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Let X be an orientable compact Levi-flat CR manifold and let L
be a positive CR complex line bundle over X. We prove that cer-
tain microlocal conjugations of the associated Szegd kernel admits
an asymptotic expansion with respect to high powers of L. As an
application, we give a Szeg6 kernel proof of the Kodaira type em-
bedding theorem on Levi-flat CR manifolds due to Ohsawa and
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1. Introduction and statement of the main results

The problem of global embedding CR, manifolds is prominent in areas such
as complex analysis, partial differential equations and differential geometry.
A general result is the CR embedding of strictly pseudoconvex compact CR
manifolds of dimension greater than five, due to Boutet de Monvel [5].

For CR manifolds which are not strictly pseudoconvex, the idea of em-
bedding CR manifolds by means of CR sections of tensor powers L* of a
positive CR line bundle L — X was considered in [24] 25 27, 37, [47]. This
was of course inspired by Kodaira’s embedding theorem.

One way to attack this problem is to produce CR sections by projecting
appropriate smooth sections to the space of CR sections. So it is crucial to
understand the large k behaviour of the Szeg6 projection I, i. e. the orthog-
onal projection on space Hy (X, L¥) of CR sections, and of its distributional
kernel, the Szegd kernel. To study the Szegd projection it is convenient to
link it to a parametrix of the d,-Laplacian on (0, 1)-forms (called Kohn
Laplacian). This is also the method used in [5], where the parametrix turns
out to be a pseudodifferential operator of order 1/2.

In [27], we established analogues of the holomorphic Morse inequali-
ties of Demailly [12] [36] for CR manifolds and we deduced that the space
HY(X, L¥) is large under the assumption that the curvature of the line bun-
dle is adapted to the Levi form. In [25], the first author introduced a microlo-
cal cut-off function technique and could remove the assumptions linking the
curvatures of the line bundle and the Levi form under rigidity conditions on
X and the line bundle. Moreover, in [24], the first author established partial
Szegd kernel asymptotic expansions and Kodaira embedding theorems on
CR manifolds with transversal CR S!-action, see also [26].

All these developments need the assumptions that either the curvature
of the line bundle is adapted to the Levi form or rigidity conditions on
X and the line bundle. The difficulty of this kind of problem comes from
the presence of positive eigenvalues of the curvature of the line bundle and
negative eigenvalues of the Levi form of X. Thus, it is very interesting to
consider Levi-flat CR manifolds. In this case, the eigenvalues of the Levi
form are zero and we will show that it is possible to remove the assumptions
linking the curvatures of the line bundle and the Levi form or the rigidity
conditions on X and the line bundle.

Levi-flat CR manifolds are foliated by complex manifolds and there is a
subtle interplay between the function theory on the leaves and the dynamics
of the foliation. Levi-flat CR submanifolds in projective manifolds play an
important role in classical complex analysis [16] 17, [41, 42] linked to the
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Levi problem, foliations and dynamical systems [1I, 3 [7HI0, [14], B0, [35], 44~
47, 149]. They admit Lefschetz pencil structures of degree k, for any k large
enough, cf. [38]. The topology and dynamics of Levi-flat hypersurfaces in
complex surfaces of general type was thoroughly explored in [I4], where it
is shown that all possible Thurston geometries except the spherical one can
occur. In this context it is important to have a general criterion for the
projective Levi-flat manifolds, analogue to the Kodaira embedding theorem
for Kéhler manifolds. This is provided by Ohsawa-Sibony theorem [47], see
Theorem A related result is the projective embedding of compact lam-
inations [13], [19, p.401-402]. In the program of classifying Levi-flat CR
manifolds one is sometimes led to non-existence results. There are no com-
pact Levi-flat real hypersurfaces in a Stein manifold, due to the maximum
principle. On the other hand, the non-existence of smooth Levi-flat hyper-
surfaces in complex projective spaces CP" attracted a lot of attention, cf.
[35, [49]. The non-existence has been settled for n > 3 but a famous still open
conjecture is whether this is true for n = 2.

Viewing Levi-flat CR manifolds as families of complex manifolds, we
can expect analogy with classical results from complex geometry such as
Kodaira embedding theorem. The natural function theoretical objects on a
CR manifold are CR functions or CR sections of a bundle. Actually, Ohsawa
and Sibony [47], cf. also [46], constructed a CR projective embedding of class
¢* for any k € N of a Levi-flat CR manifold by using O-estimates. A natural
question is whether we can improve the regularity to x = co. Adachi [1]
showed that the answer is no, in general. The analytic difficulty of this
problem comes from the fact that the Kohn Laplacian is not hypoelliptic on
Levi flat manifolds. Hypoellipticity and subelliptic estimates are used on CR
manifolds with non-degenerate Levi form in order to find parametrices of the
Kohn Laplacian and establish the Hodge decomposition, e. g. [5l 1T, 29] [32].

In this paper, we establish a semiclassical Hodge decomposition for the
Kohn Laplacian acting on powers L¥ as k — oo and we show that the com-
position ITx A of I, with an appropriate pseudodifferential operator Ay is a
semiclassical Fourier integral operator, admitting an asymptotic expansion
in k (see Theorem [1.3). From this result, we can understand the large k
behaviour of the Szeg6 projection and produce many global CR functions.
As an application, we give a Szegd kernel proof of Ohsawa and Sibony’s
Kodaira type embedding theorem on Levi-flat CR manifolds.

We now formulate the main results. Let (X,7'°X) be an orientable
compact Levi-flat CR manifold of dimension 2n — 1, n > 2. We fix a Her-
mitian metric (-|-) on TX ®g C =: CTX such that 719X is orthogonal to
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T%'X. The Hermitian metric {-|-) on TX ®g C induces a Hermitian met-
ric {-|-) on the bundle A% (T*X) of (0,q) forms of X. We denote by dvx
the volume form on X induced by (-|-). Let (L,h) be a CR complex line
bundle over X, where the Hermitian fiber metric on L is denoted by h. We
will denote by R the curvature of L (see Definition . We say that L is
positive if RE is positive definite at every x € X. Let

(1.1) A(z) <o < Ao (2),
be the eigenvalues of RZ with respect to (-|-) and set
(1.2) det RL .= \j(z) - M1 ().

For k > 0, let (L¥,h*) be the k-th tensor power of the line bundle (L,h).
In this paper, we assume that k > 1. For u,v € AYY(T*X) ® L¥ we denote
by (w|v)pe the induced pointwise scalar product induced by (-|-) and
h*. We then get natural a global L? inner product (-|-), on QU4(X, LF),
(a|B)ei= [y {a|B >hk dvy. Similarly, we have an L? inner product (-|-)
on Q%9(X). We denote by L%O,q) (X, L*) and L%O,q) (X)) the completions of
Q04(X, L*) and Q%9(X) with respect to (-|-)x and (-|-), respectively. For
q =0, we write L*(X) := Lf ;) (X), L*(X, LF) = Imee Lk).

Let Oy : €°(X, L*) — Q%1(X, L¥) be the tangential Cauchy-Riemann
operator cf. . We extend gb,k to L?(X,LF) by gb,k : Domg;ﬂ€ C
L*(X,LF) — L?OJ)(X, L¥), u+— Opgu, with Domdyy, := {u € L3(X, L¥);
Opu € L?O,l)(X , L*)}, where Op 1w is defined in the sense of distributions.
The Szego projection

(1.3) I : L*(X, L*) — Ker Oy

is the orthogonal projection with respect to (|- ).
The Szegd projection Il is not a smoothing operator. Nevertheless, our
first result shows that it enjoys the following regularity property.

Theorem 1.1. Let X be an orientable compact Levi-flat CR manifold and
let (L, h) be a positive CR line bundle on X. Then for every { € Ny there ex-
ists Ny > 0 such that for every k > Ny, I, (€ (X, L*)) is an infinite dimen-
sional subspace of €°(X, LF) and the induced projection IIj, : € (X, L*) —
€*(X, L*) is continuous.

The regularity statement of Theorem is related to the regularity of
the 0-Neumann problem on weakly pseudoconvex domains endowed with a
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positive line bundle [33] 50]. In that case one has to take high enough powers
to achieve €*-regularity, too.

Let us recall now that the Szegé kernel II(x,y) of the boundary X of
a relatively compact strictly pseudoconvex domain G is a Fourier integral
operator with complex phase, by a result of Boutet de Monvel-Sjéstrand [6]
(here we consider the projection on the space of CR functions or CR sections
of a fixed CR line bundle). In particular, II(x,y) is smooth outside the
diagonal x = y of X x X and there is a precise description of the singularity
on the diagonal z = y, where II(z,y) has a certain asymptotic expansion.
More precisely, let G = {p < 0} € G’ be a strictly pseudoconvex domain in
a (n + 1)-dimensional complex manifold G’, where p € €°(G’) is a defining
function of G. Then by taking an almost-analytic extension ¢ = p(z,y) :
G’ x G' — C of p with certain properties [6, (1.1)-(1.3)] we have

(1.4) M(z,y) = / @D (2 y 1)t + Rz, y),
0

where s(x,y,t) € S"(X x X x R;) and R(z,y) is a smooth function.

For a Levi-flat CR manifold we do not have such a neat characterization
of the singularities of the Szeg6 kernel Il (z,y) for fixed k. The smoothing
properties of II; are linked to the singularities of its kernel Il (z,y) and to
its large k behaviour. Although it is quite difficult to describe them directly,
we will show that II; still admits an asymptotic expansion in weak sense
(that is, in Sobolev spaces, see Theorem and Section for an explicit
example).

Let s be a local trivializing section of L on an open set D C X. We define
the weight of the metric with respect to s to be the function ¢ € €°°(D)
satisfying |s|? = e=2?. We have an isometry

(1.5) Uk : L*(D) — L*(D,L*), ur— uets,

with inverse U, ! : L?(D, L¥) — L*(D), a + e s *a. The localization of
II;, with respect to the trivializing section s is given by

comp

(1.6) My L2 (D) = LA(D), Ty = U,;inU;w,

where Lgomp(D) is the subspace of elements of L?(D) with compact support
in D. The second main result of this work shows that for & — oo, Il is
rapidly decreasing outside the diagonal, and describes the singularities of

[T} semi-clasically in terms of an oscillatory integral.
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Theorem 1.2. Let X be an orientable compact Levi-flat CR manifold of
dimension 2n — 1, n > 2. Assume that there is a positive CR line bundle L
over X. Then for every £ € Ny, there is Ny > 0 such that for every k > Ny
we have:

(i) XIx = O(k™) : €°(X, L") = €“(X, L"), for all x,X € €>(X)
with supp x Nsupp X = 0;
(i) Hys — Sp = O(k~>) : 65°(D) — €4(D), where S : 65°(D) — €>°(D)

18 a continuous operator whose kernel satisfies

(1.7) Selavy) ~ [ Do,y u,kdu
R
= O(k™™) : Hoopp (D) = Hygo (D), Vs €Z,
where
s(z,y,u, k) NZijy, jinS{})C(l;DxDxR),
(1.8) 7=0

1
so(x, x,u) = !det RL| Ve e D, VueR,

and the phase function ¥ € €°°(D x D x R) satisfies Im(x,y,u) >0
and

Ayt (2 en) = —2Im Ipp(x) + uwo(x), @ € D, u € R,
Ayl (z,zu) = 2Im Opo(z) — uwo(x), = € D, u € R,
(1.9) o
ou
if x #y then m(ﬂf,y, u) #0 or(z,y,u) # 0,

—(z,z,u) =0 and Y(z,z,u) =0,

and there exists ¢ > 0 such that
(1.10) |dyt(z,y,u)] > clul, YueR, V(r,y)e D xD.

Here wy € €°(X,T*X) is the positive 1-form of unit length orthogonal
to AYO(T*X) and A% (T*X), see Definition .

Theorem shows that the (localized) Szeg6 projector is close in the
semiclassical limit to an approximate Szegl projector Sg, which has an
asymptotic expansion in Sobolev spaces, given by the operator S, : €5°(D) —



Szegd kernel asymptotics & Kodaira embedding theorems 1391

¢ (D) with kernel
(1.11) Sk(z,y) = / eik¢(x’y’“)s(x,y,u,k)du.
R

Note that integrating by parts with respect to y several times in and
using , we conclude that Si is well-defined as a continuous operator
Sk 1 €5°(D) — €°(D).

For fixed u € R, the integrand in the formula of Si (hence also
for Si or IIj) bears a resemblance to the Bergman kernel By of the k-th
power of a positive line bundle L on a complex manifold (cf. [28] 48], [51], see
([2.13))). Note that B =", By, is basically the Szeg kernel of the strictly
pseudoconvex CR manifold given by the boundary of the unit disc bundle
of L*. The kernel of B has the form involving an integral fooo dt and
the By are its Fourier coefficients (see [51]). In our CR Levi-flat at setting,
the IIx most resemble By in being semi-classical kernels (with a k in the
phase) but also formally resemble B in being integrals over an additional
parameter u. But the integrals over the additional parameters in and
have completely different origins. The integral fR du in arises
due to the transversal direction to the leaves of the Levi foliation. This is a
different kind of integral than that for B, which arrises through summation
over k > 0.

For fixed k, Si is not a FIO since the phase function ¥ (x,y,u) is not
homogeneous of degree one with respect to u. To obtain a homogeneous
FIO, we should have to sum Sy in k. Moreover, the domain of integration
in is R, unlike , where it is R;. In Section we show that the
Szegl6 projector Ilj itself is not a FIO, in contrast to the result of Boutet
de Monvel-Sjostrand [6] for strictly pseudoconvex domains. The proof of
Theorem is also different from [6] and is based on the heat equation
method of Menikoff-Sjostrand [40]. For the precise form of ¥(x,y,u) see
(4.36) and (4.39). This can be compared to the form [29, Theorems 3.2, 3.4]
of the phase function for the Szeg6 kernel on a non-degenerate CR manifold.

If M is compact complex manifold of dimension n endowed with a
positive line bundle L — M then the localization of the Bergman kernel
By, corresponding to L* has the form By (2, w) = e*(ZW)b(z, w, k), where
b(z,w, k) ~ 3520 k"1 9b;(z, w) in SPL N (1; D x D), by the works of Zelditch
[51] and Shiffman-Zelditch [48], see also [28] (cf. Section [2.4). We see thus
that Sk(x,y) is an integrated version of the Bergman kernel on a complex
manifold. This corresponds to the fact that the Levi-flat CR manifold is foli-
ated by complex manifolds and we have a transversal direction (where there
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are no elliptic estimates) in which we integrate. Note that in the case of a
strictly pseudoconvex CR manifold we always have a ‘bad’ direction for ellip-
ticity. In our case of a Levi-flat manifold endowed with a positive line bundle
we have elliptic estimates in the directions of the Levi-foliation and the ‘bad’
direction is the transversal one. As a consequence, as shown by , Sk(z,y)
and hence IIj s(x,y), admits an asymptotic expansion Si(z,y) + O(k™>)
only in Sobolev spaces (see also Theorem for the details). This is an
important difference between the Levi-flat and the Kéahler case.

The fact that we integrate over R in prevents us from obtaining
asymptotics in the €*‘-topology for the kernel of I1j, ;. However, by com-
posing with certain semiclassical pseudo-differential operators Ay we obtain
asymptotics in the €*-topology for the kernels of (IT; s — Sk).Aj, and eventu-
ally IIj, s Aj. The symbol of Ay, is supported in a large interval (—M /2, M/2)
in the fiber direction and by taking M large enough we recover increasingly
more features of I1;. The freedom to choose these operators and the constant
M will be crucial for proving the embedding Theorem (e.g. in )

Let A be a properly supported semi-classical pseudodifferential opera-
tor on D of order 0 and classical symbol (see Definition

o0
(112) a($an7k) ~ Zk_jaj(l",n) in Sl%c (LT*D)a
j=0
a(x7n7k) :07 a‘](x777) :O7 j :O71727"'7
for [n| > £ M, for some M > 0.

Note that Ay is smoothing for each k. A semi-classical pseudodifferential
operator with these properties will be called good.

Theorem 1.3. Let X be an orientable compact Levi-flat CR manifold of
dimension 2n — 1, n > 2. Assume that there is a positive CR line bundle L
over X . Assume that A is a good semi-classical pseudodifferential operator
on D. Then for every £ € Ny, there is Ny > 0 such that for every k > Ny,
(g s Ar)(-,-) € €YD x D) and

(1.13) (ks Ar) (2, y) = / M@V g,y u, k)du
R

mod O(k~*°) in €*(D x D),
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where

(1.14)
a(x,y,u, k) ~ Zaj(:r,y,u)k:"_j in S (1; D x D x (=M, M)),

7=0
a(z,y,u, k),aj(z,y,u) € 6,°(D x D x (-M,M)), j=0,1,2,...,

1 _
ap(z, z,u) = §7r_” |det R:ﬂ ap (@, uwo(z) — 2Im Opg(x)), =z € D, |u] < M,

and ) € €°(D x D x R) is as in Theorem[1.4

For more results and references about the singularities of the Szeg6 kernel
and embedding of CR manifolds we refer to [29].

As an application of Theorem and Theorem we show that by
projecting appropriate sections through Il we obtain CR sections which
separate points and tangent vectors. Hence we give a Szegd kernel proof of
the following result due to Ohsawa and Sibony [46), [47].

Theorem 1.4. Let X be an orientable compact Levi-flat CR manifold of
dimension 2n — 1, n > 2. Assume that there is a positive CR line bundle L
over X. Then, for every £ € N there is a My > 0 such that for every k > My,
we can find N CR sections sq, 51, ...,sn, € €'(X,LF), such that the map
X >z [so(x),51(x),...,sN,(z)] € CPNe is an embedding.

Analytic proofs of the Kodaira embedding theorem for Kéhler and sym-
plectic manifolds, based on the Bergman/Szegé asymptotics, were given in
[4, 136}, [48], [51] (see [24} 26] for the Kodaira embedding of CR manifolds). Let
us briefly describe the idea of the proof of Theorem Using the fact that
IIj, s A is a semi-classical FIO and the freedom to choose Ay, we show in
Lemma that for k large enogh, for every ¢ € N the ¢* CR sections of
LF give local coordinates at all points of X. Hence we find a ¢ CR immer-
sion @, : X — CPV. In contrast to the Kéhler or symplectic case we do not
show that ®; is injective. Rather, we use the fact that & separates points
in the neighborhood of the diagonal in X x X and construct (by using The-
orems and another ¢* CR map ¥,, : X — CP"' given by sections
of a high power L™, which separates points outside a certain distance of the
diagonal. Therefore, the map (®y, ¥,,) : X — CPY x CPY’ is injective and
hence a €* embedding, which composed with the Segre embedding
yields an embedding X to CPOVFDWV'+1)—1,

The paper is organized as follows. In Section [2] we collect some notations,
terminology, definitions and statements we use throughout. In Section
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(9)

we give an explicit formula for the semi-classical Kohn Laplacian [, in

(9)

local coordinates and we determine the characteristic manifold for Uy k-

(9)

In Section We exhibit a semi-classical Hodge decomposition for [J;7. In
Section [5] we establish the regularity of the Szegd projection and we I’)rove
Theorem In Section [6] by using the semi-classical Hodge decomposition
theorem established in Section [4] and the regularity for the Szeg6 projection,
we prove Theorem [I.2]and Theorem In Section [7], we prove Theorem

2. Preliminaries
In this section we introduce useful notions from semi-classical analysis and
CR geometry. We then present background and examples of Levi-flat CR
manifolds. Finally, we treat an explicit example of Szegdé kernel of a positive
line bundle.

2.1. Definitions and notations from semi-classical analysis

We use the following notations: N = {1,2,...}, Ng = NU {0}, R is the set

of real numbers, Ry := {z € R; x > 0}. For a multiindex a = (g, ..., ) €
Ni we set || = a1 + -+ ayp. For z = (x1,...,2,) we write
) ol
a’,’a:l‘?l...'x?:"’ axj:ail,j’ ag:agllag::%
Let z = (21,...,2n), zj = X2j—1 +ix2j, j = 1,...,n, be coordinates of C".
We write
0 1 0 0
2= =72 0, = — = = —1 ,
1 " 1 " #i 8zj 2 (82U2j_1 8332]')
o 1( 0 .0 ol
ag.:T:* +1 , 8?:8?18?n:7,
g 8zj 2 8562j_1 8.732]' ! " 0z“
(6% Q1 (67 alal
82 = 92 ... =

Let M be a €° orientable paracompact manifold. We let T'M and T* M
denote the tangent bundle of M and the cotangent bundle of M respectively.
The complexified tangent bundle of M and the complexified cotangent bun-
dle of M will be denoted by CT'M or TM ®@r C and CI™*M or T"M ®gr C
respectively. We denote by (-,-) the pointwise duality between T'M and
T*M. We extend (-,-) bilinearly to TM ®@r C x T*M ®g C.
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Let F be a € vector bundle over M. The fiber of F at x € M will be
denoted by E.. Let F' be another vector bundle over M. We write F' X E*
to denote the vector bundle over M x M with fiber over (z,y) € M x M
consisting of the linear maps from E, to F},.

Let Y C M be an open set and take any L? inner product on (Y, E).
By using this L? inner product, in this paper, we will consider a distribu-
tion section of E over Y is a continuous linear form on %5°(Y, E). From
now on, let 2'(Y, E) denote the space of distribution sections of E over
Y and let &'(Y, E) be the subspace of 2'(Y, E) whose elements have com-
pact support in Y. For m € R, we let H™(Y, E) denote the Sobolev space
of order m of sections of E over Y. Put H" (Y,E) = {u € Z'(Y,E); pu €

loc
H™(Y, E), Y € 65°(Y) }, Hilp (Y. E) = H (Y, E) N 6'(Y, E).
The Schwartz kernel theorem asserts that for any continuous linear op-

erator
A:6°(M,E) = 2'(M, F)

there exists a unique distribution A(-,-) € 2'(M x M, F X E*) such that
(Au,v) = (A(-,-),v®@u) for any u € 65°(M,E), v e 65°(M, F*) (see [20,
Theorems 5.2.1, 5.2.6], [36, Thorem B.2.7]). The distribution A(-, ) is called
the Schwartz distribution kernel of A. We say that A is properly supported
if the canonical projections on the two factors restricted to supp A(-,-) C
M x M are proper. If A(-,-) € €°(M x M,F X E*), we say that A is a
smoothing operator and we write A = 0. Furthermore, A is smoothing if
and only if for all N >0 and s € R, A: H,, (M, E) — HEN(M,F) s
continuous.

Let W7, Wa be open sets in RN and let E and F be complex Hermi-
tian vector bundles over W7 and Ws. Let s,s’ € R and ng € R. For a k-
dependent continuous function Fy : HZ,,, (W1, E) — HE  (Wa, F) we write
F = O(k™) : H3, o, (Wi, E) — HiS (Wa, F), if for any xo € €°(Wa), x1 €
%5°(W1), there is a positive constant ¢ > 0 independent of k, such that
l(xoFrx1)ully < ck™ Jlu|y, Yu € H (W1, E), where ||-||, denotes the usual
Sobolev norm of order s. We write Fy=O(k™): Hp,, (W1, E) —
HE (Wa, F),if Fy = O(k™) : Hiypp (W1, E) — HE (Wa, F), for every N >
0. Similarly, let ¢ €N, for a k-dependent continuous function Gy :
%OOO(Wl, E) %%E(WQ, F) we write Gp=0(k™>) : %OOO(Wl, E) %%K(Wz, F),
if for any xo € €*°(W2), x1 € ¢5°(W1) and N > 0, there are positive con-
stants ¢ > 0 and M € Ny independent of &, such that || (xoGrx1)ullgeqw,,ry <
ck™N ||u vy, E)s VU € €50 (Wi, E).

A k-dependent continuous operator Ay : 65°(W1,E) — 2'(Wo, F) is
called k-negligible on Wy x Wy if for k large enough Ay is smoothing and
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for any K € Wy x Wy, any multi-indices «, 8 and any N € N there exists
Ck,a,8,N > 0 such that

(2.1) 0205 Ap(z,y)| < Crapnk ™™, on K.

Let Cy : 65°(Wh, E) — 2'(W, F) be another k-dependent continuous
operator. We write Ay = C; mod O(k~*°) (on Wo x W7) or Ag(z,y) =
Cr(x,y) mod O(k~°) (on Wy x W) if Ay — Cj is k-negligible on W5 x Wj.

Similarly, for £ € No, A : €5° (W1, E) — 2'(Wa, F) is called k-negligible
in the € norm on Wy x Wy if Ay(z,y) € € (Wa x Wi, E, X F,) for k large
and holds for multi-indices a, 8 with |a| 4 || < 2.

Let Cy : 65°(Wh, E) — 9'(Wa, F) be another k-dependent continuous
operator. We write A, = Cj, mod O(k~>°) in the € norm (on Wy x W)
or Ap(z,y) = Cp(x,y) mod O(k~>°) in €* norm (on Wy x Wy) if Ay, — Cy
is k-negligible in %" norm on Wy x Wi.

Let By : L*(X, L*) — L?(X, L¥) be a continuous operator. Let s, s1 be
local trivializing sections of L on open sets Dy € M, D1 € M respectively,
|s|2 = e72%, |s1]7 = e 2%, The localized operator (with respect to the triv-
ializing sections s and s1) of By is given by

(2.2 Biss,  L(D1) N €' (D1)  LX(D),
ur—s e sk By (shef P u) = Uk_,slBkUk’s“

and let By s, (z,y) € 2'(D x Dy) be the distribution kernel of By 5 5,. We
write By = O(k™) : H*(X, LF) — H* (X, L*), ng € R, if for all local trivi-
alizing sections s,s; on D and D; respectively, we have By s, = O(k™) :
Hiomp (D1) — HE (D). We write By = O(k~>°) : H%(X, L*) — H¥ (X, L¥),
ng € R, if for all local trivializing sections s, s; on D and D respectively, we
have By, ss, = O(k™) : H,pp, (D1) = Hi, (D). Fix £ € N. We write By, =
O(k=>) : (X, LF) — €*(X, L¥), if for all local trivializing sections s, 51
on D and D respectively, we have By, = O(k=%°) : 65°(D1) — €4(D).
We recall semi-classical symbol spaces (see Dimassi-Sjostrand [15, Chap-
ter 8]):

Definition 2.1. Let W be an open set in RY. Let

S(L,W) = {a € (W) |Va € NY : sup |0%(z)| < oo},
zeW
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Sthe (1 W) = { (a(-, k) wen | Vo € Ny, ¥x € G55(W) -

sup sup |0%(x, k)| < oo} )
keNzeW

For meR let S(1L;W) = {(a(-,k))ken | (k"™a(-,k)) € SP.(1;W)}. So
a(-,k)) € S (1; W) if for every o € NI and x € 6§°(W), there exists Cp >

0, such that |0%(ya(-, k))| < Cok™ on W.
Consider a sequence a; € S, (1; W), j € Ny, where m; \, —oo, and let

loc

a € S0 (1;W). We say that a(-, k) ~ > a;(-, k), in S[7°(1; W), if for every
j=0

¢ € Ny we have a — Z?:o a; € ;" (1; W) . For a given sequence a; as
above, we can always find such an asymptotic sum a, which is unique up to
an element in S;_°(1; W) = S (1L, W) := N, S)L (1, W)

We say that a(-, k) € S[t. (1; W) is a classical symbol on W of order m

if

(2.3)  a( k)~ > K" ayin SP(LW), aj(z) € Sic (1), 5=0,1,....

j=0
The set of all classical symbols on W of order mg is denoted by S0  (1; W)
=50 (LW).

Definition 2.2. Let W be an open set in RY. A semi-classical pseudodif-
ferential operator on W of order m and classical symbol is a k-dependent
continuous operator Ay : €5°(W) — €°°(W) such that the distribution ker-
nel Ag(x,y) is given by the oscillatory integral

kN
(2m)™
a(xvyvnv k) € Slrgc,cl(l; W x W x RN)

(24)  Apry) = / MU a2y, k)dy mod O(k),

We shall identify Ay with Ag(x,y). It is clear that Ay has a unique continuous
extension Ay : &' (W) — 2'(W). Moreover, it is well-known [18] that there
is a symbol

(2.5) a(z,n k) € St g (LW x RY) =S (L, T*W)
independ on y such that

kiN

(2.6) Ap(x,y) = W

/eik<zy’”>a(x,n,k)dn mod O(k™ ).



1398 C.-Y. Hsiao and G. Marinescu

2.2. CR manifolds and bundles

A Cauchy-Riemann (CR) manifold (of hypersurface type) is a pair (X, TH0X)
where X is a smooth manifold of dimension 2n — 1, n > 2, and T"°X is a
sub-bundle of the complexified tangent bundle CT X := C® TX, of rank
(n — 1), such that 710X NT10X = {0} and the set of smooth sections of
T'0X is closed under the Lie bracket. We call 71°X the CR structure of
X and we denote 701 X := T10X.

We say that (X, T1°X) is a Levi-flat CR manifold if the set of smooth
sections of T10X @ T91 X is closed under the Lie bracket. If X is Levi-flat,
there exists a smooth foliation of X, of real codimension one and whose
leaves are complex manifolds: it is obtained by integrating the distribution
(TYWX T X)NTX.

In this paper, we assume throughout that X is an orientable Levi-flat
manifold.

Fix a smooth Hermitian metric (-|-) on TX ®g C so that T1YX is
orthogonal to T%' X and (u|v) is real if u, v are real tangent vectors. Then
locally there is a real non-vanishing vector field T" of length one which is
pointwise orthogonal to 79X @ T%'X. T is unique up to the choice of
sign. For u € TX ®g C, we write |u|> := (u|u). Denote by AM9(T*X) and
A%L(T*X) the dual bundles of T%°X and T%! X, respectively. They can be
identified with subbundles of the complexified cotangent bundle T* X @ C.

Define the vector bundle of (0, ¢)-forms by A%4(T*X) := AY(A%(T*X)).
The Hermitian metric (-|-) on TX ®g C induces, by duality, a Hermitian
metric on TX ®g C and also on the bundles of (0, q) forms A®¢(T*X), q =
0,1,...,n — 1. We shall also denote all these induced metrics by (-|-). Let
0%4(D) denote the space of smooth sections of A%?(T*X) over D and let
Qg’q(D) be the subspace of Q%9(D) whose elements have compact support
in D. Similarly, if E is a vector bundle over D, then we let Q%9(D, E) denote
the space of smooth sections of A%(T*X)® E over D and let Q%q(D, E)
be the subspace of 2%4(D, E) whose elements have compact support in D.

Locally we can choose an orthonormal frame wq,...,w,_1 of the bun-
dle AY9(T*X). Then @y,...,w,_1 is an orthonormal frame of the bundle
A% (T*X). The real (2n — 2)-form w =i"lwi AW A~ Awp_1 AWp_1 is
independent of the choice of the orthonormal frame. Thus w is globally de-
fined. Locally there is a real 1-form wy of length one which is orthogonal
to ALO(T*X) @ A" (T*X). The form wy is unique up to the choice of sign.
Since X is orientable, there is a nowhere vanishing (2n — 1) form @ on X.
Thus, wg can be specified uniquely by requiring that w A wy = fQ, where f
is a positive function. Therefore wy, so chosen, is globally defined.
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Definition 2.3. We call wy the positive 1-form of unit length orthogonal
to ALO(T*X) and @A"Y (T*X).

We choose a vector field T so that
(2.7) T|=1, (T,wy)=-1.

Therefore T is uniquely determined. We call T the uniquely determined
global real vector field. We have the pointwise orthogonal decompositions:

T*X @p C = AY(T*X) @ A®H(T*X) & Cwy,

2.8
(28) TX g C=T""X ¢ T"' X ¢ CT.

Let 0y : Q9(X) — Q%4+1(X) be the tangential Cauchy-Riemann operator.
Let U C X be an open set. We say that a function u € €°°(U) is Cauchy-
Riemann (CR for short) (on U) if 9pu = 0.

Definition 2.4. Let L be a complex line bundle over a CR manifold X.
We say that L is a Cauchy-Riemann (CR for short) (complex) line bundle
over X if its transition functions are CR.

Definition 2.5. The Szegd kernel of the pair (X, L¥) is the Schwartz dis-
tribution kernel I (-, -) € 2'(X x X, L¥ X (L*)*) of the Szegd projection ITj
given by (1.3)).

If X is Levi-flat, then the restriction a CR line bundle to any leaf Y of
the Levi-foliation is a holomorphic line bundle.

From now on, we let (L,h) be a CR line bundle over X, where the
Hermitian fiber metric on L is denoted by h. We will denote by ¢ the local
weights of the Hermitian metric. More precisely, if s is a local trivializing
section of L on an open subset D C X, then the local weight of h with
respect to s is the function ¢ € €*°(D,R) for which

(2.9) s(z)]} = e 2@ zeD.

Definition 2.6. Let s be a local trivializing section of L on an open subset
D C X and ¢ the corresponding local weight as in (2.9)). For p € D, we define
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the Hermitian quadratic form M;ﬁ5 on T/p1 Ox by
(2.10) MU, V) = <U AV, d(Dod — Ouo) (p)>, U,V e TMOX,

where d is the usual exterior derivative and d,¢ = 9. Since X is Levi-flat,
the definition of Mg) does not depend on the choice of local trivializations
(see [27, Proposition 4.2]). Hence there exists a smooth section R of the
bundle of Hermitian forms on 79X such that R*|p = M?. We call R the
curvature of (L,h). We say that (L,h), or R”, is positive if RL is positive
definite, for every x € X. We say that L is a positive CR line bundle over X
if there is a Hermitian fiber metric A on L such that the induced curvature
R is positive.

In this paper, we assume that L is a positive CR line bundle over a Levi-
flat CR manifold X and we fix a Hermitian fiber metric h of L such that the
induced curvature R” is positive. Note that a positive line bundle (L, h) in
the sense of Definition is positive along the leaves of the Levi-foliation:
its restriction (L, h)|y to any leaf Y is positive (that is, the curvature of the
associated Chern connection is positive).

Let L, k > 0, be the k-th tensor power of the line bundle L. The Hermi-
tian fiber metric on L induces a Hermitian fiber metric on L* that we shall
denote by h*. If s is a local trivializing section of L then s* is a local trivial-
izing section of L*. We write gb,k to denote the tangential Cauchy-Riemann
operator acting on forms with values in L*, defined locally by

(2.11) Opke : Q%(X, LF) - QYatl(x, LF), 51)7,{(5’%) = s*Oyu,

where s is a local trivialization of L on an open subset D C X and u €
Q04(D).

2.3. Background on Levi-flat CR manifolds and examples

Originally, Levi-flat CR manifolds first arose as Levi-flat real hypersurfaces
in the study of the Levi problem, which asks the characterization of a do-
main of holomorphy by Levi pseudoconvexity of its boundary. While the
Levi problem has an affirmative answer for domains in C" (by the works of
Oka, Bremmerman, Norguet) or CP" (by results of Fujita and Takeuchi),
Grauert [16] pointed out that some domains with Levi-flat boundary give
counterexamples to the Levi problem (see also [17, [41]). These domains do
not possess any non-constant holomorphic functions but they are typically
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endowed with a positive and ample line bundle, so the relevant function
theory here deals with sections of positive line bundles and meromorphic
functions, see e.g. [I7]. From an analytic point of view this leads to the
study of 9-Neumann problem in this situation [33} 50].

On the other hand, if we look upon Levi-flat CR manifolds intrinsically,
the function theory should deal with CR functions or sections, that is, func-
tions or sections which are holomorphic along the leaves of the Levi foliation.
By a theorem of Inaba [30, Theorem 1], every continuous CR function on a
compact Levi-flat CR manifold is constant along leaves of the Levi foliation.
If the foliation has dense leaves, it follows that continuous CR functions are
constant. Hence, as in the case of compact complex manifolds, we are led to
perform function theory with sections of positive line bundles. The study of
CR meromorphic functions on compact Levi-flat CR manifolds can also be
seen as an alternative generalization of function theory on compact compact
complex manifolds (the leaves of the foliation).

We present here a list of interesting Levi-flat manifolds carrying a posi-
tive line bundle.

(i) Linear hypersurfaces in tori. Let n > 2 and let I be the lattice in
C™ generated by R-linearly independent vectors w; = (wj1,...,wjn), j =
1,...,2n, where w; = (1,0,...,0) and Rew;; =0 for j =2,...,2n. Let T"
be the torus C"/T" and let 7w : C™ — T™ be the natural map. For ¢ € R set
X.=n({z € C":Rez; = c}). Then X, is a compact Levi-flat hypersurface
in T™. If T™ is projective, X. carries a positive CR line bundle obtained by
restriction of a positive holomorphic bundle on T™.

This construction was used by Grauert in order to give an example of
a pseudoconvex domain that is not holomorphically convex, see [16], [41
p. 387]. Namely, let U C C" be defined by 0 < Rez; < 1 and let D = «(U).
Then every holomorphic function on D is constant.

(ii) Grauert tubes in topologically trivial holomorphic line bun-
dles. Let M be a compact projective manifold and 7 : FF — M a topo-
logically trivial holomorphic line bundle. There exists a finite open cov-
ering (Uy) of M and holomorphic frames e, over U, with eg = gogeq on
Un N Ug for holomorphic transition functions g,z : Uy N Ug — C* such that
|908] = 1. We define a Hermitian metric 2 on F' by setting |eq|n, = 1. Then
Xe.={v e F:|v|=c}, c>0,is areal analytic Levi-flat hypersurface in F,
cf. [I7, Satz2]. If L — M is a positive line bundle, then 7*L|x, is a positive
CR line bundle. The Levi foliation of X, has dense leaves if and only if all
tensor powers F* for k # 0 are holomorphically non-trivial.
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Again, this construction is related to the Levi problem for pseudoconvex
domains. Grauert [I7] showed that D. = {v € F : |v|;, < ¢}, for ¢ > 0, are
meromorphically convex but not holomorphically convex domains.

(iii) Circle bundles over projective manifolds. Let M be a projec-
tive compact manifold. Let m: D — M be a holomorphic fiber bundle over
M with fiber the unit disc D C C. It can be easily seen that holomorphic
trivializations form a trivializing cover, that is, the transition functions are
locally constant. The disc bundle is thus isomorphic to a bundle of the form
D,:=M x,D:=M x D/~ where p: m (M) — Aut(D) is a group homo-
morphism, M is the universal cover of M and the relation equivalence ~ is
given by (x,¢) ~ (yz, p(7)(), forx € M, € Dand v € w1 (M). Since Aut(D)
is a group of biholomorphisms of D consisting of Mobius transformations pre-
serving D, acting on CP! and fixing the unit circle S! = dD, it follows that
a holomorphic disc bundle is canonically embedded in the complex manifold
N, =M x, CP! — M, and the boundary of D, in N, is a compact Levi-flat
CR manifold X, = M x, 0D. Note that N, is a projective manifold by [31}
Theorem 8], so any projective embedding of N, induces a positive CR line
bundle on X,,.

Other positive CR line bundles over X, are given by the pullback 7*L|x,
of any positive line bundle L — M. It was shown in [I, Main Theorem] that
if M is a compact Riemann surface, 7*L|x, is not C* ample if D, has a
unique non-holomorphic harmonic section h with rankg dh = 2 on an open
dense set. A concrete example when the latter situation occurs is obtained by
taking M to be a hyperbolic compact Riemann surface, regarding m (M) C
Aut(D) as a Fuchsian representation and taking a non-trivial quasiconformal
deformation p : m (M) — Aut(D) of T, see [1].

The present construction was used in [14] Section 2] in order to construct
Levi-flat hypersurfaces with nontrivial Euler class in complex surfaces of
general type.

A generalization, particularly relevant in the context of the Ohsawa-
Sibony embedding theorem, is the following. Let p : 71 (M) — Diff(S!) be
a group homomorphism, whose image is not necessarily contained in the
Mobius transformation group. Then X, = M x, S! is Levi-flat and if  :
X, — M is the canonical projection and if L — M is positive, then 7*L is
a positive CR line bundle on X,. Theorem gives a realization of these
X, as ¢* CR submanifolds in complex projective space for arbitrary large
¢, while it is not clear a priori whether we can construct its filling D, and
its ambient NN,. Actually, for some special choice of M and p, it can be
shown that X, cannot be realized as a ¢°°° Levi-flat real hypersurface, see
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[3, B0]. For example, there does not exist a ¢°° Levi-flat hypersurface X
in a two-dimensional complex manifold such that the Levi foliation of X is
homeomorphic to Reeb’s foliation of S?. An open question is whether such
Levi-flat manifolds X, can be realized as ¢* Levi-flat real hypersurfaces for
some finite £ € N.

(iv) Levi-flat boundaries of Stein domains. In the examples (i) and (ii),
Grauert constructed Levi-flat hypersurfaces bounding pseudoconvex non-
Stein domains. Nemirovski [42] constructed examples of compact complex
surfaces which contain a smooth Levi-flat hypersurface splitting the surface
in two Stein domains. This construction admits a generalization to complex
manifolds of arbitrary dimension as noted in [42], [45] p. 168].

Consider a holomorphic C*-bundle B — S where S is a projective man-
ifold and the action of Z generated by (w, z) — (w, 2z) in terms of the local
coordinate w of S and the fiber coordinate z. Then, for any meromorphic sec-
tion s of the associated C-bundle associated to B such that its zeros and poles
are mutually disjoint and of order one, a Levi flat hypersurface X in a torus
bundle B/Z — S is obtained as the closure of the union of R*s(x)/Z, where
o runs through the complement of s71(0) U s~ (00). If S\ s71(0) U s (00)
is Stein, X bounds an annulus bundle over a Stein manifold which is Stein
(since holomorphic fiber bundles over Stein manifolds with one-dimensional
Stein fibers are Stein). If the torus bundle B/Z is projective, then X carries
a positive line bundle.

(v) Fibered Levi-flats in singular holomorphic fibrations. Such a
fibration stands for a holomorphic map f: B — S where B is a complex
surface and S is a compact Riemann surface. The fibers are not necessarily
connected. Let {p1,...,p,} be the singular values of f. A fibered Levi-flat
hypersurface in B has the form f~1(v), where v C S\ {p1,...,pn} is a sim-
ple closed path. In [I4] Section 2] examples of fibered Levi-flat hypersurfaces
are given, which carry the geometry of R3, H?, S? x R, H? x R, Nil, or Sol.
In particular, H? and H? x R are carried by fibered Levi-flat hypersurfaces
in surfaces of general type.

(vi) Levi-flat hypersurfaces in two dimensional tori an Kummer
surfaces. For these examples we refer to [43] [44].

(vii) Taut Levi-flat foliations. Let X be a Levi-flat CR 3-manifold. The
Levi-foliation F is called taut if if there exists a C'! embedded circle (called
transversal) in X which transversely intersects every leaf of F, cf. [8, Sec-
tion 4.4]. By results of Sullivan and Rummler [8, Theorem 4.31], this is equiv-
alent to the fact that X admits a C? Riemannian metric for which leaves of
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F are minimal surfaces. Using this characterization one shows [38, Lemma
13]:

Proposition 2.7. A compact Levi-flat CR 3-manifold possesses a smooth
CR line bundle which is positive along leaves if and only if the Levi foliation
15 taut.

Indeed, if X possesses a positive CR line bundle then the Ohsawa-Sibony
embedding theorem implies that X can be CR embedded in a complex
projective space by a C? map. We obtain thus a C? Riemannian metric on
X by pulling back the Fubini-Study metric. Then, any leaf of F is minimal
since any complex submanifold in a Kahler manifold is minimal. Conversely,
if X is taut, by smoothing a closed transversal and regarding its intersection
with the leaves of F as a divisor, we can construct a smooth positive CR
line bundle on X.

(viii) Positive normal bundle. An important CR line bundle on a Levi-
flat CR manifold is the normal line bundle N to the Levi foliation F, cf.
[2, Definition 2.15], [A7, p.89]. Brunella [7] observed that the positivity of
Nz implies convexity properties of the complement of a Levi-flat hypersur-
face in a complex manifold (see [2] for the converse and the relation to the
Diederich-Fornaess exponent). Explicit examples of Levi-flat CR manifold
with positive normal line bundle can be found in [2, Example 4.5], [7, Ex-
ample 4.2]. In [I0, Théoreme 2.2.3] the following general result is proved for
three dimensional compact Levi-flat manifolds: if the Levi foliation F has
no invariant transverse measure then Nr is positive.

Let us finally note that if X is a Levi-flat CR manifold and M is a
projective manifold, and L — X, E — M are positive line bundles, then
X x M is a Levi-flat CR manifold possessing the positive line bundle L X
E — X x M. We can also construct examples of Levi-flat CR manifolds
possessing a positive line bundle by taking Galois coverings or quotients by
discrete groups of a given Levi-flat manifold with positive line bundle.

2.4. An explicit example of Szegd kernel

Let (L, h") be a holomorphic line bundle over a compact complex manifold
M of dimension n — 1, where h” is a Hermitian fiber metric of L. Let R” be
the curvature induced by h% and we assume that iR” > 0 on M. Consider
X := M x St. We will identify S* with (—m,7]. Then, X is a Levi-flat CR
manifold and the pull-back of (L, h") is a positive CR line bundle over X,
denoted also (L, h™). In this simple example, we will give an explicit formula



Szegd kernel asymptotics & Kodaira embedding theorems 1405

for the phase function ¥ (z,y,u) and we will see that ¢ (x,y,u) fails to be
positively homogeneous in u and Il is not a Fourier integral operator.

Fix k > 0. Taking a Hermitian metric on 7YY M with volume form dvy;
and the metric df on S', we endow X with the product Hermitian met-
ric whose volume form is dvxy = dvys A df. We then get natural L? inner
products (-|-)r on L2(M, L¥) and L?(X, L¥). Let By, : L?(M, L¥) — Kerd
be the orthogonal projection (Bergman projection). For f € L?(X, L) we
have the Fourier decomposition f =Y - €™ f,, with f,,, € L*(M, L), for
m € 7. We can check that the Szegd projection Il is given by

(212) We: LA LY = Kerdy, f=3 ™ frnr— ) ™ Bifm.

meZ meEZ

We now study the distribution kernel of Ilx. Let s be a local trivializing
section of L on an open set D C M, |s|7, = e~2?, and let By, be the lo-
calization of By with respect to the trivializing section s (see (L.6])). We
write £ = (z,22,-1), ¥ = (W, Y2n_1), to denote the coordinates of M x S!,
where z = (21,...,2p-1), w = (w1, ..., wy—1), denote coordinates on M and
Ton_1, Yon_1, coordinates on S*. By the works of Zelditch [51] and Shiffman-
Zelditch [48], see also [28], we know that the kernel By s(z,w) of By s has
the form

(2.13) By s(z,w) = e*P(ZW)p(z w, k) on D x D,
where

oz w) €€°(D x D), Tmep(z,w) ~ |z —ul,

(e}

b(z,w, k) ~ E k100, (2,w)
j=0

in S*~1(1; D x D) (see Definition . From ([2.13]) and (2.12)), for any f €

loc
65° (D x (—m,7]), we have

(2.14)
(Hk,sf)(x)
= Zeimzz"‘l/ / T (2w, k)e Y1 f(w, yop—1) dyan—1 doar(w)
M J—7

MEZ

:/ e*PEW (5w, k) f(w, 2an—1) dvar(w)
M
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1 ™ . .
= / / / k(2 0) +i{Ean 1= yan1,7)

X b(z,w k)f(w,ygn,l) dn dyan—1 dvpg(w)

/ / / $2n717y2n713u>)

X kb('z7 w, k)f(wv y2n—1) du dy2n—1 dvps (w)

= ;/M /_:Hk,s(x,y)f(y) dvx (y),

where
(2.15) Iy s(x,y) = / eikd’(x’y’")s(m, y,u, k) du
R
with
%Z)(x» Y, u) = SD(Z’ w) + <=’E2n71 — Y2n-1, u> )
(2.16)

1
s(z,y,u, k) = %kb(z,w, k).

Formulas (2.15)) and (2.16)) show that IIj is not a Fourier integral operator
with complex phase. The phase function ¢ (z,y,u) in fails to be posi-
tively homogeneous of degree 1 with respect to u. Note also that and
exhibit the Szeg6 kernel in the form given in Theorem

3. The semi-classical Kohn Laplacian

(9)

In this section we introduce the Kohn Laplacian L7 acting on sections of

LF and we determine its local form D(q) with respect to a frame s and its
characteristic manifold. We show that the standard symplectic form of the
cotangent bundle is non-degenerate on the characteristic manifold. This will
be used in running the heat equation method in Section [4] for solving the
eikonal equation (see Theorems [4.5).

We start with some notations. For v € A%9(T*X) we denote by vA :
A% (T*X) — A%*+9(T*X) the exterior multiplication by v and let v/ * :
A% (T*X) — A%*=9(T*X) be the adjoint of vA with respect to (- |- ). Hence,
(vAulg) = (u|v™g), for all u € onp(T*X) € AO’erq(T*X)

For any r=0,1,...,n — 2, we denote by 8b ki Domab k CL(O r+1)(X’ LF)
— L%O )(X, LF) the Hilbert space adjoint of Op.1; With respect to (-] - ). Let
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Dl()q,z denote the (Gaffney extension of the) Kohn Laplacian given by

(3.1) Dom Dl()?lz = {u € Domdp; N Domgak - L%O,q) (X, LF);

gbﬁu S Domg;;k, 5;ku € Domgb,k} ,

and ngzu = aby,ﬁ;‘,ku + 527k5b7ku for s € Dom ng,z. Note that Ker Dz(,oﬁ =

Ker ab,k- By a result of Gaffney [36, Proposition3.1.2], Dl(flz is a positive
self-adjoint operator.

Let S be a local trivializing of L on an open subset D C X. By usm§ the
map we have define localizations J; j of 0y, 88 i of 8bk and (1] q

Dl()lz with respect to s through unitary identifications:

(€5°(D, A\ (T* X)) +— €°(D, L* @ A%(T* X))
u<— u=Ugsu, u= Uk_sl'd,
(3.2) s < Op gy Ospu = U,;;Eb,kUk,57
\ D§;<—>D,§;, a Zu—U 1D(q)Uks

It is easy to see that
(3.3) Dok = O+ k(Opd)N, Oy =0, + k(Dpp)"™*

where 8, : Q0t1(X) — Q04(X) is the formal adjoint of 8, with respect to
( ’ ‘ ’ )7 and
(3.4) % = Do k0 + 0D
The operator m) ,1 will be called the localized Kohn Laplacian.
Let us choose a smooth orthonormal frame e} ! for A%N(T*X) o
D. Let {Z; }n_ll denote the dual frame of T 1X Let Z7 be the formal

adjoint of Z; with respect to (-]-), j=1,. —1, that is, (Z;f | h) =
(f | Zjh),f,h € 657 (D).

Proposition 3.1 ([24, Proposition 3.1]). With the notations used be-
fore, using the identification (3.2)), we can identify the Kohn Laplacian Dl()?l)c
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with

(3.5) O = 8,40, + 0 Dk
-1
(Z} + kZj(6))(Z; + kZ;(9))

3

.

1
Z N e o[ Zy + kZi(6), ZF + kZ4(9)]

jit=1

+e(Z+kZ(p)) +e(Z* +kZ(¢)) + f,

where e(Z + kZ(¢)) denotes remainder terms of the form Y a;(Z; + kZ;(¢))
with a; smooth, matriz-valued and independent of k, for all j, and similarly
for e(Z* +kZ(¢)) and f is a smooth function independent of k.

Note that the bracket in is the commutator of Z; + kZ;(¢) and
ZF + kZi(9), Zj + kZ;j(9)(Z] + kZi(¢)) is a vector field plus a function.

Until further notice, we work with some real local coordinates x =
(z1,...,22p—1) defined on D. Let £ = (&1,...,&p,—1) denote the dual vari-
ables of z. Then (z, £) are local coordinates of the cotangent bundle 7% D. Let
g;(x, &) be the semi-classical principal symbol of Z; + kZ;(¢),j=1,...,n —
1. If rj(x, &) denotes the principal symbol of Z{-, then g;j(z,§) =rj(z,§) +

Z;j(¢). The semi-classical principal symbol of [] Sqlz, is given by

n—1
(3.6) po =Y Tq
j=1

The characteristic manifold X of ng; is

(3.7) L ={(,8) € T*D; po(x,£) = 0}
={(z,¢) € T"D;

@ (2,8) =+ =qn1(2,8) = q1(2,8) = -+ =1 (2,§) = O}
From , we see that pg vanishes to second order at ..
Proposition 3.2. We have
(3.8) S ={(z,§) €T*D; £ = Mwo(z) — 2Im Jpp(z), A € R} .

We refer the reader to [24, Proposition 3.2] for the proof of Proposi-
tion
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Let 0 = d€ A dx denote the canonical two form on T*D. We are in-
terested in whether o is non-degenerate at p € . We recall that o is non-
degenerate at p € ¥ if o(u,v) = 0for allv € T,X ®r C, where u € T,> ®r C,
then v = 0. From now on, for any f € ¢°°(T*D,C), we write Hy to denote
the Hamilton field of f. That is, in local symplectic coordinates (z,§),

2n—1

of & of a)
Hy = T
/ jzl (agj dx;  dz; O,

For f,g € €>(T*D,C), {f,g} denotes the Poisson bracket of f and g. We

recall that
2n—1

B af 0g  Of dg
() =3 (o an.56.):

First, we need the following.

Lemma 3.3. For p = (p, \owo(p) — 2Im 940 (p)) € B, we have

(3.9) o(Hy, Hy)l, =0, jit=1,...,n—1,
(310) O'(qu,Hatﬂp:O, j,tzl,...,n—l,
and

(3.11) o(Hg,, Hy,)lp = i([Z;, Ze)(p), Oup(p) — Opp(p))
— ’L(ijt + Zth)¢(p), jt=1...,n—1,

where Z; are as in (3.5) and q; is the semi-classical principal symbol of

Z]+]{ZZJ(¢)), j=1....,n—1.
Proof. We write p = (p,&p). It is straightforward to see that

(312)  o(Hy,, Hy)lp = {45, 4t} (p) = =([Z), Zil(p), S0) + i[Z;, Z] 6 (D).

We have

(3.13) (125, Zi)(p), &) = ([Zj, Z)(p), dowo (p) — 2Im By (p))
= Xo([Zj, Zi](p), wo(p))
+l<[Z Zi)(p), 0pd(p) — Dpd(p))-

Since [Z;, Zi](p) € Ty"' X, we have

(3.14) (1Z;, Z4](p), wo(p)) = 0
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and

(3.15) ([Zj; Zi)(p), Os0b(p)) =

Thus,
(3.16) ([Z}, Z:](p), (D) — Ood(p)) = ((Zj, Zi)(p), Do) = |Z;, Ze)p(p)-

From (313), (1) and (B-16), we get

Combining this with (3.12), we get (3.9). The proof of (3.10) is the same.
As in (3.12)), it is straightforward to see that

(3.17) o(Hg,, Hy)lp = {@j: @} (p)
= (2}, Zi)(p), &0) — (Z;Zs + Z:Z) (D),

where j,t =1,...,n — 1. We have

(3.18) ([Z}, Z)(p), €0) = ([Zj, Z)(p), howo (p) — 2Im By (p))
= 2o([Z}, Zi](p), wo(p))
+i([Z}, Z)(p), Db (p) — Obd(p))-

Since X is Levi-flat, Ao([Z}, Z¢](p),wo(p)) = 0 and hence

(3.19) ([Zj, Z)(p). €0) = i{[Z;, Ze)(p), Db (p) — Dpb(p))-
Combining (3.19)) with (| - - ) follows. O

We need the following.

Lemma 3.4 ([27, Lemma 4.1]). For any U,V € T,°X, pick U,V
(D, T*X) such that U(p) = U, V(p) = V. Then,

(320)  RY(U,V)=—([U,V](p),0s(p) — 0o