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1. Introduction and statement of the main results

The problem of global embedding CR manifolds is prominent in areas such
as complex analysis, partial differential equations and differential geometry.
A general result is the CR embedding of strictly pseudoconvex compact CR
manifolds of dimension greater than five, due to Boutet de Monvel [5].

For CR manifolds which are not strictly pseudoconvex, the idea of em-
bedding CR manifolds by means of CR sections of tensor powers Lk of a
positive CR line bundle L→ X was considered in [24, 25, 27, 37, 47]. This
was of course inspired by Kodaira’s embedding theorem.

One way to attack this problem is to produce CR sections by projecting
appropriate smooth sections to the space of CR sections. So it is crucial to
understand the large k behaviour of the Szegő projection Πk, i. e. the orthog-
onal projection on space H0

b (X,Lk) of CR sections, and of its distributional
kernel, the Szegő kernel. To study the Szegő projection it is convenient to
link it to a parametrix of the ∂b-Laplacian on (0, 1)-forms (called Kohn
Laplacian). This is also the method used in [5], where the parametrix turns
out to be a pseudodifferential operator of order 1/2.

In [27], we established analogues of the holomorphic Morse inequali-
ties of Demailly [12, 36] for CR manifolds and we deduced that the space
H0
b (X,Lk) is large under the assumption that the curvature of the line bun-

dle is adapted to the Levi form. In [25], the first author introduced a microlo-
cal cut-off function technique and could remove the assumptions linking the
curvatures of the line bundle and the Levi form under rigidity conditions on
X and the line bundle. Moreover, in [24], the first author established partial
Szegő kernel asymptotic expansions and Kodaira embedding theorems on
CR manifolds with transversal CR S1-action, see also [26].

All these developments need the assumptions that either the curvature
of the line bundle is adapted to the Levi form or rigidity conditions on
X and the line bundle. The difficulty of this kind of problem comes from
the presence of positive eigenvalues of the curvature of the line bundle and
negative eigenvalues of the Levi form of X. Thus, it is very interesting to
consider Levi-flat CR manifolds. In this case, the eigenvalues of the Levi
form are zero and we will show that it is possible to remove the assumptions
linking the curvatures of the line bundle and the Levi form or the rigidity
conditions on X and the line bundle.

Levi-flat CR manifolds are foliated by complex manifolds and there is a
subtle interplay between the function theory on the leaves and the dynamics
of the foliation. Levi-flat CR submanifolds in projective manifolds play an
important role in classical complex analysis [16, 17, 41, 42] linked to the
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Levi problem, foliations and dynamical systems [1, 3, 7–10, 14, 30, 35, 44–
47, 49]. They admit Lefschetz pencil structures of degree k, for any k large
enough, cf. [38]. The topology and dynamics of Levi-flat hypersurfaces in
complex surfaces of general type was thoroughly explored in [14], where it
is shown that all possible Thurston geometries except the spherical one can
occur. In this context it is important to have a general criterion for the
projective Levi-flat manifolds, analogue to the Kodaira embedding theorem
for Kähler manifolds. This is provided by Ohsawa-Sibony theorem [47], see
Theorem 1.4. A related result is the projective embedding of compact lam-
inations [13], [19, p. 401–402]. In the program of classifying Levi-flat CR
manifolds one is sometimes led to non-existence results. There are no com-
pact Levi-flat real hypersurfaces in a Stein manifold, due to the maximum
principle. On the other hand, the non-existence of smooth Levi-flat hyper-
surfaces in complex projective spaces CPn attracted a lot of attention, cf.
[35, 49]. The non-existence has been settled for n ≥ 3 but a famous still open
conjecture is whether this is true for n = 2.

Viewing Levi-flat CR manifolds as families of complex manifolds, we
can expect analogy with classical results from complex geometry such as
Kodaira embedding theorem. The natural function theoretical objects on a
CR manifold are CR functions or CR sections of a bundle. Actually, Ohsawa
and Sibony [47], cf. also [46], constructed a CR projective embedding of class
C κ for any κ ∈ N of a Levi-flat CR manifold by using ∂-estimates. A natural
question is whether we can improve the regularity to κ =∞. Adachi [1]
showed that the answer is no, in general. The analytic difficulty of this
problem comes from the fact that the Kohn Laplacian is not hypoelliptic on
Levi flat manifolds. Hypoellipticity and subelliptic estimates are used on CR
manifolds with non-degenerate Levi form in order to find parametrices of the
Kohn Laplacian and establish the Hodge decomposition, e. g. [5, 11, 29, 32].

In this paper, we establish a semiclassical Hodge decomposition for the
Kohn Laplacian acting on powers Lk as k →∞ and we show that the com-
position ΠkAk of Πk with an appropriate pseudodifferential operator Ak is a
semiclassical Fourier integral operator, admitting an asymptotic expansion
in k (see Theorem 1.3). From this result, we can understand the large k
behaviour of the Szegő projection and produce many global CR functions.
As an application, we give a Szegő kernel proof of Ohsawa and Sibony’s
Kodaira type embedding theorem on Levi-flat CR manifolds.

We now formulate the main results. Let (X,T 1,0X) be an orientable
compact Levi-flat CR manifold of dimension 2n− 1, n > 2. We fix a Her-
mitian metric 〈 · | · 〉 on TX ⊗R C =: CTX such that T 1,0X is orthogonal to
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T 0,1X. The Hermitian metric 〈 · | · 〉 on TX ⊗R C induces a Hermitian met-
ric 〈 · | · 〉 on the bundle Λ0,q(T ∗X) of (0, q) forms of X. We denote by dvX
the volume form on X induced by 〈 · | · 〉. Let (L, h) be a CR complex line
bundle over X, where the Hermitian fiber metric on L is denoted by h. We
will denote by RL the curvature of L (see Definition 2.6). We say that L is
positive if RLx is positive definite at every x ∈ X. Let

(1.1) λ1(x) ≤ · · · ≤ λn−1(x),

be the eigenvalues of RLx with respect to 〈 · | · 〉 and set

(1.2) detRLx := λ1(x) · · ·λn−1(x).

For k > 0, let (Lk, hk) be the k-th tensor power of the line bundle (L, h).
In this paper, we assume that k � 1. For u, v ∈ Λ0,q

x (T ∗X)⊗ Lkx we denote
by 〈u | v 〉hk the induced pointwise scalar product induced by 〈 · | · 〉 and
hk. We then get natural a global L2 inner product ( · | · )k on Ω0,q(X,Lk),
(α |β )k :=

∫
X

〈
α |β

〉
hk
dvX . Similarly, we have an L2 inner product ( · | · )

on Ω0,q(X). We denote by L2
(0,q)(X,L

k) and L2
(0,q)(X) the completions of

Ω0,q(X,Lk) and Ω0,q(X) with respect to ( · | · )k and ( · | · ), respectively. For
q = 0, we write L2(X) := L2

(0,0)(X), L2(X,Lk) := L2
(0,0)(X,L

k).

Let ∂b,k : C∞(X,Lk)→ Ω0,1(X,Lk) be the tangential Cauchy-Riemann
operator cf. (2.11). We extend ∂b,k to L2(X,Lk) by ∂b,k : Dom ∂b,k ⊂
L2(X,Lk)→ L2

(0,1)(X,L
k), u 7−→ ∂b,ku, with Dom ∂b,k := {u ∈ L2(X,Lk);

∂b,ku ∈ L2
(0,1)(X,L

k)}, where ∂b,ku is defined in the sense of distributions.
The Szegő projection

(1.3) Πk : L2(X,Lk)→ Ker ∂b,k

is the orthogonal projection with respect to ( · | · )k .
The Szegő projection Πk is not a smoothing operator. Nevertheless, our

first result shows that it enjoys the following regularity property.

Theorem 1.1. Let X be an orientable compact Levi-flat CR manifold and
let (L, h) be a positive CR line bundle on X. Then for every ` ∈ N0 there ex-
ists N` > 0 such that for every k ≥ N` , Πk(C

∞(X,Lk)) is an infinite dimen-
sional subspace of C `(X,Lk) and the induced projection Πk : C∞(X,Lk)→
C `(X,Lk) is continuous.

The regularity statement of Theorem 1.1 is related to the regularity of
the ∂-Neumann problem on weakly pseudoconvex domains endowed with a
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positive line bundle [33, 50]. In that case one has to take high enough powers
to achieve C `-regularity, too.

Let us recall now that the Szegő kernel Π(x, y) of the boundary X of
a relatively compact strictly pseudoconvex domain G is a Fourier integral
operator with complex phase, by a result of Boutet de Monvel-Sjöstrand [6]
(here we consider the projection on the space of CR functions or CR sections
of a fixed CR line bundle). In particular, Π(x, y) is smooth outside the
diagonal x = y of X ×X and there is a precise description of the singularity
on the diagonal x = y, where Π(x, y) has a certain asymptotic expansion.
More precisely, let G = {ρ < 0} b G′ be a strictly pseudoconvex domain in
a (n+ 1)-dimensional complex manifold G′, where ρ ∈ C∞(G′) is a defining
function of G. Then by taking an almost-analytic extension ϕ = ϕ(x, y) :
G′ ×G′ → C of ρ with certain properties [6, (1.1)-(1.3)] we have

(1.4) Π(x, y) =

∫ ∞
0
eiϕ(x,y)ts(x, y, t)dt+R(x, y),

where s(x, y, t) ∈ Sn(X ×X × R+) and R(x, y) is a smooth function.
For a Levi-flat CR manifold we do not have such a neat characterization

of the singularities of the Szegő kernel Πk(x, y) for fixed k. The smoothing
properties of Πk are linked to the singularities of its kernel Πk(x, y) and to
its large k behaviour. Although it is quite difficult to describe them directly,
we will show that Πk still admits an asymptotic expansion in weak sense
(that is, in Sobolev spaces, see Theorem 1.2 and Section 2.4 for an explicit
example).

Let s be a local trivializing section of L on an open set D ⊂ X. We define
the weight of the metric with respect to s to be the function φ ∈ C∞(D)
satisfying |s|2h = e−2φ. We have an isometry

(1.5) Uk,s : L2(D)→ L2(D,Lk), u 7−→ uekφsk,

with inverse U−1
k,s : L2(D,Lk)→ L2(D), α 7→ e−kφs−kα. The localization of

Πk with respect to the trivializing section s is given by

(1.6) Πk,s : L2
comp(D)→ L2(D), Πk,s = U−1

k,sΠkUk,s,

where L2
comp(D) is the subspace of elements of L2(D) with compact support

in D. The second main result of this work shows that for k →∞, Πk is
rapidly decreasing outside the diagonal, and describes the singularities of
Πk semi-clasically in terms of an oscillatory integral.
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Theorem 1.2. Let X be an orientable compact Levi-flat CR manifold of
dimension 2n− 1, n ≥ 2. Assume that there is a positive CR line bundle L
over X. Then for every ` ∈ N0, there is N` > 0 such that for every k ≥ N`

we have:

(i) χ̃Πkχ = O(k−∞) : C∞(X,Lk)→ C `(X,Lk), for all χ, χ̃ ∈ C∞(X)
with suppχ ∩ supp χ̃ = ∅;

(ii) Πk,s − Sk = O(k−∞) : C∞0 (D)→ C `(D), where Sk : C∞0 (D)→ C∞(D)
is a continuous operator whose kernel satisfies

Sk(x, y)−
∫
R
eikψ(x,y,u)s(x, y, u, k)du(1.7)

= O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,

where

s(x, y, u, k) ∼
∞∑
j=0

sj(x, y, u)kn−j in Snloc (1;D ×D × R),

s0(x, x, u) =
1

2
π−n

∣∣detRLx
∣∣ , ∀x ∈ D, ∀u ∈ R,

(1.8)

and the phase function ψ ∈ C∞(D ×D × R) satisfies Imψ(x, y, u) ≥ 0
and

dxψ|(x,x,u) = −2Im ∂bφ(x) + uω0(x), x ∈ D, u ∈ R,
dyψ|(x,x,u) = 2Im ∂bφ(x)− uω0(x), x ∈ D, u ∈ R,
∂ψ

∂u
(x, x, u) = 0 and ψ(x, x, u) = 0,

if x 6= y then ∂ψ
∂u (x, y, u) 6= 0 or ψ(x, y, u) 6= 0,

(1.9)

and there exists c > 0 such that

(1.10) |dyψ(x, y, u)| ≥ c |u| , ∀u ∈ R, ∀(x, y) ∈ D ×D.

Here ω0 ∈ C∞(X,T ∗X) is the positive 1-form of unit length orthogonal
to Λ1,0(T ∗X) and Λ0,1(T ∗X), see Definition 2.3.

Theorem 1.2 shows that the (localized) Szegő projector is close in the
semiclassical limit to an approximate Szegő projector Sk, which has an
asymptotic expansion in Sobolev spaces, given by the operator Sk : C∞0 (D)→
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C∞(D) with kernel

(1.11) Sk(x, y) =

∫
R
eikψ(x,y,u)s(x, y, u, k)du.

Note that integrating by parts with respect to y several times in (1.11) and
using (1.10), we conclude that Sk is well-defined as a continuous operator
Sk : C∞0 (D)→ C∞(D).

For fixed u ∈ R, the integrand in the formula (1.11) of Sk (hence also
for Sk or Πk) bears a resemblance to the Bergman kernel Bk of the k-th
power of a positive line bundle L on a complex manifold (cf. [28, 48, 51], see
(2.13)). Note that B =

∑
k≥0Bk is basically the Szegő kernel of the strictly

pseudoconvex CR manifold given by the boundary of the unit disc bundle
of L∗. The kernel of B has the form (1.4) involving an integral

∫∞
0 dt and

the Bk are its Fourier coefficients (see [51]). In our CR Levi-flat at setting,
the Πk most resemble Bk in being semi-classical kernels (with a k in the
phase) but also formally resemble B in being integrals over an additional
parameter u. But the integrals over the additional parameters in (1.4) and
(1.11) have completely different origins. The integral

∫
R du in (1.11) arises

due to the transversal direction to the leaves of the Levi foliation. This is a
different kind of integral than that for B, which arrises through summation
over k ≥ 0.

For fixed k, Sk is not a FIO since the phase function ψ(x, y, u) is not
homogeneous of degree one with respect to u. To obtain a homogeneous
FIO, we should have to sum Sk in k. Moreover, the domain of integration
in (1.11) is R, unlike (1.4), where it is R+. In Section 2.4 we show that the
Szegő projector Πk itself is not a FIO, in contrast to the result of Boutet
de Monvel-Sjöstrand [6] for strictly pseudoconvex domains. The proof of
Theorem 1.2 is also different from [6] and is based on the heat equation
method of Menikoff-Sjöstrand [40]. For the precise form of ψ(x, y, u) see
(4.36) and (4.39). This can be compared to the form [29, Theorems 3.2, 3.4]
of the phase function for the Szegő kernel on a non-degenerate CR manifold.

If M is compact complex manifold of dimension n endowed with a
positive line bundle L→M then the localization of the Bergman kernel
Bk corresponding to Lk has the form Bk,s(z, w) = eikϕ(z,w)b(z, w, k), where
b(z, w, k) ∼

∑∞
j=0 k

n−1−jbj(z, w) in Sn−1
loc (1;D ×D), by the works of Zelditch

[51] and Shiffman-Zelditch [48], see also [28] (cf. Section 2.4). We see thus
that Sk(x, y) is an integrated version of the Bergman kernel on a complex
manifold. This corresponds to the fact that the Levi-flat CR manifold is foli-
ated by complex manifolds and we have a transversal direction (where there
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are no elliptic estimates) in which we integrate. Note that in the case of a
strictly pseudoconvex CR manifold we always have a ‘bad’ direction for ellip-
ticity. In our case of a Levi-flat manifold endowed with a positive line bundle
we have elliptic estimates in the directions of the Levi-foliation and the ‘bad’
direction is the transversal one. As a consequence, as shown by (1.7), Sk(x, y)
and hence Πk,s(x, y), admits an asymptotic expansion Sk(x, y) +O(k−∞)
only in Sobolev spaces (see also Theorem 4.14 for the details). This is an
important difference between the Levi-flat and the Kähler case.

The fact that we integrate over R in (1.7) prevents us from obtaining
asymptotics in the C `-topology for the kernel of Πk,s. However, by com-
posing with certain semiclassical pseudo-differential operators Ak we obtain
asymptotics in the C `-topology for the kernels of (Πk,s − Sk)Ak and eventu-
ally Πk,sAk. The symbol of Ak is supported in a large interval (−M/2,M/2)
in the fiber direction and by taking M large enough we recover increasingly
more features of Πk. The freedom to choose these operators and the constant
M will be crucial for proving the embedding Theorem 1.4 (e. g. in (7.1)).

Let Ak be a properly supported semi-classical pseudodifferential opera-
tor on D of order 0 and classical symbol (see Definition 2.2)

α(x, η, k) ∼
∞∑
j=0

k−jαj(x, η) in S0
loc (1, T ∗D),(1.12)

α(x, η, k) = 0, αj(x, η) = 0, j = 0, 1, 2, . . . ,

for |η| ≥ 1
2M , for some M > 0.

Note that Ak is smoothing for each k. A semi-classical pseudodifferential
operator with these properties will be called good.

Theorem 1.3. Let X be an orientable compact Levi-flat CR manifold of
dimension 2n− 1, n ≥ 2. Assume that there is a positive CR line bundle L
over X. Assume that Ak is a good semi-classical pseudodifferential operator
on D. Then for every ` ∈ N0, there is N` > 0 such that for every k ≥ N` ,
(Πk,sAk)(· , ·) ∈ C `(D ×D) and

(Πk,sAk)(x, y) ≡
∫
R
eikψ(x,y,u)a(x, y, u, k)du(1.13)

mod O(k−∞) in C `(D ×D),
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where

a(x, y, u, k) ∼
∞∑
j=0

aj(x, y, u)kn−j in Snloc (1;D ×D × (−M,M)),

a(x, y, u, k), aj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

a0(x, x, u) =
1

2
π−n

∣∣detRLx
∣∣α0

(
x, uω0(x)− 2Im ∂bφ(x)

)
, x ∈ D, |u| < M,

(1.14)

and ψ ∈ C∞(D ×D × R) is as in Theorem 1.2.

For more results and references about the singularities of the Szegő kernel
and embedding of CR manifolds we refer to [29].

As an application of Theorem 1.1 and Theorem 1.3, we show that by
projecting appropriate sections through Πk we obtain CR sections which
separate points and tangent vectors. Hence we give a Szegő kernel proof of
the following result due to Ohsawa and Sibony [46, 47].

Theorem 1.4. Let X be an orientable compact Levi-flat CR manifold of
dimension 2n− 1, n ≥ 2. Assume that there is a positive CR line bundle L
over X. Then, for every ` ∈ N there is a M` > 0 such that for every k ≥M` ,
we can find Nk CR sections s0, s1, . . . , sNk ∈ C `(X,Lk), such that the map
X 3 x 7→ [s0(x), s1(x), . . . , sNk(x)] ∈ CPNk is an embedding.

Analytic proofs of the Kodaira embedding theorem for Kähler and sym-
plectic manifolds, based on the Bergman/Szegő asymptotics, were given in
[4, 36, 48, 51] (see [24, 26] for the Kodaira embedding of CR manifolds). Let
us briefly describe the idea of the proof of Theorem 1.4. Using the fact that
Πk,sAk is a semi-classical FIO and the freedom to choose Ak, we show in
Lemma 7.3 that for k large enogh, for every ` ∈ N the C ` CR sections of
Lk give local coordinates at all points of X. Hence we find a C ` CR immer-
sion Φk : X → CPN . In contrast to the Kähler or symplectic case we do not
show that Φk is injective. Rather, we use the fact that Φk separates points
in the neighborhood of the diagonal in X ×X and construct (by using The-
orems 1.2 and 1.3) another C ` CR map Ψm : X → CPN ′ given by sections
of a high power Lm, which separates points outside a certain distance of the
diagonal. Therefore, the map (Φk,Ψm) : X → CPN × CPN ′ is injective and
hence a C ` embedding, which composed with the Segre embedding (7.28)
yields an embedding X to CP(N+1)(N ′+1)−1.

The paper is organized as follows. In Section 2 we collect some notations,
terminology, definitions and statements we use throughout. In Section 3,
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we give an explicit formula for the semi-classical Kohn Laplacian �(q)
b,k in

local coordinates and we determine the characteristic manifold for �(q)
b,k.

In Section 4 we exhibit a semi-classical Hodge decomposition for �(q)
b,k. In

Section 5, we establish the regularity of the Szegő projection and we prove
Theorem 1.1. In Section 6, by using the semi-classical Hodge decomposition
theorem established in Section 4 and the regularity for the Szegő projection,
we prove Theorem 1.2 and Theorem 1.3. In Section 7, we prove Theorem 1.4.

2. Preliminaries

In this section we introduce useful notions from semi-classical analysis and
CR geometry. We then present background and examples of Levi-flat CR
manifolds. Finally, we treat an explicit example of Szegő kernel of a positive
line bundle.

2.1. Definitions and notations from semi-classical analysis

We use the following notations: N = {1, 2, . . .}, N0 = N ∪ {0}, R is the set
of real numbers, R+ := {x ∈ R; x ≥ 0}. For a multiindex α = (α1, . . . , αn) ∈
Nn0 we set |α| = α1 + · · ·+ αn. For x = (x1, . . . , xn) we write

xα = xα1

1 · · ·x
αn
n , ∂xj =

∂

∂xj
, ∂αx = ∂α1

x1
· · · ∂αnxn =

∂|α|

∂xα
·

Let z = (z1, . . . , zn), zj = x2j−1 + ix2j , j = 1, . . . , n, be coordinates of Cn.
We write

zα = zα1

1 · · · z
αn
n , zα = zα1

1 · · · z
αn
n , ∂zj =

∂

∂zj
=

1

2

(
∂

∂x2j−1
− i ∂

∂x2j

)
,

∂zj =
∂

∂zj
=

1

2

(
∂

∂x2j−1
+ i

∂

∂x2j

)
, ∂αz = ∂α1

z1 · · · ∂
αn
zn =

∂|α|

∂zα
,

∂αz = ∂α1

z1
· · · ∂αnzn =

∂|α|

∂zα
·

Let M be a C∞ orientable paracompact manifold. We let TM and T ∗M
denote the tangent bundle of M and the cotangent bundle of M respectively.
The complexified tangent bundle of M and the complexified cotangent bun-
dle of M will be denoted by CTM or TM ⊗R C and CT ∗M or T ∗M ⊗R C
respectively. We denote by 〈 · , · 〉 the pointwise duality between TM and
T ∗M . We extend 〈 · , · 〉 bilinearly to TM ⊗R C× T ∗M ⊗R C.



i
i

“5-Marinescu” — 2017/12/27 — 1:07 — page 1395 — #11 i
i

i
i

i
i
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Let E be a C∞ vector bundle over M . The fiber of E at x ∈M will be
denoted by Ex. Let F be another vector bundle over M . We write F � E∗

to denote the vector bundle over M ×M with fiber over (x, y) ∈M ×M
consisting of the linear maps from Ex to Fy.

Let Y ⊂M be an open set and take any L2 inner product on C∞0 (Y,E).
By using this L2 inner product, in this paper, we will consider a distribu-
tion section of E over Y is a continuous linear form on C∞0 (Y,E). From
now on, let D ′(Y,E) denote the space of distribution sections of E over
Y and let E ′(Y,E) be the subspace of D ′(Y,E) whose elements have com-
pact support in Y . For m ∈ R, we let Hm(Y,E) denote the Sobolev space
of order m of sections of E over Y . Put Hm

loc (Y,E) =
{
u ∈ D ′(Y,E); ϕu ∈

Hm(Y,E), ∀ϕ ∈ C∞0 (Y )
}

, Hm
comp (Y,E) = Hm

loc(Y,E) ∩ E ′(Y,E).
The Schwartz kernel theorem asserts that for any continuous linear op-

erator

A : C∞0 (M,E)→ D ′(M,F )

there exists a unique distribution A(·, ·) ∈ D ′(M ×M,F � E∗) such that
(Au, v) = (A(·, ·), v ⊗ u) for any u ∈ C∞0 (M,E), v ∈ C∞0 (M,F ∗) (see [20,
Theorems 5.2.1, 5.2.6], [36, Thorem B.2.7]). The distribution A(·, ·) is called
the Schwartz distribution kernel of A. We say that A is properly supported
if the canonical projections on the two factors restricted to suppA(·, ·) ⊂
M ×M are proper. If A(·, ·) ∈ C∞(M ×M,F � E∗), we say that A is a
smoothing operator and we write A ≡ 0. Furthermore, A is smoothing if
and only if for all N ≥ 0 and s ∈ R, A : Hs

comp (M,E)→ Hs+N
loc (M,F ) is

continuous.
Let W1, W2 be open sets in RN and let E and F be complex Hermi-

tian vector bundles over W1 and W2. Let s, s′ ∈ R and n0 ∈ R. For a k-
dependent continuous function Fk : Hs

comp (W1, E)→ Hs′

loc (W2, F ) we write

Fk = O(kn0) : Hs
comp (W1, E)→ Hs′

loc (W2, F ), if for any χ0 ∈ C∞(W2), χ1 ∈
C∞0 (W1), there is a positive constant c > 0 independent of k, such that
‖(χ0Fkχ1)u‖s′ ≤ ckn0 ‖u‖s, ∀u ∈ Hs

loc (W1, E), where ‖·‖s denotes the usual
Sobolev norm of order s. We write Fk = O(k−∞) : Hs

comp (W1, E)→
Hs′

loc (W2, F ), if Fk = O(k−N ) : Hs
comp (W1, E)→ Hs′

loc (W2, F ), for everyN >
0. Similarly, let ` ∈ N, for a k-dependent continuous function Gk :
C∞0 (W1, E)→C `(W2, F ) we write Gk=O(k−∞) : C∞0 (W1, E)→C `(W2, F ),
if for any χ0 ∈ C∞(W2), χ1 ∈ C∞0 (W1) and N > 0, there are positive con-
stants c > 0 andM ∈ N0 independent of k, such that ‖(χ0Gkχ1)u‖C `(W2,F ) ≤
ck−N ‖u‖CM (W1,E), ∀u ∈ C∞0 (W1, E).

A k-dependent continuous operator Ak : C∞0 (W1, E)→ D ′(W2, F ) is
called k-negligible on W2 ×W1 if for k large enough Ak is smoothing and
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for any K bW2 ×W1, any multi-indices α, β and any N ∈ N there exists
CK,α,β,N > 0 such that

(2.1)
∣∣∣∂αx ∂βyAk(x, y)

∣∣∣ ≤ CK,α,β,Nk−N , on K.

Let Ck : C∞0 (W1, E)→ D ′(W2, F ) be another k-dependent continuous
operator. We write Ak ≡ Ck mod O(k−∞) (on W2 ×W1) or Ak(x, y) ≡
Ck(x, y) mod O(k−∞) (on W2 ×W1) if Ak − Ck is k-negligible on W2 ×W1.

Similarly, for ` ∈ N0, Ak : C∞0 (W1, E)→ D ′(W2, F ) is called k-negligible
in the C ` norm on W2 ×W1 if Ak(x, y) ∈ C `(W2 ×W1, Ey � Fx) for k large
and (2.1) holds for multi-indices α, β with |α|+ |β| ≤ `.

Let Ck : C∞0 (W1, E)→ D ′(W2, F ) be another k-dependent continuous
operator. We write Ak ≡ Ck mod O(k−∞) in the C ` norm (on W2 ×W1)
or Ak(x, y) ≡ Ck(x, y) mod O(k−∞) in C ` norm (on W2 ×W1) if Ak − Ck
is k-negligible in C ` norm on W2 ×W1.

Let Bk : L2(X,Lk)→ L2(X,Lk) be a continuous operator. Let s, s1 be
local trivializing sections of L on open sets D0 bM , D1 bM respectively,
|s|2h = e−2φ, |s1|2h = e−2φ1 . The localized operator (with respect to the triv-
ializing sections s and s1) of Bk is given by

Bk,s,s1 : L2(D1) ∩ E ′(D1)→ L2(D),(2.2)

u 7−→ e−kφs−kBk(s
k
1e
kφ1u) = U−1

k,sBkUk,s1 ,

and let Bk,s,s1(x, y) ∈ D ′(D ×D1) be the distribution kernel of Bk,s,s1 . We
write Bk = O(kn0) : Hs(X,Lk)→ Hs′(X,Lk), n0 ∈ R, if for all local trivi-
alizing sections s, s1 on D and D1 respectively, we have Bk,s,s1 = O(kn0) :
Hs

comp (D1)→ Hs′

loc (D). We write Bk = O(k−∞) : Hs(X,Lk)→ Hs′(X,Lk),
n0 ∈ R, if for all local trivializing sections s, s1 on D and D1 respectively, we
have Bk,s,s1 = O(k−∞) : Hs

comp (D1)→ Hs′

loc (D). Fix ` ∈ N. We write Bk =

O(k−∞) : C∞(X,Lk)→ C `(X,Lk), if for all local trivializing sections s, s1

on D and D1 respectively, we have Bk,s,s1 = O(k−∞) : C∞0 (D1)→ C `(D).
We recall semi-classical symbol spaces (see Dimassi-Sjöstrand [15, Chap-
ter 8]):

Definition 2.1. Let W be an open set in RN . Let

S(1;W ) :=
{
a ∈ C∞(W ) | ∀α ∈ NN0 : sup

x∈W
|∂αa(x)| <∞

}
,
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S0
loc (1;W ) :=

{
(a(·, k))k∈N | ∀α ∈ NN0 , ∀χ ∈ C∞0 (W ) :

sup
k∈N

sup
x∈W
|∂αa(x, k)| <∞

}
.

For m ∈ R let Smloc(1;W ) =
{

(a(·, k))k∈N | (k−ma(·, k)) ∈ S0
loc (1;W )

}
. So

a(·, k)) ∈ Smloc(1;W ) if for every α ∈ NN0 and χ ∈ C∞0 (W ), there exists Cα >
0, such that |∂α(χa(·, k))| ≤ Cαkm on W .

Consider a sequence aj ∈ Smj

loc (1;W ), j ∈ N0, where mj ↘ −∞, and let

a ∈ Sm0

loc (1;W ). We say that a(·, k) ∼
∞∑
j=0

aj(·, k), in Sm0

loc (1;W ), if for every

` ∈ N0 we have a−
∑`

j=0 aj ∈ S
m`+1

loc (1;W ) . For a given sequence aj as
above, we can always find such an asymptotic sum a, which is unique up to
an element in S−∞loc (1;W ) = S−∞loc (1;W ) := ∩mSmloc (1;W ).

We say that a(·, k) ∈ Smloc (1;W ) is a classical symbol on W of order m
if

(2.3) a(·, k) ∼
∞∑
j=0

km−jaj in Sm0

loc (1;W ), aj(x) ∈ Sloc (1), j = 0, 1, . . . .

The set of all classical symbols on W of order m0 is denoted by Sm0

loc ,cl (1;W )
= Sm0

loc ,cl (1;W ).

Definition 2.2. Let W be an open set in RN . A semi-classical pseudodif-
ferential operator on W of order m and classical symbol is a k-dependent
continuous operator Ak : C∞0 (W )→ C∞(W ) such that the distribution ker-
nel Ak(x, y) is given by the oscillatory integral

Ak(x, y) ≡ kN

(2π)N

∫
eik〈x−y,η〉a(x, y, η, k)dη mod O(k−∞),(2.4)

a(x, y, η, k) ∈ Smloc ,cl (1;W ×W × RN ).

We shall identifyAk withAk(x, y). It is clear thatAk has a unique continuous
extension Ak : E ′(W )→ D ′(W ). Moreover, it is well-known [18] that there
is a symbol

(2.5) α(x, η, k) ∈ Smloc ,cl (1;W × RN ) = Smloc ,cl (1;T ∗W )

independ on y such that

(2.6) Ak(x, y) ≡ kN

(2π)N

∫
eik〈x−y,η〉α(x, η, k)dη mod O(k−∞).
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2.2. CR manifolds and bundles

A Cauchy-Riemann (CR) manifold (of hypersurface type) is a pair (X,T 1,0X)
where X is a smooth manifold of dimension 2n− 1, n > 2, and T 1,0X is a
sub-bundle of the complexified tangent bundle CTX := C⊗ TX, of rank
(n− 1), such that T 1,0X ∩ T 1,0X = {0} and the set of smooth sections of
T 1,0X is closed under the Lie bracket. We call T 1,0X the CR structure of
X and we denote T 0,1X := T 1,0X.

We say that (X,T 1,0X) is a Levi-flat CR manifold if the set of smooth
sections of T 1,0X ⊕ T 0,1X is closed under the Lie bracket. If X is Levi-flat,
there exists a smooth foliation of X, of real codimension one and whose
leaves are complex manifolds: it is obtained by integrating the distribution
(T 1,0X ⊕ T 0,1X) ∩ TX.

In this paper, we assume throughout that X is an orientable Levi-flat
manifold.

Fix a smooth Hermitian metric 〈 · | · 〉 on TX ⊗R C so that T 1,0X is
orthogonal to T 0,1X and 〈u | v 〉 is real if u, v are real tangent vectors. Then
locally there is a real non-vanishing vector field T of length one which is
pointwise orthogonal to T 1,0X ⊕ T 0,1X. T is unique up to the choice of
sign. For u ∈ TX ⊗R C, we write |u|2 := 〈u |u 〉. Denote by Λ1,0(T ∗X) and
Λ0,1(T ∗X) the dual bundles of T 1,0X and T 0,1X, respectively. They can be
identified with subbundles of the complexified cotangent bundle T ∗X ⊗R C.

Define the vector bundle of (0, q)-forms by Λ0,q(T ∗X) := Λq(Λ0,1(T ∗X)).
The Hermitian metric 〈 · | · 〉 on TX ⊗R C induces, by duality, a Hermitian
metric on TX ⊗R C and also on the bundles of (0, q) forms Λ0,q(T ∗X), q =
0, 1, . . . , n− 1. We shall also denote all these induced metrics by 〈 · | · 〉. Let
Ω0,q(D) denote the space of smooth sections of Λ0,q(T ∗X) over D and let
Ω0,q

0 (D) be the subspace of Ω0,q(D) whose elements have compact support
in D. Similarly, if E is a vector bundle over D, then we let Ω0,q(D,E) denote
the space of smooth sections of Λ0,q(T ∗X)⊗ E over D and let Ω0,q

0 (D,E)
be the subspace of Ω0,q(D,E) whose elements have compact support in D.

Locally we can choose an orthonormal frame ω1, . . . , ωn−1 of the bun-
dle Λ1,0(T ∗X). Then ω1, . . . , ωn−1 is an orthonormal frame of the bundle
Λ0,1(T ∗X). The real (2n− 2)-form ω = in−1ω1 ∧ ω1 ∧ · · · ∧ ωn−1 ∧ ωn−1 is
independent of the choice of the orthonormal frame. Thus ω is globally de-
fined. Locally there is a real 1-form ω0 of length one which is orthogonal
to Λ1,0(T ∗X)⊕ Λ0,1(T ∗X). The form ω0 is unique up to the choice of sign.
Since X is orientable, there is a nowhere vanishing (2n− 1) form Q on X.
Thus, ω0 can be specified uniquely by requiring that ω ∧ ω0 = fQ, where f
is a positive function. Therefore ω0, so chosen, is globally defined.
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Definition 2.3. We call ω0 the positive 1-form of unit length orthogonal
to Λ1,0(T ∗X) and ⊕Λ0,1(T ∗X).

We choose a vector field T so that

(2.7) |T | = 1 , 〈T , ω0 〉 = −1 .

Therefore T is uniquely determined. We call T the uniquely determined
global real vector field. We have the pointwise orthogonal decompositions:

(2.8)
T ∗X ⊗R C = Λ1,0(T ∗X)⊕ Λ0,1(T ∗X)⊕ Cω0,

TX ⊗R C = T 1,0X ⊕ T 0,1X ⊕ CT.

Let ∂b : Ω0,q(X)→ Ω0,q+1(X) be the tangential Cauchy-Riemann operator.
Let U ⊂ X be an open set. We say that a function u ∈ C∞(U) is Cauchy-
Riemann (CR for short) (on U) if ∂bu = 0.

Definition 2.4. Let L be a complex line bundle over a CR manifold X.
We say that L is a Cauchy-Riemann (CR for short) (complex) line bundle
over X if its transition functions are CR.

Definition 2.5. The Szegő kernel of the pair (X,Lk) is the Schwartz dis-
tribution kernel Πk(·, ·) ∈ D ′(X ×X,Lk � (Lk)∗) of the Szegő projection Πk

given by (1.3).

If X is Levi-flat, then the restriction a CR line bundle to any leaf Y of
the Levi-foliation is a holomorphic line bundle.

From now on, we let (L, h) be a CR line bundle over X, where the
Hermitian fiber metric on L is denoted by h. We will denote by φ the local
weights of the Hermitian metric. More precisely, if s is a local trivializing
section of L on an open subset D ⊂ X, then the local weight of h with
respect to s is the function φ ∈ C∞(D,R) for which

(2.9) |s(x)|2h = e−2φ(x) , x ∈ D.

Definition 2.6. Let s be a local trivializing section of L on an open subset
D ⊂ X and φ the corresponding local weight as in (2.9). For p ∈ D, we define
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the Hermitian quadratic form Mφ
p on T 1,0

p X by

(2.10) Mφ
p (U, V ) =

〈
U ∧ V , d

(
∂bφ− ∂bφ

)
(p)
〉
, U, V ∈ T 1,0

p X,

where d is the usual exterior derivative and ∂bφ = ∂bφ. Since X is Levi-flat,
the definition of Mφ

p does not depend on the choice of local trivializations
(see [27, Proposition 4.2]). Hence there exists a smooth section RL of the
bundle of Hermitian forms on T 1,0X such that RL|D = Mφ. We call RL the
curvature of (L, h). We say that (L, h), or RL, is positive if RLx is positive
definite, for every x ∈ X. We say that L is a positive CR line bundle over X
if there is a Hermitian fiber metric h on L such that the induced curvature
RL is positive.

In this paper, we assume that L is a positive CR line bundle over a Levi-
flat CR manifold X and we fix a Hermitian fiber metric h of L such that the
induced curvature RL is positive. Note that a positive line bundle (L, h) in
the sense of Definition 2.6 is positive along the leaves of the Levi-foliation:
its restriction (L, h)|Y to any leaf Y is positive (that is, the curvature of the
associated Chern connection is positive).

Let Lk, k > 0, be the k-th tensor power of the line bundle L. The Hermi-
tian fiber metric on L induces a Hermitian fiber metric on Lk that we shall
denote by hk. If s is a local trivializing section of L then sk is a local trivial-
izing section of Lk. We write ∂b,k to denote the tangential Cauchy-Riemann
operator acting on forms with values in Lk, defined locally by

(2.11) ∂b,k : Ω0,q(X,Lk)→ Ω0,q+1(X,Lk) , ∂b,k(s
ku) := sk∂bu,

where s is a local trivialization of L on an open subset D ⊂ X and u ∈
Ω0,q(D).

2.3. Background on Levi-flat CR manifolds and examples

Originally, Levi-flat CR manifolds first arose as Levi-flat real hypersurfaces
in the study of the Levi problem, which asks the characterization of a do-
main of holomorphy by Levi pseudoconvexity of its boundary. While the
Levi problem has an affirmative answer for domains in Cn (by the works of
Oka, Bremmerman, Norguet) or CPn (by results of Fujita and Takeuchi),
Grauert [16] pointed out that some domains with Levi-flat boundary give
counterexamples to the Levi problem (see also [17, 41]). These domains do
not possess any non-constant holomorphic functions but they are typically
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endowed with a positive and ample line bundle, so the relevant function
theory here deals with sections of positive line bundles and meromorphic
functions, see e. g. [17]. From an analytic point of view this leads to the
study of ∂-Neumann problem in this situation [33, 50].

On the other hand, if we look upon Levi-flat CR manifolds intrinsically,
the function theory should deal with CR functions or sections, that is, func-
tions or sections which are holomorphic along the leaves of the Levi foliation.
By a theorem of Inaba [30, Theorem 1], every continuous CR function on a
compact Levi-flat CR manifold is constant along leaves of the Levi foliation.
If the foliation has dense leaves, it follows that continuous CR functions are
constant. Hence, as in the case of compact complex manifolds, we are led to
perform function theory with sections of positive line bundles. The study of
CR meromorphic functions on compact Levi-flat CR manifolds can also be
seen as an alternative generalization of function theory on compact compact
complex manifolds (the leaves of the foliation).

We present here a list of interesting Levi-flat manifolds carrying a posi-
tive line bundle.

(i) Linear hypersurfaces in tori. Let n ≥ 2 and let Γ be the lattice in
Cn generated by R-linearly independent vectors wj = (wj1, . . . , wjn), j =
1, . . . , 2n, where w1 = (1, 0, . . . , 0) and Rewj1 = 0 for j = 2, . . . , 2n. Let Tn

be the torus Cn/Γ and let π : Cn → Tn be the natural map. For c ∈ R set
Xc = π

(
{z ∈ Cn : Re z1 = c}

)
. Then Xc is a compact Levi-flat hypersurface

in Tn. If Tn is projective, Xc carries a positive CR line bundle obtained by
restriction of a positive holomorphic bundle on Tn.

This construction was used by Grauert in order to give an example of
a pseudoconvex domain that is not holomorphically convex, see [16], [41,
p. 387]. Namely, let U ⊂ Cn be defined by 0 < Rez1 < 1 and let D = π(U).
Then every holomorphic function on D is constant.

(ii) Grauert tubes in topologically trivial holomorphic line bun-
dles. Let M be a compact projective manifold and π : F →M a topo-
logically trivial holomorphic line bundle. There exists a finite open cov-
ering (Uα) of M and holomorphic frames eα over Uα with eβ = gαβeα on
Uα ∩ Uβ for holomorphic transition functions gαβ : Uα ∩ Uβ → C∗ such that
|gαβ| ≡ 1. We define a Hermitian metric h on F by setting |eα|h = 1. Then
Xc = {v ∈ F : |v|h = c}, c > 0, is a real analytic Levi-flat hypersurface in F ,
cf. [17, Satz 2]. If L→M is a positive line bundle, then π∗L|Xc is a positive
CR line bundle. The Levi foliation of Xc has dense leaves if and only if all
tensor powers F k for k 6= 0 are holomorphically non-trivial.
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Again, this construction is related to the Levi problem for pseudoconvex
domains. Grauert [17] showed that Dc = {v ∈ F : |v|h < c}, for c > 0, are
meromorphically convex but not holomorphically convex domains.

(iii) Circle bundles over projective manifolds. Let M be a projec-
tive compact manifold. Let π : D →M be a holomorphic fiber bundle over
M with fiber the unit disc D ⊂ C. It can be easily seen that holomorphic
trivializations form a trivializing cover, that is, the transition functions are
locally constant. The disc bundle is thus isomorphic to a bundle of the form
Dρ := M ×ρ D := M̃ × D

/
∼ , where ρ : π1(M)→ Aut(D) is a group homo-

morphism, M̃ is the universal cover of M and the relation equivalence ∼ is
given by (x, ζ) ∼ (γx, ρ(γ)ζ), for x ∈ M̃ , ζ ∈ D and γ ∈ π1(M). Since Aut(D)
is a group of biholomorphisms of D consisting of Möbius transformations pre-
serving D, acting on CP1 and fixing the unit circle S1 = ∂D, it follows that
a holomorphic disc bundle is canonically embedded in the complex manifold
Nρ := M ×ρ CP1 →M , and the boundary of Dρ in Nρ is a compact Levi-flat
CR manifold Xρ = M ×ρ ∂D. Note that Nρ is a projective manifold by [31,
Theorem 8], so any projective embedding of Nρ induces a positive CR line
bundle on Xρ.

Other positive CR line bundles over Xρ are given by the pullback π∗L|Xρ
of any positive line bundle L→M . It was shown in [1, Main Theorem] that
if M is a compact Riemann surface, π∗L|Xρ is not C∞ ample if Dρ has a
unique non-holomorphic harmonic section h with rankR dh = 2 on an open
dense set. A concrete example when the latter situation occurs is obtained by
taking M to be a hyperbolic compact Riemann surface, regarding π1(M) ⊂
Aut(D) as a Fuchsian representation and taking a non-trivial quasiconformal
deformation ρ : π1(M)→ Aut(D) of Γ, see [1].

The present construction was used in [14, Section 2] in order to construct
Levi-flat hypersurfaces with nontrivial Euler class in complex surfaces of
general type.

A generalization, particularly relevant in the context of the Ohsawa-
Sibony embedding theorem, is the following. Let ρ : π1(M)→ Diff(S1) be
a group homomorphism, whose image is not necessarily contained in the
Möbius transformation group. Then Xρ = M ×ρ S1 is Levi-flat and if π :
Xρ →M is the canonical projection and if L→M is positive, then π∗L is
a positive CR line bundle on Xρ. Theorem 1.4 gives a realization of these
Xρ as C ` CR submanifolds in complex projective space for arbitrary large
`, while it is not clear a priori whether we can construct its filling Dρ and
its ambient Nρ. Actually, for some special choice of M and ρ, it can be
shown that Xρ cannot be realized as a C∞ Levi-flat real hypersurface, see
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[3, 30]. For example, there does not exist a C∞ Levi-flat hypersurface X
in a two-dimensional complex manifold such that the Levi foliation of X is
homeomorphic to Reeb’s foliation of S3. An open question is whether such
Levi-flat manifolds Xρ can be realized as C ` Levi-flat real hypersurfaces for
some finite ` ∈ N.

(iv) Levi-flat boundaries of Stein domains. In the examples (i) and (ii),
Grauert constructed Levi-flat hypersurfaces bounding pseudoconvex non-
Stein domains. Nemirovski [42] constructed examples of compact complex
surfaces which contain a smooth Levi-flat hypersurface splitting the surface
in two Stein domains. This construction admits a generalization to complex
manifolds of arbitrary dimension as noted in [42], [45, p. 168].

Consider a holomorphic C∗-bundle B → S where S is a projective man-
ifold and the action of Z generated by (w, z)→ (w, 2z) in terms of the local
coordinate w of S and the fiber coordinate z. Then, for any meromorphic sec-
tion s of the associated Ĉ-bundle associated toB such that its zeros and poles
are mutually disjoint and of order one, a Levi flat hypersurface X in a torus
bundle B/Z→ S is obtained as the closure of the union of R∗s(x)/Z, where
x runs through the complement of s−1(0) ∪ s−1(∞). If S \ s−1(0) ∪ s−1(∞)
is Stein, X bounds an annulus bundle over a Stein manifold which is Stein
(since holomorphic fiber bundles over Stein manifolds with one-dimensional
Stein fibers are Stein). If the torus bundle B/Z is projective, then X carries
a positive line bundle.

(v) Fibered Levi-flats in singular holomorphic fibrations. Such a
fibration stands for a holomorphic map f : B → S where B is a complex
surface and S is a compact Riemann surface. The fibers are not necessarily
connected. Let {p1, . . . , pn} be the singular values of f . A fibered Levi-flat
hypersurface in B has the form f−1(γ), where γ ⊂ S \ {p1, . . . , pn} is a sim-
ple closed path. In [14, Section 2] examples of fibered Levi-flat hypersurfaces
are given, which carry the geometry of R3, H3, S2 × R, H2 × R, Nil, or Sol.
In particular, H3 and H2 × R are carried by fibered Levi-flat hypersurfaces
in surfaces of general type.

(vi) Levi-flat hypersurfaces in two dimensional tori an Kummer
surfaces. For these examples we refer to [43, 44].

(vii) Taut Levi-flat foliations. Let X be a Levi-flat CR 3-manifold. The
Levi-foliation F is called taut if if there exists a C1 embedded circle (called
transversal) in X which transversely intersects every leaf of F , cf. [8, Sec-
tion 4.4]. By results of Sullivan and Rummler [8, Theorem 4.31], this is equiv-
alent to the fact that X admits a C2 Riemannian metric for which leaves of
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F are minimal surfaces. Using this characterization one shows [38, Lemma
13]:

Proposition 2.7. A compact Levi-flat CR 3-manifold possesses a smooth
CR line bundle which is positive along leaves if and only if the Levi foliation
is taut.

Indeed, if X possesses a positive CR line bundle then the Ohsawa-Sibony
embedding theorem implies that X can be CR embedded in a complex
projective space by a C2 map. We obtain thus a C2 Riemannian metric on
X by pulling back the Fubini-Study metric. Then, any leaf of F is minimal
since any complex submanifold in a Kähler manifold is minimal. Conversely,
if X is taut, by smoothing a closed transversal and regarding its intersection
with the leaves of F as a divisor, we can construct a smooth positive CR
line bundle on X.

(viii) Positive normal bundle. An important CR line bundle on a Levi-
flat CR manifold is the normal line bundle NF to the Levi foliation F , cf.
[2, Definition 2.15], [47, p. 89]. Brunella [7] observed that the positivity of
NF implies convexity properties of the complement of a Levi-flat hypersur-
face in a complex manifold (see [2] for the converse and the relation to the
Diederich-Fornaess exponent). Explicit examples of Levi-flat CR manifold
with positive normal line bundle can be found in [2, Example 4.5], [7, Ex-
ample 4.2]. In [10, Théorème 2.2.3] the following general result is proved for
three dimensional compact Levi-flat manifolds: if the Levi foliation F has
no invariant transverse measure then NF is positive.

Let us finally note that if X is a Levi-flat CR manifold and M is a
projective manifold, and L→ X, E →M are positive line bundles, then
X ×M is a Levi-flat CR manifold possessing the positive line bundle L�
E → X ×M . We can also construct examples of Levi-flat CR manifolds
possessing a positive line bundle by taking Galois coverings or quotients by
discrete groups of a given Levi-flat manifold with positive line bundle.

2.4. An explicit example of Szegő kernel

Let (L, hL) be a holomorphic line bundle over a compact complex manifold
M of dimension n− 1, where hL is a Hermitian fiber metric of L. Let RL be
the curvature induced by hL and we assume that iRL > 0 on M . Consider
X := M × S1. We will identify S1 with (−π, π]. Then, X is a Levi-flat CR
manifold and the pull-back of (L, hL) is a positive CR line bundle over X,
denoted also (L, hL). In this simple example, we will give an explicit formula
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for the phase function ψ(x, y, u) and we will see that ψ(x, y, u) fails to be
positively homogeneous in u and Πk is not a Fourier integral operator.

Fix k > 0. Taking a Hermitian metric on T 1,0M with volume form dvM
and the metric dθ on S1, we endow X with the product Hermitian met-
ric whose volume form is dvX = dvM ∧ dθ. We then get natural L2 inner
products ( · | · )k on L2(M,Lk) and L2(X,Lk). Let Bk : L2(M,Lk)→ Ker ∂
be the orthogonal projection (Bergman projection). For f ∈ L2(X,Lk) we
have the Fourier decomposition f =

∑
m∈Z e

imθfm with fm ∈ L2(M,Lk), for
m ∈ Z. We can check that the Szegő projection Πk is given by

Πk : L2(X,Lk)→ Ker ∂b, f =
∑
m∈Z

eimθfm 7−→
∑
m∈Z

eimθBkfm.(2.12)

We now study the distribution kernel of Πk. Let s be a local trivializing
section of L on an open set D ⊂M , |s|2hL = e−2φ, and let Bk,s be the lo-
calization of Bk with respect to the trivializing section s (see (1.6)). We
write x = (z, x2n−1), y = (w, y2n−1), to denote the coordinates of M × S1,
where z = (z1, . . . , zn−1), w = (w1, . . . , wn−1), denote coordinates on M and
x2n−1, y2n−1, coordinates on S1. By the works of Zelditch [51] and Shiffman-
Zelditch [48], see also [28], we know that the kernel Bk,s(z, w) of Bk,s has
the form

(2.13) Bk,s(z, w) = eikϕ(z,w)b(z, w, k) on D ×D,

where

ϕ(z, w) ∈ C∞(D ×D), Imϕ(z, w) ≈ |z − w|2 ,

b(z, w, k) ∼
∞∑
j=0

kn−1−jbj(z, w)

in Sn−1
loc (1;D ×D) (see Definition 2.1). From (2.13) and (2.12), for any f ∈

C∞0 (D × (−π, π]), we have

(Πk,sf)(x)

(2.14)

=
∑
m∈Z

eimx2n−1

∫
M

∫ π

−π
eikϕ(z,w)b(z, w, k)e−imy2n−1f(w, y2n−1) dy2n−1 dvM (w)

=

∫
M
eikϕ(z,w)b(z, w, k)f(w, x2n−1) dvM (w)
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=
1

2π

∫
M

∫ π

−π

∫
R
eikϕ(z,w)+i〈x2n−1−y2n−1,η〉

× b(z, w, k)f(w, y2n−1) dη dy2n−1 dvM (w)

=
1

2π

∫
M

∫ π

−π

∫
R
eik(ϕ(z,w)+〈x2n−1−y2n−1,u〉)

× kb(z, w, k)f(w, y2n−1) du dy2n−1 dvM (w)

=
1

2π

∫
M

∫ π

−π
Πk,s(x, y)f(y) dvX(y),

where

(2.15) Πk,s(x, y) =

∫
R
eikψ(x,y,u)s(x, y, u, k) du

with

(2.16)
ψ(x, y, u) = ϕ(z, w) +

〈
x2n−1 − y2n−1, u

〉
,

s(x, y, u, k) =
1

2π
kb(z, w, k).

Formulas (2.15) and (2.16) show that Πk is not a Fourier integral operator
with complex phase. The phase function ψ(x, y, u) in (1.7) fails to be posi-
tively homogeneous of degree 1 with respect to u. Note also that (2.15) and
(2.16) exhibit the Szegő kernel in the form given in Theorem 1.2.

3. The semi-classical Kohn Laplacian

In this section we introduce the Kohn Laplacian �(q)
b,k acting on sections of

Lk and we determine its local form �(q)
s,k with respect to a frame s and its

characteristic manifold. We show that the standard symplectic form of the
cotangent bundle is non-degenerate on the characteristic manifold. This will
be used in running the heat equation method in Section 4, for solving the
eikonal equation (4.9) (see Theorems 4.3, 4.4, 4.5).

We start with some notations. For v ∈ Λ0,q(T ∗X) we denote by v∧ :
Λ0,•(T ∗X)→ Λ0,•+q(T ∗X) the exterior multiplication by v and let v∧,∗ :
Λ0,•(T ∗X)→ Λ0,•−q(T ∗X) be the adjoint of v∧ with respect to 〈 · | · 〉. Hence,
〈 v ∧ u | g 〉 = 〈u | v∧,∗g 〉, for all u ∈ Λ0,p(T ∗X), g ∈ Λ0,p+q(T ∗X).

For any r=0, 1, . . . , n− 2, we denote by ∂
∗
b,k : Dom ∂

∗
b,k⊂L2

(0,r+1)(X,L
k)

→ L2
(0,r)(X,L

k) the Hilbert space adjoint of ∂b,k with respect to ( · | · )k. Let
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�(q)
b,k denote the (Gaffney extension of the) Kohn Laplacian given by

Dom�(q)
b,k = {u ∈ Dom ∂b,k ∩Dom ∂

∗
b,k ⊂ L2

(0,q)(X,L
k);(3.1)

∂b,ku ∈ Dom ∂
∗
b,k, ∂

∗
b,ku ∈ Dom ∂b,k} ,

and �(q)
b,ku = ∂b,k∂

∗
b,ku+ ∂

∗
b,k∂b,ku for s ∈ Dom�(q)

b,k. Note that Ker�(0)
b,k =

Ker ∂b,k. By a result of Gaffney [36, Proposition 3.1.2], �(q)
b,k is a positive

self-adjoint operator.
Let s be a local trivializing of L on an open subset D ⊂ X. By using the

map (1.5) we have define localizations ∂s,k of ∂b,k, ∂
∗
s,k of ∂

∗
b,k and �(q)

s,k of

�(q)
b,k with respect to s through unitary identifications:

(3.2)



C∞0 (D,Λ0,q(T ∗X))←→ C∞0 (D,Lk ⊗ Λ0,q(T ∗X))

u←→ ũ = Uk,su, u = U−1
k,s ũ,

∂s,k ←→ ∂b,k, ∂s,ku = U−1
k,s∂b,kUk,s,

∂
∗
s,k ←→ ∂

∗
b,k, ∂

∗
s,ku = U−1

k,s∂
∗
b,kUk,s,

�(q)
s,k ←→ �

(q)
b,k, �

(q)
s,ku = U−1

k,s�
(q)
b,kUk,s.

It is easy to see that

(3.3) ∂s,k = ∂b + k(∂bφ)∧ , ∂
∗
s,k = ∂

∗
b + k(∂bφ)∧,∗

where ∂
∗
b : Ω0,q+1(X)→ Ω0,q(X) is the formal adjoint of ∂b with respect to

( · | · ), and

(3.4) �(q)
s,k = ∂s,k∂

∗
s,k + ∂

∗
s,k∂s,k.

The operator �(q)
s,k will be called the localized Kohn Laplacian.

Let us choose a smooth orthonormal frame {ej}n−1
j=1 for Λ0,1(T ∗X) on

D. Let {Zj}n−1
j=1 denote the dual frame of T 0,1X. Let Z∗j be the formal

adjoint of Zj with respect to ( · | · ), j = 1, . . . , n− 1, that is, (Zjf | h) =
(f | Z∗j h), f, h ∈ C∞0 (D).

Proposition 3.1 ([24, Proposition 3.1]). With the notations used be-

fore, using the identification (3.2), we can identify the Kohn Laplacian �(q)
b,k
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with

�(q)
s,k = ∂s,k∂

∗
s,k + ∂

∗
s,k∂s,k(3.5)

=

n−1∑
j=1

(Z∗j + kZj(φ))(Zj + kZj(φ))

+

n−1∑
j,t=1

ej ∧ e∧,∗t ◦ [Zj + kZj(φ), Z∗t + kZt(φ)]

+ ε(Z + kZ(φ)) + ε(Z∗ + kZ(φ)) + f,

where ε(Z + kZ(φ)) denotes remainder terms of the form
∑
aj(Zj + kZj(φ))

with aj smooth, matrix-valued and independent of k, for all j, and similarly
for ε(Z∗ + kZ(φ)) and f is a smooth function independent of k.

Note that the bracket in (3.5) is the commutator of Zj + kZj(φ) and
Z∗t + kZt(φ), Zj + kZj(φ)(Z∗t + kZt(φ)) is a vector field plus a function.

Until further notice, we work with some real local coordinates x =
(x1, . . . , x2n−1) defined on D. Let ξ = (ξ1, . . . , ξ2n−1) denote the dual vari-
ables of x. Then (x, ξ) are local coordinates of the cotangent bundle T ∗D. Let
qj(x, ξ) be the semi-classical principal symbol of Zj + kZj(φ), j = 1, . . . , n−
1. If rj(x, ξ) denotes the principal symbol of Zj , then qj(x, ξ) = rj(x, ξ) +

Zj(φ). The semi-classical principal symbol of �(q)
s,k is given by

(3.6) p0 =

n−1∑
j=1

qjqj .

The characteristic manifold Σ of �(q)
s,k is

Σ = {(x, ξ) ∈ T ∗D; p0(x, ξ) = 0}(3.7)

= {(x, ξ) ∈ T ∗D;

q1(x, ξ) = · · · = qn−1(x, ξ) = q1(x, ξ) = · · · = qn−1(x, ξ) = 0}.

From (3.7), we see that p0 vanishes to second order at Σ.

Proposition 3.2. We have

(3.8) Σ =
{

(x, ξ) ∈ T ∗D; ξ = λω0(x)− 2Im ∂bφ(x), λ ∈ R
}
.

We refer the reader to [24, Proposition 3.2] for the proof of Proposi-
tion 3.2.
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Szegő kernel asymptotics & Kodaira embedding theorems 1409

Let σ = dξ ∧ dx denote the canonical two form on T ∗D. We are in-
terested in whether σ is non-degenerate at ρ ∈ Σ. We recall that σ is non-
degenerate at ρ ∈ Σ if σ(u, v) = 0 for all v ∈ TρΣ⊗R C, where u ∈ TρΣ⊗R C,
then u = 0. From now on, for any f ∈ C∞(T ∗D,C), we write Hf to denote
the Hamilton field of f . That is, in local symplectic coordinates (x, ξ),

Hf =

2n−1∑
j=1

(
∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj

)
.

For f, g ∈ C∞(T ∗D,C), {f, g} denotes the Poisson bracket of f and g. We
recall that

{f, g} =

2n−1∑
s=1

(
∂f

∂ξs

∂g

∂xs
− ∂f

∂xs

∂g

∂ξs

)
.

First, we need the following.

Lemma 3.3. For ρ = (p, λ0ω0(p)− 2Im ∂bφ(p)) ∈ Σ, we have

σ(Hqj , Hqt)|ρ = 0, j, t = 1, . . . , n− 1,(3.9)

σ(Hqj , Hqt)|ρ = 0, j, t = 1, . . . , n− 1,(3.10)

and

σ(Hqj , Hqt)|ρ = i〈[Zj , Zt](p), ∂bφ(p)− ∂bφ(p)〉(3.11)

− i(ZjZt + ZtZj)φ(p), j, t = 1, . . . , n− 1,

where Zj are as in (3.5) and qj is the semi-classical principal symbol of
Zj + kZj(φ), j = 1, . . . , n− 1.

Proof. We write ρ = (p, ξ0). It is straightforward to see that

(3.12) σ(Hqj , Hqt)|ρ = {qj , qt} (ρ) = −〈[Zj , Zt](p), ξ0〉+ i[Zj , Zt]φ(p).

We have

〈[Zj , Zt](p), ξ0〉 = 〈[Zj , Zt](p), λ0ω0(p)− 2Im ∂bφ(p)〉(3.13)

= λ0〈[Zj , Zt](p), ω0(p)〉
+ i〈[Zj , Zt](p), ∂bφ(p)− ∂bφ(p)〉.

Since [Zj , Zt](p) ∈ T 0,1
p X, we have

(3.14) 〈[Zj , Zt](p), ω0(p)〉 = 0
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and

(3.15) 〈[Zj , Zt](p), ∂bφ(p)〉 = 0.

Thus,

(3.16) 〈[Zj , Zt](p), ∂bφ(p)− ∂bφ(p)〉 = 〈[Zj , Zt](p), ∂bφ(p)〉 = [Zj , Zt]φ(p).

From (3.13), (3.14) and (3.16), we get

〈[Zj , Zt](p), ξ0〉 = i[Zj , Zt]φ(p).

Combining this with (3.12), we get (3.9). The proof of (3.10) is the same.
As in (3.12), it is straightforward to see that

σ(Hqj , Hqt)|ρ =
{
qj , qt

}
(ρ)(3.17)

= 〈[Zj , Zt](p), ξ0〉 − i(ZjZt + ZtZj)φ(p),

where j, t = 1, . . . , n− 1. We have

〈[Zj , Zt](p), ξ0〉 = 〈[Zj , Zt](p), λ0ω0(p)− 2Im ∂bφ(p)〉(3.18)

= λ0〈[Zj , Zt](p), ω0(p)〉
+ i〈[Zj , Zt](p), ∂bφ(p)− ∂bφ(p)〉.

Since X is Levi-flat, λ0〈[Zj , Zt](p), ω0(p)〉 = 0 and hence

(3.19) 〈[Zj , Zt](p), ξ0〉 = i〈[Zj , Zt](p), ∂bφ(p)− ∂bφ(p)〉.

Combining (3.19) with (3.17), (3.11) follows. �

We need the following.

Lemma 3.4 ([27, Lemma 4.1]). For any U, V ∈ T 1,0
p X, pick U ,V ∈

C∞(D,T 1,0X) such that U(p) = U , V(p) = V . Then,

(3.20) RLp (U, V ) = −
〈[
U ,V

]
(p), ∂bφ(p)− ∂bφ(p)

〉
+
(
UV + VU

)
φ(p).

Now, we can prove:

Theorem 3.5. σ is non-degenerate at every point of Σ .
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Proof. Note that

Σ =
{

(x, ξ) ∈ T ∗D; qj(x, ξ) = qj(x, ξ) = 0, j = 1, . . . , n− 1
}
.

Let CTρΣ and CTρ(T ∗D) be the complexifications of TρΣ and Tρ(T
∗D)

respectively. Let TρΣ
⊥ be the orthogonal to CTρΣ in CTρ(T ∗D) with respect

to the canonical two form σ. We notice that dimCTρΣ
⊥ = 2n− 2. It is easy

to check that

σ(v,Hqj )|ρ = 〈dqj(ρ), v〉, σ(v,Hqj )|ρ = 〈dqj(ρ), v〉,

j = 1, . . . , n− 1, v ∈ CTρ(T ∗D). Thus, if v ∈ CTρΣ, we get σ(Hqj , v)|ρ = 0,
σ(Hqj , v)|ρ = 0, j = 1, . . . , n− 1. We conclude that Hq1 , . . . ,Hqn−1

, Hq1 , . . . ,

Hqn−1
is a basis for TρΣ

⊥.

Let ν ∈ CTρΣ
⋂
TρΣ

⊥. We write ν =
∑n−1

j=1 (αjHqj (ρ) + βjHqj (ρ)). Since
ν ∈ CTρΣ, we have

σ(ν,Hqt)|ρ = σ(ν,Hqt)|ρ = 0,

t = 1, . . . , n− 1. In view of (3.9), (3.10), (3.11) and (3.20), we see that

σ(ν,Hqt)|ρ =

n−1∑
j=1

βj

(
− iRLp (Zj , Zt)

)
(3.21)

= −iRLp (Y,Zt) = 0,

for all t = 1, . . . , n− 1, where Y =
∑n−1

j=1 βjZj(p) ∈ T
1,0
p X. Since RLp is non-

degenerate, we get Y = 0. Thus, βj = 0, j = 1, . . . , n− 1. Similarly, we can
repeat the process above to show that αj = 0, j = 1, . . . , n− 1. We con-
clude that CTρΣ

⋂
TρΣ

⊥ = 0. Hence σ is non-degenerate at ρ. The theorem
follows. �

4. Semi-classical Hodge decomposition for the localized
Kohn Laplacian

In this section, we will apply the method introduced in [24] to establish semi-

classical Hodge decomposition theorems for �(0)
s,k, based on the heat equation

method of Menikoff-Sjöstrand [40]. We first add one extra variable to the

local (2n− 1) coordinates on X and introduce the operator �(q)
s acting in

2n variables and linked to the localized Kohn Laplacian �(q)
s,k by (4.4). We

use the heat equation method [40], [22, Proposition 6.5], to construct a
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parametrix for �(0)
s in Theorem 4.8. The corresponding Szegő operator S in

that Theorem (cf. (4.29)) turns out to be a complex Fourier integral operator

cf. Theorem 4.9 with phase function Φ. Returning to �(q)
s,k this yields the

semiclassical Hodge decomposition by Theorem 4.13, with Szegő operators
Sk having an expansion in Sobolev spaces cf. Theorem 4.14 given by a kernel
with phase function ψ given by the restriction of Φ. We then refine the result
to show that composing with certain pseudodifferential operators Ak we
obtain an expansion of SkAk in the C∞ topology and calculate its leading
term (Theorems 4.15 and 4.17).

4.1. The heat equation for the local operator �(0)
s

Let Ω be an open set in RN and let f , g be positive continuous functions
on Ω. We write f � g if for every compact set K ⊂ Ω there is a constant
cK > 0 such that f ≤ cKg and g ≤ cKf on K.

Let s be a local trivializing section of L on an open subset D b X and
|s|2h = e−2φ. In this section, we work with some real local coordinates x =
(x1, . . . , x2n−1) defined on D. We write ξ = (ξ1, . . . , ξ2n−1) or η = (η1, . . . ,
η2n−1) to denote the dual coordinates of x. We consider the domain D̂ :=
D × R. We write x̂ := (x, x2n) = (x1, x2, . . . , x2n−1, x2n) to denote the coor-
dinates of D × R, where x2n is the coordinate of R. We write ξ̂ := (ξ, ξ2n)
or η̂ := (η, η2n) to denote the dual coordinates of x̂, where ξ2n and η2n

denote the dual coordinate of x2n. We shall use the following notations:

〈x, η〉 :=
2n−1∑
j=1

xjηj , 〈x, ξ〉 :=
2n−1∑
j=1

xjξj , 〈x̂, η̂〉 :=
2n∑
j=1

xjηj , 〈x̂, ξ̂〉 :=
2n∑
j=1

xjξj .

Let Λ0,q(T ∗D̂) be the bundle with fiber

Λ0,q
x̂ (T ∗D̂) :=

{
u ∈ Λ0,q(T ∗X); x̂ = (x, x2n)

}
at x̂ ∈ D̂. From now on, for every point x̂ = (x, x2n) ∈ D̂, we identify
Λ0,q
x̂ (T ∗D̂) with Λ0,q

x (T ∗X). Let 〈 · | · 〉 be the Hermitian metric on T ∗D̂ ⊗R C
given by 〈 ξ̂ | η̂ 〉 = 〈 ξ | η 〉+ ξ2nη2n, (x̂, ξ̂), (x̂, η̂) ∈ T ∗D̂ ⊗R C. Let Ω0,q(D̂)
denote the space of smooth sections of Λ0,q(T ∗D̂) over D̂ and put Ω0,q

0 (D̂) :=

Ω0,q(D̂) ∩ E ′(D̂,Λ0,q(T ∗D̂)). Using ku(x) = e−ikx2n

(
−i ∂

∂x2n

(
eikx2nu

)
(x)
)

,

u ∈ Ω0,q(D), we consider the following operators

∂s : Ω0,r(D̂)→ Ω0,r+1(D̂), ∂s,ku = e−ikx2n∂s(ue
ikx2n), u ∈ Ω0,r(D),

∂
∗
s : Ω0,r+1(D̂)→ Ω0,r(D̂), ∂

∗
s,ku = e−ikx2n∂

∗
s(ue

ikx2n), u ∈ Ω0,r+1(D),

(4.1)
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where r = 0, 1, . . . , n− 1 and ∂s,k, ∂
∗
s,k are given by (3.2). From (3.3) it is

easy to see that

∂s =

n−1∑
j=1

(
ej ∧

(
Zj − iZj(φ)

∂

∂x2n

)
+ (∂bej)∧e∧,∗j

)
,

∂
∗
s =

n−1∑
j=1

(
e∧,∗j

(
Z∗j − iZj(φ)

∂

∂x2n

)
+ ej ∧ (∂bej)

∧,∗
)
,

(4.2)

where Z1, . . . , Zn−1, Z∗1 , . . . , Z
∗
n−1 and e1, . . . , en−1 are as in Proposition 3.1.

Put

(4.3) �(q)
s := ∂s∂

∗
s + ∂

∗
s∂s : Ω0,q(D̂)→ Ω0,q(D̂).

From (4.1), we have

(4.4) �(q)
s,ku = e−ikx2n�(q)

s (ueikx2n), ∀u ∈ Ω0,q(D),

where �(q)
s,k is given by (3.2). Let u ∈ Ω0,q

0 (D̂). Note that

k

∫
e−ikx2nu(x)dx2n =

∫
i
∂

∂x2n
(e−ikx2n)u(x)dx2n

=

∫
e−ikx2n

(
−i ∂u
∂x2n

(x)

)
dx2n.

From this observation and the explicit formulas for ∂s,k, ∂
∗
s,k, ∂s and ∂

∗
s (see

(3.3) and (4.2)), we conclude that

(4.5) �(q)
s,k

∫
e−ikx2nu(x)dx2n =

∫
e−ikx2n(�(q)

s u)(x)dx2n, u ∈ Ω0,q
0 (D̂).

As in Proposition 4.1 in [24], we have:



i
i

“5-Marinescu” — 2017/12/27 — 1:07 — page 1414 — #30 i
i

i
i

i
i

1414 C.-Y. Hsiao and G. Marinescu

Proposition 4.1. With the notations used before, we have

�(q)
s = ∂s∂

∗
s + ∂

∗
s∂s(4.6)

=

n−1∑
j=1

(
Z∗j − iZj(φ)

∂

∂x2n

)(
Zj − iZj(φ)

∂

∂x2n

)

+

n−1∑
j,t=1

ej ∧ e∧,∗t
[
Zj − iZj(φ)

∂

∂x2n
, Z∗t − iZt(φ)

∂

∂x2n

]
+ ε

(
Z − iZ(φ)

∂

∂x2n

)
+ ε

(
Z∗ − iZ(φ)

∂

∂x2n

)
+ zero order terms,

where ε(Z − iZ(φ) ∂
∂x2n

) denotes remainder terms of the form
∑
aj(Zj −

iZj(φ) ∂
∂x2n

) with aj smooth, matrix-valued, for all j, and similarly for ε(Z∗ −
iZ(φ) ∂

∂x2n
).

In this paper, we will only consider q = 0. Consider the following problem
for the heat equation

(4.7)

{
(∂t +�(0)

s )u(t, x̂) = 0 in R+ × D̂,
u(0, x̂) = v(x̂).

Definition 4.2. We say that a(t, x̂, η̂) ∈ C∞(R+ × T ∗D̂) is quasi-
homogeneous of degree j if a(t, x̂, λη̂) = λja(λt, x̂, η̂) for all λ > 0, |η̂| ≥ 1.
We say that b(x̂, η̂) ∈ C∞(T ∗D̂) is positively homogeneous of degree j if
b(x̂, λη̂) = λjb(x̂, η̂) for all λ > 0, |η̂| ≥ 1.

We look for an approximate solution of (4.7) of the form u(t, x̂) =
A(t)v(x̂),

(4.8) A(t)v(x̂) =
1

(2π)2n

∫∫
ei(Ψ(t,x̂,η̂)−〈ŷ,η̂〉)a(t, x̂, η̂)v(ŷ)dŷdη̂

where formally a(t, x̂, η̂) ∼
∞∑
j=0

aj(t, x̂, η̂), aj(t, x̂, η̂) ∈ C∞(R+ × T ∗D̂),

aj(t, x̂, η̂) is a quasi-homogeneous function of degree −j. The phase Ψ(t, x̂, η̂)
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should solve the eikonal equation

∂Ψ

∂t
− ip̂0(x̂,Ψ′x̂) = O(|Im Ψ|N ),∀N ≥ 0,

Ψ|t=0 = 〈x̂, η̂〉
(4.9)

with Im Ψ ≥ 0, where p̂0 denotes the principal symbol of �(0)
s . From (4.6),

we have

(4.10) p̂0 =

n−1∑
j=1

q̂j q̂j ,

where q̂j is the principal symbol of Zj − iZj(φ) ∂
∂x2n

, j = 1, . . . , n− 1. The

characteristic manifold Σ̂ of �(0)
s is given by

Σ̂ =
{

(x̂, ξ̂) ∈ T ∗D̂; q̂1(x̂, ξ̂) = · · · = q̂n−1(x̂, ξ̂)(4.11)

= q̂1(x̂, ξ̂) = · · · = q̂n−1(x̂, ξ̂) = 0
}
.

From (4.11), we see that p̂0 vanishes to second order at Σ̂. Let σ̂ denote
the canonical two form on T ∗D̂. As in Proposition 3.2 and Theorem 3.5, we
have

Theorem 4.3. With the notations used above, we have

(4.12) Σ̂ =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (λω0(x)− 2Im ∂bφ(x)ξ2n, ξ2n), λ ∈ R
}
.

Put

Σ̂+ =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (λω0(x)− 2Im ∂bφ(x)ξ2n, ξ2n), λ ∈ R, ξ2n > 0
}
,

Σ̂− =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (λω0(x)− 2Im ∂bφ(x)ξ2n, ξ2n), λ ∈ R, ξ2n < 0
}
.

(4.13)

Then, σ̂ is non-degenerate at every point of Σ̂+ ∪ Σ̂−.

Consider the conic open set of T ∗D̂ defined by

(4.14) U =
{

(x̂, ξ̂) ∈ T ∗D̂; ξ̂ = (ξ, ξ2n), ξ2n > 0
}
.
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Until further notice, we work in U . Since σ̂ is non-degenerate at each point
of U ∩ Σ̂ = Σ̂+, (4.9) can be solved with Im Ψ ≥ 0 on U . More precisely, we
have the following.

Theorem 4.4. There exists Ψ(t, x̂, η̂) ∈ C∞(R+ × U) such that Ψ(t, x̂, η̂)
is quasi-homogeneous of degree 1 and Im Ψ ≥ 0 and such that (4.9) holds
where the error term is uniform on every set of the form [0, T ]×K with
T > 0 and K ⊂ U compact. Furthermore, Ψ is unique up to a term which is
O(|Im Ψ|N ) locally uniformly for every N and

Ψ(t, x̂, η̂) = 〈x̂, η̂〉 on Σ̂+,

dx̂,η̂(Ψ− 〈x̂, η̂〉) = 0 on Σ̂+.
(4.15)

Moreover, we have
(4.16)

Im Ψ(t, x̂, η̂) �
(
|η̂| t |η̂|

1 + t |η|

)(
dist

(
(x̂,

η̂

|η̂|
), Σ̂+

))2

, t ≥ 0, (x̂, η̂) ∈ U.

Furthermore, we can take Ψ(t, x̂, η̂) so that

(4.17) Ψ(t, x̂, η̂) = Ψ(t, (x, 0), η̂) + x2nη2n.

Theorem 4.5. There exists a function Ψ(∞, x̂, η̂) ∈ C∞(U) with a uniquely
determined Taylor expansion at each point of Σ̂+ such that Ψ(∞, x̂, η̂) is
positively homogeneous of degree 1 and for every compact set K ⊂ U there
is a cK > 0 such that

Im Ψ(∞, x̂, η̂) ≥ cK |η̂|
(

dist
(
(x̂,

η̂

|η̂|
), Σ̂+

))2

,

dx̂,η̂(Ψ(∞, x̂, η̂)− 〈x̂, η̂〉) = 0 on Σ̂+.

If λ ∈ C(U), λ > 0 and λ(x̂, ξ̂) < minλj(x̂, ξ̂), for all (x̂, ξ̂) = (x̂, (λω0(x)−
2Im ∂bφ(x)ξ2n, ξ2n)) ∈ Σ̂+, where λj(x̂, ξ̂) are the eigenvalues of the Her-
mitian quadratic form ξ2nR

L
x , then the solution Ψ(t, x̂, η̂) of (4.9) can be

chosen so that for every compact set K ⊂ U and all indices α, β, γ, there
is a constant cα,β,γ,K > 0 such that

(4.18)
∣∣∣∂αx̂ ∂βη̂ ∂γt (Ψ(t, x̂, η̂)−Ψ(∞, x̂, η̂))

∣∣∣ ≤ cα,β,γ,Ke−λ(x̂,η̂)t on R+ ×K.

For the proofs of Theorem 4.4 and Theorem 4.5, we refer to Menikoff-
Sjöstrand [40], [22] and [24, Section 4.1].
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From now on, we assume that Ψ(t, x̂, η̂) has the form (4.17) and hence

(4.19) Ψ(∞, x̂, η̂) = Ψ(∞, (x, 0), η̂) + x2nη2n.

We let the full symbol of �(0)
s be

∑2
j=0 p̂j(x̂, ξ̂), where p̂j(x̂, ξ̂) is positively

homogeneous of order 2− j. We apply ∂t +�(0)
s formally under the integral

in (4.8) and then introduce the asymptotic expansion of �(0)
s (aeiΨ). Setting

(∂t +�(0)
s )(aeiΨ) ∼ 0 and regrouping the terms according to the degree of

quasi-homogeneity, we obtain for each N the transport equations

(4.20)

{
T (t, x̂, η̂, ∂t, ∂x̂)a0 = O(|Im Ψ|N ),

T (t, x̂, η̂, ∂t, ∂x̂)aj +Rj(t, x̂, η̂, a0, . . . , aj−1) = O(|Im Ψ|N ) .

Here

T (t, x̂, η̂, ∂t, ∂x̂) = ∂t − i
2n∑
j=1

∂p̂0

∂ξj
(x̂,Ψ′x̂)

∂

∂xj
+ q(t, x̂, η̂),

where

q(t, x̂, η̂) = p̂1(x̂,Ψ′x̂) +
1

2i

2n∑
j,t=1

∂2p̂0(x̂,Ψ′x̂)

∂ξj∂ξt

∂2Ψ(t, x̂, η̂)

∂xj∂xt

and Rj is a linear differential operator acting on a0, a1, . . . , aj−1. We note
that q(t, x̂, η̂)→ q(∞, x̂, η̂) as t→∞, exponentially fast in the sense of
(4.18) and the same is true for the coefficients of Rj , for all j.

Following [24], we can solve the transport equations (4.20). To state the
results precisely, we pause and introduce some symbol spaces.

Definition 4.6. Let µ ≥ 0 be a non-negative constant. We say that a ∈
Ŝmµ (R+ × U) if a ∈ C∞(R+ × U) and for all indices α, β ∈ N2n

0 , γ ∈ N0, ev-

ery compact set K b D̂, there exists a constant c > 0 such that∣∣∣∂γt ∂αx̂ ∂βη̂ a(t, x̂, η̂)
∣∣∣ ≤ ce−tµ|η2n|(1 + |η|)m+γ−|β|, x̂ ∈ K, (x̂, η̂) ∈ U.

Put Ŝ−∞µ (R+ × U) :=
⋂
m∈R Ŝ

m
µ (R+ × U). Let aj ∈ Ŝmj

µ (R+ × U), j ∈
N0, with mj → −∞, j →∞. Then there exists a ∈ Ŝm0

µ (R+ × U), unique

modulo Ŝ−∞µ (R+ × U), such that a−
k−1∑
j=0

aj ∈ Ŝmk
µ (R+ × U) for k ∈ N0. If

a and aj have the properties above, we write a ∼
∞∑
j=0

aj in Ŝm0
µ (R+ × U).

Following the proof of [24, Theorem 4.15] we get:
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Theorem 4.7. We can find solutions aj(t, x̂, η̂) ∈ Ŝ−j0 (R+ × U), j = 0,
1, . . . of the system (4.20), where aj(t, x̂, η̂) is a quasi-homogeneous func-
tion of degree −j, for each j, with

a0(0, x̂, η̂) = 1 on U, aj(t, x̂, η̂) = 0 on U , j = 1, 2, . . .,(4.21)

aj(t, x̂, η̂)− aj(∞, x̂, η̂) ∈ Ŝ−jµ (R+ × U), j = 0, 1, 2, . . . ,

a0(∞, x̂, η̂) 6= 0, ∀(x̂, η̂) ∈ Σ̂+,
(4.22)

where µ > 0 is a constant and aj(∞, x̂, η̂) ∈ C∞(U), j = 0, 1, . . ., aj(∞, x̂, η̂)
is a positively homogeneous function of degree −j, for each j.

Let m ∈ R, 0 ≤ ρ, δ ≤ 1. For a conic open subset Γ of T ∗D̂, let Smρ,δ(Γ)
denote the Hörmander symbol space on Γ of order m type (ρ, δ) (see [18,
Definition 1.1]) and let Smcl (Γ) denote the space of classical symbols on Γ of
order m (see [18, p. 35]). Let B ⊂ D be an open set. Let Lm1

2
, 1
2

(B) and Lmcl (B)

denote the space of pseudodifferential operators on B of order m type (1
2 ,

1
2)

and the space of classical pseudodifferential operators on B of order m. The
classical result of Calderon and Vaillancourt [21, Theorem 18.6.6] tells us
that for any A ∈ Lm1

2
, 1
2

(B),

(4.23) A : Hs
comp(B)→ Hs−m

loc (B) is continuous, for every s ∈ R.

We return to our situation. For j ∈ N0, let aj(t, x̂, η̂) ∈ Ŝ−j0 (R+ × U) and
aj(∞, x̂, η̂) ∈ C∞(U) be as in Theorem 4.7. Let

a(∞, x̂, η̂) ∼
∞∑
j=0

aj(∞, x̂, η̂) in S0
1,0(U),

a(t, x̂, η̂) ∼
∞∑
j=0

aj(t, x̂, η̂) in Ŝ0
0(R+ × U),

a(t, x̂, η̂)− a(∞, x̂, η̂) ∈ Ŝ0
µ(R+ × U), µ > 0.

(4.24)

Take α(η2n) ∈ C∞(R) with α(η2n) = 1 if η2n ≤ 1
2 , α(η2n) = 0 if η2n ≥ 1.

Choose χ ∈ C∞0 (R2n) so that χ(η̂) = 1 when |η̂| < 1 and χ(η̂) = 0 when
|η̂| > 2. For ε > 0, put

Gε(x̂, ŷ) =
1

(2π)2n

∫ (∫ ∞
0

(
ei(Ψ(t,x̂,η̂)−〈ŷ,η̂〉)a(t, x̂, η̂)

− ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)
)
(1− χ(η̂))χ(εη̂)(1− α(η2n))dt

)
dη̂.
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By Chapter 5 in part I of [22], we have for any u ∈ C∞0 (D̂),

lim
ε→0

∫
Gε(x̂, ŷ)u(ŷ)dŷ ∈ C∞(D̂),

and the operator G : C∞0 (D̂)→ C∞(D̂), u 7→ limε→0

∫
Gε(x̂, ŷ)u(ŷ)dy, is

continuous, has a unique continuous extension: G : E ′(D̂)→ D′(D̂) and G ∈
L−1

1

2
, 1
2

(D̂) with symbol

q(x̂, η̂) =

∫ ∞
0

(
ei(Ψ(t,x̂,η̂)−〈x̂,η̂〉)a(t, x̂, η̂)− ei(Ψ(∞,x̂,η̂)−〈x̂,η̂〉)a(∞, x̂, η̂)

)
dt

× (1− α(η2n))

in S−1
1

2
, 1
2

(T ∗D̂). We denote

G(x̂, ŷ) =
1

(2π)2n

∫ (∫ ∞
0

(
ei(Ψ(t,x̂,η̂)−〈ŷ,η̂〉)a(t, x̂, η̂)(4.25)

− ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)
)
(1− χ(η̂))(1− α(η2n))dt

)
dη̂.

Similarly, for ε > 0, put

Sε(x̂, ŷ) =
1

(2π)2n

∫
ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)(1− χ(η̂))χ(εη̂)(1− α(η2n))dη̂.

By [22, Chapter 5, part I]) we have for u ∈ C∞0 (D̂), limε→0

∫
Sε(x̂, ŷ)u(ŷ)dŷ ∈

C∞(D̂), the operator

(4.26) S : C∞0 (D̂)→ C∞(D̂), u 7→ lim
ε→0

∫
Sε(x̂, ŷ)u(ŷ)dy,

is continuous, has a unique continuous extension: S : E ′(D̂)→ D′(D̂) and
S ∈ L0

1

2
, 1
2

(D̂) with symbol s(x̂, η̂) = ei(Ψ(∞,x̂,η̂)−〈x̂,η̂〉)a(∞, x̂, η̂)(1− α(η2n)) ∈
S0

1

2
, 1
2

(T ∗D̂). We denote

(4.27)

S(x̂, ŷ) =
1

(2π)2n

∫
ei(Ψ(∞,x̂,η̂)−〈ŷ,η̂〉)a(∞, x̂, η̂)

(
1− χ(η̂)

)(
1− α(η2n)

)
dη̂.

Put

(4.28) Ĩ = (2π)−2n

∫
ei〈x̂−ŷ,η̂〉

(
1− α(η2n)

)
dη̂.
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We can repeat the proof of [22, Proposition 6.5] with minor changes and
obtain:

Theorem 4.8. With the notations used above, we have

(4.29) S +�(0)
s ◦G ≡ Ĩ on D̂, ∂s ◦ S ≡ 0 on D̂, �(0)

s ◦ S ≡ 0 on D̂.

The next result follows from the complex stationary phase formula [39]
with essentially the same proof as of [24, Theorem 4.29].

Theorem 4.9. With the notations and assumptions above, let S = S(x̂, ŷ)
∈ L0

1

2
, 1
2

(D̂) be as in Theorem 4.8. Then, on D̂, we have

(4.30) S(x̂, ŷ) ≡
∫
u∈R,t∈R+

eiΦ(x̂,ŷ,u,t)b(x̂, ŷ, u, t)(1− α(t))dudt

with symbol

b(x̂, ŷ, u, t) ∼
∞∑
j=0

bj(x̂, ŷ, u, t) in Sn−1
1,0 (D̂ × D̂ × R× R+),

bj(x̂, ŷ, λu, λt) = λn−1−jbj(x̂, ŷ, u, t),

∀(x̂, ŷ, u, t) ∈ D̂ × D̂ × R× R+, λ ≥ 1, ∀j,

b0(x̂, x̂, u, t) 6= 0, ∀(x̂, ŷ, u, t) ∈ D̂ × D̂ × R× R+, λ ≥ 1,

(4.31)

and phase function

Φ(x̂, ŷ, u, t) = (x2n − y2n)t+ ϕ(x, y, u, t),

ϕ(x, y, u, t) ∈ C∞(D ×D × R× R+),

ϕ(x, y, λu, λt) = λϕ(x, y, u, t),

∀(x, y, u, t) ∈ D ×D × R× R+, λ ≥ 1,

Imϕ(x, y, u, t) ≥ 0, ϕ(x, x, u, t) = 0, ∀x ∈ D, u ∈ R, t ∈ R+,

dxϕ|(x,x,u,t) = −2tIm ∂bφ(x) + uω0(x), ∀x ∈ D, u ∈ R, t ∈ R+,

dyϕ|(x,x,u,t) = 2tIm ∂bφ(x)− uω0(x), ∀x ∈ D, u ∈ R, t ∈ R+,
∂ϕ
∂u (x, y, u, t) = 0 and ∂ϕ

∂t (x, y, u, t) = 0 if and only if x = y.

(4.32)

We can repeat the method in [24, Section 4.4] with minor changes to com-
pute the tangential Hessian of the phase function ϕ(x, y, u, t). This will yield
theTaylor expansion of the phase function ψ from Theorems 1.2 and 1.3,
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see Theorem 4.10. Since the computation is simpler we therefore omit the
details. We only state the result. Fix p ∈ D and let Z1, . . . , Zn−1 be an or-
thonormal frame of T 1,0

x X varying smoothly with x in a neighbourhood of p,
for which the Hermitian quadratic form RLx is diagonalized at x = p. Let s be
a local trivializing section of L and let x = (x1, . . . , x2n−1), zj = x2j−1 + ix2j ,
j = 1, . . . , n− 1, be local coordinates of X defined in some small neighbour-
hood of p such that

x(p) = 0, ω0(p) = dx2n−1, T (p) = − ∂

∂x2n−1
,〈 ∂

∂xj
(p) | ∂

∂xt
(p)
〉

= 2δj,t, j, t = 1, . . . , 2n− 2,

Zj(x) =
∂

∂zj
+ i

n−1∑
t=1

τj,tzt
∂

∂x2n−1

+ cjx2n−1
∂

∂x2n−1
+O(|x|2), j = 1, . . . , n− 1,

φ(x) = βx2n−1 +

n−1∑
j=1

(
αjzj + αjzj

)
+

1

2

n−1∑
l,t=1

µt,lztzl +

n−1∑
l,t=1

(
al,tzlzt + al,tzlzt

)
+

n−1∑
j=1

(
djzjx2n−1 + djzjx2n−1

)
+O(|x2n−1|2) +O(|x|3),

(4.33)

where β ∈ R, τj,t, cj , αj , µj,t, aj,t, dj are complex numbers, µj,t = µt,j , τj,t +
τ t,j = 0, j, t = 1, . . . , n− 1. We define now the phase function

(4.34) ψ(x, y, u) := ϕ(x, y, u, 1).

Note that ϕ(x, y, u, t) is positively homogeneous of degree 1 with respect
to (u, t) but ψ(x, y, u) fails to be positively homogeneous of degree 1 with
respect to u. We work in local coordinates as in (4.33) and for x = (x1, . . . ,
x2n−1) we denote x′ = (x1, . . . , x2n−2), |x′|2 =

∑2n−2
j=1 |xj |

2.
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Theorem 4.10. There exists a neighborhood D0 of p and c > 0 such that
for all (x, y, u) ∈ D0 ×D0 × R we have

Imψ(x, y, u) ≥ c
∣∣x′ − y′∣∣2 ,

Imψ(x, y, u) +

∣∣∣∣∂ψ∂u (x, y, u)

∣∣∣∣ ≥ c(|x2n−1 − y2n−1|+
∣∣x′ − y′∣∣2)

(4.35)

Moreover, there exists a function f ∈ C∞(D0), f(0, 0, u) = 0 for u ∈ R, such
that

ψ(x, y, u)(4.36)

= −i
n−1∑
j=1

αj(zj − wj) + i

n−1∑
j=1

αj(zj − wj) + u(x2n−1 − y2n−1)

− i

2

n−1∑
j,l=1

(al,j + aj,l)(zjzl − wjwl) +
i

2

n−1∑
j,l=1

(al,j + aj,l)(zjzl − wjwl)

+
1

2

n−1∑
j,l=1

iu(τ l,j − τj,l)(zjzl − wjwl)

+

n−1∑
j=1

(−icjβ − ucj − idj)(zjx2n−1 − wjy2n−1)

+

n−1∑
j=1

(icjβ − ucj + idj)(zjx2n−1 − wjy2n−1)

− i

2

n−1∑
j=1

λj(zjwj − zjwj) +
i

2

n−1∑
j=1

λj |zj − wj |2

+ (x2n−1 − y2n−1)f(x, y, u) +O(|(x, y)|3),

where λj = λj(p) > 0, j = 1, . . . , n− 1, are the eigenvalues of RLp with re-
spect to 〈 · | · 〉.

The form of ψ should be compared to the form [29, Theorems 3.2, 3.4] of
the phase function for the Szegő kernel on a non-degenerate CR manifold.

Remark 4.11. The phase function Φ(x̂, ŷ, u, t) has the following proper-
ties: there is a

h(x̂, ŷ, u, t) ∈ C∞(D̂ × D̂ × R× R+,Λ
0,1(T ∗D̂))
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such that

∂sΦ(x̂, ŷ, u, t)− h(x̂, ŷ, u, t)Φ(x̂, ŷ, u, t)(4.37)

vanishes to infinite order at x̂ = ŷ,

Im Φ(x̂, ŷ, u, t) ≈ t |z − w|2 .

The phase function Φ is not unique. Any complex phase function Φ1(x̂, ŷ, u, t)
satisfying (4.37) (4.32) and (4.36), is equivalent to Φ in the sense of Melin-
Sjöstrand [39]. From this observation, given p ∈ D, if we take local coordi-
nates x and local holomorphic trivializing section s, |s|2hL = e−2φ such that
(4.33) holds, then near p, we can take Φ(x̂, ŷ, u, t) so that for every N ∈ N,

Φ(x̂, ŷ, u, t) = t(x2n − y2n) + u(x2n−1 − y2n−1) + it(φ(x) + φ(y))(4.38)

− it

( ∑
|α|+|β|≤N

∂|α|+|β|φ

∂zα∂zβ
(0, x2n−1)

zα

α!

wβ

β!

+
∑

|α|+|β|≤N

∂|α|+|β|φ

∂zα∂zβ
(0, y2n−1)

zα

α!

wβ

β!

)
+O(|z − w|N+1).

From (4.38), we have for every N ∈ N,

ψ(x, y, u) = u(x2n−1 − y2n−1) + i(φ(x) + φ(y))(4.39)

− i

( ∑
|α|+|β|≤N

∂|α|+|β|φ

∂zα∂zβ
(0, x2n−1)

zα

α!

wβ

β!

+
∑

|α|+|β|≤N

∂|α|+|β|φ

∂zα∂zβ
(0, y2n−1)

zα

α!

wβ

β!

)
+O(|z − w|N+1).

4.2. Semi-classical Hodge decomposition for �(0)
s,k

In this section we apply Theorem 4.8 and Theorem 4.9 to describe the semi-

classical Hodge theory for �(0)
s,k. In particular we define the approximate

Szegő projector Sk which appears in Theorem 1.2 and study its kernel.
Let s be a local trivializing section of L on an open subset D ⊂ X and

|s|2h = e−2φ. Let χ(x2n), χ1(x2n) ∈ C∞0 (R), χ, χ1 ≥ 0. We assume that χ1 =
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1 on suppχ. We take χ so that
∫
χ(x2n)dx2n = 1. Put

(4.40) χk(x2n) = eikx2nχ(x2n).

We say that a sequence (gk) in C is rapidly decreasing and write gk =
O(k−∞) if for every N > 0, there exists CN > 0 independent of k such that
for all k we have |gk| ≤ CNk−N .

Proposition 4.12. Let Ĩ=(2π)−2n
∫
ei〈x̂−ŷ,η̂〉(1−α(η2n))dη̂ be as in (4.28).

Let Ĩk be the continuous operator C∞0 (D)→ C∞(D) given by

Ĩk : C∞0 (D)→ C∞(D), f 7−→
∫
e−ikx2nχ1(x2n)Ĩ(χkf)(x̂)dx2n.

Then, Ĩk = (1 + gk)I on C∞0 (D), where I is the identity map on C∞0 (D)
and (gk) is a rapidly decreasing sequence.

Proof. It is easy to see that

I = (2π)−2n

∫
ei〈x̂−ŷ,η̂〉−ik(x2n−y2n)χ1(x2n)χ(y2n) dη̂ dy2n dx2n on C∞0 (D).

From this observation, we can check that Ĩk = (1 + gk)I where

(4.41) gk = −(2π)−2n

∫
ei〈x2n−y2n,η2n−k〉α(η2n)χ1(x2n)χ(y2n)dη2n dy2n dx2n.

Since α(η2n) = 0 if η ≥ 1, we can integrate by parts in (4.41) with respect
to y2n several times and conclude that gk = O(k−∞). �

Let S ∈ L0
1

2
, 1
2

(D̂) and G ∈ L−1
1

2
, 1
2

(D̂) be as in Theorem 4.8. For s ∈ N0 define

Sk : Hs
comp (D)→ Hs

loc (D), f 7−→ 1

1 + gk

∫
e−ikx2nχ1(x2n)S(χkf)(x̂)dx2n,

(4.42)

Gk : Hs
loc (D)→ Hs+1

loc (D), f 7−→ 1

1 + gk

∫
e−ikx2nχ1(x2n)G(χkf)(x̂)dx2n.

(4.43)

The operator Sk is the approximate Szegő projector and Gk is the corre-
sponding Green operator. From (4.42), (4.43) and the fact that S : Hs

comp (D̂)
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→ Hs
loc (D̂) is continuous for every s ∈ R, G : Hs

comp (D̂)→ Hs+1
loc (D̂) is con-

tinuous for every s ∈ R, it is straightforward to check that

Sk = O(ks) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ N0,

Gk = O(ks) : Hs
comp (D)→ Hs+1

loc (D), ∀s ∈ N0.
(4.44)

Repeating the proof of [24, Theorem 5.4] by making use of Proposition 4.12

we get the semiclassical Hodge theory for the localized Kohn laplacian �(0)
s,k:

Theorem 4.13. Let s be a local trivializing section of L on an open subset
D ⊂ X and |s|2h = e−2φ. Let Sk and Gk be as in (4.42), (4.43) respectively.
Then,

S∗k ,Sk = O(ks) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,
G∗k ,Gk = O(ks) : Hs

comp (D)→ Hs+1
loc (D), ∀s ∈ Z,

(4.45)

and we have on D,

∂s,kSk ≡ 0 mod O(k−∞) ,(4.46)

�(0)
s,kSk ≡ 0, S∗k�

(0)
s,k ≡ 0 mod O(k−∞) ,(4.47)

Sk +�(0)
s,kGk = I ,(4.48)

G∗k�
(0)
s,k + S∗k = I ,(4.49)

where S∗k , G∗k are the formal adjoints of Sk, Gk with respect to ( · | · ) respec-

tively and �(0)
s,k is given by (3.2).

We study further the kernel of the approximate Szegő projector.

Theorem 4.14. Let ψ be the phase function (4.34). There exists a symbol

s(x, y, u, k) ∈ Snloc ,cl (1;D ×D × R),

s(x, y, u, k) ∼
∞∑
j=0

sj(x, y, u)kn−j in Snloc (1;D ×D × R),
(4.50)

such that the operator Sk with kernel

Sk(x, y) =

∫
R
eikψ(x,y,u)s(x, y, u, k)du,

satisfies

(4.51) Sk(x, y)− Sk(x, y) = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z.
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Proof. From the definition (4.42) of Sk and Theorem 4.9, we see that the
distribution kernel of Sk is given by

Sk(x, y) ≡
∫

t∈R+

eiΦ(x̂,ŷ,u,t)−ikx2n+iky2n(4.52)

× b(x̂, ŷ, u, t)χ1(x2n)χ(y2n)(1− α(t))dx2ndtdy2ndu

≡
∫
u∈R
σ∈R+

eik%(x,y,u,σ)k2σb(x̂, ŷ, kσu, kσ)

× χ1(x2n)χ(y2n)(1− α(kσ))dx2ndσdy2ndu,

modO(k−∞), where

%(x, y, u, σ) = σψ(x, y, u) + (x2n − y2n)(σ − 1),

and the integrals above are defined as oscillatory integrals. Let γ(σ) ∈
C∞0 (R+) with γ(σ) = 1 in some small neighbourhood of 1. Denote by I0(x, y)
the integral ∫

σ≥0

eik%(x,y,u,σ)γ(σ)k2σb(x̂, ŷ, kσu, kσ)(4.53)

× (1− α(kσ))χ1(x2n)χ(y2n)dx2ndσdy2ndu,

and by I1(x, y) the integral∫
σ≥0

eik%(x,y,u,σ)(1− γ(σ))k2σb(x̂, ŷ, kσu, kσ)(4.54)

× (1− α(kσ))χ1(x2n)χ(y2n)dx2ndσdy2ndu.

Then,

(4.55) Sk(x, y) ≡ I0(x, y) + I1(x, y) mod O(k−∞).

First, we study I1(x, y). Note that when σ 6= 1, dy2n
(
σψ(x, y, u) + (x2n −

y2n)(σ − 1)
)

= 1− σ 6= 0. Thus, we can integrate by parts in y2n several
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times and get that

(4.56) I1 = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z.

Next, we study the kernel I0(x, y). We may assume that b(x̂, ŷ, kσu, kσ) is
supported in some small neighbourhood of x̂ = ŷ. We want to apply the
stationary phase method of Melin and Sjöstrand [39, p. 148] to carry out the
dx2ndσ integration in (4.53). Put

Θ(x̂, ŷ, σ) := σψ(x, y, u) + (x2n − y2n)(σ − 1).

We first notice that dσΘ(x̂, ŷ, σ)|x̂=ŷ = 0 and dx2n
Θ(x̂, ŷ, σ)|σ=1 = 0. Thus,

x = y and σ = 1 are real critical points. Furthermore, we have

Θ′′σσ(x̂, x̂, 1) = 0, Θ′′x2nσ(x̂, x̂, 1) = 1,

Θ′′σx2n
(x̂, x̂, 1) = 1, Θ′′x2nx2n

(x̂, x̂, 1) = 0.

Thus, the Hessian of Θ(x̂, ŷ, σ) with respect to (σ, x2n) at x̂ = ŷ, σ = 1, is
given by (

Θ′′σσ(x̂, x̂, 1) Θ′′x2nσ(x̂, x̂, 1)
Θ′′σx2n

(x̂, x̂, 1) Θ′′x2nx2n
(x̂, x̂, 1)

)
=

(
0 1
1 0

)
.

Thus, Θ(x̂, ŷ, σ) is a non-degenerate complex valued phase function in the

sense of Melin-Sjöstrand [39]. Let Θ̃(˜̂x, ˜̂y, σ̃) := ψ̃(x̃, ỹ, u)σ̃ + (x̃2n − ỹ2n)(σ̃ −
1) be an almost analytic extension of Θ(x̂, ŷ, σ̂), where ψ̃(x̃, ỹ, u) is an almost
analytic extension of ψ(x, y, u). Here we fix u. We can check that given y2n

and (x, y), x̃2n = y2n − ψ(x, y, u), σ̃ = 1 are the solutions of ∂Θ̃
∂σ̃ = 0, ∂Θ̃

∂x̃2n
=

0. From this and by the stationary phase formula of Melin-Sjöstrand [39],
we get

I0(x, y)−
∫
eikψ(x,y,u)s(x, y, u, k)du(4.57)

= O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,

where s(x, y, u, k) ∈ Snloc ,cl (1, D ×D × R),

s(x, y, u, k) ∼
∞∑
j=0

sj(x, y, u)kn−j in Snloc (1, D ×D × R),

with sj(x, y, u) ∈ C∞(D ×D × R), j = 0, 1, 2, . . . . From (4.56), (4.57) and
(4.55), the theorem follows. �
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We show now that the composition of Sk with a classical semi-classical
pseudodifferential has an asymptotic expansion and calculate the leading
term. From Theorem 4.14 and the stationary phase method of Melin and
Sjöstrand, we deduce:

Theorem 4.15. Let Ak be a properly supported classical semi-classical
pseudodifferential operator on D of order 0 as in (2.6) and (2.5) with sym-
bol β ∈ S0

loc ,cl (1;T ∗D) such that β(x, η, k) = 0 if |η| ≥ 1
2M , for some large

M > 0. We have

(4.58) (Sk ◦ Ak)(x, y) ≡
∫
eikψ(x,y,u)a(x, y, u, k)du mod O(k−∞),

where

a(x, y, u, k) ∈ C∞0 (D ×D × (−M,M)) ∩ Snloc ,cl (1;D ×D × (−M,M)),

a(x, y, u, k) ∼
∞∑
j=0

aj(x, y, u)kn−j in Snloc (1;D ×D ×−(M,M)),

aj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

(4.59)

and ψ(x, y, u) = ϕ(x, y, u, 1), ϕ(x, y, u, t) is as in Theorem 4.9.

Recall that Ak is called properly supported if the restrictions of the
projections (x, y) 7→ x and (x, y) 7→ y to suppAk(·, ·) ⊂ X ×X are proper.
Let

Ak ≡
k2n−1

(2π)2n−1

∫
eik〈x−y,η〉β(x, η, k)dη mod O(k−∞)

be as in Theorem 4.15. Put

β(x, η, k) ∼
∞∑
j=0

βj(x, η)k−j , βj(x, η) ∈ C∞(T ∗D), j = 0, 1, 2, . . . .(4.60)

From the last formula of (4.31), it is straightforward to see that

(4.61) a0(x, x, u) 6= 0 if β0(x, uω0(x)− 2Im ∂bφ(x)) 6= 0,

where a0(x, y, u) is as in (4.59). In the rest of this section, we will calculate
a0(x, x, u).

Fix D0 b D and let χ, χ̂ ∈ C∞0 (D, [0, 1]), χ = χ̂ = 1 on D0 and χ = 1 on
some neighbourhood of supp χ̂.



i
i

“5-Marinescu” — 2017/12/27 — 1:07 — page 1429 — #45 i
i

i
i

i
i
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Lemma 4.16. With the notations above, we have

(4.62) (χ̂A∗kS∗kχ)(χSkAkχ̂) ≡ χ̂A∗kSkAkχ̂ mod O(k−∞),

where A∗k is the formal adjoint of Ak.

Proof. From (4.49), we have

(4.63) χ̂A∗kG∗k�
(0)
s,kχ+ χ̂A∗kS∗kχ = χ̂A∗kχ.

From (4.63), we have

(4.64) χ̂A∗kG∗k�
(0)
s,kχ

2SkAkχ̂+ χ̂A∗kS∗kχ2SkAkχ̂ = χ̂A∗kχ2SkAkχ̂.

From (4.58), it is not difficult to check that SkAk is k-negligible away the
diagonal. From this observation, (4.45) and (4.47), we conclude that

(4.65) χ̂A∗kG∗k�
(0)
s,kχ

2SkAkχ̂ ≡ 0 mod O(k−∞).

From (4.65) and (4.64), we get

(4.66) χ̂A∗kS∗kχ2SkAkχ̂ ≡ χ̂A∗kχ2SkAkχ̂ mod O(k−∞).

Again, since SkAk is k-negligible away the diagonal, we deduce that

(4.67) χ̂A∗kχ2SkAkχ̂ ≡ χ̂A∗kSkAkχ̂ mod O(k−∞).

From (4.66) and (4.67), we get (4.62). �

From (4.62), (4.58) and the complex stationary phase formula of Melin-
Sjöstrand [39], we have modO(k−∞),(

(χ̂A∗kS∗kχ)(χSkAkχ̂)
)
(x, y) ≡ (χ̂A∗kSkAkχ̂)(x, y)(4.68)

≡
∫
eikψ(x,y,u)g(x, y, u, k)du,

where

g(x, y, u, k) ∈ C∞0 (D ×D × (−M,M)) ∩ Snloc ,cl (1;D ×D × (−M,M)),

g(x, y, u, k) ∼
∞∑
j=0

gj(x, y, u)kn−j in Snloc (1;D ×D × R),

gj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

(4.69)
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and

g0(x, x, u) = a0(x, x, u)β0(x, uω0(x)− 2Im ∂bφ(x)),(4.70)

∀(x, x, u) ∈ D0 ×D0 × (−M,M).

On the other hand, we can repeat the procedure of Section 5 in [24] (see the
discussion after Theorem 5.6 in [24]) and deduce that(

(χ̂A∗kS∗kχ)(χSkAkχ̂)
)
(x, y)(4.71)

≡
∫
eikψ1(x,y,u)h(x, y, u, k)du mod O(k−∞)

with

h(x, y, u, k) ∈ Snloc ,cl (1, D ×D × (−M,M)) ∩ C∞0 (D ×D × (−M,M)),

h(x, y, u, k) ∼
∞∑
j=0

hj(x, y, u)kn−j in Snloc (1, D ×D × (−M,M)),

hj(x, y, u) ∈ C∞0 (D ×D × (−M,M)), j = 0, 1, 2, . . . ,

(4.72)

h0(x, x, u)=2πn
∣∣detRLx

∣∣−1 |a0(x, x, u)|2 , ∀(x, x, u) ∈ D0×D0×(−M,M),

g0(x, x, u) = h0(x, x, u), ∀(x, x, u) ∈ D ×D × (−M,M),

(4.73)

and for all (x, x, u) ∈ D ×D × (−M,M), we have

ψ1(x, x, u) = 0, dxψ1(x, x, u) = dxψ(x, x, u), dyψ1(x, x, u) = dyψ(x, x, u),

Imψ1(x, y, u) ≥ 0, ∀(x, y, u) ∈ D ×D × (−M,M).

(4.74)

From (4.73) and (4.70), we get for all (x, x, u) ∈ D0 ×D0 × (−M,M),

(4.75) a0(x, x, u)β0(x, uω0(x)− 2Im ∂bφ(x)) = 2πn
∣∣detRLx

∣∣−1 |a0(x, x, u)|2 .

If the quantity β0(x, uω0(x)− 2Im ∂bφ(x)) = 0, we get a0(x, x, u) = 0. If this
quantity doesn’t vanish, in view of (4.61), we know that a0(x, x, u) 6= 0. From
this observation and (4.75), we obtain:
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Theorem 4.17. For a0(x, y, u) in (4.59),

a0(x, x, u) =
1

2
π−n

∣∣detRLx
∣∣β0

(
x, uω0(x)− 2Im ∂bφ(x)

)
,

(x, x, u) ∈ D ×D × (−M,M),

where β0(x, η) ∈ C∞(T ∗D) is as in (4.60) and detRLx as in (1.2).

Remark 4.18. It should be noticed that by using the complex stationary
phase formula of Melin-Sjöstrand and the method in [23], we can write down
a general recurrsion relation for the symbols aj(x, y, u) and βj(x, η). We only
calculate the leading term a0(x, x, u) in this paper.

5. Regularity of the Szegő projection Πk

In this section, we will prove Theorem 1.1. For this purpose we first establish

the spectral gap for the Kohn Laplacian �(1)
b,k and then Sobolev estimates

for the associated Green operator and finally for Πk.
We start with a local form of the spectral gap estimate for (0, 1)-forms.

Lemma 5.1. Let s be a local trivializing section of L on an open set D ⊂ X.
Then, there is a constant C > 0 independent of k such that∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2k ≥

(
Ck − 1

C

)
‖u‖2k , for all u ∈ Ω0,1

0 (D,Lk).

Proof. Let u ∈ Ω0,1
0 (D,Lk). Put u = skû, û ∈ Ω0,1

0 (D). In view of (3.2), we
have

(5.1) �(1)
b,ku = ekφsk�(1)

s,k(e
−kφû).

Put û =
n−1∑
j=1

ûjej , where e1, . . . , en−1 ∈ Λ0,1(T ∗X) is as in Proposition 3.1.

From (3.5), we have

(�(1)
s,k(e

−kφû) | e−kφû ) =

n−1∑
j=1

∥∥∥(Zj + kZj(φ))(e−kφû)
∥∥∥2

(5.2)

+

n−1∑
j,t=1

( [Zj + kZj(φ),−Zt + kZt(φ)](e−kφût) | e−kφûj )

+ ((ε(Z + kZ(φ)) + ε(Z∗ + kZ(φ)))(e−kφû) | e−kφû)

+ (fe−kφû | e−kφû).
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Here we use the same notations as in Proposition 3.1. Fix j, t = 1, 2, . . . , n−
1. Put

[Zj − Zt] =

n−1∑
s=1

(aj,ts Zs − bj,ts Zs) , aj,ts , b
j,t
s ∈ C∞(D).

Recall than by [27, Lemma 4.1], for any U, V ∈ T 1,0
p X and any U ,V ∈

C∞(D,T 1,0X) that satisfy U(p) = U , V(p) = V , we have

RLp (U, V ) = Mφ
p (U, V )(5.3)

= −
〈[
U ,V

]
(p), ∂bφ(p)− ∂bφ(p)

〉
+
(
UV + VU

)
φ(p).

By using (5.3) we obtain

[Zj + kZj(φ),−Zt + kZt(φ)](5.4)

=

n−1∑
s=1

(aj,ts Zs − bj,ts Zs) + k(ZjZt + ZtZj)(φ)

=

n−1∑
s=1

(aj,ts (Zs + kZs(φ)) + bj,ts (−Zs + kZs(φ)))

− k〈 [Zj − Zt] , ∂bφ− ∂bφ 〉+ k(ZjZt + ZtZj)(φ)

= ε(Z + kZ(φ)) + ε(−Z + kZ(φ)) + kRLx (Zt, Zj).

From (5.4) and (5.2), we get(
�(1)
s,k(e

−kφû) | e−kφû
)

(5.5)

=

n−1∑
j=1

∥∥∥(Zj + kZj(φ))(e−kφû)
∥∥∥2

+ k

n−1∑
j,t=1

(
RLx (Zt, Zj)(e

−kφût) | e−kφûj
)

+ ((ε(Z + kZ(φ)) + ε(Z∗ + kZ(φ)))(e−kφû) | e−kφû)

+ (f̃ e−kφû | e−kφû),

where f̃ is a smooth function independent of k. Since RL > 0, from (5.5), it
is not difficult to see that

(5.6)
(
�(1)
s,k(e

−kφû) | e−kφû
)
≥
(
C̃k − 1

C̃

)∥∥∥e−kφû∥∥∥2
,
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where C̃ > 0 is a constant independent of k and u. From (5.1), we can check
that

(
�(1)
s,k(e

−kφû) | e−kφû
)

=
(
�(1)
b,ku |u

)
k

= ‖∂b,ku‖2k + ‖∂∗b,kû‖2k.

Moreover, it is clearly that ‖u‖k = ‖e−kφû‖. From this observation and (5.6),
the lemma follows. �

Ohsawa and Sibony [47] established analogues of the Nakano and Akizuki
vanishing theorems for Levi flat CR manifolds. The following result can be
seen as an analogue of the spectral gap and Kodaira-Serre vanishing theorem
[36, Theorems 1.5.5-6].

Theorem 5.2. There is a constant C0 > 0 independent of k such that

∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2k ≥

(
C0k −

1

C0

)
‖u‖2k ,

∀u ∈ Dom ∂b,k ∩Dom ∂
∗
b,k ⊂ L2

(0,1)(X,L
k).

Hence, for k large, Ker�(1)
b,k = {0} and �(1)

b,k has L2 closed range.

From Theorem 5.2, we deduce that �(1)
b,k is injective for large k so we can

consider the Green operator N
(1)
k : L2

(0,1)(X,L
k)→ Dom�(1)

b,k , which is the

inverse of �(1)
b,k . We have

�(1)
b,kN

(1)
k = I on L2

(0,1)(X), N
(1)
k �

(1)
b,k = I on Dom�(1)

b,k .(5.7)

Proof. We first claim that there is a constant C0 > 0 independent of k such
that

(5.8)
∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2k ≥

(
C0k −

1

C0

)
‖u‖2k , ∀u ∈ Ω0,1(X,Lk).

Let X =
⋃N
j=1Dj , where Dj ⊂ X is an open set with L|Dj is trivial. Take

χj ∈ C∞0 (Dj , [0, 1]), j = 1, . . . , N , with
N∑
j=1

χj = 1 onX. Let u ∈ Ω0,1(D,Lk).
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From Lemma 5.1, we see that for every j = 1, 2, . . . , N , we can find a con-
stant Cj > 0 independent of k and u such that

(5.9)
∥∥∂b,k(χju)

∥∥2

k
+ ‖∂∗b,k(χju)‖2k ≥

(
Cjk −

1

Cj

)
‖χju‖2k .

It is easy to see that∥∥∂b,k(χju)
∥∥2

k
+ ‖∂∗b,k(χju)‖2k ≤

∥∥χj∂b,ku∥∥2

k
+ ‖χj∂

∗
b,ku‖2k +Mj ‖u‖2k(5.10)

≤
∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2k +Mj ‖u‖2k ,

where Mj > 0 is a constant independent of k and u. From (5.10) and (5.9),
we get

N
(∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2k

)
≥

N∑
j=1

((
Cjk −

1

Cj

)
‖χju‖2k −Mj ‖u‖2k

)
(5.11)

≥
(
ck − 1

c

)
‖u‖2k ,

where c > 0 is a constant independent of k. From (5.11), the claim (5.8)
follows.

Now, let u ∈ Dom ∂b,k ∩Dom ∂
∗
b,k. From Friedrichs’ Lemma (see Ap-

pendix D in [11]), we can find uj ∈ Ω0,1(X,Lk), j = 1, 2, . . ., with uj →
u in L2

(0,1)(X,L
k), ∂b,kuj → ∂b,ku in L2

(0,2)(X,L
k) and ∂

∗
b,kuj → ∂

∗
b,ku in

L2(X,Lk). From (5.8), we have∥∥∂b,ku∥∥2

k
+ ‖∂∗b,ku‖2k = lim

j→∞

(∥∥∂b,kuj∥∥2

k
+ ‖∂∗b,kuj‖2k

)
≥
(
C0k −

1

C0

)
lim
j→∞

‖uj‖2k =

(
C0k −

1

C0

)
‖u‖2k .

The theorem follows. �

We pause and introduce some notations. Let s be a local trivializing
section of L on an open set D ⊂ X, |s|2h = e−2φ. Let u ∈ Ω0,q

0 (D,Lk). On D,

we write u = skũ, ũ ∈ Ω0,q
0 (D). For every m ∈ N0, define

‖u‖2m,k :=
∑

|α|≤m,α∈N2n−1
0

∫ ∣∣∣∂αx (ũe−kφ)
∣∣∣2 dvX .
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By using a partition of unity, we can define ‖u‖2m,k for all u ∈ Ω0,q(X,Lk) in
the standard way. We call ‖·‖m,k the Sobolev norm of order m with respect

to hk. We will need the following.

Proposition 5.3 ([47, Proposition 1]). For every m ∈ N0 there is Nm >
0 such that for every k ≥ Nm,

(5.12) ‖∂∗b,ku‖m,k ≤ kM(m)‖�(1)
b,ku‖m,k, u ∈ Ω0,1(X,Lk),

where M(m) > 0 is a constant independent of k and u.

Theorem 5.4. For every m ∈ N, there exist Nm > 0 and M(m) > 0 such
that for every k ≥ Nm ,

∂
∗
b,kN

(1)
k : Ω0,1(X,Lk)→ Hm(X,Lk),

‖∂∗b,kN
(1)
k u‖m,k ≤ kM(m) ‖u‖m,k , u ∈ Ω0,1(X,Lk).

(5.13)

Proof. The theorem essentially follows from Proposition 5.3 and the ellip-
tic regularization method introduced by Kohn-Nirenberg [11, p. 102], [34,

p. 449]. Namely, for every ε > 0, consider the operator �(1)
ε,k := �(1)

b,k + εT ∗T ,
where T is defined in (2.7) and T ∗ is its formal adjoint with respect to ( · | · )k.
Fix m ∈ N. From Theorem 5.2 and Proposition 5.3, there is a Nm > 0 such
that for every k ≥ Nm,

‖u‖2k ≤ (�(1)
b,ku |u )k, ∀u ∈ Ω0,1(X,Lk),

‖u‖`,k ≤ k
M(m)‖�(1)

b,ku‖`,k, ∀u ∈ Ω0,1(X,Lk), ∀` ∈ N0, ` ≤ m,
(5.14)

where M(m) > 0 is a constant independent of k and u.

Take g ∈ Ω0,1(X,Lk) and putN
(1)
k g = v. We have�(1)

b,kv = g. From (5.14),

it is easy to see that for every k ≥ Nm and every ε > 0, �(1)
ε,k is injective and

has range L2
(0,1)(X,L

k). Now, we assume that k ≥ Nm. For every ε > 0, we

can find vε ∈ Ω0,1(X,Lk) such that �(1)
ε,kvε = g. Moreover, from (5.14) and

the proof of Proposition 5.3 (see also [47, Proposition 1]), it is straightfor-
ward to see that for every ε > 0,

‖vε‖k ≤ ‖g‖k , ‖∂b,kvε‖k ≤ ‖g‖k ,
‖∂∗b,kvε‖`,k ≤ kM(m) ‖g‖`,k , ∀` ∈ N0, ` ≤ m.

(5.15)

From (5.15), we can find εj ↘ 0 such that vεj → ṽ in L2
(0,1)(X,L

k)

as j →∞, ∂b,kvεj → ∂b,kṽ in L2
(0,2)(X,L

k), ∂
∗
b,kvεj → ∂

∗
b,kṽ in H`(X,Lk),
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∀` ∈ N0, ` ≤ m, and �(1)
b,k ṽ = g in the sense of distributions. Since ∂b,kṽ ∈

L2
(0,2)(X,L

k), ∂
∗
b,kṽ ∈ H1(X,Lk), we have ṽ ∈ Dom ∂b,k ∩Dom ∂

∗
b,k, ∂

∗
b,kṽ ∈

Dom ∂b,k. Note that ∂
∗
b,k∂b,kṽ = g − ∂b,k∂

∗
b,kṽ ∈ L2

(0,1)(X,L
k). From this ob-

servation, we can check that ∂b,kṽ ∈ Dom ∂
∗
b,k. Thus, ṽ ∈ Dom�(1)

b,k . Since

�(1)
b,k ṽ = g = �(1)

b,kv and �(1)
b,k is injective, we conclude that v = ṽ. Thus,

∂
∗
b,kN

(1)
k g = ∂

∗
b,kv ∈ Hm(X,Lk) and ‖∂∗b,kN

(1)
k g‖m,k ≤ kM(m) ‖g‖m,k. The

theorem follows. �

Theorem 5.5. With the notations above, for every m ∈ N, m ≥ 2, there is
a Nm > 0 such that for every k ≥ Nm,

Πk = I − ∂∗b,kN
(1)
k ∂b,k on C∞(X,Lk),(5.16)

Πk : C∞(X,Lk)→ Hm(X,Lk)(5.17)

and

(5.18) ‖(I −Πk)u‖m,k ≤ k
M(m)

∥∥∂b,ku∥∥m,k , ∀u ∈ C∞(X,Lk),

where M(m) > 0 is a constant independent of k and u.

Proof. Fix m ∈ N, m ≥ 2 and let Nm > 0 be as in Theorem 5.5. We as-
sume that k ≥ Nm. Let g ∈ C∞(X,Lk). From Theorem 5.4, we know that

∂
∗
b,kN

(1)
k ∂b,kg ∈ Hm(X,Lk). Since m ≥ 2, it is clearly that ∂

∗
b,kN

(1)
k ∂b,kg ∈

Dom�(0)
b,k . Moreover, it is easy to check that

(5.19) ∂
∗
b,kN

(1)
k ∂b,kg ⊥ Ker ∂b,k = Ker�(0)

b,k .

We claim that

(5.20) g − ∂∗b,kN
(1)
k ∂b,kg ∈ Ker�(0)

b,k .

Let f ∈ C∞(X,Lk). We have

(g − ∂∗b,kN
(1)
k ∂b,kg |�

(0)
b,kf)k = (�(0)

b,kg | f)k − (∂
∗
b,kN

(1)
k ∂b,kg |�

(0)
b,kf)k

= (�(0)
b,kg | f)k − (∂b,kg |N

(1)
k �

(1)
b,k∂b,kf)k

= (�(0)
b,kg | f)k − (∂b,kg | ∂b,kf)k = 0.

The claim (5.20) follows. From (5.19) and (5.20), we get (5.16). Theorem 5.4
and (5.16) yield (5.17) and (5.18). �
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From Theorem 5.5 and the Sobolev embedding theorem, we get Theo-
rem 1.1.

6. Asymptotic expansion of the Szegő kernel

In this section, we will prove Theorem 1.2 and Theorem 1.3. Let s be a
local trivializing section of L on an open set D ⊂ X and let Πk,s be the
localized operator of Πk (see (1.6)). Let Sk and Gk be as in Theorem 4.13.
From the constructions of Gk and Sk, it is straightforward to see that we
can find G̃k : Hs

comp (D)→ Hs+1
loc (D), S̃k : Hs

comp (D)→ Hs
loc (D), for every

s ∈ Z, such that G̃k and S̃k are properly supported on D,

S̃k − Sk = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,
G̃k − Gk = O(k−∞) : Hs

comp (D)→ Hs+1
loc (D), ∀s ∈ Z,

(6.1)

and

(6.2) χ̃ S̃k χ = O(k−∞) : Hs
comp (D)→ Hs

loc (D), ∀s ∈ Z,

for every χ̃, χ ∈ C∞0 (D) with supp χ̃ ∩ suppχ = ∅, and

(6.3) �(0)
s,k G̃k + S̃k = I +Rk on D,

where Rk is properly supported on D and

(6.4) Rk = O(k−∞) : Hs
loc (D)→ Hs−1

loc (D), ∀s ∈ Z.

From (6.3), it is easy to see that

(6.5) Πk,s + Πk,sRk = Πk,sS̃k on D.

Theorem 6.1. With the notations above, for every ` ∈ N0, there is a N` >
0 such that for every k ≥ N` , χ̃Πkχ = O(k−∞) : C∞(X,Lk)→ C `(X,Lk),
for every χ ∈ C∞0 (D), χ̃ ∈ C∞(X) with supp χ̃ ∩ suppχ = ∅, and

(6.6) Πk,s − Sk = O(k−∞) : C∞0 (D)→ C `(D).



i
i

“5-Marinescu” — 2017/12/27 — 1:07 — page 1438 — #54 i
i

i
i

i
i

1438 C.-Y. Hsiao and G. Marinescu

Proof. Fix ` ∈ N0. From Theorem 5.5, there exists N` > 0 such that for every
k ≥ N`,

Πk = I − ∂∗b,kN
(1)
k ∂b,k on C∞(X,Lk),

Πk : C∞(X,Lk)→ H`+n(X,Lk),

‖(I −Πk)u‖n+`,k ≤ k
M(`)

∥∥∂b,ku∥∥n+`,k
, ∀u ∈ C∞(X,Lk),

(6.7)

where M(`) > 0 is a constant independent of k and u. Now, we assume
that k ≥ N`. By the Sobolev embedding theorem we have H`+n(X,Lk) ⊂
C `(X,Lk).

Fix N1 > 0 and let u ∈ C∞0 (D). Consider

(6.8) v = Uk,sS̃ku−Πk(Uk,sS̃ku) = (I −Πk)(Uk,sS̃ku).

From (6.5), we have

v = Uk,s(S̃k −Πk,sS̃k)u on D,

v = Uk,s(S̃ku)−Πk(Uk,s(I +Rk)u) on X.
(6.9)

From (6.7) and (6.8), we obtain

(6.10)
∥∥∥(I −Πk)(Uk,sS̃ku)

∥∥∥
n+`,k

≤ kM(`)
∥∥∥∂b,k(Uk,sS̃ku)

∥∥∥
n+`,k

.

Note that ∂s,kS̃k = O(k−∞) : Hs
comp (D)→ Hs−1

loc (D) for all s ∈ Z. From this
observation, (6.10) and the second formula of (6.9) we conclude that

(6.11) Uk,sS̃k −ΠkUk,s −ΠkUk,sRk = O(k−∞) : C∞0 (D)→ C `(X,Lk).

From (6.4) and (6.7), it is easy to see that

(6.12) ΠkUk,sRk = O(k−∞) : C∞0 (D)→ C `(X,Lk).

From (6.11) and (6.12), we conclude that

(6.13) Uk,sS̃k −ΠkUk,s = O(k−∞) : C∞0 (D)→ C `(X,Lk).

From (6.13) and (6.1), (6.6) follows.

Finally, from (6.13), (6.2) and noting that S̃k is properly supported on
D, we deduce that χ̃Πkχ = O(k−∞) : C∞(X,Lk)→ C `(X,Lk), for every
χ ∈ C∞0 (D), χ̃ ∈ C∞(X) with supp χ̃ ∩ suppχ = ∅. �



i
i

“5-Marinescu” — 2017/12/27 — 1:07 — page 1439 — #55 i
i

i
i

i
i
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Proof of Theorem 1.2. This follows immediately from Theorems 4.14 and
6.1. �

Proof of Theorem 1.3. Let Ak be as in Theorem 1.3. It is not difficult to see
that for every s ∈ Z and N ∈ N, there exists n(N, s) > 0 independent of k,
such that

(6.14) Ak = O(kn(N,s)) : Hs
comp (D)→ CN

0 (D).

From (6.14), (6.6) and since Ak : Hs
comp (D)→ C∞0 (D) for every s ∈ Z, we

conclude that

(6.15) Πk,sAk ≡ SkAk mod O(k−∞).

From (6.15) and Theorem 4.15, Theorem 1.3 follows. �

7. Kodaira Embedding theorem for Levi-flat CR manifolds

In this section, we will prove Theorem 1.4. Let s be a local trivializing
section of L on an open set D ⊂ X. Fix p ∈ D and let x = (x1, . . . , x2n−1),
zj = x2j−1 + ix2j , j = 1, . . . , n− 1, be local coordinates of X defined in some
small neighbourhood of p such that (4.33) hold. We may assume that the
local coordinates x defined on D. We write x′ = (x1, . . . , x2n−2). Let M > 1
be a large constant so that

(7.1)
∣∣−2Im ∂bφ(x) + uω0(x)

∣∣2 ≤ M2

8
, ∀x ∈ D, |u| ≤ 1.

Consider

τ ∈ C∞0 (R, [0, 1]), τ = 1 on
[

1
4 ,

1
2

]
, supp τ ⊂ [0, 1],

χ ∈ C∞0 (R, [0, 1]), χ = 1 on
[
− 1

2 ,
1
2

]
, suppχ ⊂ [−1, 1], χ(t) = χ(−t), t ∈ R.

Fix 0 < δ < 1. Put

(7.2) αδ(x, η, k) := τ

(
〈 η |ω0(x) 〉

δ

)
χ
(4 |η|2

M2

)
∈ S0

cl (1, T
∗D)

and let Ak,δ be a properly supported classical semi-classical pseudodifferen-
tial operator on D with

Ak,δ(x, y) ≡ k2n−1

(2π)2n−1

∫
eik〈x−y,η〉αδ(x, η, k)dη mod O(k−∞).
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Fix ` ∈ N, ` ≥ 2. In view of Theorem 1.3, we see that there is a N` > 0 such
that for every k ≥ N`, Πk,sAk,δ(x, y) ∈ C `(D ×D) and

(Πk,sAk,δ)(x, y) ≡
∫
eikψ(x,y,u)aδ(x, y, u, k)du(7.3)

mod O(k−∞) in C `(D ×D),

where

aδ(x, y, u, k) ∈ C∞0 (D ×D × (−M,M)) ∩ Snloc ,cl (1;D ×D × (−M,M)),

aδ(x, y, u, k) ∼
∞∑
j=0

aj,δ(x, y, u)kn−j in Snloc (1;D ×D × (−M,M)).

(7.4)

From (1.14), (7.1) and (7.3), we get

(7.5) a0,δ(x, x, u) =
1

2
π−n

∣∣detRLx
∣∣ τ(u

δ

)
, ∀(x, x, u) ∈ D ×D × (−M,M).

From now on, we assume that k ≥ N`.
We will use the following rescaling of the coordinates:

F ∗k : Rn−1 → Rn−1, F ∗k y :=

(
y1√
k
,
y2√
k
, . . . ,

y2n−2√
k
,
y2n−1

k

)
.

We introduce the shorthand notations

χ(y) := χ(y1) · · ·χ(y2n−2)χ(y2n−1),

χ(k, y) := χ(
√
ky1) · · ·χ(

√
ky2n−2)χ(ky2n−1).

hence χ(y) = χ(k, F ∗k y).
For j = 1, . . . , n− 1, let λj = λj(p) are the eigenvalues of RLp with re-

spect to 〈 · | · 〉 and let αj ∈ C be as in (4.33). Set

R(w) =

n−1∑
l=1

(αlwl − αlwl) + iuy2n−1 +
1

2

n−1∑
j=1

λj |wj |2

where wj = y2j−1 + iy2j . Let

(7.6) uk,δ,p := ΠkUk,sAk,δ
(
ekR(w)χ(k, y)

)
,
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so uk,δ,p is a global C ` CR section. We write uk,δ,p = Uk,sũk,δ,p on D, with
ũk,δ,p ∈ C`(D). Then, |uk,δ,p(x)|hk = |ũk,δ,p(x)|, x ∈ D. Put

ψ0(x, y, u) := ψ(x, y, u)− i
n−1∑
j=1

(αjwj − αjwj) + uy2n−1 −
i

2

n−1∑
j=1

λj |wj |2

= ψ(x, y, u)− iR(w).

From (7.3), we can check that we have modO(k−∞) in C `(D),

ũk,δ,p(x) ≡
∫
eikψ0(x,y,u)aδ(x, y, u, k)χ(k, y)(7.7)

≡
∫
eikψ0(x,F ∗k y,u)k−naδ(x, F

∗
k y, u, k)χ(y)dudy.

Put

(7.8) ûk,δ,p := exp

−k n−1∑
j=1

(αjzj − αjzj)

 ũk,δ,p ∈ C `(D).

Lemma 7.1. With the notations above, there is a k0 > 0 such for all k ≥ k0

and p ∈ X,

1

8
δcp ≤ |ûk,δ,p(p)| ≤ 2δcp,

1

32
δ2cp ≤

∣∣∣∣1k ∂ûk,δ,p∂x2n−1
(p)

∣∣∣∣ ≤ 2δ2cp,∣∣∣∣1k ∂ûk,δ,p∂xj
(p)

∣∣∣∣ ≤ δ4,

(7.9)

where j = 1, 2, . . . , 2n− 2, and cp = 1
2π
−n ∣∣detRLp

∣∣ ∫ χ(y)dy.

Proof. From (7.7), (7.5), (4.36) and note that ψ0(0, 0, u) = 0, ∀u ∈ R, we
can check that

lim
k→∞

|ûk,δ,p(p)| =
1

2
π−n

∣∣detRLp
∣∣ ∫ τ

(u
δ

)
χ(y)dydu,

lim
k→∞

∣∣∣∣1k ∂ûk,δ,p∂x2n−1
(p)

∣∣∣∣ =
1

2
π−n

∣∣detRLp
∣∣ ∫ uτ

(u
δ

)
χ(y)dydu,

lim
k→∞

∣∣∣∣1k ∂ûk,δ,p∂xj
(p)

∣∣∣∣ = 0, j = 1, 2, . . . , 2n− 2.

Since δ
4 ≤

∫
τ
(
u
δ

)
du ≤ δ and δ2

16 ≤
∫
uτ
(
u
δ

)
du ≤ δ2, there is k0 > 0 such that

for every k ≥ k0, (7.9) hold. Since X is compact, k0 can be taken to be
independent of the point p. �
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For every j = 1, 2, . . . , n− 1, let

ujk,δ,p := ΠkUk,sAk,δ
(
ekR(w)

√
k(y2j−1 + iy2j)χ(k, y)

)
.(7.10)

Then, ujk,δ,p is a global C ` CR section. On D, we write ujk,δ,p = Uk,sũ
j
k,δ,p,

with ũjk,δ,p ∈ C `(D). From (7.3), we can check that

ũjk,δ,p(x) ≡
∫
eikψ0(x,F ∗k y,u)k−naδ(x, F

∗
k y, u, k)(y2j−1 + iy2j)χ(y)dudy,(7.11)

modO(k−∞) in C `(D). Put

ûjk,δ,p := exp

(
−k

n−1∑
l=1

(αlzl − αlzl)

)
ũjk,δ,p ∈ C `(D),(7.12)

j = 1, 2, . . . , n− 1.

Lemma 7.2. With the notations above, there exists k0 > 0 such that for
all p ∈ X and k ≥ k0 ,

∣∣∣ûjk,δ,p(p)∣∣∣ ≤ δ4,

∣∣∣∣∣1k ∂û
j
k,δ,p

∂x2n−1
(p)

∣∣∣∣∣ ≤ δ4,∣∣∣∣∣1k ∂û
j
k,δ,p

∂zj
(p)

∣∣∣∣∣ ≥ 1

8
δλjdp, j = 1, 2, . . . , n− 1,∣∣∣∣∣1k ∂û

j
k,δ,p

∂zs
(p)

∣∣∣∣∣ ≤ δ4, j, s = 1, 2, . . . , n− 1,∣∣∣∣∣1k ∂û
j
k,δ,p

∂zs
(p)

∣∣∣∣∣ ≤ δ4, j, s = 1, 2, . . . , n− 1, j 6= s,

(7.13)

where {λj}n−1
j=1 are the eigenvalues of RLp with respect to 〈 · | · 〉 and

dp =
1

2πn
∣∣detRLp

∣∣ ∫ |y1 + iy2|2 χ(y)dy.

Proof. From (7.11), (7.5), (4.36) and observing that ψ0(0, 0, u) = 0 for all
u ∈ R, it is straightforward to check that for every j, s, t = 1, . . . , n− 1,
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s 6= j,

lim
k→∞

∣∣∣∣∣1k ∂û
j
k,δ,p

∂zj
(p)

∣∣∣∣∣ =
λj

2πn
∣∣detRLp

∣∣ ∫ τ
(u
δ

)
|y2j−1 + iy2j |2 χ(y)dydu,

lim
k→∞

∣∣∣ûjk,δ,p(p)∣∣∣ = lim
k→∞

∣∣∣∣∣1k ∂ûjk,δ
∂x2n−1

(p)

∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣1k ∂û
j
k,δ,p

∂zs
(p)

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣1k ∂û
j
k,δ

∂zt
(p)

∣∣∣∣∣ = 0.

Since δ
4 ≤

∫
τ
(
u
δ

)
du ≤ δ, there is a constant k0 > 0 such that (7.13) holds

for every k ≥ k0. Since X is compact, k0 can be taken to be independent of
the point p. The lemma follows. �

Consider the C ` map

(7.14) Φk,δ,p : D → Cn, x 7−→

(
ũk,δ,p
ũk,δ2,p

(x),
ũ1
k,δ,p

ũk,δ2,p
(x), . . . ,

ũn−1
k,δ,p

ũk,δ2,p
(x)

)
.

The following Lemma is a consequence of (7.13) and (7.9) together with
a straightforward computation and therefore we omit the details.

Lemma 7.3. With the notations above, there are k0 > 0 and 0 < δ0 < 1
such that for all k ≥ k0, 0 < δ ≤ δ0 and p ∈ X, the differential of Φk,δ,p is
injective at p .

Let dist(·, ·) denote the Riemannian distance on X and for x ∈ X and
r > 0, put B(x, r) := {y ∈ X; dist(x, y) < r}. From now on, we fix k > k0

and 0 < δ < δ0, where k0 > 0 and 0 < δ0 < 1 are as in Lemma 7.3. Since X
is compact there exists rk > 0 such that for every x0 ∈ X, ũk,δ2,x0

(x) 6= 0
for every x ∈ B(x0, 2rk) and the maps Φk,δ,x0

and dΦk,δ,x0
are injective on

B(x0, 2rk). We can find x1, x2, . . . , xdk ∈ X such that

(7.15) X = B(x1, rk) ∪B(x2, rk) ∪ · · · ∪B(xdk , rk).

For every j = 1, 2, . . . , dk, let uk,δ2,xj , uk,δ,xj , u
1
k,δ,xj

, . . . , un−1
k,δ,xj

∈ C `(X,Lk)

be as in (7.6) and (7.10). Consider the map Φk,δ : X → CP(n+1)dk−1,

Φk,δ =
[
uk,δ2,x1

, uk,δ,x1
, u1

k,δ,x1
, . . . , un−1

k,δ,x1
,(7.16)

. . . , uk,δ2,xdk , uk,δ,xdk , u
1
k,δ,xdk

, . . . , un−1
k,δ,xdk

]
.
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Let q ∈ X. Then, q ∈ B(xj , rk) for some j = 1, 2, . . . , dk. From the discussion
before (7.15), we see that uk,δ2,xj (q) 6= 0. Thus, Φk,δ is well-defined as a C `

map.

Theorem 7.4. With the notations above, the differential of Φk,δ is injec-
tive at every x ∈ X and for every x0, y0 ∈ X with dist(x0, y0) ≤ rk

2 , we have
Φk,δ(x0) 6= Φk,δ(y0).

Proof. Let q ∈ X. Assume that q ∈ B(x1, rk). Then, uk,δ2,x1
(q) 6= 0. On

B(x1, rk), consider the map Ψ : B(x1, rk)→ C(n+1)dk−1,

Ψ =

(
uk,δ,x1

uk,δ2,x1

,
u1
k,δ,x1

uk,δ2,x1

, . . . ,
un−1
k,δ,x1

uk,δ2,x1

, . . . ,(7.17)

uk,δ2,xdk
uk,δ2,x1

,
uk,δ,xdk
uk,δ2,x1

,
u1
k,δ,xdk

uk,δ2,x1

, . . . ,
un−1
k,δ,xdk

uk,δ2,x1

)
.

From the discussion before (7.15), we see that dΦk,δ,x1
is injective on

B(x1, 2rk). Thus, dΨ is injective at q and hence dΦk,δ is injective at q.
Let x0, y0∈X with dist(x0, y0)≤ rk

2 . We may assume that x0∈B(x1, rk).
Thus, x0, y0 ∈ B(x1, 2rk). From the discussion before (7.15), we see that
Φk,δ,x1

is injective on B(x1, 2rk). Hence,

(7.18) Φk,δ,x1
(x0) 6= Φk,δ,x1

(y0).

By the definition (7.14) of Φk,δ,x1
, relation (7.18) implies that Φk,δ(x0) 6=

Φk,δ(y0). The lemma follows. �

Let s be a local trivializing section of L on an open set D ⊂ X. As before,
we fix p ∈ D and let x = (x1, . . . , x2n−1), zj = x2j−1 + ix2j , j = 1, . . . , n− 1,
be local coordinates of X defined in some small neighbourhood of p such
that (4.33) hold. We may assume that the local coordinates x defined on D.
Take m > N` be a large constant and let um,δ,p be as in (7.6). On D, we
write um,δ,p = Uk,sũm,δ,p, ũm,δ,p ∈ C `(D). Put

Dp,m :=

{
x = (x1, . . . , x2n−1); |x| < 1

m logm

}
.

We need the following.
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Lemma 7.5. With the notations above, there exists m0 > 0 such that

rkm
1/3
0 > 4 and for all m ≥ m0 and p ∈ X,

(7.19) inf
{
|um,δ,p(x)|hm ; x ∈ Dp,m

}
≥ 1

8
δcp,

where cp = 1
2π
−n ∣∣detRLp

∣∣ ∫ χ(y)dy, and for every q ∈ X with dist(q, x) ≥
rk
4 , for all x ∈ Dp,m, we have

(7.20) |um,δ,p(q)|hm ≤
1

2
inf
{
|um,δ,p(x)|hm ; x ∈ Dp,m

}
,

where rk > 0 is as in Theorem 7.4.

Proof. Let m > N` be large enough so that

(7.21) rkm
1/3 > 4.

As in (7.7), we have modO(m−∞) in C `(D)

ũm,δ,p(x) ≡
∫
eimψ0(x,F ∗my,u)m−naδ(x, F

∗
my, u,m)χ(y)dudy.(7.22)

From (7.22), we can repeat the proof of the first formula of (7.9) with mi-
nor changes and get (7.19). We only need to prove (7.20). Let q ∈ X with
dist(q, x) ≥ rk

4 , for all x ∈ Dp,m. If q /∈ D, from (i) in Theorem 1.2, we can
check that |um,δ,p(q)|hm = O(m−∞).

We may thus assume that q ∈ D. For simplicity, we may suppose that
dist(x1, x2) = |x1 − x2| onD. We write q = (q1, . . . , q2n−1). Since dist(q, x) ≥
rk
4 , for all x ∈ Dp,m, from (7.21), we have |q| ≥ 1

4m1/3 for m large. Thus, |q′| ≥
1

8m1/3 logm or |q2n−1| ≥ 1
8m1/3 , where q′ = (q1, . . . , q2n−2). If |q′| ≥ 1

8m1/3 logm ,

by using the fact that m Imψ0(q, F ∗my, u) ≥ cm1/3 1
(logm)2 , ∀y ∈ suppχ(y),

where c > 0 is a constant independent of m, we conclude that

(7.23) |ũm,δ,p(q)| = O(m−∞) , if
∣∣q′∣∣ ≥ 1

8m1/3 logm
·

If |q2n−1| ≥ 1
8m1/3 and |q′| < 1

8m1/3 logm , from (4.36), we can integrate by parts
with respect to u several times and conclude that
(7.24)

|ũm,δ,p(q)| = O(m−∞) , if |q2n−1| ≥
1

8m1/3 logm
and

∣∣q′∣∣ < 1

8m1/3 logm
·

From (7.23) and (7.24), (7.20) follows. �
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Now, we fix m ≥ N` +m0, where m0 is as Lemma 7.5. From Lemma 7.5,
we see that we can find x1 ∈ X,x2 ∈ X, . . . , xdm ∈ X such that X =⋃dm
j=1 Uxj ,m, where for each j, Uxj ,m is an open neighbourhood of xj with

sup{dist(q1, q2); q1, q2 ∈ Uxj ,m} < rk
4 , and for each j, we can find a C ` global

CR section um,δ,xj such that

(7.25) inf
{∣∣um,δ,xj (x)

∣∣
hm

; x ∈ Uxj ,m
}
> 0,

and for every q ∈ X with dist(q, x) ≥ rk
4 , for all x ∈ Uxj ,m, we have

(7.26)
∣∣um,δ,xj (q)∣∣hm ≤ 1

2
inf
{∣∣um,δ,xj (x)

∣∣
hm

; x ∈ Uxj ,m
}
,

where rk > 0 is as in Theorem 7.4. Consider the map:

Ψm,δ : X → CPdm−1, x 7−→ [um,δ,x1
, um,δ,x2

, . . . , um,δ,xdm ](x).(7.27)

Let q ∈ X. Then, q ∈ Uxj ,m for some j = 1, 2, . . . , dm. In view of (7.25), we
see that um,δ,xj (q) 6= 0. Thus, Ψm,δ is well-defined as a smooth map.

Theorem 7.6. The map (Φk,δ,Ψm,δ) : X → CP(n+1)dk−1 × CPdm−1 is a C `

CR embedding, where Φk,δ is given by (7.16)

Proof. In view of Theorem 7.4, we only need to show that (Φk,δ,Ψm,δ) is
injective. Let q1, q2 ∈ X, q1 6= q2. Assume first that dist(q1, q2) ≤ rk

4 . From
Theorem 7.4, we know that Φk,δ(q1) 6= Φk,δ(q2) and hence (Φk,δ(q1),Ψm,δ(q1))
6= (Φk,δ(q2),Ψm,δ(q2)). We assume that dist(q1, q2) > rk

4 . From (7.26), it is
straightforward to check that Ψm,δ(q1) 6= Ψm,δ(q2) and thus

(Φk,δ(q1),Ψm,δ(q1)) 6= (Φk,δ(q2),Ψm,δ(q2)).

The theorem follows. �

Note that Φk,δ are defined by collecting many local embedding CR maps
and it is difficult to show that Φk,δ is injective on X.

Proof of Theorem 1.4. With the notations above, consider the Segre map

Υ : CP(n+1)dk−1 × CPdm−1 → CP(n+1)dkdm−1,

([z1, . . . , z(n+1)dk ], [w1, . . . , wdm ])

→ [z1w1, z1w2, . . . , z1wdm , z2w1, . . . , z(n+1)dkwdm ],

(7.28)
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which is a holomorphic embedding. By Theorem 7.6, we deduce that

Υ ◦ (Φk,δ,Ψm,δ) : X → CP(n+1)dkdm−1,

is a C ` CR embedding. We have proved that for every M ≥ k +N` +m0,
we can find CR sections s0, s1, . . . , sdM ∈ C `(X,LM ), such that the map
x ∈ X → [s0(x), s1(x), . . . , sdM (x)] ∈ CPdM is an embedding. Theorem 1.4
follows. �
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