the stated additional hypotheses).

The question of non-existence of negative degree derivations on quasiho-
mogeneous isolated complete intersection singularities occurs in conjectures
of S. Halperin (see [8, §39], [11]) and J. Wahl (see [20, Conj. 1.4], [1, p. 475,
Thm.]). While quasihomogeneous free divisors may admit negative degree
logarithmic derivations, a related extreme plays a role in our present con-
text: For a quasihomogeneous free divisor germ D, we consider the (finite
dimensional) complex Lie algebra d (see (4.3)) generated by all weighted
homogeneous logarithmic derivations along D of non-positive degree. As a
crucial ingredient of our approach, we show that, after reduction to the case
where D is irreducible and unsuspended, the hypotheses of Theorem 3 im-
ply that d generates the module of all logarithmic derivations along D (see
Proposition 14). We achieve the proof of the theorem by studying the Lie
algebra representation of d on the space of lowest weight variables (see §5).

We shall now give a more detailed summary of our approach to proving
Theorem 3: The statement can be reduced to the irreducible unsuspended
case (see Proposition 6, Remark 8 and Lemmas 9 and 12).

In §1, we consider a free divisor germ D which is normal crossing in
codimension one. Combining results from Granger–Schulze [10] and Mond–
Pellikaan [13], we prove that the ideal of submaximal minors of a Saito
matrix coincides with the Jacobian ideal (see Proposition 5).

In §3, we assume in addition that D is quasihomogeneous. Then a degree
argument using Saito’s criterion shows that there is a weighted homogeneous
basis of logarithmic derivations of non-positive degree (see Proposition 14).

In §4 and §5, we consider the representation d′ of the Lie algebra d on
the vector space m′ of lowest weight variables. This representation is visible
as a block in a Saito matrix (see (5.6)). In case d′ is solvable, Lie’s theorem
and Saito’s criterion enforce smoothness of D (see Proposition 16). In case d′

is not solvable, we describe a change of coordinates and weights that makes
the dimension of m′ drop. Iterating this process, we arrive at a solvable d′

returning to the previous case (see Proposition 18).
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1480 X. Liao and M. Schulze

1. Normal crossings in codimension one

Let X := (Cn+1, 0) be the germ of complex (n+ 1)-space and let D be the
germ of a reduced hypersurface in X with ideal generated by a function f ∈
OX . We shall use the term divisor as a synonym for a reduced hypersurface.
The Jacobian ideal of D is defined as the ideal

JD :=

〈
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉
OD

generated by the partial derivatives of f with respect to coordinates x1, . . . ,
xn+1 of X. Recall that there are two exact sequences of OX -modules:

0 // DerX(− logD) // DerC(OX) //JD
// 0,(1.1)

0 // Ωp
X

// Ωp
X(logD)

ρpD // ωp−1D
// 0.(1.2)

In (1.2), ωp−1D is the image of Ωp
X(logD) in MD ⊗OD

Ωp−1
D under the Saito’s

logarithmic residue map ρpD (see [16, §2]), where MD is the ring of mero-
morphic functions on D. Aleksandrov [2, §4, Thm.] proved that ωpD agrees
with the module of pth regular differential forms on D (see [3]). For further
properties of the logarithmic residue map, we refer to [10].

Let us assume that D is normal crossing in codimension one which means
that, outside of an analytic subset codimension at least two, a representative
of D is locally isomorphic to a normal crossing divisor. Then we know by
[10, Thm 1.1], that ω0

D can be identified with the ring of weakly holomorphic
functions on D. Denoting by π : D̃ → D the normalization map, this ring, in
turn, can be identified with π∗OD̃ where OD̃ = ÕD is the integral closure of
OD in MD. Combining these facts, turns (1.2) for p = 1 into a short exact
sequence

(1.3) 0 // Ω1
X

// Ω1
X(logD)

ρ1D // π∗OD̃
// 0

whenever D is normal crossing in codimension one. The dual of the inclusion
map in (1.3) is the inclusion map in (1.1). Note π∗OD̃ is finite as OD-module
and hence also as OX -module.

Let us further assume that D is a free divisor germ. This means that
Ω1
X(logD) is a locally free sheaf of rank n+ 1 = dimX. Since (1.3) is a

free OX -resolution of π∗OD̃ of length one, π∗OD̃ is a Cohen–Macaulay OX -
module by the Auslander–Buchsbaum formula. Since π is finite it follows
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Free divisors with normal crossings 1481

that D̃ is Cohen–Macaulay. Then [13, Proof of Thm. 3.4] applies to show that
the first Fitting ideal of π∗OD̃ equals the preimage C ′D := AnnOX

(π∗OD̃/OD)
in OX of the conductor ideal

CD := AnnOD
(π∗OD̃/OD).

By [10, Thm. 1.6] (or [13, Proof of Thm. 3.4]), CD = JD and hence C ′D
equals the preimage J ′

D :=
〈
f, ∂f∂x1

, . . . , ∂f
∂xn+1

〉
OX

in OX of the Jacobian

ideal JD.

Remark 4. Suppose that D is a free divisor germ. For dual bases δ1,
. . . , δn+1 and ω1, . . . , ωn+1 of DerX(− logD) and Ω1

X(logD) there are ex-
pansions

(1.4) δj =

n+1∑
i=1

ai,j
∂

∂xi
, dxi =

n+1∑
j=1

λj,iωi, ai,j = λj,i ∈ OX .

A matrix A := (ai,j) arising is this way is called a Saito matrix and repre-
sents the inclusion map in (1.1). The inclusion in (1.3) is represented by its
transpose Λ := (λi,j) = At. Saito’s freeness criterion (see [16, (1.8) Thm. ii)])
states that

(1.5) f := det(A) = det(Λ) ∈ OX

generates the ideal of D.

The preceding discussion proves the following

Proposition 5. Let D be a free divisor germ in X which is normal crossing
in codimension one. Then the submaximal minors of any Saito matrix A
generate the preimage J ′

D in OX of the Jacobian ideal JD of D. �

The following result justifies that we may assume that D is irreducible.

Proposition 6. The combination of freeness and normal crossing in codi-
mension one descends to all irreducible components of a divisor germ.
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Proof. For any free divisor germ D, the normal crossing hypothesis is equiv-
alent to the ideal

(1.6) Jf :=

〈
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉
OX

generated by the partial derivatives of f being radical by [10, Thm. 1.6,
Rmk. 1.7]. By [7, §2.2.(i)], the combination of freeness and radical Jf de-
scends to all irreducible components of D. �

2. Suspension of divisors

For a degree argument in Proposition 14, we shall need the following

Lemma 7. Let D be an irreducible free divisor germ satisfying

(2.1) DerX(− logD) ⊂ mX DerC(OX)

and let Λ be a transposed Saito matrix as in Remark 4. Denote by Mi,j the
(n× n)-minor obtained from Λ by deleting the ith row and jth column. Then
Mi,j 6= 0 for all i, j = 1, . . . , n+ 1.

Proof. With notation as in Remark 4, let gi := ρ1D(ωi) be the image of ωi
under the residue map in (1.3). By Cramer’s rule (see [13, Lem. 3.3]), we
have

Mi,jgk = ±Mk,jgi

in OD̃ which is a domain by irreducibility of D. Assuming that Mi,j = 0
for some i, j ∈ {1, . . . , n+ 1}, this implies that gi = 0 or Mk,j = 0 for all
k = 1, . . . , n+ 1. In the first case, ωi ∈ Ω1

X by the residue sequence (1.3).
By duality and hypothesis (2.1) this gives the contradiction 1 = 〈δi, ωi〉 ∈
mX . Therefore, we must have Mk,j = 0 in OD̃ and hence in OD for all k =
1, . . . , n+ 1. In other words, f divides Mk,j in OX for all k = 1, . . . , n+ 1. In
terms of (1.4), hypothesis (2.1) means that λj,i ∈ mX . Thus, Saito’s criterion
(see Remark 4) leads to the contradiction

f = det(Λ) =

n+1∑
k=1

±λk,jMk,j ∈ mXf.

�
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Free divisors with normal crossings 1483

Remark 8. The following construction will serve to reduce to a case where
condition (2.1) is satisfied (see Lemma 9). By [16, (3.6) Proof], there is a
product structure

(2.2) (D,X) ∼= (D′ ×X ′′, X ′ ×X ′′),

where X ′′ := (Cr, 0) for some r ∈ {0, . . . , n}, such that the divisor germ D′ in
X ′ := (Cn+1−r, 0) satisfies condition (2.1). In particular, D is smooth if and
only if r = n. An X ′ as above can be chosen as any (coordinate) subspace
complementary to

DerX(− logD)(0) = T0X
′′.

By the cancellation lemma for analytic spaces (see [6, Lem. 1.5]), all such
D′ are isomorphic. We say that D is a suspension of D′, or suspended, if
r > 0.

Whenever D and D′ are related as in (2.2), we have

(2.3) DerX(− logD) = OX DerX′(− logD′)⊕ OX DerC(OX′′).

For the dual statement see [5, Lem. 2.2.(iv)].

The following lemma summarizes properties of suspension.

Lemma 9. Let D be a suspension of D′ as in (2.2).

(a) Suspension defines a bijection between the sets of irreducible compo-
nents of D and D′.

(b) The following properties hold equivalently for D and D′: smoothness of
corresponding irreducible components, being normal crossing (in codi-
mension one) and freeness.

Proof. The statement on freeness in (b) follows from the equality (2.3). The
proof of the remaining statements is left to the reader. �

For any f ∈ OX generating the ideal of D we denote the module of
(logarithmic) derivations annihilating f by

(2.4) DerX(− log f) := {δ ∈ DerC(OX) | δ(f) = 0} ⊂ DerX(− logD).

It is isomorphic to the syzygy module of the ideal Jf of partial derivatives
of f defined in (1.6).
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3. Quasihomogeneous divisors

From now on we assume that D is quasihomogeneous. By definition, this
means that OD is a positively graded C-algebra in the sense of Scheja–
Wiebe (see [17, §3 Def.]). In more explicit terms, there are coordinates
x1, . . . , xn+1 and weights

(3.1) deg(xi) =: wi ∈ Q+, i = 1, . . . , n+ 1,

such that D is defined by a weighted homogeneous polynomial f . We shall
order the weights increasingly by

(3.2) 0 < w1 ≤ w2 ≤ · · · ≤ wn+1.

and denote by

(3.3) χ :=

n+1∑
i=1

wixi
∂

∂xi

the corresponding logarithmic Euler derivation along D. Weighted homo-
geneity of degree deg(g) of an element 0 6= g ∈ OX can be expressed by the
condition that

(3.4) [χ, g] = χ(g) = deg(g)g

where the commutator is taken in the ring of C-linear differential operators
on OX .

Definition 10. By an Euler derivation on a complex space germ X we
mean a derivation χ ∈ DerC(OX) such that mX is generated by eigenvectors
of χ with eigenvalues in Q+.

Being logarithmic along D means that the ideal of D is χ-stable and
hence generated by a weighted homogeneous f (see [17, (2.4)]). A log-
arithmic Euler derivation χ ∈ DerC(OX) descends to an Euler derivation
χ ∈ DerC(OD) and conversely such a χ̄ lifts to a such χ (see [17, (2.1)]). It is
the existence of χ, or equivalently that of χ, that defines quasihomogeneity
of D (see [17, (2.2), (2.3)]).
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Remark 11. There is a decomposition as OX -modules

(3.5) DerX(− logD) = OXχ⊕DerX(− log f).

Indeed, any δ ∈ DerX(− logD) can be written as δ = aχ+ δ − aχ where

δ − aχ ∈ DerX(− log f) for a = δ(f)
χ(f) ∈ OX . Moreover, aχ ∈ DerX(− log f)

implies a deg(f)f = aχ(f) = 0 and hence a = 0 for any a ∈ OX .

Quasihomogeneity of D descends to any irreducible component of D
using a fixed χ. This is a particular case of a result of Seidenberg (see [18,
Thm. 1]). For later use we record also the compatibility of quasihomogeneity
with suspension.

Lemma 12.

(a) If D is quasihomogeneous, then all its irreducible components are quasi-
homogeneous with respect to the same weights as D.

(b) If D is a suspension of D′ as in (2.2) then quasihomogeneity of D is
equivalent to that of D′. The weights for D on the coordinates of X
consist of the weights for D′ on the coordinates of X ′ and arbitrary
weights on coordinates of X ′′.

Proof. To show that quasihomogeneity passes from D to D′, one restricts
the corresponding logarithmic Euler derivation χ from (3.3) to a coordinate
subspace X ′ as in Remark 8. The equation of D′ and this restriction χ′ is
then obtained by setting the coordinates defining X ′ equal to 0. �

The assignment of weights (3.1) turns DerC(OX) into a positively graded
OX -module in the sense of Scheja and Wiebe (see [17]). A derivation 0 6=
δ ∈ DerC(OX) is weighted homogeneous of degree deg(δ), if the coefficients
ai of the expansion δ =

∑n+1
i=1 ai

∂
∂xi

are weighted homogeneous of degree
deg(ai) = deg(δ) + wi for all i = 1, . . . , n+ 1. In other words,

deg(δ(g)) = deg(δ) + deg(g)

whenever δ(g) 6= 0 for a weighted homogeneous polynomial g. For example,
the Euler derivation χ in (3.3) is weighted homogeneous of degree

(3.6) deg(χ) = 0
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for any assignment of weights. Analogously to (3.4), the weighted homo-
geneity of δ can be expressed by

(3.7) [χ, δ] = deg(δ)δ.

Indeed, for any weighted homogeneous polynomial g, we have that

(3.8) [χ, δ](g) = χ(δ(g))− δ(χ(g)) = (deg(δ(g))− deg(g)) δ(g).

Due to (3.4) and (3.7), we prefer to speak of χ-weights, χ-homogeneity and
the χ-degree

deg(−) = degχ(−)

independently of coordinates. For notational convenience, we set deg(0) :=
−∞.

A χ-homogeneous generator f of the ideal of D is uniquely determined
by χ up to a constant factor as a χ-homogeneous element of minimal χ-
degree. Then also the module DerX(− log f) in (2.4) is uniquely determined
by χ.

4. Lie algebras of logarithmic derivations

It is known that DerX(− logD) is closed under the bracket operation [−,−]
(see [16, (1.5) ii)]). In particular, χ acts on DerX(− logD) turning it into a
positively graded OX -module in the sense of Scheja and Wiebe (see [17]).
Since f is weighted homogeneous the same holds true for its ideal of partials
Jf and its syzygy module DerX(− log f).

Notation 13. For any C[χ]-module M and e ∈ Q, we denote by Me =
Mχ=e the C[χ]-submodule generated by all χ-homogeneous elements m ∈
M of χ-degree deg(m) = e. The submodules M≤e = Mχ≤e, M<e = Mχ<e,
etc. are defined analogously.

For any two χ-homogeneous δ, η ∈ DerX(− logD) with [δ, η] 6= 0, also
their commutator [δ, η] is χ-homogeneous of degree

(4.1) deg([δ, η]) = deg(δ) + deg(η).

This follows by definition, or from (3.7) and the Jacobi identity

(4.2) [χ, [δ, η]] = [[χ, δ], η] + [δ, [χ, η]].
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Since dimC(OX,≤e) <∞ for any e ∈ Q+ due to the positivity of weights
(3.1),

a = aχ := DerX(− log f)≤0 ⊂(4.3)

d = dχ := DerX(− logD)≤0 ⊂ DerC(OX)≤0 =

n+1⊕
i=1

OX,≤wi

∂

∂xi

are finite dimensional complex Lie algebras depending on χ. By (3.5), (3.6),
(3.7) and (4.2), d decomposes as

(4.4) d = Cχn a

and

(4.5) a = d ∩DerX(− log f) ⊂ d

is the Lie subalgebra of d of derivations annihilating f . We shall be interested
in the condition that DerX(− logD) admits χ-homogeneous OX -generators
of non-positive χ-degree, that is,

(4.6) OXdχ = DerX(− logD).

Let {δ2, . . . , δr} be a minimal set of χ-homogeneous generators of
DerX(− log f) of χ-degree

deg(δi) =: di.

Then condition (4.6) is equivalent to δi ∈ d or to di ≤ 0 for all i = 1, . . . , n+
1. Setting δ1 := χ and d1 := deg(χ) = 0,

∆ = {δ1, . . . , δr}

becomes a minimal set of χ-homogeneous generators of DerX(− logD) by
(3.5). If D is a free divisor germ, then r = n+ 1, ∆ is a χ-homogeneous basis
of DerX(− logD) and the χ-degree of any entry λi,j 6= 0 of the transposed
Saito matrix Λ from Remark 4 equals

(4.7) deg(λi,j) = di + wj .

The defining function f of D given by Saito’s criterion as in (1.5) is then
χ-homogeneous of χ-degree

(4.8) deg(f) =

n+1∑
k=1

dk + wk.
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Proposition 14. Let D be an irreducible unsuspended quasihomogeneous
free divisor germ which is normal crossing in codimension one, and let χ be
any logarithmic Euler derivation along D. Then the module DerX(− logD)
admits a χ-homogeneous basis whose elements have non-positive χ-degree. In
other words, D satisfies condition (4.6) for any choice of logarithmic Euler
derivation χ along D.

Proof. By hypothesis of being unsuspended D satisfies condition (2.1) and
hence deg(Mi,j) 6= −∞ by Lemma 7. Using equalities (4.7) and (4.8), we
obtain

deg(Mi,j) =

n+1∑
k=1

(dk + wk)− (di + wj)(4.9)

= deg(f)− wj − di

= deg

(
∂f

∂xj

)
− di.

By Proposition 5, there is an equality of ideals

〈Mi,j | i, j = 1, . . . , n+ 1〉OX
=

〈
∂f

∂xk
| k = 1, . . . , n+ 1

〉
OX

.

We shall use that the least χ-degree of a system of generators is an invariant
of this ideal. Setting k = n+ 1 minimizes deg( ∂f∂xk

) = deg(f)− wk due to
the increasing order of weights in (3.2). It follows that

(4.10) deg(Mi,j) ≥ deg

(
∂f

∂xn+1

)
for all i, j = 1, . . . , n+ 1. Combining (4.9) and (4.10) for j = n+ 1 now
yields

deg

(
∂f

∂xn+1

)
− di = deg(Mi,n+1) ≥ deg

(
∂f

∂xn+1

)
and hence di ≤ 0 for all i = 1, . . . , n+ 1 as claimed. �

5. Representation on lowest weight variables

For notational convenience, we shall abbreviate

m := mX , D := DerX(− logD), A := DerX(− log f).

Then d = D≤0 and a = A≤0 (see (4.3)). In particular, d0 = D0 and a0 = A0.
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From now on we assume that D is unsuspended, that is, (2.1) holds
true. Then m and hence, by the Leibniz rule, also m2 is a D-module. The
canonical OX -module homomorphism

π : m � m/m2 =: m̄

becomes a D-module homomorphism. Splittings of π can be seen as intrin-
sic versions of coordinate systems. For any e ∈ Q+, π induces a d0-module
homomorphism (see Notation 13)

(5.1) πe : me � m̄e.

Splittings of π compatible with the πe can be seen as χ-homogeneous coordi-
nate systems. For any e ∈ Q+, me ⊂ m≤e and m̄e ⊂ m̄≤e are homomorphisms
of modules over d0 ⊂ d. Note that dimC(m≤e) <∞ due to the positivity of
weights (3.1).

For any e ∈ Q+ with w1 ≤ e, there is a commutative diagram of d-
modules

(5.2) m
π // // m̄

m≤e
π≤e
// //?�

OO

m̄≤e
?�

OO

mw1

?�

OO

� � πw1 // // m̄w1

?�

OO

where πw1
is a bijection that we consider as an equality and

m′ = m′χ := mw1
= m≤w1

= m̄w1
= m̄≤w1

is the C-vector space of lowest weight variables. After reordering coordinates,
we may assume that x1, . . . , xk is a C-basis of m′. In particular,

(5.3) w1 = · · · = wk.

Notation 15. For any Lie subalgebra l ⊂ dχ we denote by l̄ = l̄χ and l′ =
l′χ the image of l in glC(m̄) and glC(m′) respectively. Note that l′ = l′0 by
definition of m′.
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From now on we assume that condition (4.6) is satisfied for some χ, that
is,

δ2, . . . , δr ∈ a

for any minimal set of χ-homogeneous OX -generators {δ2, . . . , δr} of A as
in §4.

Any δ ∈ d can be written as δ =
∑n+1

i=1 ai
∂
∂xi

where a1, . . . , ak must be
linear functions of x1, . . . , xk for degree reasons, and it maps to

(5.4) δ′ =

k∑
i=1

ai
∂

∂xi
∈ d′.

If δ ∈ (mD)≤0 then δ ∈ m2 DerC(OX) due to hypothesis (2.1) of D being
unsuspended. But then the linear coefficients of δ′ and hence δ′ itself must
be zero. Since δ1 = χ, δ2 . . . , δr ∈ d generate D as OX -module, the inclusion
in the diagram of C-linear maps

d // //

��

D/mD

d/(mD)≤0
. �

==

is an equality. By the preceding arguments, d � d′ factors through the re-
sulting surjection

d � D/mD = d/(mD)≤0.

Arguing analogously for a � a′, we obtain

d // //

����

d′

D/mD d/(mD)≤0,

OOOO
a // //

����

a′

A/mA a/(mA)≤0.

OOOO

In explicit terms this means that

(5.5) d′ =
〈
δ′1, . . . , δ

′
r

〉
C
, a′ =

〈
δ′2, . . . , δ

′
r

〉
C
.

In case D is a free divisor germ, (5.4) and (5.5) show that d′ and a′

are represented as blocks of a Saito matrix with linear entries. Indeed, the
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transposed Saito matrix from Remark 4 can be visualized as

(5.6) Λ =
[
d′ ∗

]
=

[
w1x1 · · ·wkxk ∗

a′ ∗

]
where by abuse of notation d′ and a′ represent the coefficient matrices of
δ1, . . . , δn+1 and δ2, . . . , δn+1 with respect to ∂

∂x1
, . . . , ∂

∂xk
.

Proposition 16. Let D be a quasihomogeneous free divisor germ, and let
χ be a logarithmic Euler derivation along D. Suppose that D satisfies both
condition (2.1) of being unsuspended and condition (4.6) of admitting non-
positive χ-degree generators of logarithmic derivations. If a′ = a′χ is solvable
then D has a smooth irreducible component D′.

Proof. By Lie’s theorem, we may assume that x1 is a common eigenvector
for a′. This means that the first column of Λ in (5.6) consists of constant
multiples of x1 and hence x1 divides det(Λ). By Saito’s criterion (see Re-
mark 4), f = det(Λ) defines D and hence {x1 = 0} is a smooth irreducible
component of D. �

Lemma 17. Let s′ ⊂ d′ be a semisimple Lie subalgebra.

(a) Any semisimple Lie subalgebra s′ ⊂ d′ admits a lift s ⊂ a0.

(b) For any e ∈ Q+, there is an s-module splitting of πe in (5.1).

Proof.
(a) By (4.4), s′ = [s′, s′] ⊂ [d′, d′] = [d, d]′ ⊂ a′. Denoting by r(−) the

solvable radical, s′ ∩ r(a′) is a solvable ideal in s′ and hence zero. It fol-
lows that s′ ⊂ a′/r(a′). By Weyl’s complete reducibility theorem, any finite
dimensional module over semisimple Lie algebra is semisimple. In particular,
any epimorphism of such modules splits. Thus, a0/r(a0) � a′/r(a′) splits by
semisimplicity of a0/r(a0). The image of s′ under this splitting composed
with a Levi splitting a0/r(a0) ↪→ a0 is the desired lift s.

(b) By part (a), s ⊂ a0 commutes with χ and hence πe is an epimorphism
of s-modules. Since s is semisimple the desired splitting exists due to Weyl’s
complete reducibility theorem. �

Speaking in terms of variables, Lemma 17.(b) associates to each xi a
new variable x′i ∈ mwi

namely the image of x̄i under the splitting map. By
definition of mwi

(see (3.4) and Notation 13), we have χ(x′i) = wix
′
i for all
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i = 1, . . . , n+ 1. Thus

χ =

n+1∑
i=1

wix
′
i

∂

∂x′i

retains the form of (3.3) in the coordinates x′1, . . . , x
′
n+1 where deg(x′i) =

wi for i = 1, . . . , n+ 1. In other words, homogeneity is unaffected by the
coordinate change. Considering the isomorphism πw1

in (5.2) as an equality
we have xi = x′i for all xi ∈ m′. In particular,〈

x′1, . . . , x
′
k

〉
C

= m′ = 〈x1, . . . , xk〉C.

In other words, the first k variables generate the space of lowest weight vari-
ables in both coordinate systems. However, an additional feature of the coor-
dinates x′1, . . . , x

′
n+1 is that s acts on the coordinate space

〈
x′1, . . . , x

′
n+1

〉
C

.
This is what we mean by saying that s acts linearly in terms of the coordi-
nates x′1, . . . , x

′
n+1.

Proposition 18. Let D be a quasihomogeneous divisor germ satisfying
condition (2.1) of being unsuspended and condition (4.6) of admitting non-
positive χ-generators of logarithmic derivations for any choice of logarithmic
Euler derivation χ along D. Then a′χ is solvable for a suitable choice of χ.

Proof. By quasihomogeneity of D there exists a logarithmic Euler derivation
χ along D. As before, we write a′ = a′χ for the representation of a = aχ on
m′ = m′χ. Suppose a′ is not solvable. We shall describe a procedure that
gradually modifies χ to decrease dimC(m′) until a′ becomes solvable. Being
not solvable, a′ must contain a semisimple Lie subalgebra s′. By Lemma 17,
s′ lifts to a semisimple Lie subalgebra s ⊂ a0 acting linearly in terms of
suitable coordinates x1, . . . , xn+1. That is, s acts on m̄ = 〈x1, . . . , xn+1〉C and
it acts faithfully on its subspace m′ = 〈x1, . . . , xk〉C. By the structure theory
of complex semisimple Lie algebras, s contains a Lie subalgebra isomorphic
to sl2(C). We may assume that s ∼= sl2(C) which is then generated by an
sl2-triple. By the representation theory of sl2, the semisimple generator σ in
this triple has both positive and negative integer eigenvalues on the faithful
s-module m′. Since s ⊂ a0 ⊂ A = DerX(− log f), σ commutes with χ and can
be seen as a logarithmic derivation along D annihilating f (see (2.4), (3.7),
(4.5) and Notation 13). After a linear change of coordinates, we may assume
that x1, . . . , xn+1 are eigenvectors of both χ and σ. For small ε ∈ Q+,

χ̃ := χ+ εσ =

n+1∑
i=1

w̃ixi
∂

∂xi
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then takes the form of (3.3) for some w̃i ∈ Q+ such that w̃i < w̃j for any
i ≤ k and k + 1 ≤ j. That is, χ̃ is another logarithmic Euler derivation along
D with

0 6= m′χ̃ ( m′χ

by (5.3). As illustrated in Figure 2, this condition can be achieved also by a
less restrictive choice of ε where w̃i ≥ w̃j for some i ≤ k and k + 1 ≤ j. Since
a′ is solvable if k = dimC(m′) = 1, repeatedly passing from χ to χ̃ results in
a logarithmic Euler derivation χ for which a′χ is solvable. �

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

w1

w̃1

w2

w̃2

w̃3

w̃4

...

...

Figure 2: An example modification of weights as in Proposition 18.

6. Proof of the main result

Proof of Theorem 3. Let D be a quasihomogeneous free divisor germ that
is normal crossing in codimension one. By Theorem 2 it suffices to show
that all irreducible components of D are smooth. Due to Proposition 6 and
Lemma 12.(a), these irreducible components are again quasihomogeneous,
free and normal crossing in codimension one. By Lemmas 9 and 12.(b) the
latter properties are also invariant under suspension. We may therefore as-
sume that D is irreducible and unsuspended. Hence Proposition 14 applies
to show that, for any logarithmic Euler derivation χ along D, the module
DerX(− logD) admits a χ-homogeneous basis whose elements have non-
positive χ-degree. Recall the complex Lie algebra a′ = a′χ defined by setting
l := a in Notation 15 with a = aχ as defined in (4.3). By Proposition 18 a′ is
solvable for a suitable χ. Thus, Propositions 16 yields smoothness of D as de-
sired. In fact, after the preceding reductions, we must have D = {0} ⊂ (C, 0)
by Remark 8 since D is both unsuspended and smooth. �
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1987), Vol. 1414 of Lecture Notes in Math., 107–161, Springer, Berlin
(1989).

[14] P. Orlik and H. Terao, Arrangements of hyperplanes, Vol. 300 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences], Springer-Verlag, Berlin (1992), ISBN
3-540-55259-6.

[15] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, In-
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