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1308 N. Guay and Y. Yang

1. Introduction

Deformed double current algebras were introduced by the first named author
in [9–11]. They are deformations of the enveloping algebra of the universal
central extension of the double current algebra g⊗C C[u, v] where g is a
finite dimensional, simple, complex Lie algebra. The deformed double cur-
rent algebra D(g) is the quantum algebra analog of the rational Cherednik
algebra introduced in [4], at least for two reasons: when g = sln, there is
a Schur-Weyl type duality between the rational Cherednik algebra of type
A and D(sln) ([9], Theorem 8.4 and [10], Theorem 13.1); moreover, D(g)
can be obtained by degenerating twice the quantum toroidal algebra of g
[10, 11], in a way similar to how rational Cherednik algebras can be viewed
as two-steps degenerations of elliptic Cherednik algebras (i.e. double affine
Hecke algebras).

The first presentation of D(g) (which is similar to the Kac-Moody pre-
sentation of an affine Lie algebra) is obtained from the defining relations
of the affine Yangian Y (ĝ) via a certain degeneration: see [10], Theorem
12.1 and [11], Theorem 5.5. A second presentation of D(sln), for n ≥ 4, is
given in [10] and is useful to establish the Schur-Weyl functor with rational
Cherednik algebras; it involves two subalgebras which are enveloping alge-
bras of current algebras in one variable and which play a symmetric role.
In this paper, we extend this second presentation to the deformed double
current algebra D(g) for an arbitrary simple Lie algebra g of rank ≥ 3: see
Definition 2.2 and Theorem 2.1. (Deformed double current algebras for sl2
and sl3 were not defined in [10] due to some complications when the rank
of g is small: we will propose a reasonable definition in [13]. We also do not
know what is the correct definition in types B2 and G2.)

The presentation of D(g) in terms of two current subalgebras came up
naturally in the joint work of the second named author with Valerio Toledano
Laredo (see [20, 21]). In [1], Calaque-Enriquez-Etingof constructed the uni-
versal Knizhnik-Zamolodchikov-Bernard (KZB) connection, which is a flat
connection on the configuration space of n points on an elliptic curve. Their
work, which is for type An, was generalized by V. Toledano Laredo and the
second named author in [20] to any finite root system Φ. The universal KZB
connection ∇KZB obtained in [20] is a flat connection on the regular locus
of the elliptic configuration space associated to Φ with values in a holonomy
algebra. Two concrete incarnations of the KZB connection were obtained
in [20, 21] by mapping the holonomy algebra to a rational Cherednik alge-
bra and to a deformed double current algebra. This second incarnation is
called the elliptic Casimir connection and is an elliptic analog of the rational
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On deformed double current algebras 1309

Casimir connection [5, 17, 18] and of the trigonometric Casimir connection
[19]. The construction of the elliptic Casimir connection relies crucially on
the second presentation and on some of the properties of the deformed dou-
ble current algebra obtained in the current paper.

Our first theorem (which is Theorem 2.1) states that both presentations
of D(g) alluded to above are equivalent. The other results of this paper con-
cern central elements in D(g). In sections 4 and 5, we construct a certain
central element of D(g) which is essential for the construction in [21] of a ho-
momorphism from the holonomy Lie algebra to the deformed double current
algebra: see Theorem 4.1 and Theorem 5.1. When g = sln, the definition of
D(g) involves two deformation parameters, so section 5 is specially devoted
to the construction of that central element in this case. In the last section, for
certain specific values of the two deformation parameters, we prove that the
center of D(sln) contains two subrings isomorphic to the ring of polynomials
in infinitely many variables and we identify precisely two infinite sets of cen-
tral elements which are algebraically independent. This result was inspired
by an analogous one about rational Cherednik algebras, namely Proposi-
tion 3.6 in [8] which states that the center of the rational Cherednik algebra
when the parameter t = 0 contains the subalgebra C[h]W ⊗ C[h∗]W , h being
here the reflection representation of the Weyl group W . Theorem 5.3 is also
inspired by a similar result for the rational Cherednik algebra Ht,c(Sl) asso-
ciated to the symmetric group, namely Proposition 4.3 in [4] which states
that Ht,c(Sl) contains a subalgebra isomorphic to the degenerate affine Hecke
algebra.

2. The deformed double current algebra of g

Let g be a finite-dimensional, simple Lie algebra over C. In this paper, we
will assume that the rank of g is ≥ 3, the reason being that we do not know
what is the correct definition of deformed double current algebra when g
is of Dynkin type A1, A2, B2 or G2: we expect that it will involve more
complicated relations. Most of the results of this paper quite likely hold also
when the rank of g is 1 or 2, but the required computations would probably
be more daunting.

Let (·, ·) be the Killing form on g and let X±i , Hi, 1 ≤ i ≤ N , be the
Chevalley generators of g normalized so that (X+

i , X
−
i ) = 1 and [X+

i , X
−
i ] =

Hi. Let ∆ be the set of roots for g and ∆+ be a set of positive roots. For each
positive root α, we choose generatorsX±α of g±α such that (X+

α , X
−
α ) = 1 and

X±αi = X±i . (As usual, αi, 1 ≤ i ≤ N , denote the simple roots of g.) If α > 0,
setXα = X+

α andHα = [X+
α , X

−
α ]; if α < 0, setXα = X−−α andHα = −H−α.
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1310 N. Guay and Y. Yang

Let C = (cij)
N
i,j=0 be the affine Cartan matrix of the affine Lie algebra ĝ and

the scalars d0, d1, . . . , dN be such that (dicij)
N
i,j=0 is a symmetric matrix. The

index 0 corresponds to the extending vertex in the Dynkin diagram of ĝ.
Set g[u] = g⊗C C[u] and g[u, v] = g⊗C C[u, v], which we call a double

current Lie algebra. For general results about the universal central extension
of g[u, v] (e.g. that it is isomorphic to g[u, v]⊕ Ω1(C[u,v])

dC[u,v] , the center being

isomorphic to the quotient vector space Ω1(C[u,v])
dC[u,v] of all 1-forms in the plane

modulo the exact forms), see [14] and [15].

Proposition 2.1 ([11], Lemmas 4.1, 4.2). The universal central exten-

sion ĝ[u, v] of g[u, v] is isomorphic to the Lie algebra generated by elements
X±i,r, Hi,r for 1 ≤ i ≤ N , r = 0, 1 and X+

0,0, X+
0,1 subject to the following

relations:

[Hi1,r1 , Hi2,r2 ] = 0, [Hi1,0, X
±
i3,r3

] = ±di1ci1,i3X±i3,r3 ,(1)

if 1 ≤ i1, i2 ≤ N, 0 ≤ i3 ≤ N, r1, r2, r3 = 0, 1

[Hi1,1, X
±
i2,0

] = [Hi1,0, X
±
i2,1

], 1 ≤ i1 ≤ N, 0 ≤ i2 ≤ N,(2)

[X±i1,1, X
±
i2,0

] = [X±i1,0, X
±
i2,1

], 0 ≤ i1, i2 ≤ N

[X+
i1,r1

, X−i2,r2 ] = δi1i2Hi1,r1+r2 , 0 ≤ i1 ≤ N, 1 ≤ i2 ≤ N, r1 + r2 = 0, 1(3) [
X±i1,0,

[
X±i1,0, . . . , [X

±
i1,0
, X±i2,0] . . .

]]
= 0, 0 ≤ i1, i2 ≤ N,(4)

where X±i1,0 appears 1− ci1,i2 times.

In (2) and (4), when i1 = 0 and i2 = 0, there is a relation only when ± = +.
The same applies to (1) when i3 = 0.

We assume for the remainder of this section that g is not of Dynkin type
A. (When g = sln, the results of this section are contained in [10]; moreover,
in this case, Definition 2.1 has to be modified because, in the Dynkin diagram
of affine type Â, the extending vertex is connected to two other vertices, not
just to one.) Then there is a unique k ∈ {1, . . . , N} such that c0k 6= 0. In
other words, k is the label of the unique vertex in the Dynkin diagram of ĝ
to which the zero node is connected. Let θ be the highest root of g. If a, b
are any two elements in an algebra A, we set S(a, b) = ab+ ba. Let
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On deformed double current algebras 1311

(5)

ω±i = ±1

4

∑
α∈∆+

S
(
[X±i , X

±
α ], X∓α

)
− 1

4
S(X±i , Hi),

νi = [ω+
i , X

−
i ] =

1

4

∑
α∈∆+

(αi, α)S(X+
α , X

−
α )− H2

i

2
.

We will write also ω±i and νi to denote the corresponding elements in Def-
inition 2.1 below via the homomorphism U(g) −→ D(g) given by X±i , Hi 7→
X±i,0,Hi,0 for 1 ≤ i ≤ N .

Definition 2.1 ([11], Definition 5.3 with λ = 1). Let λ ∈ C. The de-
formed double current algebra D(g) is the C-algebra generated by X±i,r,Hi,r
and X+

0,r for 1 ≤ i ≤ N, r = 0, 1 subjected to the same relations as those in

Proposition 2.1, except that the following relations involving X+
0,r must be

modified:

[X+
k,1,X

+
0,0]− [X+

k,0,X
+
0,1] =

d0c0kλ

2
S(X+

k,0,X
−
θ ) + λ[ω+

k ,X
−
θ ] + λ[X+

k,0, ω
+
0 ](6)

[Hk,1,X
+
0,0]− [Hk,0,X

+
0,1] =

d0c0kλ

2
S(Hk,0,X

−
θ ) + d0c0kλω

+
0 + λ[νk,X

−
θ ](7)

[X+
0,0,X

−
k,0] = 0, [X+

0,1,X
−
k,0] = λ[X−k,0, ω

+
0 ], [X+

0,1,X
+
0,0] = 2d0λX

+
0,0X

−
θ(8)

[X+
0,0,X

±
i,1] = λ[X−θ , ω

±
i ], [X+

0,1,X
±
i,0] = −λ[ω+

0 ,X
±
i,0] for i 6= 0, k.(9)

The elements X−θ and ω+
0 are defined in the following way. We write X−θ

as X−θ = [X−k,0, X
−
θ−αk ] (it may be necessary to rescale X±θ−αk to achieve

this) and set X−θ = [X−k,0,X
−
θ−αk ] ∈ D(g). (Here, X−θ−αk ∈ g ⊂ D(g).) We set

ω+
0 = −[ω−k , X

−
θ−αk ].

Applying [·, X−k,0] to (7) and using (8) yields an expression for [X+
0,0, X

−
k,1]

as an element of U(g). The relations (6) - (9) were arrived at in [11] after
considering a certain degeneration of the affine Yangian of g, taking Propo-
sition 2.1 into account.

The next definition appeared naturally in the work [21] and was first
given in [10] in the case of sln for n ≥ 4.

Definition 2.2. Let λ ∈ C. The C-algebra D(g) is generated by elements
X,K(X), Q(X), P (X) for all X ∈ g such that
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1312 N. Guay and Y. Yang

• The assignment X 7→ X, X ⊗ v 7→ K(X) (resp. X 7→ X, X ⊗ u 7→
Q(X)) extends to an algebra homomorphism U(g[u]) −→ D(g) (resp.
U(g[v]) −→ D(g));

• P (X) is linear in X, and for any X,X ′ ∈ g, [P (X), X ′] = P ([X,X ′]),

and the following relation holds for all root vectors Xβ1
, Xβ2

∈ g with β1 6=
−β2:

[K(Xβ1
), Q(Xβ2

)] = P ([Xβ1
, Xβ2

])− (β1, β2)λ

4
S(Xβ1

, Xβ2
)(10)

+
λ

4

∑
α∈∆

S([Xβ1
, Xα], [X−α, Xβ2

]).

The name deformed double current algebra seems a priori more appro-
priate for D(g) since this algebra is clearly built from two current algebras
g[u] and g[v]: Theorem 2.1 below states that D(g) and D(g) are isomorphic,
hence we can also call D(g) a deformed double current algebra. The alge-
bra D(g) was obtained in [11] as a degenerate version of the affine Yangian
of g, so one consequence of our main theorem just below is that D(g) is
also such a degeneration. Moreover, affine Yangians can be obtained from
quantum toroidal algebras via a similar type of degeneration [7, 12], so a
deformed double current algebra can be viewed as a two-step degeneration
of a quantum toroidal algebra.

The following proposition will be useful to avoid repeating parts of cer-
tain proofs.

Proposition 2.2. [10, Proposition 12.1] There is an automorphism of D(g)
which is given by

X 7→ X, K(X) 7→ −Q(X), Q(X) 7→ K(X), P (X) 7→ −P (X)

for any X ∈ g.

Theorem 2.1. There exists an algebra isomorphism ϕ : D(g)→ D(g) given
by

ϕ(X±i,0) = X±i , ϕ(Hi,0) = Hi,

ϕ(X±i,1) = Q(X±i ), ϕ(Hi,1) = Q(Hi)
for 1 ≤ i ≤ N,

ϕ(X+
0,0) = K(X−θ ), ϕ(X+

0,1) = P (X−θ )− λω+
0 .

The proof of this theorem will be given in the following two subsections.



i
i

“4-Guay” — 2017/12/12 — 22:40 — page 1313 — #7 i
i

i
i

i
i

On deformed double current algebras 1313

2.1. The map ϕ is a homomorphism of algebras

The first step is to prove that the assignment ϕ given in Theorem 2.1 extends
to a homomorphism of algebras.

Lemma 2.1. The element ω±i of U(g) defined in (5) can be rewritten in
the following way:

(11) ω±i = ∓1

4

∑
α∈∆+

S
(
[X±i , X

∓
α ], X±α

)
.

Proof. The Casimir element of g is

Ω =
∑
α∈∆+

S(X+
α , X

−
α ) +

N∑
i=1

h̃ih̃i

where {h̃1, . . . , h̃N} is a basis of the Cartan subalgebra h and {h̃1, . . . , h̃N}
is the dual basis with respect to the Killing form. Ω is in the center of U(g),
so

0 = ±1

4
[X±i ,Ω] = ω±i ±

1

4

∑
α∈∆+

S(X±α , [X
±
i , X

∓
α ])

because
∑N

j=1[X±i , h̃
j ]h̃j = ∓

∑N
j=1(Hi, h̃

j)X±i h̃j = ∓X±i Hi. �

We have to verify that ϕ respects the defining relations of D(g). Let us
start with (6). We have to check that

[Q(X+
k ),K(X−θ )]− [X+

k , P (X−θ )]

=
d0c0kλ

2
S(X+

k , X
−
θ )− λ

4

∑
α∈∆+

S([X+
k , X

−
α ], [X+

α , X
−
θ ])

− λ

4
S
([

[X+
k , X

−
k ], X−θ

]
, X+

k

)
.

(Observe that [X−k , X
−
θ ] = 0 and that if

[
[X+

k , X
−
α ], X−θ

]
is a root vector

(where α is positive), then αk − α− θ ≥ −θ, so α ≤ αk: since αk is simple
and both are positive, this forces α to be equal to αk.)
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The previous equality is equivalent to

[K(X−θ ), Q(X+
k )] = P ([X−θ , X

+
k ])− d0c0kλ

4
S(X+

k , X
−
θ )

+
λ

4

∑
α∈∆+

S([X+
k , X

−
α ], [X+

α , X
−
θ ])

because
[
[X+

k , X
−
k ], X−θ

]
= dkck0X

−
θ = d0c0kX

−
θ . This is true in D(g) be-

cause d0c0k = (−θ, αk). Thus, ϕ preserves relation (6).
(7) follows from (6) because [X−θ , X

−
k,0] = 0. For the same reason, the

first and second relation in (8) hold.
For the third relation in (8), we need to find [P (X−θ )− λω+

0 ,K(X−θ )].
Notice that if [X−α , X

−
θ−αk ] 6= 0 for a positive root α, then [X−α , X

−
θ−αk ] is

a root vector in g for the root −α− θ + αk, so −α− θ + αk ≥ −θ and
thus α ≤ αk: this forces α = αk because αk is a simple root. Similarly,

if
[[

[X−k , X
+
α ], X−θ

]
, X−θ−αk

]
6= 0 then it is a root vector in g for the root

−αk + α− θ − θ + αk, so −αk + α− θ − θ + αk ≥ −θ hence α ≥ θ: this im-
plies that α = θ. These two observations serve to obtain the third equality
below. Starting with Lemma 2.1, we obtain:

[ω+
0 ,K(X−θ )] = −

[
[ω−k , X

−
θ−αk ],K(X−θ )

]
(12)

= −1

4

∑
α∈∆+

[
S
([

[X−k , X
+
α ],K(X−θ )

]
, X−α

)
, X−θ−αk

]
= −1

4
S
([[

[X−k , X
+
θ ],K(X−θ )

]
, X−θ−αk

]
, X−θ

)
− 1

4
S
([

[X−k , X
+
αk ],K(X−θ )

]
, [X−αk , X

−
θ−αk ]

)
= −(αk, θ)

4
S([K(X−k ), X−θ−αk ], X

−
θ )

− (αk, θ)

4
S(K(X−θ ), X−θ )

= −(θ, αk)K(X−θ )X−θ

We show that [P (X−θ ),K(X−θ )] = λ((θ, θ)− (αk, θ))K(X−θ )X−θ as fol-
lows. Start with relation (10) with β1 = −αk and β2 = −θ + αk:

[K(X−αk), Q(X−θ−αk)] = P (X−θ )− (αk, θ − αk)λ
4

S(X−αk , X
−
θ−αk)(13)

+
λ

4

∑
α∈∆

S
(
[X−αk , Xα], [X−α, X

−
θ−αk ]

)
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On deformed double current algebras 1315

Observe that if [X−αk , Xα] 6= 0 and
[
[X−α, X

−
θ−αk ], X

−
θ

]
6= 0, then both are

roots vectors for the roots −αk + α and −α− θ + αk − θ, so −αk + α ≥
−θ and −α− θ + αk − θ ≥ −θ, hence α ≥ −θ + αk, −θ + αk ≥ α and thus
α = −θ + αk. Similarly, if

[
[X−αk , Xα], X−θ

]
6= 0 and [X−α, X

−
θ−αk ] 6= 0, then

α = αk by a similar argument.
Using these two observations, we now apply [·,K(X−θ )] to (13) to get:[
K(X−αk), [Q(X−θ−αk),K(X−θ )]

]
(14)

= [P (X−θ ),K(X−θ )] +
λ

4
S
(

[X−αk , X−θ+αk ],
[
[Xθ−αk , X

−
θ−αk ],K(X−θ )

])
+
λ

4
S
([

[X−αk , Xαk ],K(X−θ )
]
, [X−αk , X

−
θ−αk ]

)
= [P (X−θ ),K(X−θ )] +

λ

4
S
(
X−θ, [Hθ−αk ,K(X−θ )]

)
+

(αk, θ)λ

4
S(K(X−θ ), X−θ )

= [P (X−θ ),K(X−θ )] + λ
2(αk, θ)− (θ, θ)

4
S(K(X−θ ), X−θ ).

We compute the left-hand side of the above equality (14).

[Q(X−θ−αk),K(X−θ )] =
(θ − αk, θ)λ

4
S(X−θ−αk , X

−
θ )

− λ

4
S([X−θ , Xαk ], [X−αk , X

−
θ−αk ])

=
(θ − αk, θ)λ

4
S(X−θ−αk , X

−
θ )− λ

4
S([X−θ , Xαk ], X

−
θ )

so [
K(X−αk), [Q(X−θ−αk),K(X−θ )]

]
(15)

=

[
K(X−αk),

(θ − αk, θ)λ
4

S(X−θ−αk , X
−
θ )− λ

4
S([X−θ , Xαk ], X

−
θ )

]
=

(θ − αk, θ)λ
4

S(K(X−θ ), X−θ ) +
(αk, θ)λ

4
S(K(X−θ ), X−θ )

=
(θ, θ)λ

4
S(K(X−θ ), X−θ ).

Substituting (15) into (14) yields

[P (X−θ ),K(X−θ )] = λ((θ, θ)− (αk, θ))K(X−θ )X−θ
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and it follows from (12) that [P (X−θ )− λω+
0 ,K(X−θ )] = λ(θ, θ)K(X−θ )X−θ

as desired.
Finally, we check that ϕ respects the first relation in (9), so with i 6= 0, k

(hence (θ, αi) = 0):

[K(X−θ ), Q(X−i )] =
λ

4

∑
α∈∆+

S
(
[X−i , X

−
α ], [X+

α , X
−
θ ]
)

= −λ[ω−i , X
−
θ ]

using (5) and

[K(X−θ ), Q(X+
i )] =

λ

4

∑
α∈∆+

S
(
[X+

i , X
−
α ], [X+

α , X
−
θ ]
)

= −λ[ω+
i , X

−
θ ]

this time using (11).
The second relation in (9) is also satisfied since [P (X−θ ), X±i,0] =

P ([X−θ , X
±
i,0]) = 0 when i 6= k.

2.2. The map ϕ is an isomorphism of algebras.

In this section, we construct the inverse map ψ : D(g)→ D(g) of ϕ.
Let us first describe the images ψ(X), ψ(K(X)), ψ(Q(X)) and ψ(P (X))

of the generators of D(g) under the map ψ, where X is any element in g.
The following lemma is a consequence of [6] and the standard theorem of
Serre regarding presentations of semisimple Lie algebras.

Lemma 2.2. The current Lie algebra g[u] is isomorphic to the Lie algebra
generated by elements ei, fi, hi, 1 ≤ i ≤ N , and e0 subject to the following
relations for 1 ≤ i ≤ N :

ei, fi, hi satisfy the usual relations of Serre’s Theorem for g;

[hi, e0] = dici0e0, [e0, fi] = 0;

ad(ei)
1−ci0(e0) = 0 and ad(e0)1−c0i(ei) = 0.

In the defining relations of D(g), {K(X), X | X ∈ g} generate a subal-
gebra which is a quotient of U(g[v]) (conjecturally, they are isomorphic).
By Lemma 2.2, we have a homomorphism U(g[v])→ D(g), given by ei 7→
X+
i,0, fi 7→ X−i,0, hi 7→ Hi,0 for 1 ≤ i ≤ N , and e0 7→ X+

0,0. Likewise, we have a

homomorphism U(g[u])→ D(g), given by ei 7→ X+
i,0, fi 7→ X−i,0, hi 7→ Hi,0 for

1 ≤ i ≤ N , and X±i ⊗ u 7→ X±i,1, for 1 ≤ i ≤ N . These two homomorphisms
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tell us how to define ψ(K(X)) and ψ(Q(X)) in D(g), for any X ∈ g; in
particular, ψ(K(X−θ )) = X+

0,0 and ψ(Q(X±i )) = X±i,1.

Lemma 2.3. There is an ad(g)-module morphism P : g→ D(g), such that
X−θ 7→ P(X−θ) := X+

0,1 + λω+
0 . That it is an ad(g)-module morphism means

that:

1) P(X) is linear in X;

2) [X,P(X ′)] = P([X,X ′]), for any X,X ′ ∈ g.

Proof. 1 Let g = n− ⊕ h⊕ n+ be a triangular decomposition of g, and b− :=
n− ⊕ h. Let M(−θ) := U(g)⊗U(b−) C−θ be the Verma module with lowest
weight −θ, where C−θ is the 1–dimensional b−–module with trivial n−-
action. Thanks to the PBW Theorem, M(−θ) ∼= U(n+)⊗ C−θ. Denote the
lowest weight vector of M(−θ) by v−, so v− = 1⊗ 1. Then, M(−θ) as a
U(g) is generated by v−, such that

(16) n− · v− = 0 and h · v− = −θ(h)v−, for all h ∈ h.

We first construct a morphism P̃ : M(−θ)→ D(g) given by v− 7→ P(X−θ) :=
X+

0,1 + λω+
0 and then show that P̃ factors through the adjoint representation

of g, which gives us the commutative diagram M(−θ) P̃ //

$$

D(g)

g
P

<<
.

To show the morphism P̃ is well-defined, it suffices to verify that P(X−θ)
satisfies (16). Rewriting the defining relation (8) of D(g), we have:
[P(X−θ),X

−
k,0] = 0, and relation (9) gives [P(X−θ),X

±
i,0] = 0 for i 6= k.

We check now that [Hi,0,P(X−θ)] = (αi,−θ)P(X−θ): it follows from the
relation in Proposition 2.1 that [Hi,0,X

+
0,1] = dici,0X

+
0,1 = (αi,−θ)X+

0,1; using

that ω+
0 = −[ω−k , X

−
θ−αk ], we obtain [Hi,0, ω

+
0 ] = −(αi, θ)ω

+
0 .

Thus, we have a (non-zero) g-equivariant map from the Verma module
M(−θ) with lowest weight −θ to D(g) mapping the lowest weight vector v−

to P(X−θ).
The next step is to show that D(g) is locally finite as an ad(g)-module.

Note that the algebra D(g) is bigraded with the following Z≥0 × Z≥0-grading:

• deg(X±i,0) = (0, 0), for i = 1, . . . , N .

• deg(X±i,1) = (1, 0), for i = 1, . . . , N and deg(X+
0,0) = (0, 1).

1This proof was suggested to us by Valerio Toledano Laredo.
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• deg(λ) = (1, 1) and deg(X+
0,1) = (1, 1).

Now each graded piece is invariant under the adjoint action of g since the
degree of the elements in g is (0, 0). The degree (0, 0) piece of D(g) coincides
with the enveloping algebra U(g) and each graded piece as a U(g)-module
is finitely generated. Since the enveloping algebra U(g) is locally finite as
ad(g)-module, each graded piece of D(g) is also locally finite.

Therefore, the g-equivariant map P̃ must factor through a finite dimen-
sional quotient of the Verma module M(−θ), and there is only one such
quotient, namely the adjoint representation of g. �

The remainder of the proof consists in checking that, for any two roots
β1 6= −β2,

[ψ(K(Xβ1
)), ψ(Q(Xβ2

))] = ψ(P ([Xβ1
, Xβ2

])− (β1, β2)λ

4
S(ψ(Xβ1

), ψ(Xβ2
))

+
λ

4

∑
α∈∆

S([ψ(Xβ1
), ψ(Xα)], [ψ(X−α), ψ(Xβ2

)]).

From the defining relations of D(g), this is known to be true in the cases
when β1 = −θ and β2 = ±α1, . . . ,±αN . In order to see that it’s true in
general, we can use the standard operators si, whose definition is recalled
below, which have the property that si(Xα) is a root vector for the root
si(α).

In order to simplify the notation, we denote ψ(K(Xβ)) simply by K(Xβ),
and similarly for ψ(Q(Xβ)) and ψ(P (Xβ)). As observed in the previous para-
graph, we know that (10) holds in D(g) when β1 = −θ and β2 = ±α1, . . . ,
±αN . The goal is to show, using this assumption along with [K(X1), X2] =
K([X1, X2]), [Q(X1), X2] = Q([X1, X2]) and [P (X1), X2] = P ([X1, X2]) (see
Lemma 2.3), that (10) must hold in full generality in D(g) for any two roots
β1, β2 with β1 6= −β2.

Let m : U(g)⊗C U(g) −→ U(g) be the multiplication map. View Ω as an
element of g⊗C g. The following observation will be useful below:∑

α∈∆

S([Xβ1
, Xα], [X−α, Xβ2

])(17)

= m

(∑
α∈∆

[
[Xβ1

⊗ 1, Xα ⊗X−α], 1⊗Xβ2

])

+m

(∑
α∈∆

[
[1⊗Xβ1

, X−α ⊗Xα], Xβ2
⊗ 1
])
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= m

([
[Xβ1

⊗ 1,Ω], 1⊗Xβ2

]
−

N∑
i=1

[
[Xβ1

⊗ 1, h̃i ⊗ h̃i], 1⊗Xβ2

])

+m

([
[1⊗Xβ1

,Ω], Xβ2
⊗ 1
]
−

N∑
i=1

[
[1⊗Xβ1

, h̃i ⊗ h̃i], Xβ2
⊗ 1
])

.

It is known that [Ω, X ⊗ 1 + 1⊗X] = 0 for any X ∈ g and, consequently,
we have:

∑
α∈∆

([
S([Xβ1

, Xα], [X−α, Xβ2
]), Xγ

]
(18)

− S
([

[Xβ1
, Xγ ], Xα

]
, [X−α, Xβ2

]
)

− S
(
[Xβ1

, Xα],
[
X−α, [Xβ2

, Xγ ]
]))

= −(γ, β2)S([Xβ1
, Xγ ], Xβ2

)− (γ, β1)S(Xβ1
, [Xβ2

, Xγ ]).

Here, either Xγ ∈ gγ for γ ∈ ∆ or γ = 0 and Xγ is to be interpreted as an
element in h.

Remark 2.1. Equality (18) is also valid if Xβ1
(resp. Xβ2

) is replaced by
an element of h and if the factor (γ, β1) (resp. (γ, β2)) is replaced by 0. When
referring to (18), we may also be considering these two cases.

Equality (18) follows from (17) via the following computation:

−
∑
α∈∆

[
S([Xβ1

, Xα], [X−α, Xβ2
]), Xγ

]
+
∑
α∈∆

S
([

[Xβ1
, Xγ ], Xα

]
, [X−α, Xβ2

]
)

+
∑
α∈∆

S
(
[Xβ1

, Xα],
[
X−α, [Xβ2

, Xγ ]
])

=

N∑
i=1

m
([[

Xβ1
⊗ 1, [h̃i ⊗ h̃i, Xγ ⊗ 1 + 1⊗Xγ ]

]
, 1⊗Xβ2

])
+

N∑
i=1

m
([[

1⊗Xβ1
, [h̃i ⊗ h̃i, Xγ ⊗ 1 + 1⊗Xγ ]

]
, Xβ2

⊗ 1
])
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= m

([[
Xβ1
⊗ 1, Xγ ⊗Hγ +Hγ ⊗Xγ

]
, 1⊗Xβ2

]
+
[[

1⊗Xβ1
, Xγ ⊗Hγ +Hγ ⊗Xγ

]
, Xβ2

⊗ 1
])

= m
([

[Xβ1
, Xγ ]⊗Hγ + [Xβ1

, Hγ ]⊗Xγ , 1⊗Xβ2

]
+
[
Xγ ⊗ [Xβ1

, Hγ ] +Hγ ⊗ [Xβ1
, Xγ ], Xβ2

⊗ 1
])

= m ((γ, β2)[Xβ1
, Xγ ]⊗Xβ2

+ (γ, β1)Xβ1
⊗ [Xβ2

, Xγ ])

+m ((γ, β1)[Xβ2
, Xγ ]⊗Xβ1

+ (γ, β2)Xβ2
⊗ [Xβ1

, Xγ ])

= (γ, β2)S([Xβ1
, Xγ ], Xβ2

) + (γ, β1)S(Xβ1
, [Xβ2

, Xγ ]).

We are supposing that (10) holds when β1 = −θ and β2 = ±αk. For
convenience, let’s write down these two relations here:

[K(X−θ ), Q(X+
k )] = P ([X−θ , X

+
k ]) +

(θ, αk)λ

4
S(X−θ , X

+
k )(19)

+
λ

4

∑
α∈∆

S([X−θ , Xα], [X−α, X
+
k ])

and

[K(X−θ ), Q(X−k )] = −(θ, αk)λ

4
S(X−θ , X

−
k )(20)

+
λ

4

∑
α∈∆

S([X−θ , Xα], [X−α, X
−
k ]).

We will need the following observation:

([X+
θ , X

−
k ], X−θ+αk) = (X+

θ , [X
−
k , X−θ+αk ])

= (X+
θ , X

−
θ ) = 1 =⇒ [X+

θ , X
−
k ] = Xθ−αk .

Let’s apply [X+
θ , ·] to relation (20) to obtain, using (18):

[K(Hθ), Q(X−k )] + [K(X−θ ), Q(Xθ−αk)](21)

=
λ

4

∑
α∈∆

S([Hθ, Xα], [X−α, X
−
k ])

+
λ

4

∑
α∈∆

S([X−θ , Xα], [X−α, Xθ−αk ])

+
((θ, θ)− (θ, αk))λ

4
S(X−θ , X

+
θ−αk).
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Set ẽi =
√

2
(αi,αi)

X+
i and f̃i =

√
2

(αi,αi)
X−i for i 6= 0. Consider the oper-

ators in the adjoint representation of g given by

si = exp(ad(f̃i)) exp(−ad(ẽi)) exp(ad(f̃i)).

It is known that X ∈ gα =⇒ si(Xα) ∈ gsi(α) (where gα is the root subspace

of g for the root α) and si(Hj) = Hj − 2(αi,αj)
(αi,αi)

Hi. We will use si to denote
either a simple reflection in the Weyl group W of g or the corresponding
operator in its adjoint representation. (This is an abuse of notation since
those operators si do not provide an action of W on g.)

Let w0 be the longest element of the Weyl group. Then −w0 is a permu-
tation of the simple roots. Let us express w0 as a product of simple reflections
w0 = si1 · · · si` and let us denote also by w0 the corresponding operator in
the adjoint representation of g for this choice of decomposition. Applying
w0 to (19) shows that the following relation also holds (after rescaling if
needed):

[K(X+
θ ), Q(X−k )] = P ([X+

θ , X
−
k ]) +

(θ, αk)λ

4
S(X+

θ , X
−
k )(22)

+
λ

4

∑
α∈∆

S([X+
θ , Xα], [X−α, X

−
k ]).

(For any w ∈W , one can choose a decomposition into simple transpositions
and obtain a corresponding operator in the adjoint representation with the
property that w(Xα) is a scalar multiple ofXw(α); moreover, since the Killing
form is invariant under the adjoint action, (w(Xα), w(X−α)) = (Xα, X−α) =
1, so w(Xα) = aXw(α), w(X−α) = a−1X−w(α) for some non-zero scalar a and
S([X+

θ , Xw(α)], [X−w(α), X
−
k ]) = S([X+

θ , w(Xα)], [w(X−α), X−k ]).)
Applying [·, X−θ ] to (22) and using again (18) gives

(23) [K(Hθ), Q(X−k )] = P ([Hθ, X
−
k ]) +

λ

4

∑
α∈∆

S([Hθ, Xα], [X−α, X
−
k ]).

Combining (23) with (21) yields

[K(X−θ ), Q(Xθ−αk)] = P ([X−θ , Xθ−αk ])−
(θ, αk − θ)λ

4
S(X−θ , Xθ−αk)(24)

+
λ

4

∑
α∈∆

S([X−θ , Xα], [X−α, Xθ−αk ]).
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To obtain this relation, it was necessary to determine that [X−θ , Xθ−αk ] =
(θ, αk)X

−
k . [X−θ , Xθ−αk ] is a scalar multiple of X−k with scalar given by

([X−θ , Xθ−αk ], X
+
k ) and

([X−θ , Xθ−αk ], X
+
k ) = −(Xθ−αk , [X

−
θ , X

+
k ])

= (θ, αk)(Xθ−αk , X
−
θ−αk) = (θ, αk) = −d0c0k,

where the second equality follows from [X−θ , X
+
k ] = −(θ, αk)X

−
θ−αk , which

can be checked as follows:

([X−θ , X
+
k ], Xθ−αk) = −(X+

k , [X
−
θ , Xθ−αk ])

= −(X+
k , [X

−
θ , [X

+
θ , X

−
k ]]) = −(X+

k , [[X
−
θ , X

+
θ ], X−k ])

= −(θ, αk)(X
+
k , X

−
k ) = −(θ, αk).

Let β be any positive root different from θ − αk. There exist simple roots

β1, . . . , β` such that
[
X−β` ,

[
· · · [X−β1

, Xθ−αk ] · · ·
]]

is a root vector in gβ; let’s

denote it by X̃β. (This is true for Xθ instead of Xθ−αk because θ is the
highest root of g, but the only simple root βi such that [X−βi , X

+
θ ] 6= 0 is

βi = αk, so we might as well start with Xθ−αk .) Applying [X−βi , ·] to (24)
repeatedly, we obtain, after perhaps rescaling:

[K(X−θ ), Q(Xβ)] = P ([X−θ , Xβ]) +
(θ, β)λ

4
S(X−θ , Xβ)(25)

+
λ

4

∑
α∈∆

S([X−θ , Xα], [X−α, Xβ]).

Let’s prove this by induction on `. We already know that this is true when
` = 0 by (24), so let’s assume it’s true for `− 1. Set

X̃
β̃

=
[
X−β`−1

,
[
· · · [X−β1

, Xθ−αk ] · · ·
]]
,

so X̃β = [X−β` , X̃β̃
] and, by the inductive assumption,

[K(X−θ ), Q(X̃
β̃
)] = P ([X−θ , X̃β̃

]) +
(θ, β̃)λ

4
S(X−θ , X̃β̃

)

+
λ

4

∑
α∈∆

S([X−θ , Xα], [X−α, X̃β̃
]).
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We apply [X−β` , ·] to both sides and use the fact that β = β̃ − β` along with
the following consequence of (18):∑

α∈∆

[
X−β` , S([X−θ , Xα], [X−α, X̃β̃

])
]
−
∑
α∈∆

S([X−θ , Xα], [X−α, X̃β])

= −(β`, θ)S(X−θ , [X
−
β`
, X̃

β̃
]) = −(β`, θ)S(X−θ , X̃β).

The relation (25) now follows by induction, using that β = β̃ − β`.
We still have to prove (25) when β is a negative root. This can be

done by writing Xβ as Xβ =
[
X−β` ,

[
· · · [X−β1

, X−i ] · · ·
]]

for some simple roots

αi, β1, . . . , β`, starting with relation (10) with β1 = −θ, β2 = −αi and ap-
plying successively [X−βj , ·], j = 1, . . . , ` to both sides. We have now proved

that (25) holds for any root β of g different from θ.
Let β1 be any long root for g. Then there exists w ∈W such that β1 =

w(−θ). Let w = si1si2 · · · si` be a decomposition of w into a product of simple
reflections and let’s denote also by w the corresponding operator in the
adjoint representation of g for this choice of decomposition. Relation (10)
when β1 is a long root now follows by applying w to (25) with β = w−1(β2).
Therefore, (10) is true when β1 is a long root.

It remains to deal with the case when β1 is a short root and β1 6= −β2.
Let’s apply [X+

θ , ·] to relation (25) in the case that β is any positive root
different from θ. Then, using (18),

(26) [K(Hθ), Q(Xβ)] = P ([Hθ, Xβ]) +
λ

4

∑
α∈∆

S([Hθ, Xα], [X−α, Xβ]).

In the case that β is a negative root with β 6= −θ, we can apply [·, X−θ]
to relation (10) with β1 = θ, and β2 = β; the same argument as above shows
that (26) holds for any root β such that β 6= ±θ.

We are in a situation similar to one we had before, so we can use the
action of the Tits extension W̃ of W on g to obtain that, for any long root
γ and for any root β 6= ±γ,

(27) [K(Hγ), Q(Xβ)] = P ([Hγ , Xβ]) +
λ

4

∑
α∈∆

S([Hγ , Xα], [X−α, Xβ]).

For any root η ∈ ∆ of g, there exists a long root γ ∈ ∆, such that (γ, η) 6=
0. For η 6= −β, we apply [·, Xη] to relation (27) with such a γ and let a ∈ C
be such that [Xβ, Xη] = aXβ+η. (If β + η is not a root, then Xβ+η = 0 and
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we set a = 0 also.) Then, using (18),[
[K(Hγ), Q(Xβ)], Xη

]
= (γ, η)P ([Xη, Xβ]) + aP ([Hγ , Xβ+η])(28)

+
(γ, η)λ

4

∑
α∈∆

S([Xη, Xα], [X−α, Xβ])

+
aλ

4

∑
α∈∆

S([Hγ , Xα], [X−α, Xβ+η])

− (γ, η)(β, η)λ

4
S(Xη, Xβ) by (18).

On the other hand, if β + η 6= ±γ, using (27) with β replaced by β + η,
we get:[

[K(Hγ), Q(Xβ)], Xη

]
= (γ, η)[K(Xη), Q(Xβ)] + a[K(Hγ), Q(Xβ+η)](29)

= (γ, η)[K(Xη), Q(Xβ)] + aP ([Hγ , Xβ+η])

+
aλ

4

∑
α∈∆

S([Hγ , Xα], [X−α, Xβ+η]).

Combining (28) with (29), we see that, if β + η 6= ±γ and β + η 6= 0:

[K(Xη), Q(Xβ)] = P ([Xη, Xβ])− (β, η)λ

4
S(Xη, Xβ)(30)

+
λ

4

∑
α∈∆

S([Xη, Xα], [X−α, Xβ]).

In order to obtain (30) for any two roots η and β with η 6= −β, it was only
necessary to choose a long root γ such that (η, γ) 6= 0 and γ 6= ±(β + η).

In conclusion, the relation (10) holds in D(g).

3. Other useful relations

In this short section, we establish some new relations among the generators
of D(g) which will be useful for our computations later.

Lemma 3.1. For any roots β1, β2, the following relations hold in the de-
formed double current algebra D(g) :

(31) [K(Hβ1
), Q(Xβ2

)] = P ([Hβ1
, Xβ2

]) +
λ

4

∑
α∈∆

S([Hβ1
, Xα], [X−α, Xβ2

]),
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and

(32) [K(Xβ1
), Q(Hβ2

)] = P ([Xβ1
, Hβ2

]) +
λ

4

∑
α∈∆

S([Xβ1
, Xα], [X−α, Hβ2

]).

Proof. In the case β1 6= −β2, we can write [Xβ2
, X−β1

] = aXβ2−β1
for some

a ∈ C. (If β2 − β1 is not a root, a = 0.) Now applying [·, X−β1
] to relation

(10) and using (18), we then obtain:

[K(Hβ1
), Q(Xβ2

)] + [K(Xβ1
), aQ(Xβ2−β1

)]

= P ([Hβ1
, Xβ2

]) + P ([Xβ1
, aXβ2−β1

])− a(β1, β2 − β1)λ

4
S(Xβ1

, Xβ2−β1
)

+
λ

4

∑
α∈∆

S([Hβ1
, Xα], [X−α, Xβ2

]) +
aλ

4

∑
α∈∆

S([Xβ1
, Xα], [X−α, Xβ2−β1

]).

Relation (10) gives the following:

[K(Xβ1
), Q(Xβ2−β1

)] = P ([Xβ1
, Xβ2−β1

])− (β1, β2 − β1)λ

4
S(Xβ1

, Xβ2−β1
)

+
λ

4

∑
α∈∆

S([Xβ1
, Xα], [X−α, Xβ2−β1

]).

Combining the above calculations, we obtain (31) in the case β1 6= −β2. The
general case for (31) follows from linearity of the factor Hβ1

. (If β1 = β2, we

can write β1 = β + β̃ with β 6= β1 and β̃ 6= β1.) The second relation of this
lemma follows from the first one using the automorphism in Proposition 2.2.

�

Lemma 3.2. For any roots β1, β2 such that (β1, β2) = 0, the following re-
lation holds in D(g) :

[K(Hβ1
), Q(Hβ2

)] =
λ

2

∑
α∈∆+

(β1, α)(β2, α)S(Xα, X−α).

Proof. The assumption (β1, β2) = 0 implies that [Hβ1
, X−β2

] = 0, so applying

[·, X−β2
] to (31) and using (18) yields the desired relation:

[K(Hβ1
), Q(Hβ2

)] = P ([Hβ1
, Hβ2

]) +
λ

4

∑
α∈∆

[
S([Hβ1

, Xα], [X−α, Xβ2
]), X−β2

]
=
λ

4

∑
α∈∆

S([Hβ1
, Xα], [X−α, Hβ2

]) by (18).

�
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4. A central element of D(g)

In [20], V. Toledano Laredo and the second author generalized the univer-
sal Knizhnik–Zamolodchikov–Bernard (KZB) connection ∇KZB in [1] to any
finite root system Φ. This connection is valued in a holonomy Lie algebra.
The elliptic Casimir connection [21] is a flat connection on the regular locus
of the elliptic configuration space associated to Φ with values in a deformed
double current algebra. It is obtained from ∇KZB via a homomorphism from
the holonomy Lie algebra to D(g). This construction requires a certain cen-
tral element in D(g). We introduce it in this section and show that it is
indeed central (see Theorem 4.1). Actually, what we do is introduce various
elements in D(g), show that they are all scalar multiples of one another and
then prove that they are central.

Set

C(β1, β2) = [K(Hβ1
), Q(Hβ2

)]− λ

4

∑
α∈∆

S([Hβ1
, Xα], [X−α, Hβ2

]),

C(β) = C(β, β),

and set

B(β) = [K(Xβ), Q(X−β)]− P (Hβ)− (β, β)λ

4
S(Xβ, X−β)

− λ

4

∑
α∈∆

S([Xβ, Xα], [X−α, X−β]).

Proposition 4.1. (i) The following equalities hold:

C(β1, β2) = (β1, β2)B(β2) = C(β2, β1), for any roots β1, β2 ∈ ∆.

In particular, when β1 = β2 = β, we obtain C(β)
(β,β) = B(β).

(ii) For any two roots α, β in ∆, we have

C(α)

(α, α)
=

C(β)

(β, β)
.

Proof. To show (i), apply [Xβ2
, ·] to the relation

[K(Hβ1
), Q(X−β2

)] = −(β1, β2)P (X−β2
)

+
λ

4

∑
α∈∆

S([Hβ1
, Xα], [X−α, X−β2

]) (see (31)).
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We then get, using (18):

[K(Hβ1
), Q(Hβ2

)]− (β1, β2)[K(Xβ2
), Q(X−β2

)]

= −(β1, β2)P (Hβ2
) +

λ

4

∑
α∈∆

S([Hβ1
, Xα], [X−α, Hβ2

])

− (β1, β2)λ

4

(∑
α∈∆

S([Xβ2
, Xα], [X−α, X−β2

])− (β2, β2)S(Xβ2
, X−β2

)

)
.

Rewriting the above equality, we obtain C(β1, β2) = (β1, β2)B(β2) for any
roots β1, β2 ∈ h∗. The proof of the second equality in claim (i) is similar.

Let us now turn to the proof of claim (ii). For any roots α, β such that
(α, β) 6= 0, by (i), we have

C(α, β) = (α, β)B(β) and C(α, β) = (β, α)B(α).

Thus, B(α) = B(β) and C(α)
(α,α) = C(β)

(β,β) if (α, β) 6= 0.
Since the Dynkin diagram of the simple Lie algebra g is connected, it

follows that C(αi)
(αi,αi)

is the same constant when αi is a simple root. Now for

any root α, there exists a simple root αi, such that (α, αi) 6= 0. This implies

that C(α)
(α,α) = C(β)

(β,β) for any two roots α, β. �

Theorem 4.1. For any root β of g, C(β) is a central element of the algebra
D(g).

It suffices to show that C(β) commutes with the generators of D(g).
This will follow from the next two lemmas.

Lemma 4.1. For any X ∈ g, we have [C(β), X] = 0.

Proof. It suffices to take X to be a root vector Xγ for a root γ. We then
have:[

[K(Hβ), Q(Hβ)], Xγ

]
= (β, γ)[K(Xγ), Q(Hβ)] + (β, γ)[K(Hβ), Q(Xγ)]

= (β, γ)P ([Xγ , Hβ]) +
(β, γ)λ

4

∑
α∈∆

S([Xγ , Xα], [X−α, Hβ])

+ (β, γ)P ([Hβ, Xγ ])

+
(β, γ)λ

4

∑
α∈∆

S([Hβ, Xα], [X−α, Xγ ]) by (31) and (32)
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=
λ

4

∑
α∈∆

S
([

[Hβ, Xγ ], Xα

]
, [X−α, Hβ]

)
+
λ

4

∑
α∈∆

S
(

[Hβ, Xα],
[
X−α, [Hβ, Xγ ]

])
=
λ

4

∑
α∈∆

[
S([Hβ, Xα], [X−α, Hβ]), Xγ

]
by (18).

Hence, the conclusion follows. �

Lemma 4.2. If the two roots β, γ are such that (β, γ) = 0, then

[C(β),K(Hγ)] = 0 = [C(β), Q(Hγ)].

Proof. Since [K(Hβ),K(Hγ)] = 0,[
K(Hγ), [K(Hβ), Q(Hβ)]

]
=
[
K(Hβ), [K(Hγ), Q(Hβ)]

]
=

[
K(Hβ),

λ

4

∑
α∈∆

(γ, α)(β, α)S(Xα, X−α)

]
by Lemma 3.2

=
λ

4

∑
α∈∆

(γ, α)(β, α)2
(
S(K(Xα), X−α)− S(Xα,K(X−α))

)
=
λ

2

∑
α∈∆

(γ, α)(β, α)2S(K(Xα), X−α).

On the other hand,[
K(Hγ),

λ

4

∑
α∈∆

S([Hβ, Xα], [X−α, Hβ])

]

=

[
K(Hγ),

λ

4

∑
α∈∆

(β, α)2S(Xα, X−α)

]
by Lemma 3.2

=
λ

4

∑
α∈∆

(γ, α)(β, α)2
(
S(K(Xα), X−α)− S(Xα,K(X−α))

)
=
λ

2

∑
α∈∆

(γ, α)(β, α)2S(K(Xα), X−α).

The assertion follows from these computations. The proof that [C(β), Q(Hγ)]
= 0 is analogous. �
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Proof of Theorem 4.1. By Lemma 4.2 and Proposition 4.1, C(β) commutes
with K(Hγ̃) for at least one root γ̃ (since g has rank at least ≥ 3 by assump-
tion). Moreover, for any X in g, K(X) can be obtained by applying ad(X1) ◦
ad(X2) ◦ · · · ◦ ad(Xl) to K(Hγ̃) for certain elements X1, X2, . . . , Xl ∈ g.
Therefore, C(β) commutes with K(X) ∀X ∈ g.

Similar arguments show that [C(β), Q(X)] = 0 for any X ∈ g. D(g) is
generated by X,K(X), Q(X) for all X ∈ g: therefore, C(β) is central in
D(g). �

5. The deformed double current algebra of type A with two
parameters

The deformed double current algebra of type A with two parameters was
introduced in [10] Definition 12.1. In this section, we obtain in this case
results similar to those in the previous two sections - see Lemma 5.1 and
Theorem 5.1. We also establish one connection with the Yangian of sln in
Theorem 5.3.

As usual in type A, h denotes the subspace of diagonal matrices of trace
zero. The standard orthonormal basis of Cn is denoted {ε1, . . . , εn}. The
set ∆ of roots of sln can be identified with {εi − εj | 1 ≤ i 6= j ≤ n}, with a
choice of positive roots ∆+ given by {εi − εj | 1 ≤ i < j ≤ n} as usual. For
i 6= j, set εij = εi − εj . The longest positive root θ equals ε1n. The elementary
matrices will be written as Eij ∈ sln, so X+

i = Ei,i+1, X−i = Ei+1,i and Hi =
Eii − Ei+1,i+1 for 1 ≤ i ≤ n− 1. We will assume in this section and the next
that n ≥ 4.

Definition 5.1. Let λ, β ∈ C. We define Dλ,β(sln) to be the C-algebra
generated by elements X,K(X), Q(X), P (X) for X ∈ sln subject to the fol-
lowing relations:

• The assignment X 7→ X, X ⊗ v 7→ K(X) (resp. X 7→ X, X ⊗ u 7→
Q(X)) extends to an algebra homomorphism U(sln[v]) −→ Dλ,β(sln)
(resp. U(sln[u]) −→ Dλ,β(sln));

• P (X) is linear in X, and for any X,X ′ ∈ sln, [P (X), X ′] = P ([X,X ′]).

Moreover, for a 6= b, c 6= d, and (a, b) 6= (d, c), the following relation holds:
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[K(Eab), Q(Ecd)](33)

= P ([Eab, Ecd]) +

(
β − λ

2

)
(δbcEad + δadEcb)

− λ

4
(εab, εcd)S(Eab, Ecd) +

λ

4

∑
1≤i 6=j≤n

S([Eab, Eij ], [Eji, Ecd]).

When β = λ
2 , the relation (33) coincides with relation (10) of the de-

formed double current algebra D(sln) in Definition 2.2.
We first list some relations of Dλ,β(sln) which are parallel to those found

in Lemma 3.1. The proof for Dλ,β(sln) is similar, so we omit it. In particular,
the second relation follows from the first one using the automorphism of
Proposition 2.2.

Lemma 5.1. Let Hab = Eaa − Ebb, for a, b ∈ N. For any a 6= b, and c 6= d,
the following relations hold in the algebra Dλ,β(sln):

[K(Eab), Q(Hcd)] = P ([Eab, Hcd]) +
λ

4

∑
1≤i 6=j≤n

S([Eab, Eij ], [Eji, Hcd])

+

(
β − λ

2

)
(εa + εb, εcd)Eab.

and

[K(Hab), Q(Ecd)] = P ([Hab, Ecd]) +
λ

4

∑
1≤i 6=j≤n

S([Hab, Eij ], [Eji, Ecd])

+

(
β − λ

2

)
(εab, εc + εd)Ecd.

In particular,

[K(Eab), Q(Hab)] = −2P (Eab) +
λ

4

∑
1≤i 6=j≤n

S([Eab, Eij ], [Eji, Hab]).

In [10], in the definition of Dλ,β(sln), the generators P (X) were also
imposed the condition that they had to satisfy the defining relations of the
Yangian of sln as given in [2] in terms of elements X, J(X), X ∈ sln. It
turns out that this is not necessary as explained in Theorem 5.3 below. For
the proof of that theorem, we will need certain elements Wab, so we will
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now introduce these and a related central element (see Theorem 5.1 below)
similar to the one obtained in the previous section in the one-parameter
case.

5.1. Some central elements in Dλ,β(sln)

Set

(34) Zab,cd = [K(Hab), Q(Hcd)]−
λ

4

∑
1≤i 6=j≤n

S([Hab, Eij ], [Eji, Hcd]).

and denote Zab,ab by Zab. Set

Wab = [K(Eab), Q(Eba)]− P (Hab)(35)

− λ

4

∑
1≤i 6=j≤n

S([Eab, Eij ], [Eji, Eba])−
λ

2
S(Eab, Eba).

The following proposition is parallel to Proposition 4.1 and its proof is also
similar, so we omit it.

Proposition 5.1. The following relations hold in Dλ,β(sln), n ≥ 4:

(i) For any 1 ≤ a 6= b ≤ n and 1 ≤ c 6= b ≤ n,

Zab,cd = (εab, εcd)Wab +

(
β − λ

2

)
(εa + εb, εcd)Hab

= (εab, εcd)Wcd +

(
β − λ

2

)
(εc + εd, εab)Hcd.

In particular, we have Zab = 2Wab, and when a, b, c, d are distinct,
Zab,cd = 0.

(ii) For 1 ≤ a 6= b ≤ n and 1 ≤ c 6= d ≤ n,

Wab −Wcd =

(
β − λ

2

)
(Hac +Hbd). (If a = c, then Hac = 0.)

(iii) For 1 ≤ a 6= b ≤ n and 1 ≤ c 6= d ≤ n,

Zab − Zcd = 2

(
β − λ

2

)
(Hac +Hbd).
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Theorem 5.1. Set

Z =

n∑
a=1

Za,a+1 =

n∑
a=1

[K(Ha), Q(Ha)]−
λ

4

∑
1≤i 6=j≤n

S([Ha, Eij ], [Eji, Ha])


where Ha = Eaa − Ea+1,a+1 when 1 ≤ a ≤ n− 1, and Hn = Enn − E11. The
element Z is central in Dλ,β(sln).

Proof. We first show that Z commutes with all the elementary matrices Ecd
in sln. We have

(36) [Zab, Ecd] = 2

(
β − λ

2

)
(εab, εcd)(εc + εd, εab)Ecd,

since[
[K(Hab), Q(Hab)], Ecd

]
= (εab, εcd)[K(Ecd), Q(Hab)] + (εab, εcd)[K(Hab), Q(Ecd)]

= (εab, εcd)

(
P ([Ecd, Hab]) +

λ

4

∑
1≤i 6=j≤n

S([Ecd, Eij ], [Eji, Hab])

+

(
β − λ

2

)
(εc + εd, εab)Ecd

)

+ (εab, εcd)

(
P ([Hab, Ecd]) +

λ

4

∑
1≤i 6=j≤n

S([Hab, Eij ], [Eji, Ecd])

+

(
β − λ

2

)
(εab, εc + εd)Ecd

)
by Lemma 5.1

=
λ

4

∑
1≤i 6=j≤n

[
S([Hab, Eij ], [Eji, Hab]), Ecd

]
+ 2

(
β − λ

2

)
(εab, εcd)(εc + εd, εab)Ecd.

Thus,

[Z,Ei,i+1] =

n∑
a=1

[Za,a+1, Ei,i+1]

= 2

(
β − λ

2

) n∑
a=1

(εa,a+1, εi,i+1)(εi + εi+1, εa,a+1)Ei,i+1 = 0
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for any 1 ≤ i < n. Similarly, it can be shown that [Z,Ei+1,i] = 0 for any
1 ≤ i < n, thus Z commutes with any element in sln.

In the following, we show that Z commutes with K(Hcd) for some diag-
onal matrix Hcd of sln. Since [K(h), h′] = 0 for any two diagonal matrices
h, h′, it follows from Proposition 5.1 (iii) that

(37) [Zab,K(h)] = [Zcd,K(h)] for any diagonal matrix h.

Consider four distinct integers a, b, c, d in {1, 2, . . . , n}. Let’s check that
[Zab,K(Hcd)] = 0. On the one hand,[

K(Hcd),[K(Hab), Q(Hab)]
]

=
[
K(Hab), [K(Hcd), Q(Hab)]

]
=

1

4

∑
1≤i,j≤n

[K(Hab), (εcd, εij)(εab, εij)S(Eij , Eji)]

since Zab,cd = 0 by Proposition 5.1 (i);

=
1

2

∑
1≤i 6=j≤n

(εcd, εij)(εab, εij)
2S(K(Eij), Eji).

On the other hand, we have:[
K(Hcd),

1

4

∑
1≤i 6=j≤n

S([Hab, Eij ], [Eji, Hab])

]

=
1

4

∑
1≤i 6=j≤n

[
K(Hcd), (εab, εij)

2S(Eij , Eji)
]

=
1

2

∑
1≤i 6=j≤n

(εcd, εij)(εab, εij)
2S(K(Eij), Eji).

Combining the above computations, we conclude that [K(Hcd), Zab] = 0.
This is true in particular when b = a+ 1 and a, a+ 1, c, d are all distinct.
Thus, using (37), we obtain:

[K(Hcd), Z] = n[K(Hcd), Za,a+1] = 0.

It follows from this and [Z,X] = 0 ∀X ∈ sln that [Z,K(X)] = 0 for all X ∈
sln.

A similar argument shows that [Z,Q(X)] = 0 for all X ∈ sln. Dλ,β(sln) is
generated by X,K(X), Q(X) for X ∈ sln, hence Z must be a central element
in Dλ,β(sln). �
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5.2. Connection with the Yangian of sln

In this subsection, we will prove that the elements X,P (X) for all X ∈ sln
satisfy the defining relations of the Yangian Y (sln) as given in [2] (with
J(X) replaced by P (X)). In order to prove this, it will be easier to use a
simpler presentation of Y (sln) and the isomorphism given in [3] between the
two presentations, which is recalled below.

Theorem 5.2. [16] The Yangian Y (sln) of sln is isomorphic to the C-
algebra generated by elements X±i,r, Hi,r for 1 ≤ i ≤ n− 1 and r = 0, 1 which
satisfy the following relations for 1 ≤ i, j ≤ n:

[Hi,r, Hj,s] = 0, [Hi,0, X
±
j,s] = ±cijX±j,s ∀ r, s ∈ {0, 1},(38)

[X±i,1, X
±
j,0]− [X±i,0, X

±
j,1] = ±λcij

2
S(X±i,0, X

±
j,0),

[Hi,1, X
±
j,0]− [Hi,0, X

±
j,1] = ±λcij

2
S(Hi,0, X

±
j,0),

(39)

[X+
i,r, X

−
j,s] = δijHi,r+s for r + s = 0, 1,

[
[X+

i,1, X
−
i,1], Hi,1

]
= 0,(40)

ad(X±i,0)1−cij (X±j,0) = 0.(41)

Remark 5.1. The most complicated relation is the second one in (40). It
turns out that it is needed only when n = 2: since we are assuming that
n ≥ 4, we will disregard it.

The isomorphism between this presentation of Y (sln) and the one given
in [2] in terms of generators X, J(X) for all X ∈ sln sends X±i,1 to J(X±i )−
λω±i : see [3].

Theorem 5.3. Set X±i,0 = X±i , Hi,0 = Hi, X
±
i,1 = P (X±i )− λω±i and Hi,1 =

P (Hi)− λνi. These elements of Dλ,β(sln) satisfy the defining relations of the
Yangian Y (sln) as given in Theorem 5.2.

Proof. Most of the relations in Theorem 5.2 follow directly from the fact
that [P (X), X ′] = P ([X,X ′]) for all X,X ′ ∈ sln and the isomorphism given
in the paragraph just before the theorem. The main difficulty is in showing
that [Hi,1, Hj,1] = 0 for all i, j ∈ {1, 2, . . . , n− 1}.

The relation [Hi,1, Hj,1] = 0 is equivalent to [P (Hi), P (Hj)] + λ2[νi, νj ] =
0. Indeed,

[Hi,1, Hj,1] = [P (Hi)− λνi, P (Hj)− λνj ] = [P (Hi), P (Hj)] + λ2[νi, νj ]
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since

[νi, P (Hj)] =

1

4

∑
β>0

(αi, β)S(X+
β , X

−
β )− H2

i

2
, P (Hj)


=

1

4

∑
β>0

(αi, β)S(P [X+
β , Hj ], X

−
β )

+
1

4

∑
β>0

(αi, β)S(X+
β , P [X−β , Hj ])

= −1

4

∑
β>0

(αi, β)(αj , β)S(P (X+
β ), X−β )

+
1

4

∑
β>0

(αi, β)(αj , β)S(X+
β , P (X−β ))

=
1

4

∑
β>0

(αi, β)(αj , β)
(
S(X+

β , P (X−β ))− S(P (X+
β ), X−β )

)
.

By symmetry, one has [νi, P (Hj)] = [νj , P (Hi)] as desired.
That the equality [P (Hi), P (Hj)] + λ2[νi, νj ] = 0 holds is the content of

Lemma 5.4, which in turn depends on Lemmas 5.2 and 5.3; these can all be
found below. �

For any three elements z1, z2, z3 of sln, set

{z1, z2, z3} =
1

24

∑
σ∈S3

zσ(1)zσ(2)zσ(3).

(S3 is the symmetric group on 3 letters.)

Lemma 5.2. If 1 ≤ i 6= j ≤ n, we have:

[νi, νj ] = −

(
n∑
l=1

{Eli, Ei,j+1, Ej+1,l} −
n∑
k=1

{Eik, Ek,j+1, Ej+1,i}

−
n∑
l=1

{El,i+1, Ei+1,j+1, Ej+1,l}+

n∑
k=1

{Ei+1,k, Ek,j+1, Ej+1,i+1}

)

+

(
n∑
l=1

{Eli, Ei,j , Ej,l} −
n∑
k=1

{Eik, Ek,j , Ej,i}

−
n∑
l=1

{El,i+1, Ei+1,j , Ej,l}+

n∑
k=1

{Ei+1,k, Ek,j , Ej,i+1}

)
.(42)
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Proof. Let (x, y) = tr(xy) be the inner product of sln given by the trace.
Recall the following defining relation of the Yangian Yλ(sln) [2]:[

J(x), J([y, z])
]

+
[
J(z), [J([x, y])]

]
+
[
J(y), J([z, x])

]
= λ2

∑
a,b,c

(
[x, xa],

[
[y, xb], [z, xc]

])
{xa, xb, xc}

where {xa}, {xa} are dual bases of sln with respect to the inner product (·, ·).
The isomorphism between the two presentations of the Yangian [3] gives the
equality:

λ2[νi, νj ] = −[J(Hi), J(Hj)]

= −λ2
∑
a,b,c

([Hi, xa], [[X
+
j , xb], [X

−
j , xc]]){x

a, xb, xc}.

Tedious but straightforward computations show that

−
∑
a,b,c

(
[Hi, xa],

[
[X+

j , xb], [X
−
j , xc]

])
{xa, xb, xc}

is the right hand side of (42). Complete computations can be found in Sec-
tion §A.1. �

We will need one more lemma to treat the case j = i+ 1 below. The sec-
ond identities below follows from the first one via the anti-automorphism of
Dλ,β(sln) given by X 7→ Xt, K(X) 7→ Q(Xt), Q(X) 7→ K(Xt) and P (X) 7→
P (Xt).

Lemma 5.3. The following identities hold in Dλ,β(sln) for 1 ≤ i ≤ n− 2:

[P (Hi),K(Ei+1,i+2)]

= −1

2
[P (Hi+1),K(Ei+1,i+2)] +

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

4

(
S(K(Ei+1,i), Ei,i+2) + S(Ei+1,i,K(Ei,i+2))

)
+
λ

8

n∑
p=1

p 6=i+1,i+2

(
S(K(Ep,i+2), Ei+1,p) + S(K(Ei+1,p), Ep,i+2)

)
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and

[P (Hi), Q(Ei+2,i+1)]

= −1

2
[P (Hi+1), Q(Ei+2,i+1)]−

(
β − λ

2

)
Q(Ei+2,i+1)

− λ

4

(
S(Q(Ei,i+1), Ei+2,i) + S(Ei,i+1, Q(Ei+2,i))

)
− λ

8

n∑
p=1

p6=i+1,i+2

(
S(Q(Ei+2,p), Ep,i+1) + S(Q(Ep,i+1), Ei+2,p)

)
.

Proof. We only show the relation of [P (Hi),K(Ei+1,i+2)], the other one
[P (Hi), Q(Ei+2,i+1)] follows from a similar argument. Set Rab,cd =

P ([Eab, Ecd])− [K(Eab), Q(Ecd)] and W̃ab = P (Hab)− [K(Eab), Q(Eba)] +
Wab for simplicity, both of which are in Usln. We have:

[P (Hi,i+2),K(Ei+1,i+2)]

=
[
[K(Ei,i+2), Q(Ei+2,i)] + W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)

]
=
[
K(Ei,i+2), [Q(Ei+2,i),K(Ei+1,i+2)]

]
+ [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)]

= −[K(Ei,i+2), P (Ei+1,i)−Ri+1,i+2,i+2,i] + [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)]

= −
[
[Ei,k,K(Ek,i+2)], P (Ei+1,i)

]
+ [K(Ei,i+2), Ri+1,i+2,i+2,i]

+ [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)],

where k, i, i+ 1, i+ 2 are distinct.
For the term −

[
[Ei,k,K(Ek,i+2)], P (Ei+1,i)

]
, we use the following trick:

−
[
[Ei,k,K(Ek,i+2)], P (Ei+1,i)

]
= [P (Ei+1,k),K(Ek,i+2)]−

[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
=
[
P (Ei+1,k), [Ek,i+1,K(Ei+1,i+2)]

]
−
[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
= [P (Hi+1,k),K(Ei+1,i+2)] +

[
Ek,i+1, [P (Ei+1,k),K(Ei+1,i+2)]

]
−
[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
= [P (Hi+1,i),K(Ei+1,i+2)] + [P (Hik),K(Ei+1,i+2)]

+
[
Ek,i+1, [P (Ei+1,k),K(Ei+1,i+2)]

]
−
[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
.
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Therefore,

[P (Hi,i+2),K(Ei+1,i+2)]

= [P (Hi+1,i),K(Ei+1,i+2)] + [P (Hik),K(Ei+1,i+2)]

+
[
Ek,i+1, [P (Ei+1,k),K(Ei+1,i+2)]

]
−
[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
+ [K(Ei,i+2), Ri+1,i+2,i+2,i] + [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)].

We now compute:

[P (Hi+1,i+2),K(Ei+1,i+2)](43)

= [P (Hi+1,i),K(Ei+1,i+2)] + [P (Hi,i+2),K(Ei+1,i+2)]

= −2[P (Hi),K(Ei+1,i+2)] + [P (Hik),K(Ei+1,i+2)]

−
[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
+
[
Ek,i+1, [P (Ei+1,k),K(Ei+1,i+2)]

]
+ [K(Ei,i+2), Ri+1,i+2,i+2,i] + [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)].

To compute [Wi,i+2,K(Ei+1,i+2)], we can proceed in the following way. By
Proposition 5.1, Wi,i+2 = 1

2Zik +
(
β − λ

2

)
Hi+2,k, so we are reduced to find-

ing [Zik,K(Ei+1,i+2)]. It is established in the proof of Theorem 5.1 that
[Zik,K(Hi+1,i+2)] = 0 since i, i+ 1, i+ 2, k are all distinct. It follows that
[Zik,K(Ei+1,i+2)] = 0.

The rest of the proof follows from long, but direct computations which
can be found in Section §A.2. �

As explained earlier, to establish Theorem 5.3, it is enough to prove the
last lemma of this section.

Lemma 5.4. For any 1 ≤ i 6= j ≤ n, we have:

[P (Hi), P (Hj)] + λ2[vi, vj ] = 0.

Proof. To establish Lemma 5.4, we compute [P (Hi), P (Hj)] explicitly and
show that it equals the right-hand side of (42). We consider two cases:
|i− j| > 1 and |i− j| = 1.
Case 1: |i− j| > 1.

When |i− j| > 1, we have that i, i+ 1, j, j + 1 are all distinct. Therefore,
[X+

i , X
+
j ] = 0 and [X−i , X

−
j ] = 0. Moreover,

[P (Hi), P (Hj)] =
[
P ([X+

i , X
−
i ]), P ([X+

j , X
−
j ])
]

=
[[

[P (X+
i ), P (X+

j )], X−j
]
, X−i

]
.
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To compute [P (X+
i ), P (X+

j )], we use the equality:

[K(X+
i ), Q(Hi)] = −2P (X+

i ) +
λ

4

∑
α∈∆

S([X+
i , Xα], [X−α, Hi]) (see (32)).

Then:

[−2P (X+
i ), P (X+

j )] =
[
[K(X+

i ), Q(Hi)], P (X+
j )
]

(44)

− λ

4

∑
α∈∆

[
S([X+

i , Xα], [X−α, Hi]), P (X+
j )
]

=
[
[K(X+

i ), P (X+
j )], Q(Hi)

]
+
[
K(X+

i ), [Q(Hi), P (X+
j )]
]

− λ

4

∑
α∈∆

[
S([X+

i , Xα], [X−α, Hi]), P (X+
j )
]
.

We now need the following relations in Dλ,β(sln) when [Eab, Ecd] = 0:

[K(Eab), P (Ecd)] = −λ
4

(
S(K(Ead), Ecb) + S(K(Ecb), Ead)

)
,

[Q(Eab), P (Ecd)] =
λ

4

(
S(Q(Ead), Ecb) + S(Q(Ecb), Ead)

)
.

The given relations were obtained in step 2 of §A.2; the second one follows
from the first one using the automorphism in Proposition 2.2. Using these
and the defining relations of Dλ,β(sln), we can compute [P (X+

i ), P (X+
j )]

explicitly. The result is provided by equation (A.7) in Section §A.3:

[P (X+
i ), P (X+

j )] =
λ2

16
S

(
n∑
k=1

S(Ek,j+1, Ei,k), Ej,i+1

)

− λ2

16
S

(
n∑
l=1

S(Ejl, El,i+1), Ei,j+1

)
.

The conclusion that Lemma 5.4 is true when |i− j| > 1 follows by apply-
ing

[
[·, X−j ], X−i

]
to the previous formula. The detailed computation is in

Section §A.3.
Case 2: j = i+ 1

Since n ≥ 4, we can choose k ∈ {1, 2, . . . , n} such that i, i+ 1, i+ 2, k are
all distinct. Set Si = [P (Hi),K(Ei+1,i+2)] + 1

2 [P (Hi+1),K(Ei+1,i+2)] and
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S̃i = [P (Hi), Q(Ei+2,i+1)] + 1
2 [P (Hi+1), Q(Ei+2,i+1)]. We have:

[P (Hi), P (Hi+1)](45)

=
[
P (Hi), [K(Ei+1,i+2), Q(Ei+2,i+1)] + W̃i+1,i+2 −Wi+1,i+2

]
=
[
[P (Hi),K(Ei+1,i+2)], Q(Ei+2,i+1)

]
+
[
K(Ei+1,i+2), [P (Hi), Q(Ei+2,i+1)]

]
+ [P (Hi), W̃i+1,i+2 −Wi+1,i+2]

= −1

2

[
[P (Hi+1),K(Ei+1,i+2)], Q(Ei+2,i+1)

]
+ [Si, Q(Ei+2,i+1)]

− 1

2

[
K(Ei+1,i+2), [P (Hi+1), Q(Ei+2,i+1)]

]
+ [K(Ei+1,i+2), S̃i]

+ [P (Hi), W̃i+1,i+2 −Wi+1,i+2]

= −1

2

[
P (Hi+1), [K(Ei+1,i+2), Q(Ei+2,i+1)]

]
+ [Si, Q(Ei+2,i+1)]

+ [K(Ei+1,i+2), S̃i] + [P (Hi), W̃i+1,i+2 −Wi+1,i+2]

= −1

2

[
P (Hi+1), P (Hi+1) +Wi+1,i+2 − W̃i+1,i+2

]
+ [Si, Q(Ei+2,i+1)]

+ [K(Ei+1,i+2), S̃i] + [P (Hi), W̃i+1,i+2 −Wi+1,i+2]

= [Si, Q(Ei+2,i+1)] + [K(Ei+1,i+2), S̃i]

+

[
P (Hi) +

1

2
P (Hi+1), W̃i+1,i+2 −Wi+1,i+2

]
.

To compute [P (Hi),Wi+1,i+2], we can use that

Wi+1,i+2 = Wk,i+2 +

(
β − λ

2

)
Hi+1,k,

which follows from Proposition 5.1 (ii), so we are reduced to computing
[P (Hi),Wk,i+2]:

[P (Hi),Wi+1,i+2] = [P (Hi),Wk,i+2](46)

=
[
[K(Ei,i+1), Q(Ei+1,i)

]
+ W̃i,i+1 −Wi,i+1,Wk,i+2]

and [K(Ei,i+1),Wk,i+2] = 0, [Q(Ei+1,i),Wk,i+2] = 0 (as shown above in the
proof of Lemma 5.3). Moreover, by Proposition 5.1,

[Wi,i+1,Wk,i+2] =

[
Wk,i+2 +

(
β − λ

2

)
(Hik +Hi+1,i+2),Wk,i+2

]
= 0
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and it follows from (36) that [W̃i,i+1,Wk,i+2] = 0. Therefore, by (46),
[P (Hi),Wi+1,i+2] = 0, and [P (Hi+1),Wi+1,i+2] = 0 can be obtained simi-
larly.

Since W̃i+1,i+2 ∈ Usln, [P (Hi) + 1
2P (Hi+1), W̃i+1,i+2] can be computed

directly. Using the explicit formula of Si, S̃i in Lemma 5.3, it is possible
to determine [Si, Q(Ei+2,i+1)] + [K(Ei+1,i+2), S̃i] and hence the right-hand
side of (45). The conclusion that [P (Hi), P (Hi+1)] + λ2[vi, vi+1] = 0 follows
from a direct computation which can be found in Section §A.4. �

6. The center of the deformed double current algebra
Dλ,β(sln)

In this section, we show that, when nλ = ±4
(
β − λ

2

)
, the center of Dλ,β(sln)

is very large. This is made precise in Theorem 6.1 below.
If X ⊗ us is an element of sln[u], then we denote its image in Dλ,β(sln)

under sln[u] −→ Dλ,β(sln) also by X ⊗ us or by X(us). The same applies to
sln[v] −→ Dλ,β(sln). Set

Zab,cd(s) = [K(Hab), Hcd(u
s)](47)

− λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Hab, Eij ](u

p), [Eji, Hcd](u
q)
)

and

Z̃ab,cd(s) = [Q(Hab), Hcd(v
s)](48)

+
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Hab, Eij ](v

p), [Eji, Hcd](v
q)
)
.

Zab,ab(s) and Z̃ab,ab(s) will be abbreviated Zab(s) and Z̃ab(s), respetively.

Theorem 6.1. Assume that n ≥ 4 and nλ = ±4
(
β − λ

2

)
. The center of

the deformed double current algebra Dλ,β(sln) contains two subrings iso-
morphic to the polynomial rings in infinitely many variables C[a1, a2, a3, . . .]
and C[b1, b2, b3, . . .]; the isomorphism sends as (resp. bs) to Z(s) (resp.
Z̃(s)) where Z(s) = Z12(s) + Z23(s) + · · ·+ Zn1(s) (resp. Z̃(s) = Z̃12(s) +
Z̃23(s) + · · ·+ Z̃n1(s)).

This theorem was inspired by an analogous result about rational Chered-
nik algebras, namely Proposition 3.6 in [8] which states that the center of
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the rational Cherednik algebra when the parameter t = 0 contains the sub-
algebra C[h]W ⊗ C[h∗]W , h being here the reflection representation of the
Weyl group W . In type A, the condition t = 0 corresponds to the condition
nλ = −4

(
β − λ

2

)
when the parameters λ, β are related to the parameter

t, c of the rational Cherednik algebra as in [9, 10], namely β = t
2 −

c(n−2)
4

and λ = c. These two conditions on the parameters are necessary for the
construction of the Schur-Weyl functor in loc. cit. If M is a right mod-
ule over a rational Cherednik algebra Ht,c(Sl) of type gll (Sl being the
symmetric group on l letters), then M ⊗C[Sl] (Cn)⊗l is a left module over
Dλ,β(sln). If z is a central element of H0,c(Sl), then the multiplication by z
on M ⊗C[Sl] (Cn)⊗l given by m⊗ v −→ mz ⊗ v produces an element Rz of

EndDλ,β(sln)

(
M ⊗C[Sl] (Cn)⊗l

)
. Proposition 3.6 in [8] states that the center

of H0,c(Sl) contains C[x1, . . . , xl]
Sl ⊗C C[y1, . . . , yl]

Sl . If z = xs1 + xs2 + · · ·+
xsl , then lengthy computations show that Rz(m⊗ v) = Z(s)(m⊗ v). Z(s)
can also be viewed was an element of EndDλ,β(sln)

(
M ⊗C[Sl] (Cn)⊗l

)
be-

cause Z(s) is central, so we can say that, in EndDλ,β(sln)

(
M ⊗C[Sl] (Cn)⊗l

)
,

Rz=Z(s) . A similar remark applies to ys1 + ys2 + · · ·+ ysl and Z̃(s).

6.1. Higher commutation relations

We will need the following proposition, which is also of independent interest.

Proposition 6.1. For any s ≥ 0 and any X ∈ sln, there exists in Dλ,β(sln)
an element Ps(X) with the property that the assignment X 7→ Ps(X) is lin-
ear, [Ps(X), X ′] = Ps([X,X

′]) for any X ′ ∈ sln, and such that, for any in-
tegers 1 ≤ a, b, c, d ≤ n with a 6= b, c 6= d and (a, b) 6= (d, c), the following
relation holds:

[K(Eab), Ecd(u
s)] = Ps([Eab, Ecd])(49)

+ s

(
β − λ

2

)
(δbcEad + δadEcb)(u

s−1)

− (εab, εcd)λ

4

∑
p+q=s−1

S(Eab(u
p), Ecd(u

q))

+
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Eab, Eij ](u

p), [Eji, Ecd](u
q)
)
.

Remark 6.1. When s = 0, P0(X) = K(X) and the right-hand side equals
K([Eab, Ecd]).
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The following identities are essential for the proof of the previous propo-
sition, which is given below. They are generalizations of (18) and can be
obtained in the same way. As for (18), let γ be either a root and Xγ a cor-
responding root vector, or let γ = 0 and Xγ be interpreted as an element of
h. Then, for any roots β1, β2, we have:∑

α∈∆

[
S
(
[Xβ1

, Xα(up)], [X−α(uq), Xβ2
]
)
, Xγ

]
(50)

=
∑
α∈∆

S
([

[Xβ1
, Xγ ], Xα(up)

]
, [X−α(uq), Xβ2

]
)

+
∑
α∈∆

S
(

[Xβ1
, Xα(up)],

[
X−α(uq), [Xβ2

, Xγ ]
])

− (γ, β2)S
(
[Xβ1

, Xγ ](up), Xβ2
(uq)

)
− (γ, β1)S

(
Xβ1

(up), [Xβ2
, Xγ ](uq)

)
,∑

α∈∆

∑
p+q=s−1

[
S
(
[Xβ1

, Xα(up)], [X−α(uq), Xβ2
]
)
, Xγ(u)

]
(51)

=
∑
α∈∆

∑
p+q=s

(
S
([

[Xβ1
, Xγ ], Xα(up)

]
, [X−α(uq), Xβ2

]
)

+S
(

[Xβ1
, Xα(up)],

[
X−α(uq), [Xβ2

, Xγ ]
]))

−
∑
p+q=s

(
(γ, β2)S

(
[Xβ1

, Xγ ](up), Xβ2
(uq)

)
+ (γ, β1)S

(
Xβ1

(up), [Xβ2
, Xγ ](uq)

))
−
∑
α∈∆

(
S
([

[Xβ1
, Xα], Xγ

]
, [X−α, Xβ2

](us)
)

+S
(

[Xβ1
, Xα](us),

[
[X−α, Xβ2

], Xγ

]))
.

Proof of Proposition 6.1. Let’s start with relation (49) in the case when
a, b, c and d are all distinct. Applying [Q(Hcd), ·] to [K(Eab), Ecd(u

s−1)] and
using Lemma 5.1 along with (51) allow us to obtain, by induction on s,
the formula for [K(Eab), Ecd(u

s)]. The case when [Eab, Ecd] = 0 follows from
this. (For instance, if a, b, c are all distinct and d is chosen different from
a, b and c, then we have [K(Eab), Ecb(u

s)] =
[
[K(Eab), Ecd(u

s)], Edb
]

and
the right-hand side can be computed using (50).)

Step 1.1: The proof of the existence of Ps(X) is by induction on s, the
case s = 1 being given by the definition of Dλ,β(sln). Let s ≥ 2 and assume
that Ps−1(X) satisfying (49) is known to exists for all X ∈ sln and with the



i
i

“4-Guay” — 2017/12/12 — 22:40 — page 1344 — #38 i
i

i
i

i
i

1344 N. Guay and Y. Yang

property that the assignment X 7→ Ps−1(X) is linear and [Ps−1(X), X ′] =
Ps−1([X,X ′]) for any X ′ ∈ sln. Set

Ps(En1) = [K(En,n−1), En−1,1(us)]− s
(
β − λ

2

)
En1(us−1)(52)

− λ

4

∑
p+q=s−1

S(En,n−1(up), En−1,1(uq))

− λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[En,n−1, Eij ](u

p), [Eji, En−1,1](uq)
)
.

Consider the finite-dimensional U(sln)-submodule V of Dλ,β(sln) gener-
ated by Ps(En1) under the adjoint action of sln on Dλ,β(sln). Let us see why
Ps(En1) is a lowest weight vector. Ps(En1) is a weight vector since it is a
sum of weight vectors of the same weight εn − ε1. Suppose that e > f . Then
[Eef , Ps(En1)] = 0: this can be checked quickly using (50) if e and f are
both 6= n− 1. What is less clear is that [Eef , Ps(En1)] = 0 when e = n− 1
or f = n− 1. For instance, if e = n− 1 and f < n− 1, then

[En−1,f , Ps(En1)] = −[K(En,f ), En−1,1(us)]

+
λ

4

∑
p+q=s−1

S(Enf (up), En−1,1(uq))

+
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Enf , Eij ](u

p), [Eji, En−1,1](uq)
)

− λ

4
(1 + δf1)

∑
p+q=s−1

S(Enf (up), En−1,1(uq))

= 0.

Here, we used the expression (49) for [K(Enf ), En−1,1(us)] which was estab-
lished previously since [Enf , En−1,1] = 0. Similarly, [Eef , Ps(En1)] = 0 when
e = n and f = n− 1, so Ps(En1) is indeed a lowest weight vector.

Step 1.2: The next step is to check that ad(Ei,i+1)1−(εn1,αi)(Ps(En1)) = 0
for i = 1, 2, . . . , n− 1. When i 6= 1, n− 1, (εn1, αi) = 0, so we have to verify
that [Ei,i+1, Ps(En1)] = 0 in those cases. This is quite clear if i 6= n− 2 (and
i 6= 1, n− 1) using (50). If i = n− 2, we compute the following using again
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(50):

[En−2,n−1, Ps(En1)]

= [K(En,n−1), En−2,1(us)]− λ

4

∑
p+q=s−1

S(En,n−1(up), En−2,1(uq))

− λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[En,n−1, Eij ](u

p), [Eji, En−2,1](uq)
)

+
λ

4

∑
p+q=s−1

S(En,n−1(up), En−2,1(uq))

and the right-hand side vanishes as a consequence of relation (49) for
[K(En,n−1), En−2,1(us)], which was established earlier since [En,n−1, En−2,1]
= 0.

Step 1.3: We also want to check that

ad(E12)2(Ps(En1)) = 0 and ad(En−1,n)2(Ps(En1)) = 0.

We give the details in the second case. We start with:

[En−1,n, Ps(En1)]

= [K(Hn−1,n), En−1,1(us)]− s
(
β − λ

2

)
En−1,1(us−1)

− λ

4

∑
p+q=s−1

(
S(Hn−1,n(up), En−1,1(uq)) + S(Hn−1,n(up), En−1,1(uq))

)
− λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Hn−1,n, Eij ](u

p), [Eji, En−1,1](uq)
)
,

which follows from (50). Applying ad(En−1,n) again yields:[
En−1,n, [En−1,n, Ps(En1)]

]
= −2[K(En−1,n), En−1,1(us)] +

λ

2

∑
p+q=s−1

S(En−1,n(up), En−1,1(uq))

+
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[En−1,n, Eij ](u

p), [Eji, En−1,1](uq)
)

− λ

2

∑
p+q=s−1

S(En−1,n(up), En−1,1(uq))

− λ

2

∑
p+q=s−1

S(En−1,n(up), En−1,1(uq)).
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The right-hand side vanishes because of (49), which has been established
previously since [En−1,n, En−1,1] = 0.

Step 1.4: Once all this has been proved, we can conclude that the finite
dimensional U(sln)-submodule V of Dλ,β(sln) generated by Ps(En1) is iso-
morphic to the adjoint representation of sln on itself. This implies that if
X ∈ sln, then Ps(X) can be defined as the element in V corresponding to
X under the isomorphism V

∼−→ sln of sln-modules which sends Ps(En1) to
the lowest root vector En1.

Step 2.1: It remains to prove that Ps(X) satisfies the formula (49) for all
X ∈ sln. By definition, this is true when X = En1, Eab = En,n−1 and Ecd =
En−1,1. Relation (49) has also already been established when [Eab, Ecd] = 0.
It remains to check that it holds when b = c and a, b, d are all distinct, and
also when a = d and a, b, c are all distinct. For the first case, we employ an
idea that was used in section 2, namely start with formula (52) for Ps(En1)
and apply a sequence of operators si which sends En1 to ±Ead, En,n−1 to
±Eab and En−1,1 to ±Ebd.

To deal with the case a = d and a, b, c all distinct, we see that we only
need to show that (49) holds in one of these cases since then we can apply
the same argument involving the operators si as in the previous paragraph.

Step 2.2: By induction on s, using (49), we can assume that the following
identity holds in Dλ,β(sln):

[K(En−1,1), En,n−1(us−1)] + [K(En,n−1), En−1,1(us−1)]

= 2(s− 1)

(
β − λ

2

)
En1(us−2)

+
λ

2

∑
p+q=s−2

S(En,n−1(up), En−1,1(uq))

+
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−2

S
(
[En,n−1, Eij ](u

p), [Eji, En−1,1](uq)
)

Let us apply [Q(H12), ·] to both sides of the previous equality to obtain,
using (51):
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[
[Q(H12),K(En−1,1)], En,n−1(us−1)

]
+
[
[Q(H12),K(En,n−1)], En−1,1(us−1)

]
− [K(En,n−1), En−1,1(us)]

= −2(s− 1)

(
β − λ

2

)
En1(us−1)− λ

2

∑
p+q=s−2

S(En,n−1(up), En−1,1(uq+1))

− λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[En,n−1, Eij ](u

p), [Eji, En−1,1](uq)
)

− λ

2

∑
1≤i 6=j≤n

(
S
([
H12, [En,n−1, Eij ]

]
, [Eji, En−1,1](us−1)

)
+S
(

[En,n−1, Eij ](u
s−1),

[
H12, [Eji, En−1,1]

]))
.

We want to rewrite the left-hand side using the following consequence
of Lemma 5.1:

[K(En−1,1), Q(H12)] + [K(En−1,1), Q(Hn−1,2)]

=
λ

4

∑
1≤i 6=j≤n

S([En−1,1, Eij ], [Eji, H12 +Hn−1,2]) + 2

(
β − λ

2

)
En−1,1

Substituting this into the left-hand side of the previous expression and us-
ing the relation [Q(H12),K(En,n−1)] = λ

2

(
S(En1, E1,n−1)− S(En2, E2,n−1)

)
yields:

−
[
[Q(Hn−1,2),K(En−1,1)], En,n−1(us−1)

]
− [K(En,n−1), En−1,1(us)]

(53)

=
λ

4

∑
1≤i 6=j≤n

[
S([En−1,1, Eij ], [Eji, H12]) + S([En−1,1, Eij ],

[Eji, Hn−1,2]), En,n−1(us−1)
]

− λ

2

(
S(En1, H1,n−1(us−1))− S(En2, E21(us−1))

)
− 2s

(
β − λ

2

)
En1(us−1)− λ

2

∑
p+q=s−2

S(En,n−1(up), En−1,1(uq+1))

− λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[En,n−1, Eij ](u

p), [Eji, En−1,1](uq)
)
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− λ

2

∑
1≤i 6=j≤n

(
S
([
H12, [En,n−1, Eij ]

]
, [Eji, En−1,1](us−1)

)
+S
(

[En,n−1, Eij ](u
s−1),

[
H12, [Eji, En−1,1]

]))
.

Step 2.3: The left-hand side of the previous expression is equal to

− [K(En,n−1), En−1,1(us)]−
[
Q(Hn−1,2), [K(En−1,1), En,n−1(us−1)]

]
(54)

+
[
K(En−1,1), [Q(Hn−1,2), En,n−1(us−1)]

]
.

The last term is equal to −[K(En−1,1), En,n−1(us)], which is exactly (up to
a sign) what we want to determine. The first term was determined earlier
when we treated the case b = c and a, b, d all distinct, so (49) holds for it.
By induction on s, we can assume that relation (49) holds for [K(En−1,1),
En,n−1(us−1)], so the second term in (54) can be determined using (51):[

Q(Hn−1,2), [K(En−1,1), En,n−1(us−1)]
]

(55)

= −[Q(Hn−1,2), Ps−1(En1)] +
λ

4
S(En−1,1(us−1), En,n−1)

− λ

4
S(En−1,1, En,n−1(us−1))

+
λ

4

∑
i 6=j

( ∑
p+q=s−1

S
([

[Hn−1,2, En−1,1], Eij
]
(up), [Eji, En,n−1](uq)

)
− S

([
Hn−1,2, [En−1,1, Eij ]

]
, [Eji, En,n−1](us−1)

))

+
λ

4

∑
i 6=j

( ∑
p+q=s−1

S
(

[En−1,1, Eij ](u
p),
[
Eji, [Hn−1,2, En,n−1]

]
(uq)

)
− S

(
[En−1,1, Eij ](u

s−1),
[
Hn−1,2, [Eji, En,n−1]

]))
= −[Q(Hn−1,2), Ps−1(En1)] +

λ

4
S(En−1,1(us−1), En,n−1)

− λ

4
S(En−1,1, En,n−1(us−1))

− λ

4

∑
i 6=j

(
S
([
Hn−1,2, [En−1,1, Eij ]

]
, [Eji, En,n−1](us−1)

)
+ S

(
[En−1,1, Eij ](u

s−1),
[
Hn−1,2, [Eji, En,n−1]

]))
.
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[Q(Hn−1,2), Ps−1(En1)] can be determined because [Hn−1,2, En1] = 0. In-
deed, we can use Lemma 6.1 below (which we can assume holds by induction)
with a = n = d, b = 1 = c to obtain an expression for Ps−1(En1) and then
use this expression, along with (51), to compute [Q(Hn−1,2), Ps−1(En1)]:

[Q(Hn−1,2), Ps−1(En1)](56)

=
λ

4

(
S(En,n−1(us−1), En−1,1) + S(En,n−1, En−1,1(us−1))

− S(En2(us−1), E21)− S(En2, E21(us−1))
)

+
λ

8

∑
1≤i 6=j≤n

(
S
([
Hn−1,2, [En1, Eij ]

]
, [Eji, H1n](us−1)

)
+S
(

[En1, Eij ](u
s−1),

[
Hn−1,2, [Eji, H1n]

]))
Step 2.4: Substituting (56) into (55) and then substituting the resulting
expression into (54), we obtain an expression for the left-hand side of (53)
from which we can isolate [K(En−1,1), En,n−1(us)]. Relation (49) has already
been established for [K(En,n−1), En−1,1(us)]; using it and performing a few
elementary simplifications, we obtain:

[K(En−1,1), En,n−1(us)]

= −Ps(En1) + s

(
β − λ

2

)
En1(us−1)

+
λ

4

∑
p+q=s−1

S(En,n−1(up), En−1,1(uq))

+
λ

4

∑
i 6=j

∑
p+q=s−1

S
(
[En,n−1, Eij ](u

p), [Eji, En−1,1](uq)
)

+
λ

4

(
− S(En2(us−1), E21)− S(En2, E21(us−1))

)
+
λ

8

∑
1≤i 6=j≤n

(
S
([
Hn−1,2, [En1, Eij ]

]
, [Eji, H1n](us−1)

)
+ S

(
[En1, Eij ](u

s−1),
[
Hn−1,2, [Eji, H1n]

]))

+
λ

4

∑
i 6=j

(
S
([
Hn−1,2, [En−1,1, Eij ]

]
, [Eji, En,n−1](us−1)

)
+ S

(
[En−1,1, Eij ](u

s−1),
[
Hn−1,2, [Eji, En,n−1]

]))
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− λ

4

∑
1≤i 6=j≤n

[
S([En−1,1, Eij ], [Eji, H12 +Hn−1,2]), En,n−1(us−1)

]
+
λ

2

(
S(En1, H1,n−1(us−1))− S(En2, E21(us−1))

)
+
λ

2

∑
1≤i 6=j≤n

(
S
([
H12, [En,n−1, Eij ]

]
, [Eji, En−1,1](us−1)

)
+ S

(
[En,n−1, Eij ](u

s−1),
[
H12, [Eji, En−1,1]

]))
.

It can be checked that the previous long relation simplifies to:

[K(En−1,1), En,n−1(us)]

= −Ps(En1) + s

(
β − λ

2

)
En1(us−1)

+
λ

4

∑
p+q=s−1

S(En−1,1(up), En,n−1(uq))

+
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[En−1,1, Eij ](u

p), [Eji, En,n−1](uq)
)
.

This shows that (49) holds also for at least one case with a = d and a, b, c
all distinct. As mentioned earlier, this is enough to complete the proof. �

The identities that we proved in Section 5 still hold more generally in
type A and with only a slightly modified proof (using for instance (50)
instead of (18)), which we omit in this section. The following lemma is
parallel to Lemma 5.1.

Lemma 6.1. For any a 6= b and c 6= d, and for any s ≥ 0, the following
relations hold in Dλ,β(sln):

[K(Eab), Hcd(u
s)] = Ps([Eab, Hcd])

+
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Eab, Eij ](u

p), [Eji, Hcd](u
q)
)

+ s

(
β − λ

2

)
(εa + εb, εcd)Eab(u

s−1)
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and

[K(Hab), Ecd(u
s)] = Ps([Hab, Ecd])

+
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Hab, Eij ](u

p), [Eji, Ecd](u
q)
)

+ s

(
β − λ

2

)
(εab, εc + εd)Ecd(u

s−1).

6.2. Proof of Theorem 6.1

The elements Zab(s) and Z̃ab(s) (see (47) and (48)) can be expressed in a
different way (compare with Zab and Wab in (34) and (35)). Set

Wab(s) = [K(Eab), Eba(u
s)]− Ps(Hab)

− λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

S
(
[Eab, Eij ](u

p), [Eji, Eba](u
q)
)

− λ

2

∑
p+q=s−1

S(Eab(u
p), Eba(u

q)).

The next proposition is parallel to Proposition 5.1 and its proof is analogous.

Proposition 6.2. (i) For any 1 ≤ a 6= b ≤ n and 1 ≤ c 6= b ≤ n,

Zab,cd(s) = (εab, εcd)Wab(s) + s

(
β − λ

2

)
(εa + εb, εcd)Hab(u

s−1)

= (εab, εcd)Wcd(s) + s

(
β − λ

2

)
(εc + εd, εab)Hcd(u

s−1).

In particular, we have Zab(s) = 2Wab(s), and when a, b, c, d are dis-
tinct, Zab,cd(s) = 0.

(ii) For 1 ≤ a 6= b ≤ n and 1 ≤ c 6= d ≤ n,

Wab(s)−Wcd(s) = s

(
β − λ

2

)
(Hac +Hbd)(u

s−1).

(iii) For 1 ≤ a 6= b ≤ n and 1 ≤ c 6= d ≤ n,

Zab(s)− Zcd(s) = 2s

(
β − λ

2

)
(Hac +Hbd)(u

s−1).
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Lemma 6.2. For any s ≥ 1 and any λ, β ∈ C, the element Z(s) commutes
with the subalgebra U(sln[u]) of Dλ,β(sln).

Proof. It suffices to show that ∀X ∈ sln the commutator [Z(s), X] is 0
and [Z(s), Q(X ′)] = 0 for at least one non-zero element X ′ ∈ sln because
{X,Q(X ′) | X ∈ sln} is a set of generators for the image of U(sln[u]) −→
Dλ,β(sln).

Slightly modifying the proof of Theorem 5.1 and using Lemma 6.1, we
have, for any a 6= b and c 6= d,

[Zab(s), Ecd] = 2s

(
β − λ

2

)
(εab, εcd)(εab, εc + εd)Ecd(u

s−1).

Therefore,

[Z(s), Ei,i+1] = 2s

(
β − λ

2

) n∑
a=1

(εa,a+1, εi,i+1)(εa,a+1, εi + εi+1)Ei,i+1(us−1)

= 0,

and similarly [Z(s), Ei+1,i] = 0. Thus, Z(s) commutes with sln.
By our assumption that n ≥ 4, there exist 1 ≤ c, d ≤ n, such that a, b, c, d

are distinct. We claim that [Zab(s), Q(Hcd)] equals 0, soX ′ can be taken to be
Hcd. Indeed, by Proposition 6.2 (iii), we have Z(s)− nZab(s) ∈ h⊗C C[us−1].
Therefore,

[Z(s), Q(Hcd)] = n[Zab(s), Q(Hcd)] = 0.

We now show the claim that [Zab(s), Q(Hcd)] = 0 by direct calculations. On
the one hand,

[
[K(Hab), Hab(u

s)], Q(Hcd)
]

(57)

=
[
[K(Hab), Q(Hcd)], Hab(u

s)
]

=
λ

4

∑
1≤i 6=j≤n

(εab, εij)(εcd, εij)[S(Eij , Eji), Hab(u
s)]

since a, b, c, d are distinct, see Proposition 5.1 (i).

= −λ
2

∑
1≤i 6=j≤n

(εab, εij)
2(εcd, εij)S(Eij(u

s), Eji).
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On the other hand,∑
1≤i 6=j≤n

∑
p+q=s−1

[
S
(
[Hab, Eij ](u

p), [Eji, Hab](u
q)
)
, Q(Hcd)

]
(58)

=
∑

1≤i 6=j≤n

∑
p+q=s−1

(εab, εij)
2[S(Eij(u

p), Eji(u
q)), Q(Hcd)]

=
∑

1≤i 6=j≤n

∑
p+q=s−1

(εab, εij)
2(εcd, εij)

(
− S(Eij(u

p+1), Eji(u
q))

+ S(Eij(u
p), Eji(u

q+1))
)

= −2
∑

1≤i 6=j≤n
(εab, εij)

2(εcd, εij)S(Eij(u
s), Eji).

By the definition of the element Zab(s), we conclude from (57) and (58) that
[Zab(s), Q(Hcd)] = 0. �

In the remainder of this section, we compute the commutator [K(Hcd), Z(s)]
and deduce that [K(Hcd), Z(s)] = 0 if and only if nλ = ±4

(
β − λ

2

)
, which

implies, in light of the previous lemma, that Z(s) is in the center of Dλ,β(sln)
(see Theorem 6.1).

Lemma 6.3. Assume that a, b, c, d are distinct integers. For s ≥ 2, in
Dλ,β(sln), we have the relation:

[K(Hcd), Zab(s)]

= −
(
s

2

)
nλ2Hcd(u

s−2)

+ λs

(
β − λ

2

) ∑
p+q=s−2

(
− S(Eac(u

p), Eca(u
q)) + S(Ead(u

p), Eda(u
q))

− S(Ebc(u
p), Ecb(u

q)) + S(Ebd(u
p), Edb(u

q))
)
.

Proof. Step 1: On the one hand,[
K(Hcd), [K(Hab), Hab(u

s)]
]

=
[
K(Hab), [K(Hcd), Hab(u

s)]
]

=
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

[
K(Hab), S

(
[Hcd, Eij ](u

p), [Eji, Hab](u
q)
)]

by Proposition 6.2 (i);

=
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

(εcd, εij)(εab, εij)
[
K(Hab), S(Eij(u

p), Eji(u
q))
]
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=
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

(εcd, εij)(εab, εij)
(
S
(
[K(Hab), Eij(u

p)], Eji(u
q)
)

+ S
(
Eij(u

p), [K(Hab), Eji(u
q)]
))

=
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

(εcd, εij)(εab, εij)

× S

(
λ

4

∑
k 6=l

∑
e+f=p−1

S
(
[Hab, Ekl](u

e), [Elk, Eij ](u
f )
)

+ (εab, εij)Pp(Eij) + p

(
β − λ

2

)
(εab, εi + εj)Eij(u

p−1), Eji(u
q)

)
by Lemma 6.1;

=
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

(εcd, εij)(εab, εij)
2S(Pp(Eij), Eji(u

q))

+
λ2

8

∑
1≤i 6=j≤n

∑
p+q=s−1

∑
k 6=l

∑
e+f=p−1

(εcd, εij)(εab, εij)(εab, εkl)

× S
(
S
(
Ekl(u

e), [Elk, Eij ](u
f )
)
, Eji(u

q)
)

+
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

p

(
β − λ

2

)
(εab, εi + εj)(εcd, εij)(εab, εij)

× S
(
Eij(u

p−1), Eji(u
q)
)
.

On the other hand, using Lemma 6.1,[
K(Hcd),

λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

(εab, εij)
2S(Eij(u

p), Eji(u
q))

]

=
λ

4

∑
1≤i 6=j≤n

∑
p+q=s−1

(εab, εij)
2
(
S
(
[K(Hcd), Eij(u

p)], Eji(u
q)
)

+ S
(
Eij(u

p), [K(Hcd), Eji(u
q)]
))

=
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

(εab, εij)
2S

(
λ

4

∑
1≤k 6=l≤n
e+f=p−1

S
(
[Hcd, Ekl](u

e), [Elk, Eij ](u
f )
)

+ (εcd, εij)Pp(Eij) + p

(
β − λ

2

)
(εcd, εi + εj)Eij(u

p−1), Eji(u
q)

)
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=
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

(εab, εij)
2(εcd, εij)S(Pp(Eij), Eji(u

q))

+
λ2

8

∑
1≤i 6=j≤n

∑
p+q=s−1

∑
1≤k 6=l≤n

∑
e+f=p−1

(εab, εij)
2(εcd, εkl)

× S
(
S
(
Ekl(u

e), [Elk, Eij ](u
f )
)
, Eji(u

q)
)

+
λ

2

∑
1≤i6=j≤n
p+q=s−1

p

(
β − λ

2

)
(εcd, εi + εj)(εab, εij)

2S(Eij(u
p−1), Eji(u

q)).

Substituting the above computations into the formula (47) for Zab(s) and
cancelling out the obvious terms, we get:

[K(Hcd), Zab(s)]

=
λ2

8

∑
1≤i 6=j,k 6=l≤n

∑
e+f+q=s−2

(
(εcd, εij)(εab, εij)(εab, εkl)(59)

− (εab, εij)
2(εcd, εkl)

)
× S

(
S
(
Ekl(u

e), [Elk, Eij ](u
f )
)
, Eji(u

q)
)

+
λ

2

∑
1≤i 6=j≤n

∑
p+q=s−1

p

(
β − λ

2

)
(εab, εij)(60)

×
(
(εab, εi+εj)(εcd, εij)−(εcd, εi+εj)(εab, εij)

)
× S(Eij(u

p−1), Eji(u
q)).

Step 2: Let’s simplify the expression (59). It can be written in a more
general form as follows. (59) is equal to the following:

λ2

8

∑
e+f+q=s−2

∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
× S

(
S
(
Xβ(ue), [X−β, Xα](uf )

)
, X−α(uq)

)
,

where γ, γ′ ∈ h∗, and ∆ is the root system of a Lie algebra g with root vectors
{Xα | α ∈ ∆}. Let us simplify (59) using the following two observations.

Observation 1: Interchanging α↔ −β yields:∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
× S

(
S
(
Xβ(ue), [X−β, Xα](uf )

)
, X−α(uq)

)
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=
∑
α,β∈∆

(
(γ, β)(γ′, β)(γ, α)− (γ, β)2(γ′, α)

)
× S

(
S
(
X−α(ue), [X−β, Xα](uf )

)
, Xβ(uq)

)
.

Observation 2: Note that if α− β is not a root of the Lie algebra g, then
[X−β, Xα] is automatically zero. Therefore,

∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
× S

(
S
(
Xβ(ue), [X−β, Xα](uf )

)
, X−α(uq)

)
=

∑
{α,β∈∆ |α−β∈∆}

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
× S

(
S
(
Xβ(ue), [X−β, Xα](uf )

)
, X−α(uq)

)
=

∑
{α,α̃,β∈∆ |β−α=α̃}

(
(γ, β − α̃)(γ′, β − α̃)(γ, β)− (γ, β − α̃)2(γ′, β)

)
× S

(
S
(
Xβ(ue), [X−β, Xβ−α̃](uf )

)
, Xα̃−β(uq)

)
= −

∑
α̃,β∈∆

(
(γ, β)(γ′, β)(γ, α̃)− (γ, β)2(γ′, α̃)

)
× S

(
S(Xβ(ue), X−α̃(uf ), [X−β, Xα̃](uq)

)
−
∑
α̃,β∈∆

(
(γ, α̃)(γ′, α̃)(γ, β)− (γ, α̃)2(γ′, β)

)
× S

(
S(Xβ(ue), X−α̃(uf )), [X−β, Xα̃](uq)

)
.

For the above equality, we used the following computations. Assume
[X−β, Xα̃] = kXα̃−β and α̃ = β − α. Then

(Xα̃, [X−β, Xβ−α̃]) = ([Xα̃, X−β], Xβ−α̃) = −k(Xα̃−β, Xβ−α̃) = −k,

which gives us [X−β, Xβ−α̃] = −kX−α̃.
After splitting (59) into three identical expressions, then switching α↔

−β in the second one and applying the two observations above to the third
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expression, we obtain that 8
λ2 · (59) is equal to the following:

1

3

∑
e+f+q=s−2

∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
× S

(
S
(
Xβ(ue), [X−β, Xα](uf )

)
, X−α(uq)

)
+

1

3

∑
e+f+q=s−2

∑
α,β∈∆

(
(γ, β)(γ′, β)(γ, α)− (γ, β)2(γ′, α)

)
× S

(
S
(
X−α(ue), [X−β, Xα](uf )

)
, Xβ(uq)

)
− 1

3

∑
e+f+q=s−2

∑
α,β∈∆

(
(γ, β)(γ′, β)(γ, α)− (γ, β)2(γ′, α)

)
× S

(
S
(
Xβ(ue), X−α(uf )

)
, [X−β, Xα](uq)

)
− 1

3

∑
e+f+q=s−2

∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
× S

(
S
(
Xβ(ue), X−α(uf )

)
, [X−β, Xα](uq)

)
=

1

3

(
s

2

) ∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
×
[
Xβ,

[
[X−β, Xα], X−α

]]
(us−2)

+
1

3

(
s

2

) ∑
α,β∈∆

(
(γ, β)(γ′, β)(γ, α)− (γ, β)2(γ′, α)

)
×
[
X−α,

[
[X−β, Xα], Xβ

]]
(us−2)

= −2

3

(
s

2

) ∑
α,β∈∆

(
(γ, α)(γ′, α)(γ, β)− (γ, α)2(γ′, β)

)
×
(
[Xβ, X−α], [X−β, Xα]

)
Hβ(us−2)

where the second equality uses the fact

S
(
S(A,B), C

)
− S

(
S(A,C), B

)
=
[
A, [B,C]

]
,

and
(
s
2

)
appears as the cardinality of the set {(e, f, q) ∈ N3 | e+ f + q =

s− 2}.
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Now specialize γ to εab, γ
′ to εcd, α to εij and β to εkl; by direct com-

putations, we obtain:

∑
1≤i 6=j,k 6=l≤n

(
(εab, εij)(εcd, εij)(εab, εkl)− (εab, εij)

2(εcd, εkl)
)

×
(
[Ekl, Eji], [Elk, Eij ]

)
Hkl

= 12nHcd.

Thus,

(61) (59) = −λ
2

8

2

3

(
s

2

)
12nHcd(u

s−2) = −
(
s

2

)
nλ2Hcd(u

s−2).

Step 3: We move on to computing the term (60). Under the assumption
that a, b, c, d are all distinct and i 6= j, we can compute the constants which
appear in (60) by using the basic rule (εa, εi) = δai:

(εab, εi + εj)(εcd, εij)(εab, εij)

= −δaiδcj + δaiδdj − δajδci + δajδdi − δbiδcj + δbiδdj − δbjδci + δbjδdi

= −(εcd, εi + εj)(εab, εij)
2.

Substituting this into the expression (60), we obtain that (60) is equal to

λ
∑

1≤i 6=j≤n

∑
p+q=s−1

p

(
β − λ

2

)(
− δaiδcj + δaiδdj − δajδci

(62)

+ δajδdi − δbiδcj + δbiδdj − δbjδci + δbjδdi

)
S
(
Eij(u

p−1), Eji(u
q)
)

= λ
∑

p+q=s−1

p

(
β − λ

2

)(
− S

(
Eac(u

p−1), Eca(u
q)
)

+ S
(
Ead(u

p−1), Eda(u
q)
)

− S
(
Eca(u

p−1), Eac(u
q)
)

+ S
(
Eda(u

p−1), Ead(u
q)
)
− S

(
Ebc(u

p−1), Ecb(u
q)
)

+ S
(
Ebd(u

p−1), Edb(u
q)
)
− S

(
Ecb(u

p−1), Ebc(u
q)
)

+ S
(
Edb(u

p−1), Ebd(u
q)
))
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= λ
∑

p+q=s−2

(p+ 1)

(
β − λ

2

)(
− S

(
Eac(u

p), Eca(u
q)
)

+ S
(
Ead(u

p), Eda(u
q)
)
− S

(
Ebc(u

p), Ecb(u
q)
)

+ S
(
Ebd(u

p), Edb(u
q)
))

+ λ
∑

p+q=s−2

(q + 1)

(
β − λ

2

)(
− S

(
Eac(u

q), Eca(u
p)
)

+ S
(
Ead(u

q), Eda(u
p)
)
− S

(
Ebc(u

q), Ecb(u
p)
)

+ S
(
Ebd(u

q), Edb(u
p)
))

= λs

(
β − λ

2

) ∑
p+q=s−2

(
− S

(
Eac(u

p), Eca(u
q)
)

+ S
(
Ead(u

p), Eda(u
q)
)

− S
(
Ebc(u

p), Ecb(u
q)
)

+ S
(
Ebd(u

p), Edb(u
q)
))
.

Step 4: We can combine the results of steps 2 and 3 to complete the proof
of the Lemma 6.3:

[K(Hcd), Zab(s)] = (59) + (60)

= −
(
s

2

)
nλ2Hcd(u

s−2)

+ λs

(
β − λ

2

) ∑
p+q=s−2

(
− S

(
Eac(u

p), Eca(u
q)
)

+ S
(
Ead(u

p), Eda(u
q)
)

− S
(
Ebc(u

p), Ecb(u
q)
)

+ S
(
Ebd(u

p), Edb(u
q)
))

by (61) and (62).

�

The main theorem of this section relies on the following proposition.

Proposition 6.3. Assume n ≥ 4, s ∈ N and s ≥ 2. For any X ∈ sln, in
the algebra Dλ,β(sln), we have

[K(X), Z(s)] =

(
16

(
β − λ

2

)2

− n2λ2

)
·
(
s

2

)
·X(us−2).

As a consequence, we conclude that

[K(X), Z(s)] = 0⇐⇒ n2λ2 = 16

(
β − λ

2

)2

⇐⇒ nλ = 4

(
β − λ

2

)
or nλ = −4

(
β − λ

2

)
,
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which completes the proof that Z(s) is in the center of Dλ,β(sln) (see The-
orem 6.1).

Proof. By Proposition 6.2, we have:

Z(s) =

n∑
a=1

Za,a+1(s)(63)

= nZ12(s) + 2s

(
β − λ

2

) n∑
a=1

(Ha1 +Ha,2)(us−1).

By the same proposition, we also have:

n∑
a=3

(Z34,a1(s− 1) + Z34,a2(s− 1))

=

n∑
a=3

(ε3 − ε4, εa − ε1)W34(s− 1)

+ (s− 1)

(
β − λ

2

)
(ε3 + ε4, εa − ε1)H34(us−2)

+

n∑
a=3

(ε3 − ε4, εa − ε2)W34(s− 1)

+ (s− 1)

(
β − λ

2

)
(ε3 + ε4, εa − ε2)H34(us−2)

= 4(s− 1)

(
β − λ

2

)
H34(us−2),

which is equivalent to the identity

[
K(H34),

n∑
a=1

(Ha1 +Ha2)(us−1)

]
(64)

=
λ

4

∑
i 6=j

∑
p+q=s−2

S

(
[H34, Eij ](u

p),

[
Eji,

n∑
a=1

(Ha1 +Ha2)

]
(uq)

)

+ 4

(
β − λ

2

)
(s− 1)H34(us−2).
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Substituting (63) into the commutator [K(H34), Z(s)], we obtain:

[K(H34), Z(s)]

= n[K(H34), Z12(s)] + 2s

(
β − λ

2

)
λ

4

×
∑
i 6=j

∑
p+q=s−2

S

(
[H34, Eij ](u

p),

[
Eji,

n∑
a=1

(Ha1+Ha2)

]
(uq)

)

+ 8s

(
β − λ

2

)2

(s− 1)H34(us−2) by (64)

= n[K(H34), Z12(s)]

+ s

(
β − λ

2

)
λ

2

∑
i 6=j

∑
p+q=s−2

(ε3 − ε4, εij)

(
2

n∑
a=1

εa − nε1 − nε2, εij

)

× S(Eij(u
p), Eji(u

q)) + 8s

(
β − λ

2

)2

(s− 1)H34(us−2)

= n[K(H34), Z12(s)] + 8s

(
β − λ

2

)2

(s− 1)H34(us−2)

− sn
(
β − λ

2

)
λ

2

∑
i 6=j

∑
p+q=s−2

(δ3i − δ3j − δ4i + δ4j)

× (δ1i − δ1j + δ2i − δ2j)S(Eij(u
p), Eji(u

q))

= −
(
s

2

)
n2λ2H34(us−2) + 8s

(
β − λ

2

)2

(s− 1)H34(us−2)

+ nλs

(
β − λ

2

) ∑
p+q=s−2

(
− S

(
E13(up), E31(uq)

)
+ S

(
E14(up), E41(uq)

)
− S

(
E23(up), E32(uq)

)
+ S

(
E24(up), E42(uq)

))
by Lemma 6.3

− sn
(
β − λ

2

)
λ

2

∑
p+q=s−2

(
− S(E31(up), E13(uq))− S(E32(up), E23(uq))

− S(E13(up), E31(uq))− S(E23(up), E32(uq))

+ S(E41(up), E14(uq)) + S(E42(up), E24(uq))

+ S(E14(up), E41(uq)) + S(E24(up), E42(uq))
)

=

(
16

(
β − λ

2

)2

− n2λ2

)(
s

2

)
H34(us−2).
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We have shown that Z(s) commutes with X for any X ∈ sln (see Lemma
6.2). Using [K(X), Y ] = K([X,Y ]), it follows that, for any X ∈ sln,

[K(X), Z(s)] =

(
16

(
β − λ

2

)2

− n2λ2

)(
s

2

)
X(us−2).

�

Proof of Theorem 6.1. In the preceding pages, we have shown that the el-
ements Z(s) are all in the center of Dλ,β(sln). The proof that Z̃(s) is
central is similar. To complete the proof of Theorem 6.1, we have to see
why they generate a subalgebra isomorphic to a polynomial ring in in-
finitely many variables. This is a consequence of the PBW Theorem for
Dλ,β(sln) established in [10] which states that the associated graded ring

of Dλ,β(sln) is isomorphic to the enveloping algebra of ̂sln[u, v], the uni-

versal central extension of sln[u, v]. The center of ̂sln[u, v] is known to be

isomorphic to Ω1(C[u, v])/dC[u, v] (see [15]) and, as vector spaces, ̂sln[u, v] ∼=
sln[u, v]⊕ Ω1(C[u, v])/dC[u, v]. The associated graded ring gr(Dλ,β(sln)) is
obtained from the filtration F• on Dλ,β(sln) that assigns degree 1 to Q(X)
and degree 0 to X and K(X) for all X ∈ sln. (Under the isomorphism of
Theorem 2.1, the corresponding filtration on D(g) is given by assigning de-
gree r to X±i,r and Hi,r for r = 0, 1.) The central element Z(s) has filtration

degree s, so Z(s) is an element of Fs/Fs−1 which, under the isomorphism

between the center of ̂sln[u, v] and Ω1(C[u, v])/dC[u, v], corresponds to the
central element given by 2nvus−1du. The elements vus−1du for s ≥ 1 are all
linearly independent in Ω1(C[u, v])/dC[u, v] and are all algebraically inde-

pendent in U( ̂sln[u, v]) ∼= grF•(Dλ,β(sln)). Therefore, the elements Z(s) for
s ≥ 1 must be algebraically independent in Dλ,β(sln). �

Appendix A.

A.1. Computations for the proof of Lemma 5.2

Here is an alternate version of Lemma 5.2.

Lemma A.1. Set S(x, y, z) = S(S(x, y), z) + S(S(x, z), y) + S(S(y, z), x).
Assuming that i 6= j, we have:
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[νi, νj ] = − 1

48

n∑
k=1

(
S(Eki, Ei,j+1, Ej+1,k)− S(Eik, Ek,j+1, Ej+1,i)

− S(Ek,i+1, Ei+1,j+1, Ej+1,k) + S(Ei+1,k, Ek,j+1, Ej+1,i+1)

− S(Eki, Eij , Ejk) + S(Eik, Ekj , Eji)

+ S(Ek,i+1, Ei+1,j , Ejk)− S(Ei+1,k, Ekj , Ej,i+1)
)
.

Note that in the case j = i+ 1, the last two terms cancel, so

[νi, νi+1] = − 1

48

n∑
k=1

(
S(Eki, Ei,i+2, Ei+2,k)− S(Eik, Ek,i+2, Ei+2,i)

− S(Ek,i+1, Ei+1,i+2, Ei+2,k) + S(Ei+1,k, Ek,i+2, Ei+2,i+1)

− S(Eki, Ei,i+1, Ei+1,k) + S(Eik, Ek,i+1, Ei+1,i).
)

Proof. We know that

−[νi, νj ] =
∑
a,b,c

(
[Hi, xa],

[
[X+

j , xb], [X
−
j , xc]

])
{xa, xb, xc}.

As dual bases of sln, we choose {Eij , Hk | 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n− 1} and

{Eji, H∗k | 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n− 1} with H∗k =
∑k

i=1Eii −
k
n

∑n
i=1Eii.

We now compute the right-hand side as follows:

(
[Hi, xa],

[
[X+

j , xb], [X
−
j , xc]

])
{xa, xb, xc}

=
∑
k 6=l

∑
p6=q

∑
s 6=t

(
[Hi, Ekl],

[
[Ej,j+1, Epq], [Ej+1,j , Est]

])
{Elk, Eqp, Ets}

+
∑
k 6=l

∑
m

∑
s 6=t

(
[Hi, Ekl],

[
[Ej,j+1, H

∗
m], [Ej+1,j , Est]

])
{Elk, Hm, Ets}

+
∑
k 6=l

∑
p6=q

∑
m

(
[Hi, Ekl],

[
[Ej,j+1, Epq], [Ej+1,j , H

∗
m]
])
{Elk, Eqp, Hm}
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=
∑
k 6=l

∑
p 6=q

∑
s 6=t

(
[Hi, Ekl],

[
[Ej,j+1, Epq], [Ej+1,j , Est]

])
{Elk, Eqp, Ets}

+
∑
k 6=l

∑
m

(
[Hi, Ekl],

[
[Ej,j+1, H

∗
m], [Ej+1,j , Elk]

])
{Elk, Hm, Ekl}

+
∑
k 6=l

∑
m

(
[Hi, Ekl],

[
[Ej,j+1, Elk], [Ej+1,j , H

∗
m]
])
{Elk, Ekl, Hm}

=
∑
k 6=l

∑
p 6=q

∑
s 6=t

(
[Hi, Ekl],

[
[Ej,j+1, Epq], [Ej+1,j , Est]

])
{Elk, Eqp, Ets}.

Now under the assumption that i 6= j, we obtain:∑
k 6=l

∑
p6=q

∑
s 6=t

(
[Hi, Ekl],

[
[Ej,j+1, Epq], [Ej+1,j , Est]

])
{Elk, Eqp, Ets}

=
∑

k 6=l,p 6=q,s6=t

(
(εi − εi+1, εk − εl)Ekl,

[δj+1,pEjq − δjqEp,j+1, δjsEj+1,t − δj+1,tEsj ]
)
{Elk, Eqp, Ets}

=
∑

k 6=l,p6=q,s6=t

(
(δik − δil − δi+1,k + δi+1,l)Ekl,(
δj+1,pδjs[Ejq, Ej+1,t]− δj+1,pδj+1,t[Ejq, Esj ]

− δjqδjs[Ep,j+1, Ej+1,t] + δjqδj+1,t[Ep,j+1, Esj ]
))
{Elk, Eqp, Ets}

=
∑

k 6=l,p6=q,s6=t

(
(δik − δil − δi+1,k + δi+1,l)Ekl,

(
δj+1,pδjs(δq,j+1Ejt − δtjEj+1,q)

− δj+1,pδj+1,t(δqsEjj − Esq)− δjqδjs(Ept − δptEj+1,j+1)

+ δjqδj+1,t(δj+1,sEpj − δpjEs,j+1)
))
{Elk, Eqp, Ets}

=
∑

k 6=l,p6=q,s6=t

(
(δik − δil − δi+1,k + δi+1,l)Ekl, δj+1,pδjsδq,j+1Ejt

− δj+1,pδjsδtjEj+1,q + δj+1,pδj+1,tEsq − δjqδjsEpt

+ δjqδj+1,tδj+1,sEpj − δjqδj+1,tδpjEs,j+1

)
{Elk, Eqp, Ets}

=
∑

k 6=l,p6=q,s6=t

(
(δik − δil − δi+1,k + δi+1,l)Ekl, δj+1,pδj+1,tEsq − δjqδjsEpt

)
× {Elk, Eqp, Ets}
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=
∑

k 6=l,p 6=q
s 6=t

(
(δik − δil − δi+1,k + δi+1,l)δj+1,pδj+1,tδlsδkq

− (δik − δil − δi+1,k + δi+1,l)δjqδjsδlpδkt

)
{Elk, Eqp, Ets}

=

n∑
l=1

l 6=i,j+1

{Eli, Ei,j+1, Ej+1,l} −
n∑
k=1

k 6=i,j+1

{Eik, Ek,j+1, Ej+1,i}

−
n∑
l=1

l 6=i+1,j+1

{El,i+1, Ei+1,j+1, Ej+1,l}

+

n∑
k=1

k 6=i+1,j+1

{Ei+1,k, Ek,j+1, Ej+1,i+1}

−
n∑
l=1

l 6=i,j

{Eli, Eij , Ejl}+

n∑
k=1

k 6=i,j

{Eik, Ekj , Eji}

+

n∑
l=1

l 6=i+1,j

{El,i+1, Ei+1,j , Ejl} −
n∑
k=1

k 6=i+1,j

{Ei+1,k, Ekj , Ej,i+1}

=

n∑
l=1

{Eli, Ei,j+1, Ej+1,l} −
n∑
k=1

{Eik, Ek,j+1, Ej+1,i}

−
n∑
l=1

{El,i+1, Ei+1,j+1, Ej+1,l}+

n∑
k=1

{Ei+1,k, Ek,j+1, Ej+1,i+1}

−
n∑
l=1

{Eli, Eij , Ejl}+

n∑
k=1

{Eik, Ekj , Eji}

+

n∑
l=1

{El,i+1, Ei+1,j , Ejl} −
n∑
k=1

{Ei+1,k, Ekj , Ej,i+1}.

Denote by S(x, y, z) the sum S(S(x, y), z) + (S(x, z), y) + S(S(y, z), x).
We then have the equality:

1

48
S(z1, z2, z3) =

1

24

∑
σ∈S3

zσ(1)zσ(2)zσ(3) = {z1, z2, z3}.
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Therefore,

[νi, νj ] = − 1

48

n∑
k=1

(
S(Eki, Ei,j+1, Ej+1,k)− S(Eik, Ek,j+1, Ej+1,i)

− S(Ek,i+1, Ei+1,j+1, Ej+1,k) + S(Ei+1,k, Ek,j+1, Ej+1,i+1)

− S(Eki, Eij , Ejk) + S(Eik, Ekj , Eji)

+ S(Ek,i+1, Ei+1,j , Ejk)− S(Ei+1,k, Ekj , Ej,i+1)
)
.

�

A.2. Computations for Lemma 5.3

To continue the computations that were started in (43) for [P (Hi+1,i+2),
K(Ei+1,i+2)], let us determine [P (Hik),K(Ei+1,i+2)] (in Step 1), and then[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
,
[
Ek,i+1, [P (Ei+1,k),K(Ei+1,i+2)]

]
(in Step 2),

[K(Ei,i+2), Ri+1,i+2,i+2,i] (in Step 3) and [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)] (in
Step 4).

Step 1: To obtain the formula for [P (Hik),K(Ei+1,i+2)], recall from the
proof of Theorem 5.1 that [Wik,K(Ei+1,i+2)] = 0 because i, k, i+ 1, i+ 2
are all distinct.

[P (Hik),K(Ei+1,i+2)]

= [W̃ik + [K(Eik), Q(Eki)]−Wik,K(Ei+1,i+2)]

= [W̃ik,K(Ei+1,i+2)] +
[
K(Eik), [Q(Eki),K(Ei+1,i+2)]

]
= [W̃ik,K(Ei+1,i+2)] +

λ

2
[K(Eik), S(Ei+1,i, Ek,i+2)]

=
λ

4

(
S(K(Ei+1,i), Ei,i+2)− S(K(Ei+1,k), Ek,i+2)

+ S(Ei+1,i,K(Ei,i+2))− S(Ei+1,k,K(Ek,i+2))
)
.

Step 2: Applying [−, Eik] to the conclusion of Step 1 and reordering the
indices, we have

[K(Ek,i+2), P (Ei+1,i)] = −λ
4

(
S(K(Eki), Ei+1,i+2) + S(K(Ei+1,i+2), Eki

)
[
Eik, [K(Ek,i+2), P (Ei+1,i)]

]
= −λ

4

(
S(K(Hik), Ei+1,i+2)

+ S(K(Ei+1,i+2), Hik)
)
.
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Applying [−, Ei+1,k] to the conclusion of Step 1, we have

[P (Ei+1,k),K(Ei+1,i+2)]
]

=
λ

4

(
S(K(Ei+1,k), Ei+1,i+2) + S(K(Ei+1,i+2), Ei+1,k)

)
so [

Ek,i+1, [P (Ei+1,k),K(Ei+1,i+2)]
]

=
λ

4

(
S(K(Hk,i+1), Ei+1,i+2) + S(K(Ei+1,k), Ek,i+2)

+ S(K(Ek,i+2), Ei+1,k) + S(K(Ei+1,i+2), Hk,i+1)
)
.

Step 3: We now compute [K(Ei,i+2), Ri+1,i+2,i+2,i]. Recall that:

Ri+1,i+2,i+2,i = −
(
β − λ

2

)
Ei+1,i(A.1)

− λ

4

 n∑
q=1

S(Ei+1,q, Eqi)− 2S(Ei+1,i, Ei+2,i+2)

 .

Thus,

[K(Ei,i+2), Ri+1,i+2,i+2,i]

(A.2)

=

[(
β − λ

2

)
Ei+1,i +

λ

4

 n∑
q=1

S(Ei+1,q, Eqi)− 2S(Ei+1,i, Ei+2,i+2)

 ,K(Ei,i+2)

]

=

(
β − λ

2

)
K(Ei+1,i+2) +

λ

4

(
n∑
q=1

S(K(Eq,i+2), Ei+1,q) + S(K(Ei+1,i+2), Eii)

− S(K(Eii), Ei+1,i+2)− 2
(
S(K(Ei+1,i+2), Ei+2,i+2)− S(K(Ei,i+2), Ei+1,i)

))
.

Step 4: We now compute [Wi,i+2,K(Ei+1,i+2)]. By Proposition 5.1, we have

Wi,i+2 =
1

2
Zi,i+2 =

1

2
Zik +

(
β − λ

2

)
Hi+2,k.
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Therefore,

[Wi,i+2,K(Ei+1,i+2)] =

[
1

2
Zik +

(
β − λ

2

)
Hi+2,k,K(Ei+1,i+2)

]
(A.3)

= −
(
β − λ

2

)
K(Ei+1,i+2).

Let us turn our attention to [W̃i,i+2,K(Ei+1,i+2)]:

[W̃i,i+2,K(Ei+1,i+2)](A.4)

= − λ

4

[
n∑
p=1

S(Eip, Ep,i) +

n∑
p=1

S(Ei+2,p, Ep,i+2)

− 2S(Eii, Ei+2,i+2),K(Ei+1,i+2)

]

= − λ

4

(
S(K(Ei,i+2), Ei+1,i)− S(K(Ei+1,i), Ei,i+2)

+ S(K(Ei+2,i+2), Ei+1,i+2)− S(K(Ei+1,i+2), Ei+2,i+2)

−
n∑
p=1

S(K(Ei+1,p), Ep,i+2) + 2S(K(Ei+1,i+2), Eii)

)
.

Step 5: Let us now simplify

[K(Ei,i+2), Ri+1,i+2,i+2,i] + [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)]

using (A.2), (A.3) and (A.4):

[K(Ei,i+2), Ri+1,i+2,i+2,i] + [W̃i,i+2 −Wi,i+2,K(Ei+1,i+2)]

= 2

(
β − λ

2

)
K(Ei+1,i+2) +

λ

4

(
n∑
q=1

S(K(Eq,i+2), Ei+1,q)

+ S(K(Ei+1,i+2), Eii)− S(K(Ei,i), Ei+1,i+2)

− 2
(
S(K(Ei+1,i+2), Ei+2,i+2)− S(K(Ei,i+2), Ei+1,i)

))
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− λ

4

(
S(K(Ei,i+2), Ei+1,i)− S(K(Ei+1,i), Ei,i+2)

+ S(K(Ei+2,i+2), Ei+1,i+2)− S(K(Ei+1,i+2), Ei+2,i+2)

−
n∑
p=1

S(K(Ei+1,p), Ep,i+2) + 2S(K(Ei+1,i+2), Eii)

)

= 2

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

4

(
n∑
q=1

S(K(Eq,i+2), Ei+1,q) +

n∑
p=1

S(K(Ei+1,p), Ep,i+2)

− S(K(Ei+1,i+2), Eii)− S(K(Ei,i), Ei+1,i+2)

− S(K(Ei+1,i+2), Ei+2,i+2) + S(K(Ei,i+2), Ei+1,i)

+ S(K(Ei+1,i), Ei,i+2)− S(K(Ei+2,i+2), Ei+1,i+2)

)

Step 6: The expressions above implies that the right-hand side of (43) can
be expanded and then simplified in the following way:

[P (Hi+1,i+2),K(Ei+1,i+2)]

= − 2[P (Hi),K(Ei+1,i+2)] + 2

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

4

(
S(K(Ei+1,i), Ei,i+2)− S(K(Ei+1,k), Ek,i+2)

+ S(Ei+1,i,K(Ei,i+2))− S(Ei+1,k,K(Ek,i+2))

+ S(K(Hi,i+1), Ei+1,i+2) + S(K(Ei+1,k), Ek,i+2)

+ S(K(Ek,i+2), Ei+1,k) + S(K(Ei+1,i+2), Hi,i+1)

+

n∑
q=1

S(K(Eq,i+2), Ei+1,q) +

n∑
p=1

S(K(Ei+1,p), Ep,i+2)

− S(K(Ei+1,i+2), Eii)− S(K(Ei,i), Ei+1,i+2)

− S(K(Ei+1,i+2), Ei+2,i+2) + S(K(Ei,i+2), Ei+1,i)

+ S(K(Ei+1,i), Ei,i+2)− S(K(Ei+2,i+2), Ei+1,i+2)

)
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= − 2[P (Hi),K(Ei+1,i+2)] + 2

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

4

(
S(K(Ei+1,i), Ei,i+2) + S(Ei+1,i,K(Ei,i+2))

+ S(K(Hi,i+1), Ei+1,i+2) + S(K(Ei+1,i+2), Hi,i+1)

+

n∑
q=1

S(K(Eq,i+2), Ei+1,q) +

n∑
p=1

S(K(Ei+1,p), Ep,i+2)

− S(K(Ei+1,i+2), Eii)− S(K(Eii), Ei+1,i+2)

− S(K(Ei+1,i+2), Ei+2,i+2) + S(K(Ei,i+2), Ei+1,i)

+ S(K(Ei+1,i), Ei,i+2)− S(K(Ei+2,i+2), Ei+1,i+2)

)

= − 2[P (Hi),K(Ei+1,i+2)] + 2

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

4

(
2S(K(Ei+1,i), Ei,i+2) + 2S(Ei+1,i,K(Ei,i+2))

+ S(K(−Ei+1,i+1 − Ei+2,i+2), Ei+1,i+2)

+ S(K(Ei+1,i+2),−Ei+1,i+1 − Ei+2,i+2)
)

+
λ

4

n∑
p=1

(S(K(Ep,i+2), Ei+1,p) + S(K(Ei+1,p), Ep,i+2))

= − 2[P (Hi),K(Ei+1,i+2)] + 2

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

2

(
S(K(Ei+1,i), Ei,i+2) + S(Ei+1,i,K(Ei,i+2))

)
+
λ

4

n∑
p=1

p6=i+1,i+2

(
S(K(Ep,i+2), Ei+1,p) + S(K(Ei+1,p), Ep,i+2)

)

Lemma 5.3 follows directly from this last expression.

A.3. Detailed proof of Lemma 5.4, Case 1

Step 1: The first term on the right-hand side of (44) is:
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[
[K(X+

i ), P (X+
j )], Q(Hi)

]
= − λ

4
[S(K(Ei,j+1), Ej,i+1) + S(K(Ej,i+1), Ei,j+1), Q(Hi)]

= − λ

4

(
S([K(Ei,j+1), Q(Hi)], Ej,i+1)− S(K(Ei,j+1), Q(Ej,i+1))

+ S([K(Ej,i+1), Q(Hi)], Ei,j+1)− S(K(Ej,i+1), Q(Ei,j+1))
)

The second term on the right-hand side of (44) is:

[
K(X+

i ), [Q(Hi), P (X+
j )]
]

=
[
K(X+

i ),
[
[Q(X+

i ), P (X+
j )], X−i

]]
=
λ

4

[
K(X+

i ), [S(Q(Ei,j+1), Ej,i+1) + S(Q(Ej,i+1), Ei,j+1), Ei+1,i

]]
=
λ

4

[
K(X+

i ),−S(Q(Ei+1,j+1), Ej,i+1) + S(Q(Ei,j+1), Eji)

+ S(Q(Eji), Ei,j+1)− S(Q(Ej,i+1), Ei+1,j+1)
]

=
λ

4

(
− S

(
[K(X+

i ), Q(Ei+1,j+1)], Ej,i+1

)
+ S

(
[K(X+

i ), Q(Ei,j+1)], Ej,i
)

− S(Q(Ei,j+1),K(Ej,i+1)) + S
(
[K(X+

i ), Q(Ej,i)], Ei,j+1

)
− S

(
[K(X+

i ), Q(Ej,i+1)], Ei+1,j+1

)
− S(Q(Ej,i+1),K(Ei,j+1)

)

Step 2: The sum of the first and the second terms on the right-hand side
of (44) is:

[
[K(X+

i ), P (X+
j )], Q(Hi)] + [K(X+

i ), [Q(Hi), P (X+
j )]
]

(A.5)

=
λ

4

(
− S([K(Ei,j+1), Q(Hi)], Ej,i+1) + S(K(Ei,j+1), Q(Ej,i+1))

− S([K(Ej,i+1), Q(Hi)], Ei,j+1) + S(K(Ej,i+1), Q(Ei,j+1))

− S([K(X+
i ), Q(Ei+1,j+1)], Ej,i+1) + S([K(X+

i ), Q(Ei,j+1)], Eji)

− S(Q(Ei,j+1),K(Ej,i+1)) + S([K(X+
i ), Q(Eji)], Ei,j+1)

− S([K(X+
i ), Q(Ej,i+1)], Ei+1,j+1)− S(Q(Ej,i+1),K(Ei,j+1))

)
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=
λ

4

(
− S([K(Ei,j+1), Q(Hi)], Ej,i+1)− S([K(X+

i ), Q(Ei+1,j+1)], Ej,i+1)
)

+
λ

4

(
− S([K(Ej,i+1), Q(Hi)], Ei,j+1) + S([K(X+

i ), Q(Eji)], Ei,j+1)
)

+
λ

4

(
+ S([K(X+

i ), Q(Ei,j+1)], Eji)− S([K(X+
i ), Q(Ej,i+1)], Ei+1,j+1)

)
.

We need the following relations (the first and the third equation follows from
Lemma 5.1, the rest are the defining relations):

[K(Ei,j+1), Q(Hi)] = −P (Ei,j+1) +

(
β − λ

2

)
Ei,j+1

+
λ

4

(
n∑
k=1

S(Ek,j+1, Eik)− 2S(Ei,j+1, Eii) + 2S(Ei,i+1, Ei+1,j+1)

)

[K(X+
i ), Q(Ei+1,j+1)] = P (Ei,j+1) +

(
β − λ

2

)
Ei,j+1

+
λ

4

(
n∑
l=1

S(Eil, El,j+1)− 2S(Ei,j+1, Ei+1,i+1)

)

[K(Ej,i+1), Q(Hi)] = −P (Ej,i+1)−
(
β − λ

2

)
Ej,i+1

+
λ

4

(
−

n∑
l=1

S(Ejl, El,i+1) + 2S(Ej,i+1, Ei+1,i+1)− 2S(Eji, Ei,i+1)

)

[K(X+
i ), Q(Ej,i)] = −P (Ej,i+1) +

(
β − λ

2

)
Ej,i+1

+
λ

4

(
−2S(Eii, Ej,i+1) +

n∑
k=1

S(Ek,i+1, Ejk)

)

[K(X+
i ), Q(Ei,j+1)] = −λ

2
S(Ei,j+1, Ei,i+1),

[K(X+
i ), Q(Ej,i+1)] = −λ

2
S(Ei,i+1, Ej,i+1)

Using these and (A.5), we get a formula for the sum of the first and the
second term on the right-hand side of (44):



i
i

“4-Guay” — 2017/12/12 — 22:40 — page 1373 — #67 i
i

i
i

i
i

On deformed double current algebras 1373

[[K(X+
i ), P (X+

j )], Q(Hi)] + [K(X+
i ), [Q(Hi), P (X+

j )]]

(A.6)

= −λ
2

16
S

(
n∑
k=1

S(Ek,j+1, Eik)− 2S(Ei,j+1, Eii) + 2S(Ei,i+1, Ei+1,j+1)

+

n∑
l=1

S(Eil, El,j+1)− 2S(Ei,j+1, Ei+1,i+1), Ej,i+1

)

+
λ2

16
S

(
n∑
l=1

S(Ejl, El,i+1)− 2S(Ej,i+1, Ei+1,i+1) + 2S(Eji, Ei,i+1)

−2S(Eii, Ej,i+1) +

n∑
k=1

S(Ek,i+1, Ejk), Ei,j+1

)

− λ2

8

(
S(S(Ei,j+1, Ei,i+1), Eji)− S(S(Ei,i+1, Ej,i+1), Ei+1,j+1)

)

= −λ
2

8
S

(∑
k

S(Ek,j+1, Eik)− S(Ei,j+1, Eii) + S(Ei,i+1, Ei+1,j+1)

− S(Ei,j+1, Ei+1,i+1), Ej,i+1

)

− λ2

8
S

(
−
∑
l

S(Ejl, El,i+1) + S(Ej,i+1, Ei+1,i+1)− S(Eji, Ei,i+1)

+ S(Eii, Ej,i+1), Ei,j+1

)

− λ2

8

(
S(S(Ei,j+1, Ei,i+1), Eji)− S(S(Ei,i+1, Ej,i+1), Ei+1,j+1)

)

= −λ
2

8
S

(∑
k

S(Ek,j+1, Eik), Ej,i+1

)
+
λ2

8
S

(∑
l

S(Ejl, El,i+1), Ei,j+1

)
.

where the last equality follows from the equality

S(S(A,B), C)− S(S(A,C), B) = [A, [B,C]].
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Step 3: The third term on the right-hand side of (44) is, up to a scalar:∑
α∈∆

[S([X+
i , Xα], [X−α, Hi]), P (X+

j )] = −2[S(Ei,i+1, Hi), P (Ej,j+1)] = 0.

We can now deduce from (44) and (A.6) the following formula for
[P (X+

i ), P (X+
j )]:

[P (X+
i ), P (X+

j )] =
λ2

16
S

(∑
k

S(Ek,j+1, Eik), Ej,i+1

)
(A.7)

− λ2

16
S

(∑
l

S(Ejl, El,i+1), Ei,j+1

)
.

Step 4: We will also use the following two formulas:

n∑
k=1

[[
S(S(Ek,j+1, Ei,k), Ej,i+1), X−j

]
, X−i

]
(A.8)

=

n∑
k=1

[
S(S(Ekj , Eik), Ej,i+1), Ei+1,i

]
−

n∑
k=1

[
S(S(Ek,j+1, Eik), Ej+1,i+1), Ei+1,i

]
=

n∑
k=1

S(S(Ekj , Eik), Eji)−
n∑
k=1

S(S(Ekj , Ei+1,k), Ej,i+1)

+

n∑
k=1

S(S(Ek,j+1, Ei+1,k), Ej+1,i+1)−
n∑
k=1

S(S(Ek,j+1, Eik), Ej+1,i).

Exchanging i↔ j and using [X−i , X
−
j ] = 0, we obtain:

n∑
l=1

[[
S(S(Ejl, El,i+1), Ei,j+1), X−j

]
, X−i

]
(A.9)

=

n∑
l=1

S(S(Ej+1,l, El,i+1), Ei+1,j+1)−
n∑
l=1

S(S(Ej+1,l, Eli), Ei,j+1)

+

n∑
l=1

S(S(Ejl, Eli), Eij)−
n∑
l=1

S(S(Ejl, El,i+1), Ei+1,j).
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The right-hand side of (A.7) can be substituted into the right-hand side

of [P (Hi), P (Hj)] =
[[

[P (X+
i ), P (X+

j )], X−j
]
, X−i

]
and then formulas (A.8)

and (A.9) can be applied to finally obtain:

[P (Hi), P (Hj)]

=
λ2

16

n∑
k=1

[[
S(S(Ek,j+1, Eik), Ej,i+1), X−j

]
, X−i

]
− λ2

16

n∑
l=1

[[
S(S(Ejl, El,i+1), Ei,j+1), X−j

]
, X−i

]
=
λ2

16

n∑
k=1

(
S(S(Ekj , Eik), Eji)− S(S(Ekj , Ei+1,k), Ej,i+1)

+ S(S(Ek,j+1, Ei+1,k), Ej+1,i+1)− S(S(Ek,j+1, Eik), Ej+1,i)
)

− λ2

16

n∑
l=1

(
S(S(Ej+1,l, El,i+1), Ei+1,j+1)− S(S(Ej+1,l, Eli), Ei,j+1)

+ S(S(Ejl, Eli), Eij)− S(S(Ejl, El,i+1), Ei+1,j)
)
.

Comparing this with the formula for [νi, νj ] given in Lemma A.1 completes
the proof of Lemma 5.4 when |i− j| > 1. For this, one needs the observation
that for any three elements x, y, z of Usln:

{x, y, z} =
1

24

(
xzy + yzx+ yxz + zxy +

1

2
(yxz + [x, y]z + xzy

+ x[y, z] + yzx+ [z, y]x+ zxy + z[y, x])
)
.

A.4. Remainder of the proof of Lemma 5.4, Case 2

Here are more details to show that the right-hand side of (45) equals
−λ2[vi, vi+1].

Step 1: From Lemma 5.3, we know:

Si =

(
β − λ

2

)
K(Ei+1,i+2)

+
λ

4

(
S(K(Ei+1,i), Ei,i+2) + S(Ei+1,i,K(Ei,i+2))

)
+
λ

8

n∑
p=1

p 6=i+1,i+2

(
S(K(Ep,i+2), Ei+1,p) + S(K(Ei+1,p), Ep,i+2)

)
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and

S̃i = −
(
β − λ

2

)
Q(Ei+2,i+1)

− λ

4

(
S(Q(Ei,i+1), Ei+2,i) + S(Ei,i+1, Q(Ei+2,i))

)
− λ

8

n∑
p=1

p 6=i+1,i+2

(
S(Q(Ei+2,p), Ep,i+1) + S(Q(Ep,i+1), Ei+2,p)

)
.

Therefore,

[Si, Q(Ei+2,i+1)] + [K(Ei+1,i+2), S̃i]

(A.10)

=
λ

4

[(
S(K(Ei+1,i), Ei,i+2) + S(Ei+1,i,K(Ei,i+2))

)
, Q(Ei+2,i+1)

]
+
λ

8

n∑
p=1

p 6=i+1,i+2

[(
S(K(Ep,i+2), Ei+1,p) + S(K(Ei+1,p), Ep,i+2)

)
, Q(Ei+2,i+1)

]

− λ

4

[
K(Ei+1,i+2),

(
S(Q(Ei,i+1), Ei+2,i) + S(Ei,i+1, Q(Ei+2,i))

)]
− λ

8

n∑
p=1

p 6=i+1,i+2

[
K(Ei+1,i+2),

(
S(Q(Ei+2,p), Ep,i+1) + S(Q(Ep,i+1), Ei+2,p)

)]

=
λ

4

(
S
(
[K(Ei+1,i), Q(Ei+2,i+1)], Ei,i+2

)
+ S

(
[K(Ei,i+2), Q(Ei+2,i+1)], Ei+1,i

))
+
λ

8

n∑
p=1

p 6=i+1,i+2

(
S
(
[K(Ep,i+2), Q(Ei+2,i+1)], Ei+1,p

)
+ S

(
[K(Ei+1,p), Q(Ei+2,i+1)], Ep,i+2

))
− λ

4

(
S
(
[K(Ei+1,i+2), Q(Ei,i+1)], Ei+2,i

)
+ S

(
[K(Ei+1,i+2), Q(Ei+2,i)], Ei,i+1

))
− λ

8

n∑
p=1

p 6=i+1,i+2

(
S
(
[K(Ei+1,i+2), Q(Ei+2,p)], Ep,i+1

)
+ S

(
[K(Ei+1,i+2), Q(Ep,i+1)], Ei+2,p

))
.
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Step 2: Using the following relations of the deformed double current algebra
of sln,

[K(Eab), Q(Ebd)] = P (Ead) +

(
β − λ

2

)
Ead

+
λ

4

n∑
t=1

S(Eat, Etd)−
λ

2
S(Ead, Ebb)

[K(Eab), Q(Eca)] = −P (Ecb) +

(
β − λ

2

)
Ecb

+
λ

4

n∑
t=1

S(Ect, Etb)−
λ

2
S(Eaa, Ecb),

we get the following equalities (where β̃ = β − λ
2 ):

[K(Ei+1,i), Q(Ei+2,i+1)] = −P (Ei+2,i) + β̃Ei+2,i

+
λ

4

n∑
t=1

S(Eti, Ei+2,t)−
λ

2
S(Ei+1,i+1, Ei+2,i)

[K(Ei,i+2), Q(Ei+2,i+1)] = P (Ei,i+1) + β̃Ei,i+1

+
λ

4

n∑
t=1

S(Eit, Et,i+1)− λ

2
S(Ei,i+1, Ei+2,i+2)

[K(Ep,i+2), Q(Ei+2,i+1)] = P (Ep,i+1) + β̃Ep,i+1

+
λ

4

n∑
t=1

S(Ept, Et,i+1)− λ

2
S(Ep,i+1, Ei+2,i+2)

[K(Ei+1,p), Q(Ei+2,i+1)] = −P (Ei+2,p) + β̃Ei+2,p

+
λ

4

n∑
t=1

S(Ei+2,t, Etp)−
λ

2
S(Ei+1,i+1, Ei+2,p)

[K(Ei+1,i+2), Q(Ei,i+1)] = −P (Ei,i+2) + β̃Ei,i+2

+
λ

4

n∑
t=1

S(Eit, Et,i+2)− λ

2
S(Ei+1,i+1, Ei,i+2)

[K(Ei+1,i+2), Q(Ei+2,i)] = P (Ei+1,i) + β̃Ei+1,i

+
λ

4

n∑
t=1

S(Ei+1,t, Eti)−
λ

2
S(Ei+1,i, Ei+2,i+2)
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[K(Ei+1,i+2), Q(Ei+2,p)] = P (Ei+1,p) + β̃Ei+1,p

+
λ

4

n∑
t=1

S(Ei+1,t, Etp)−
λ

2
S(Ei+1,p, Ei+2,i+2)

[K(Ei+1,i+2), Q(Ep,i+1)] = −P (Ep,i+2) + β̃Ep,i+2

+
λ

4

n∑
t=1

S(Ept, Et,i+2)− λ

2
S(Ei+1,i+1, Ep,i+2).

Step 3: Substituting the above equalities into (A.10), we obtain a long
expression. The sum of the terms that involve P (X) in that long expression
is:

λ

4

(
− S(P (Ei+2,i), Ei,i+2) + S(P (Ei,i+2), Ei+2,i)(A.11)

+ S(P (Ei,i+1), Ei+1,i)− S(P (Ei+1,i), Ei,i+1)
)

+
λ

8

n∑
p=1

p6=i+1,i+2

(
S(P (Ep,i+1), Ei+1,p)− S(P (Ei+1,p), Ep,i+1)

− S(P (Ei+2,p), Ep,i+2) + S(P (Ep,i+2), Ei+2,p)
)

=
λ

4

(
− S(P (Ei+2,i), Ei,i+2) + S(P (Ei,i+2), Ei+2,i)

+ S(P (Ei,i+1), Ei+1,i)− S(P (Ei+1,i), Ei,i+1)
)

+
λ

8

n∑
p=1

(
S(P (Ep,i+1), Ei+1,p)− S(P (Ei+1,p), Ep,i+1)

− S(P (Ei+2,p), Ep,i+2) + S(P (Ep,i+2), Ei+2,p)
)
.

Step 4: In the long expression for (A.10), the sum of the terms involving(
β − λ

2

)
Eab for some a, b is zero. The sum of the terms involving∑n

t=1 S(Eat, Etb) for various a, b is:

λ2

16

n∑
t=1

(
S
(
S(Eti, Ei+2,t), Ei,i+2

)
+ S

(
S(Eit, Et,i+1), Ei+1,i

))(A.12)

+
λ2

32

n∑
p=1

p 6=i+1,i+2

n∑
t=1

(
S
(
S(Ept, Et,i+1), Ei+1,p

)
+ S

(
S(Ei+2,t, Etp), Ep,i+2

))
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− λ2

16

n∑
t=1

(
S
(
S(Eit, Et,i+2), Ei+2,i

)
+ S

(
S(Ei+1,t, Eti), Ei,i+1

))
− λ2

32

n∑
p=1

p 6=i+1,i+2

n∑
t=1

(
S
(
S(Ei+1,t, Etp), Ep,i+1

)
+ S

(
S(Ept, Et,i+2), Ei+2,p

))

=
λ2

16

n∑
t=1

(
S
(
S(Eti, Ei+2,t), Ei,i+2

)
+ S

(
S(Eit, Et,i+1), Ei+1,i

))
+
λ2

32

n∑
p=1

n∑
t=1

(
S
(
S(Ept, Et,i+1), Ei+1,p

)
+ S

(
S(Ei+2,t, Etp), Ep,i+2

))
− λ2

32
(

n∑
t=1

(
S
(
S(Ei+1,t, Et,i+1), Ei+1,i+1

)
+ S

(
S(Ei+2,t, Et,i+1), Ei+1,i+2

))
− λ2

32

n∑
t=1

(
S
(
S(Ei+2,t, Et,i+1), Ei+1,i+2

)
+ S

(
S(Ei+2,t, Et,i+2), Ei+2,i+2

))
− λ2

16

n∑
t=1

(
S
(
S(Eit, Et,i+2), Ei+2,i

)
+ S

(
S(Ei+1,t, Eti), Ei,i+1

))
− λ2

32

n∑
p=1

n∑
t=1

(
S
(
S(Ei+1,p, Ept), Et,i+1

)
+ S

(
S(Etp, Ep,i+2), Ei+2,t

))
+
λ2

32

n∑
t=1

(
S
(
S(Ei+1,t, Et,i+1), Ei+1,i+1

)
+ S

(
S(Ei+1,t, Et,i+2), Ei+2,i+1

))
+
λ2

32

n∑
t=1

(
S
(
S(Ei+1,t, Et,i+2), Ei+2,i+1

)
+ S

(
S(Ei+2,t, Et,i+2), Ei+2,i+2

))
=
λ2

16

n∑
t=1

(
S
(
S(Eti, Ei+2,t), Ei,i+2

)
+ S

(
S(Eit, Et,i+1), Ei+1,i

)
− S

(
S(Ei+2,t, Et,i+1), Ei+1,i+2

))
− λ2

16

n∑
t=1

(
S
(
S(Eit, Et,i+2), Ei+2,i

)
+ S

(
S(Ei+1,t, Eti), Ei,i+1

)
− S

(
S(Ei+1,t, Et,i+2), Ei+2,i+1

))
.

Step 5: In the long expression for (A.10), the sum of the terms involving
S(Eaa, Ecb) for various a, b, c is the following:
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−λ
2

8

(
S
(
S(Ei+1,i+1, Ei+2,i), Ei,i+2

)
+ S

(
S(Ei,i+1, Ei+2,i+2), Ei+1,i

))(A.13)

− λ2

16

n∑
p=1

p 6=i+1,i+2

(
S
(
S(Ep,i+1, Ei+2,i+2), Ei+1,p

)
+ S

(
S(Ei+1,i+1, Ei+2,p), Ep,i+2

))
+
λ2

8

(
S
(
S(Ei+1,i+1, Ei,i+2), Ei+2,i

)
+ S

(
S(Ei+1,i, Ei+2,i+2), Ei,i+1

))
+
λ2

16

n∑
p=1

p 6=i+1,i+2

(
S
(
S(Ei+1,p, Ei+2,i+2), Ep,i+1

)
+ S

(
S(Ei+1,i+1, Ep,i+2), Ei+2,p

))
= −λ

2

8

([
Ei+1,i+1, [Ei+2,i, Ei,i+2]

]
+
[
Ei+2,i+2, [Ei,i+1, Ei+1,i]

])
− λ2

16

n∑
p=1

p 6=i+1,i+2

([
Ei+2,i+2, [Ep,i+1, Ei+1,p]

]
+
[
Ei+1,i+1, [Ei+2,p, Ep,i+2]

])
= 0.

Step 6: As a consequence, from (A.10), (A.11), (A.12) and (A.13), we ob-
tain:

[Si, Q(Ei+2,i+1)] + [K(Ei+1,i+2), S̃i](A.14)

=
λ

4

(
− S(P (Ei+2,i), Ei,i+2) + S(P (Ei,i+2), Ei+2,i)

+ S(P (Ei,i+1), Ei+1,i)− S(P (Ei+1,i), Ei,i+1)
)

+
λ

8

n∑
p=1

(
S(P (Ep,i+1), Ei+1,p)− S(P (Ei+1,p), Ep,i+1)

− S(P (Ei+2,p), Ep,i+2) + S(P (Ep,i+2), Ei+2,p)
)

+
λ2

16

n∑
t=1

(
S
(
S(Eti, Ei+2,t), Ei,i+2

)
+ S

(
S(Eit, Et,i+1), Ei+1,i

)
− S

(
S(Ei+2,t, Et,i+1), Ei+1,i+2

))
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− λ2

16

n∑
t=1

(
S
(
S(Eit, Et,i+2), Ei+2,i

)
+ S

(
S(Ei+1,t, Eti), Ei,i+1

)
− S

(
S(Ei+1,t, Et,i+2), Ei+2,i+1

)
)

Step 7: To continue with our computation of the right-hand side of (45),

we now determine [P (Hi) + 1
2P (Hi+1), W̃i+1,i+2]:

Recall that

W̃i+1,i+2 = −λ
4

(
n∑
p=1

S(Ei+1,p, Ep,i+1)

+

n∑
p=1

S(Ei+2,p, Ep,i+2)− 2S(Ei+1,i+1, Ei+2,i+2)

)
.

Therefore,

[
P (Hi) +

1

2
P (Hi+1), W̃i+1,i+2

](A.15)

= −λ
4

n∑
p=1

[
P (Hi) +

1

2
P (Hi+1), S(Ei+1,p, Ep,i+1) + S(Ei+2,p, Ep,i+2)

]

= −λ
4

(
− S(P (Ei+1,i), Ei,i+1) + S(P (Ei,i+1), Ei+1,i)

−
n∑
p=1

S(P (Ei+1,p), Ep,i+1) +

n∑
p=1

S(P (Ep,i+1), Ei+1,p)

− S(P (Ei+2,i), Ei,i+2) + S(P (Ei,i+2), Ei+2,i)

+ S(P (Ei+2,i+1), Ei+1,i+2)− S(P (Ei+1,i+2), Ei+2,i+1)

+
1

2

n∑
p=1

(
S(P (Ei+1,p), Ep,i+1)− S(P (Ep,i+1), Ei+1,p)

− S(P (Ei+2,p), Ep,i+2)
)

+
1

2

n∑
p=1

S(P (Ep,i+2), Ei+2,p)

+ S(P (Ei+1,i+2), Ei+2,i+1)− S(P (Ei+2,i+1), Ei+1,i+2)

)
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= −λ
4

(
− S(P (Ei+1,i), Ei,i+1) + S(P (Ei,i+1), Ei+1,i)

− S(P (Ei+2,i), Ei,i+2) + S(P (Ei,i+2), Ei+2,i)
)

− λ

8

n∑
p=1

(
− S(P (Ei+1,p), Ep,i+1) + S(P (Ep,i+1), Ei+1,p)

− S(P (Ei+2,p), Ep,i+2) + S(P (Ep,i+2), Ei+2,p)
)
.

Step 8: We see from (A.15) that [P (Hi) + 1
2P (Hi+1), W̃i+1,i+2] can be can-

celled with the first two lines of (A.14). As a conclusion, going back to (45)
and using (A.14), we finally obtain:

[P (Hi), P (Hi+1)]

= [Si, Q(Ei+2,i+1)] + [K(Ei+1,i+2), S̃i]

+

[
P (Hi) +

1

2
P (Hi+1), W̃i+1,i+2 −Wi+1,i+2

]
=
λ2

16

n∑
t=1

(
S
(
S(Eti, Ei+2,t), Ei,i+2

)
+ S

(
S(Eit, Et,i+1), Ei+1,i

)
− S

(
S(Ei+2,t, Et,i+1), Ei+1,i+2

))
− λ2

16

n∑
t=1

(
S
(
S(Eit, Et,i+2), Ei+2,i

)
+ S

(
S(Ei+1,t, Eti), Ei,i+1

)
− S

(
S(Ei+1,t, Et,i+2), Ei+2,i+1

))
.

Comparing this with the formula for [νi, νj ] given in Lemma A.1 com-
pletes the proof of Lemma 5.4 when j = i+ 1.
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