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We prove the equivalence of two presentations of deformed double
current algebras associated to a complex simple Lie algebra g, the
first one obtained via a degeneration of affine Yangians while the
other one naturally appeared in the construction of the elliptic
Casimir connection. We also construct a specific central element of
these algebras and, in type A, show that they contain a very large
center for certain values of their parameters.
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1. Introduction

Deformed double current algebras were introduced by the first named author
in [OHIT]. They are deformations of the enveloping algebra of the universal
central extension of the double current algebra g ®c Clu,v] where g is a
finite dimensional, simple, complex Lie algebra. The deformed double cur-
rent algebra ©(g) is the quantum algebra analog of the rational Cherednik
algebra introduced in [4], at least for two reasons: when g = sl,, there is
a Schur-Weyl type duality between the rational Cherednik algebra of type
A and D(sl,) ([9], Theorem 8.4 and [10], Theorem 13.1); moreover, D(g)
can be obtained by degenerating twice the quantum toroidal algebra of g
[10, 11], in a way similar to how rational Cherednik algebras can be viewed
as two-steps degenerations of elliptic Cherednik algebras (i.e. double affine
Hecke algebras).

The first presentation of ©(g) (which is similar to the Kac-Moody pre-
sentation of an affine Lie algebra) is obtained from the defining relations
of the affine Yangian Y (g) via a certain degeneration: see [I0], Theorem
12.1 and [I1I], Theorem 5.5. A second presentation of D(sl,), for n >4, is
given in [10] and is useful to establish the Schur-Weyl functor with rational
Cherednik algebras; it involves two subalgebras which are enveloping alge-
bras of current algebras in one variable and which play a symmetric role.
In this paper, we extend this second presentation to the deformed double
current algebra ®©(g) for an arbitrary simple Lie algebra g of rank > 3: see
Definition and Theorem (Deformed double current algebras for sly
and sl3 were not defined in [I0] due to some complications when the rank
of g is small: we will propose a reasonable definition in [13]. We also do not
know what is the correct definition in types By and Gs.)

The presentation of D (g) in terms of two current subalgebras came up
naturally in the joint work of the second named author with Valerio Toledano
Laredo (see [20, 21]). In [I], Calaque-Enriquez-Etingof constructed the uni-
versal Knizhnik-Zamolodchikov-Bernard (KZB) connection, which is a flat
connection on the configuration space of n points on an elliptic curve. Their
work, which is for type A,,, was generalized by V. Toledano Laredo and the
second named author in [20] to any finite root system ®. The universal KZB
connection Vikzp obtained in [20] is a flat connection on the regular locus
of the elliptic configuration space associated to ® with values in a holonomy
algebra. Two concrete incarnations of the KZB connection were obtained
in [20, 2I] by mapping the holonomy algebra to a rational Cherednik alge-
bra and to a deformed double current algebra. This second incarnation is
called the elliptic Casimir connection and is an elliptic analog of the rational
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Casimir connection [3], [I7, 18] and of the trigonometric Casimir connection
[19]. The construction of the elliptic Casimir connection relies crucially on
the second presentation and on some of the properties of the deformed dou-
ble current algebra obtained in the current paper.

Our first theorem (which is Theorem states that both presentations
of ©(g) alluded to above are equivalent. The other results of this paper con-
cern central elements in ®(g). In sections {4] and [, we construct a certain
central element of ©(g) which is essential for the construction in [21] of a ho-
momorphism from the holonomy Lie algebra to the deformed double current
algebra: see Theorem [4.1] and Theorem [5.1] When g = sl,,, the definition of
D (g) involves two deformation parameters, so section [5|is specially devoted
to the construction of that central element in this case. In the last section, for
certain specific values of the two deformation parameters, we prove that the
center of D(sl,,) contains two subrings isomorphic to the ring of polynomials
in infinitely many variables and we identify precisely two infinite sets of cen-
tral elements which are algebraically independent. This result was inspired
by an analogous one about rational Cherednik algebras, namely Proposi-
tion 3.6 in [§] which states that the center of the rational Cherednik algebra
when the parameter ¢ = 0 contains the subalgebra C[h]"" ® C[h*]", b being
here the reflection representation of the Weyl group W. Theorem is also
inspired by a similar result for the rational Cherednik algebra Hy .(S;) asso-
ciated to the symmetric group, namely Proposition 4.3 in [4] which states
that Hy .(S;) contains a subalgebra isomorphic to the degenerate affine Hecke
algebra.

2. The deformed double current algebra of g

Let g be a finite-dimensional, simple Lie algebra over C. In this paper, we
will assume that the rank of g is > 3, the reason being that we do not know
what is the correct definition of deformed double current algebra when g
is of Dynkin type A, Ag, By or Ga: we expect that it will involve more
complicated relations. Most of the results of this paper quite likely hold also
when the rank of g is 1 or 2, but the required computations would probably
be more daunting.

Let (-,-) be the Killing form on g and let Xii,Hi,l <i< N, be the
Chevalley generators of g normalized so that (X l+ , X, )=1and [Xl+ X )=
H;. Let A be the set of roots for g and A™ be a set of positive roots. For each
positive root «, we choose generators X7 of g+, such that (X, X;) = 1 and
X§ = Xii. (As usual, a;, 1 <i < N, denote the simple roots of g.) If « > 0,
set Xo = XJand Hy, = [ X1, X ;ifa < 0,set Xy = X~ and Hy, = —H_,.
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Let C' = (Cij)%zg be the affine Cartan matrix of the affine Lie algebra g and
the scalars dy, d1, . . ., dy be such that (dicij)fyjzo is a symmetric matrix. The
index 0 corresponds to the extending vertex in the Dynkin diagram of g.
Set glu] = g ®c Clu] and g[u,v] = g ®c Clu,v], which we call a double
current Lie algebra. For general results about the universal central extension
of glu,v] (e.g. that it is isomorphic to g[u,v] ® L)) the center being

L dClu,v]
% of all 1-forms in the plane

modulo the exact forms), see [14] and [15].

isomorphic to the quotient vector space

Proposition 2.1 ([11], Lemmas 4.1, 4.2). The universal central exten-

sion glu,v] of glu,v| is isomorphic to the Lie algebra generated by elements
X=* H;, for 1<i<N, r=0,1 and Xafo, ngl subject to the following

1,1r7
relations:

(1) I:Hil,T17H7;2,T‘2] = 07 I:H711707Xj:

i3 77”3]

if 1 <idp,i2 < N,0<i3 <N, ry,re,r3=0,1

+
= :l:dh cihisX‘

13,73

(2) [Hil,laXi:,L:’()] == [Hi1,07XZ':,L:’1]7 1 S Z‘1 S N7 0 S i? S N7

[inl,Xio] = [Xz'jf,mxif,l]v 0<ipig< N

(3) [Xi . X5, ,] = 0ui H

21,717

rtre, 0 <41 SN, 1 <idg < N,7mp +12=0,1

(4) [Xio, [XGE gy [XiE 0, XiE ) .H —0, 0<i,is <N,

+ .
where X;- o appears 1 — ¢;, 4, times.

In and , when i1 = 0 and i2 = 0, there is a relation only when += = +.
The same applies to when iz = 0.

We assume for the remainder of this section that g is not of Dynkin type
A. (When g = sl,,, the results of this section are contained in [10]; moreover,
in this case, De/finition has to be modified because, in the Dynkin diagram
of affine type A, the extending vertex is connected to two other vertices, not
just to one.) Then there is a unique k € {1,..., N} such that cor # 0. In
other words, k is the label of the unique vertex in the Dynkin diagram of g
to which the zero node is connected. Let 6 be the highest root of g. If a,b
are any two elements in an algebra A, we set S(a,b) = ab+ ba. Let
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1
=4 ((XF X5, X ~S(XE H;
ozEZA+S ) 45( . )7
(5) . 1 N H2
vi =i, Xl = > (i, ) S(XE, X5) - 5

aceAt

We will write also (,uii and v; to denote the corresponding elements in Def-
inition below via the homomorphism ${(g) — D(g) given by X, H;

XZQ,H 0for1§i§N.

Definition 2.1 ([11], Definition 5.3 with A =1). Let A € C. The de-
formed double current algebra D(g) is the C-algebra generated by XZ o Hir

and Xa' , for 1 < < N, r=0,1 subjected to the same relations as those in
Proposition except that the following relations involving X0 , must be

modified:

d()COk-)\
(6) [Xi1:Xg0) = X Xo4] =

S(XZ—O’ 6T)+)‘[wljv ]+/\[ kOaw(_)'_]

doCop A _ _
(7) [He1, XGo] — [He, O,Xa] =2 2% S(Hg,0. Xy ) + docogdwg + Alvk, X, ]

(8) [xofo,x,;o]:o, [xgl,x,;o]_x[ ko,w(')"], [x({l,x[{o]zwoxx({oxg
(9) [X$o Xi1] = AXg wi ], X3y, Xiol = —Alwg, Xi] for i # 0, k.

The elements X, and Wo are defined in the following way. We write X,
as X, = [kaX ] (it may be necessary to rescale Xi o, to achleve
this) and set X, = [Xk70,X9_ak] € D(g). (Here, X;_, €9 C D(g).) We set
Wg I:wk' ’X; ak]

Applying [-, X, ] to (7) and using (8)) yields an expression for [ngo, X4l
as an element of ${(g). The relations (6) - (9) were arrived at in [LI] after
considering a certain degeneration of the affine Yangian of g, taking Propo-
sition 2] into account.

The next definition appeared naturally in the work [2I] and was first
given in [10] in the case of sl,, for n > 4.

Definition 2.2. Let A € C. The C-algebra ©(g) is generated by elements
X, K(X),Q(X),P(X) for all X € g such that
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e The assignment X — X, X @ v+— K(X) (resp. X — X, X Qu—
Q(X)) extends to an algebra homomorphism $U(g[u]) — D(g) (resp.

glv]) — D(g));
e P(X) is linear in X, and for any X, X' € g, [P(X), X'] = P([X, X)),

and the following relation holds for all root vectors Xg,, X, € g with 31 #
—Pa:
(Br, B2)A
A
+ Z EE% S([Xﬁﬂ XOKL [X—OH Xﬁz])

The name deformed double current algebra seems a priori more appro-
priate for ®(g) since this algebra is clearly built from two current algebras
glu] and g[v]: Theorem [2.1] below states that D (g) and D(g) are isomorphic,
hence we can also call ©(g) a deformed double current algebra. The alge-
bra D(g) was obtained in [I1] as a degenerate version of the affine Yangian
of g, so one consequence of our main theorem just below is that ©(g) is
also such a degeneration. Moreover, affine Yangians can be obtained from
quantum toroidal algebras via a similar type of degeneration [7, [12], so a
deformed double current algebra can be viewed as a two-step degeneration
of a quantum toroidal algebra.

The following proposition will be useful to avoid repeating parts of cer-
tain proofs.

Proposition 2.2. [0, Proposition 12.1] There is an automorphism of D(g)
which is given by

X—X, KX)—-QX), QX))+~ K(X), P(X)— —P(X)
for any X € g.

Theorem 2.1. There exists an algebra isomorphism ¢ : D(g) — D(g) given
by
SO(X%O) =X}, f(Hi,O) = H;
p(Xi7) = Q(X]"), w(Hin) = Q(H,)
p(Xg0) = K(Xy), 9(Xg1) = P(Xy) — Awg .

for1<i <N,

The proof of this theorem will be given in the following two subsections.
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2.1. The map ¢ is a homomorphism of algebras

The first step is to prove that the assignment ¢ given in Theorem [2.1|extends
to a homomorphism of algebras.

Lemma 2.1. The element w of U(g) defined in can be rewritten in
the following way:

(11) _:|: > S(IxF XTI XT).

a6A+
Proof. The Casimir element of g is
N ~ L~
Q=) S(XF X))+ Wik
acAt =1
where {ﬁl, e ,EN} is a basis of the Cartan subalgebra h and {ﬁl, . ,ﬁN}

is the dual basis with respect to the Killing form. €2 is in the center of $i(g),
S0

1
oziZ[Xii ii Z S(XE,[XE, XT)
a€A+
because Z;V:l[Xii,ﬁj]ﬁj = ¢Z§-V:1(HZ»,7LJ')XZ¢7L]~ = :FXZ.iHZ». O

We have to verify that ¢ respects the defining relations of D(g). Let us
start with @ We have to check that

QX)) K(Xy)] — [X;, P(Xy)]

- dOcOkAS(X+ X, Z S(X;, X5, X5, X, )
anAJr
A Lo
A X)X X,

(Observe that [X,,X,]=0 and that if [[X;7, X;],X, ] is a root vector
(where « is positive), then ap —a — 60 > —0, so a < ay: since «ay is simple
and both are positive, this forces a to be equal to ay.)
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The previous equality is equivalent to

K(X7), Q)] = P(Xy, X{]) — D025 (xp x,)
FY SO Xa L X X))

aEAT

because [[X;7, X;], X, | = drcwoX, = docor X, . This is true in D(g) be-
cause docor = (—0, ay). Thus, ¢ preserves relation (@

follows from (6) because [X, , X r0) = 0. For the same reason, the
first and second relation in hold.

For the third relation in (§)), we need to find [P(X,) — Awg , K(X,)].
Notice that if [X;, X, ] # 0 for a positive root «, then [X,, X, | is
a root vector in g for the root —a— 60+ ag, so —a— 60+ ap > —60 and
thus a < ag: this forces o = a, because oy is a simple root. Similarly,
if [[[XQ,XJ],XG_],X(LQJ # 0 then it is a root vector in g for the root
—apt+a—0—0+ap,so —ap +a—60—0+ ap > —0 hence o« > 6: this im-
plies that a = 0. These two observations serve to obtain the third equality
below. Starting with Lemma 2.1} we obtain:

(12)  fwg, K(X))] = —[lwg » Xg_o, ] K(X)]

1 X [l X K] ) X

acAt
= ([ X K] X, ] X))
S0 X8 K] X X))
= —(ai’ 0)S<[K<X,;>,X;_ak17Xe‘ )
_ (O"Z Q)S(K(X;),X;)

= —(0,ap)K(X, )X,

We show that [P(X, ), K(X, )] = A(0,0) — (ax,0))K (X, )X_g as fol-
lows. Start with relation with 81 = —a and B2 = —60 + ay:

(13)  [K(Xg,), QX ) = P(Xy) — W

A _ —
+5 2 S(Xa, Xal, (X0, X5_,,])
a€A

S(X,, X(;ak)

!
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Observe that if [ X7 , X,] # 0 and [[X_Q,Xe__ak],Xg_] # 0, then both are
roots vectors for the roots —ap +« and —a—60+ap — 6, so —ap +a >
—0 and —a— 0+ ap — 0 > —0, hence o > —0 + o, —0 + o, > « and thus
o = —0 + ay. Similarly, if [[X, , Xa], X, ] # 0 and [X—a, Xy_o | #0, then
a = aj, by a similar argument.

Using these two observations, we now apply [-, K (X, )] to to get:

(14) [K(Xg,), QX ,,), K(Xy)]]

= [P(X9_)7K(X0_)] + %S<[X;k7X70+ak]’ [[X97Qk7X9_—ak]7K(X0_):|>

25 ([, Xl KX X X, )

= [P(X;), K(X;)] + ES(X,Q, [Hy—a K(Xg)])

(ag, O)A
+ 4

= [P(X;), K (X)) + A2

S(K(Xy ), Xp)

(o, 0) — (0,0)
4

S(K(Xg ) Xg)-

We compute the left-hand side of the above equality .

QG ) k()] = Mg X
281X Xl [X s Xy )
=0 gy xp) = 380G Xl X))
(1) [K(X5). Q0 ). K(X;)]
= ) P X - A X0, xp)
= =200, x5) + 528000 ), %)
(6,6)

= SRS (X)), Xy ).

Substituting into yields

P(X;), K(X5)] = M(8,6) — (o, 0) K (X;)X o
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and it follows from that [P(X, ) — Awg, K(X, )] = X\0,0)K(X, ) X_g
as desired.

Finally, we check that  respects the first relation in @, so with 1 # 0, k
(hence (0, a;) = 0):

[K(Xp),Q Z S( ol X0, Xg 1) = —Alw;, X ]
a€A+

using and

[K(X,),Q Z S([XF, X1 (X, Xg 1) = =Alwt, X5 ]
a€A+

this time using .

The second relation in (J) is also satisfied since [P(X, ), X5 =
P([Xy, X)) = 0 when i # k.

2.2. The map ¢ is an isomorphism of algebras.

In this section, we construct the inverse map 1 : ®(g) — D(g) of .

Let us first describe the images ¥(X), (K (X)), ¥(Q(X)) and ¥ (P (X))
of the generators of D(g) under the map v, where X is any element in g.
The following lemma is a consequence of [6] and the standard theorem of
Serre regarding presentations of semisimple Lie algebras.

Lemma 2.2. The current Lie algebra glu| is isomorphic to the Lie algebra
generated by elements e;, fi,h;, 1 <1 < N, and ey subject to the following
relations for 1 <i¢ < N:

e, fi, hi satisfy the usual relations of Serre’s Theorem for g;

[hi, e0] = dicioen, [eo, fi] = 0;

ad(e;)1=¢° (eg) = 0 and ad(eg)! =i (e;) = 0.

In the defining relations of D(g), {K(X), X | X € g} generate a subal-
gebra which is a quotient of 4(g[v]) (conjecturally, they are isomorphic).
By Lemma we have a homomorphism #(g[v]) — D(g), given by e; —
X;fo, fi— X;O, hi — Hip for 1 <i < N, and eg — X00 Likewise, we have a
homomorphism 11( [u]) — D( ), given by e; sz fi = Xi g, hi = Hi for
1<i¢< N, and X Ru > Xl 1, for 1 <@ < N. These two homomorphisms
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tell us how to define (K (X)) and ¥(Q (X) in D( , for any X € g; in
particular, (K (X, ) = X§o and $(Q(X)) =

Lemma 2.3. There is an ad(g)-module morphism P : g — D(g), such that
X_g— P(X_p) = ngl + Awg . That it is an ad(g)-module morphism means
that:

1) P(X) is linear in X;
2) [X,P(X")] =P([X, X]), for any X, X" € g.

Proof. E| Let g=n~ @ h D nt be a triangular decomposition of g, and b~ :=
n~ @ bh. Let M(—0) :=(g) @y -) C_g be the Verma module with lowest
weight —6, where C_y is the 1-dimensional b~—module with trivial n~-
action. Thanks to the PBW Theorem, M (—6) = U(n") ® C_y. Denote the
lowest weight vector of M(—0) by v, so v~ =1® 1. Then, M(—0) as a
$(g) is generated by v, such that

(16) n v =0and h-v- = —0(h)v, for all h € b.

We first construct a morphism IBN: M(—0) — D(g) given by v~ — P(X_4) :=
X('{ 1+ )\w{)F and then show that P factors through the adjoint representation

of g, which gives us the commutative diagram M (—0) P D(g) .

N U
B g

To show the morphism P is well-defined, it suffices to verify that P(X_g)
satisfies . Rewriting the defining relation (8) of D(g), we have:
[P(X_9), X} o] = 0, and relation () gives [P(X_g), X; ol = 0 for i # k.

We check now that [H; o, P(X_p)] = (e, —0)P(X_g): it follows from the
relation in Proposition that [H; 0, X(Jil] = dicmX&l = (ay, —H)Xéfl; using
that wi = —[wy, Xg_q, |, we obtain [H;o,wi] = —(cu, 0wy

Thus, we have a (non-zero) g-equivariant map from the Verma module
M (—0) with lowest weight —6 to D(g) mapping the lowest weight vector v—
to P(X_,g).

The next step is to show that D(g) is locally finite as an ad(g)-module.
Note that the algebra D(g) is bigraded with the following Z>q x Z>o-grading:

o deg(X,) = (0,0), fori=1,...,N.
) deg(Xffl) = (1,0), fori=1,...,N and deg(XE)’:O) =(0,1).

IThis proof was suggested to us by Valerio Toledano Laredo.
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e deg(\) = (1,1) and deg(X,) = (1,1).

Now each graded piece is invariant under the adjoint action of g since the
degree of the elements in g is (0,0). The degree (0, 0) piece of D(g) coincides
with the enveloping algebra l(g) and each graded piece as a (g)-module
is finitely generated. Since the enveloping algebra (g) is locally finite as
ad(g)-module, each graded piece of D(g) is also locally finite.

Therefore, the g-equivariant map P must factor through a finite dimen-
sional quotient of the Verma module M (—#), and there is only one such
quotient, namely the adjoint representation of g. U

The remainder of the proof consists in checking that, for any two roots

B1 # — P2,

(K (X)), $(Q(X5))] = w<P<[Xﬁ1,XgQ]> - Mswwm,wxﬁz))

+ — Z S X51 a)]:[w(X—a)vw(X&)])'

aGA

From the defining relations of D(g), this is known to be true in the cases
when (51 = —0 and [y = *aq,...,Ltayn. In order to see that it’s true in
general, we can use the standard operators s;, whose definition is recalled
below, which have the property that s;(X,) is a root vector for the root
si(a@).

In order to simplify the notation, we denote ¢ (K (X3)) simply by K (Xg),
and similarly for ¢(Q(Xg)) and ¥)(P(Xg)). As observed in the previous para-
graph, we know that holds in D(g) when f; = —0 and 5y = +aq,...,
+ay. The goal is to show, using this assumption along with [K(X7), Xs] =
K([X1, X3)]), [Q(X1), Xa] = Q([X1, X2]) and [P(X1), Xo] = P([X1, X3]) (see
Lemma, that must hold in full generality in D(g) for any two roots
B1, B2 with B1 # —fs.

Let m : U(g) ®c H(g) — U(g) be the multiplication map. View 2 as an
element of g ®c g. The following observation will be useful below:

(17) Z S(l Xﬁn X—OwXBz])
a€A

=m (Z [Xp, @1, X0 ® X_0],1 ®X,82])

aEA

+m (Z [1® Xg, X_0® Xa],Xp, ® 1})

aEA
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N
—m <[[X51 ®1,0,10Xs] - > [[Xs ® 1,1 @ h,1 ®Xﬁz}>
=1

N
+m ([[1 ® X5, 0, Xp,®1] = Y _[[1® Xp,, b @ hi, Xp, ® 1]) .
i=1
It is known that [, X ® 1+ 1® X]| =0 for any X € g and, consequently,
we have:
1) X (I8 Xl X0 X)) X
a€A
([Xﬂla ]’ [X,Q,X52])
~ (1%, X [X_a, X, ,]))

= _(7762)S([X517X7]’X52) - (77 61)S(X51? [X527X7])‘

Here, either X, € g, for v € A or v =0 and X, is to be interpreted as an

element in §.

Remark 2.1. Equality is also valid if X, (resp. Xg,) is replaced by
an element of h and if the factor (v, 81) (resp. (v, 82)) is replaced by 0. When
referring to , we may also be considering these two cases.

Equality follows from via the following computation:

_ Z X,Bla [X cwXﬂz]) X]
aEA
+ > S([[X8,, X5), Xa [X a0 X3,])
acA
+ Z S([Xﬁl,Xa]y [X*OM [X/BZ’X“{H)
aEA
N
S m ([ X5 @1, [h @ hi, X, ® 1 —|—1®X'y]]»1®XBz])
i=1

+im([ ®X51,[ﬁi®}~liaX7®1+1®X7H’Xf32®1})
=1
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:m<“Xﬁl ®17X7®H7+H7®XV]71®X62}

+ [[1®X51,X7®H7+H7®X7],X52 ®1]>

=m ([[Xa,X,] @ Hy + [X3,, H,] ® X;,1® Xg,]
+[X, ® [Xp,, Hy) + Hy ® [Xp,, X;], Xp, ®1])
=m ((7,B2)[Xp,, X5] ® X, + (7, 51) Xp, ® [Xp,, X4])
+m ((v, 81)[Xp,, Xo] @ X, + (7, B2) X5, ® [X,, X5])
= (7, B2)S([Xp,, X5, Xp,) + (7, 81)S (X, [X,, X5]).

We are supposing that holds when 87 = —6 and B9 = +ay. For

convenience, let’s write down these two relations here:

(H,ak)/\

(19) KOG, QUG = POy, X)) + 20, x)
#2037 S0, Xl [X a0 X7
aEA
and
@) K. = - P00 xp)
+ 52 (0 X X X, )
aEA

We will need the following observation:

([Xékan_]aX—é)Jrak) = (X;r? [X]§_7X_0+ak])
= (X, X,)=1=[X, ., X, ] = Xp_q,.

Let’s apply [X(j, -] to relation to obtain, using (18):

(21) (K (Hp), QX)) + [K(Xy ), Q(Xp—a,)]
- 2 > S([Hp, Xal, [X—a: X))
aEA
+ 2 > S(1Xy, X, [X o Xo—a,])
a€A
OO Oy
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Set e; = @ )XJr and fZ = (a — )X for ¢ # 0. Consider the oper-
ators in the adjoint representation of g given by

si = exp(ad(f;)) exp(—ad(&;)) exp(ad(f;)).

It is known that X € go = 5;(Xa) € g5,(a) (Where g, is the root subspace
of g for the root o) and s;(H;) = H; — MHl We will use s; to denote

either a simple reflection in the Weyl glﬁgﬂ%’)w of g or the corresponding
operator in its adjoint representation. (This is an abuse of notation since
those operators s; do not provide an action of W on g.)

Let wg be the longest element of the Weyl group. Then —wy is a permu-
tation of the simple roots. Let us express wy as a product of simple reflections
wo = S;, -+ 8;, and let us denote also by wg the corresponding operator in
the adjoint representation of g for this choice of decomposition. Applying
wo to shows that the following relation also holds (after rescaling if
needed):

(0, ag)\

(22) (K(X)),Q(X;)] = P([X+ X )+ S(X,) . X))
+ = ZS (X, Xal, [X 0, X))
aEA

(For any w € W, one can choose a decomposition into simple transpositions
and obtain a corresponding operator in the adjoint representation with the
property that w(X,) is a scalar multiple of X,,(,); moreover, since the Killing
form is invariant under the adjoint action, (w(X,), w(X_q)) = (Xa, X_a) =
1,s0w(Xy) = aXo(a)s w(X_o) = ale_w(a) for some non-zero scalar a and
S([Xg_va(a)]v [X—w(a)vXk_D = S([X;—’w(Xa)]v [w(X*a)vXk—])')

Applying [-, X, ] to and using again gives

(98) (K (Ho), Q(X;)) = P([Hy, X))+ 5 3 S([Ho, Xal, [X o X))
aEA

Combining with yields

(24) [K(Xg), Q(Xo-a,)] = P([Xy, Xo-a,]) — M

n % D S(1Xy, Xal, [X a0 Xo—a,]).
acA

S(X9_7 ngak)
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To obtain this relation, it was necessary to determine that (X, , Xg_o,] =
(0,ar) X, . [X,;, Xo—q,] is a scalar multiple of X, with scalar given by
(X, Xo—a,), X;") and

([X€_7X9_Oék:|7le_) = _(XO—akv [Xe_aX]:-])
= (0, ) (Xo—aps Xg_q,) = (0, ar) = —docor,

where the second equality follows from [X, , X = —(6, ay) X, a,» Which
can be checked as follows:

([X9_7X:]?X9_Oék) = _(X]ja [X9_7X6—Olk])
= (X5 Xy (X X)) = = (X0 [[X,, X X D)
= —(Q,Oék)(X’j,Xk_) = _(0¢ ak)'

Let 8 be any positive root different from 6 — ay. There exist simple roots
B1, ..., B¢ such that [X@’ [ (X5, Xo—an]- H is a root vector in gg; let’s

denote it by Xs. (This is true for Xy instead of Xy_,, because 0 is the
highest root of g, but the only simple root j; such that [Xg XS 1#0 s
Bi = ay, so we might as well start with Xy_,,.) Applying [X/;:’ ] to
repeatedly, we obtain, after perhaps rescaling:

(6, 8)A
4

(25) [K(Xy), Q(Xp)] = P([Xy, X5]) + S(Xp Xs)

+ 2 Z S([Xy s Xal, [X o, X5]).
a€EA

Let’s prove this by induction on £. We already know that this is true when
£ =0 by , so let’s assume it’s true for £ — 1. Set

X;= [X/;H’ [--'[X@,Xe—ak]---]},
so X 3= [XB_Z,)NC B] and, by the inductive assumption,

(6, 8)\
4

n 2 3 Sy Xal, [X—a X5).
aEA

[K(X5), Q(Xp)] = P(1Xy, X5]) + S(Xy . X5)
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We apply [ X, a0 -] to both sides and use the fact that g = 6 B¢ along with
the following consequence of (| .

S [X5 80X Xl [X—ay X3D)] = D 81Xy, Xal, [X—a. X5])
a€A acA

—(B1,0)S (X, , [ngffg]) = —(B,0)S(X; , Xp).

The relation now follows by induction, using that 8 = B — By.

We still have to prove (25) when 3 is a negative root. This can be
done by writing X as X3 = | Xg , [ . [Xﬁ_l,Xi_] . H for some simple roots
@, B1, ..., B, starting with relation with 81 = —0, s = —«; and ap-
plying successively [X 5, 1,7 =1,...,¢ to both sides. We have now proved
that holds for any root 3 of g different from 6.

Let 81 be any long root for g. Then there exists w € W such that §; =
w(—6). Let w = s;, 84, - - - 8, be a decomposition of w into a product of simple
reflections and let’s denote also by w the corresponding operator in the
adjoint representation of g for this choice of decomposition. Relation
when B is a long root now follows by applying w to (25)) with g = w=!(32).
Therefore, is true when 3 is a long root.

It remains to deal with the case when f; is a short root and £y # —fs.
Let’s apply [X;r ,+] to relation in the case that § is any positive root
different from 6. Then, using ,

(26)  [K(Hy),Q(Xg)| = P([Hg, Xg]) + ZS ([Hg, Xal, [X—a» X5))-
aEA

In the case that 8 is a negative root with 5 # —6, we can apply [-, X _g]
to relation with 81 = 0, and S2 = §; the same argument as above shows
that holds for any root 8 such that g # +0.

We are in a situation similar to one we had before, so we can use the
action of the Tits extension W of W on g to obtain that, for any long root
~ and for any root 8 # +,

(27)  [K(H,), Q(Xp)] = P([Hy, Xp]) Z S([Hy, Xal, [X—a, Xp])-
aEA

For any root 7 € A of g, there exists a long root v € A, such that (v, n) #
0. For n # —f3, we apply [-, X,)] to relation with such a v and let a € C
be such that (X3, X, = aXgi,. (If §+ 7 is not a root, then Xg , =0 and
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we set @ = 0 also.) Then, using ,

(28)  [[K(H,),Q(Xp)], Xy *(% )P([XmXB])+aP([H Xpn))

Z S([Xn, Xal, [X—a, X5])
a€A
Z S(H X—OMXBHJ])

a€A

. va”)*s@n,xm by (I9).

On the other hand, if 8 4+ 7 # £+, using with (3 replaced by 5+ n,

we get:

(29) [[K(H,),Q(Xp)), Xy] = (v, K (Xy), Q(Xp)] + a[K (Hy), Q(Xp4y)]
= (’77 n)[K(XU>7 Q(X )] + aP([H77 XﬁJrﬂ])
Z S([H  [X—as Xggn])-
aEA
Combining with , we see that, if 34+ 1n# +yand 8+ 1n # 0:
G0 KOG = A% X5 - & ’"”sz@
+ 2 ZS X 0y X5]).
aEA

In order to obtain for any two roots n and S with n # —g, it was only
necessary to choose a long root «y such that (n,7) # 0 and v # £(8 + 7).
In conclusion, the relation holds in D(g).

3. Other useful relations

In this short section, we establish some new relations among the generators
of D(g) which will be useful for our computations later.

Lemma 3.1. For any roots (1, B2, the following relations hold in the de-
formed double current algebra ©(g) :

(31) [K(Hg,), Q(Xg,)| = P([Hg,, Xp,]) ZS [Hp,, Xal: [X-a: X5,]),
aEA
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and
(32) [K(Xgs,),Q(Hg,)| = P([Xg,, Hg,)) ZS [X5,, Xal, [X—a, Hp,)).
aEA

Proof. In the case f1 # —f2, we can write [Xs,, X_g,] = aXg,_p, for some
a € C. (If B2 — B1 is not a root, a = 0.) Now applying [-, X_g,] to relation

and using , we then obtain:

[K(Hp,), Q(Xp,)] + [K(Xp,), aQ(Xp,-5,)]

a(B1, P2 — B1)A

= P([HBNXBZ]) + P([Xp,,aXp,-5,]) — —S(X,BUX,BZ 5)

+ Z S Hﬂﬂ X—CUX,Bz Z S X/Blﬁ X_O”Xﬁz /31])

aEA aEA
Relation gives the following:
B1, B2 — B1)A
%) 5] = PP Ko )~ (4)S<X51,X52_61>
+ Z S X,Bl’ X*CM7XB2 51])

aEA

Combining the above calculations, we obtain in the case B # —f2. The
general case for (31)) follows from linearity of the factor Hg,. (If 51 = B2, we
can write 81 = ﬁ + ﬂ with 8 # 1 and 5 # f1.) The second relation of this

lemma follows from the first one using the automorphism in Proposition [2.2]
O

Lemma 3.2. For any roots [, By such that (81, B2) = 0, the following re-
lation holds in ©(g) :

K(Hp,). Q) = 5 3 (B1,0)(82,0) (X X o).

a€AT
Proof. The assumption (81, 82) = 0 implies that [Hg,, X 5y ] =0, so applying
[, Xp,] to and using yields the desired relation:

[K(Hﬁl)vQ(Hﬁz)] = P([H/Bl’Hﬁz]) + 2 Z |:S([H61’XDA]7 [X—ayXﬁz])>Xﬁ_2:|
aEA

725 Hﬂl’ X C‘f?Hﬁz by '
aEA O
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4. A central element of ©(g)

In [20], V. Toledano Laredo and the second author generalized the univer-
sal Knizhnik-Zamolodchikov—Bernard (KZB) connection Vikzp in [I] to any
finite root system ®. This connection is valued in a holonomy Lie algebra.
The elliptic Casimir connection [21] is a flat connection on the regular locus
of the elliptic configuration space associated to ® with values in a deformed
double current algebra. It is obtained from Vkyzp via a homomorphism from
the holonomy Lie algebra to ©(g). This construction requires a certain cen-
tral element in D(g). We introduce it in this section and show that it is
indeed central (see Theorem . Actually, what we do is introduce various
elements in D(g), show that they are all scalar multiples of one another and
then prove that they are central.
Set

C(Br.2) = (K (Hy, ), QUHR)| — 5 3 S([Hg,, Xol, (X, Hs )

a€cA

C(B) =C(B,8),
and set

_ % > S((Xp, Xal, [X—a, X_5]).
acA

S(Xpg, X—p)

Proposition 4.1. (i) The following equalities hold:

C(B1,P2) = (81, B2)B(B2) = C(B2,B1), for any roots By, f2 € A.

In particular, when 51 = By = B, we obtain % = B(5).

(ii) For any two roots a, B in A, we have

Cle) _ C(B)

(o) (B.8)
Proof. To show , apply [Xg,, ] to the relation
[K<H51)7Q(X—52)] = _(ﬁlvﬂQ)P(X—ﬁ2)
£33 S([Hs,, Xal, [X -0, X)) (see @),

acA
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We then get, using :

[K(Hg,),Q(Hpg,)] — (61,62)[ (X5,), Q(X—,)]

—(B1, B2)P(Hp,) + ZS ([Hp,, Xaol, [X—a, Hg,])
aGA
/81762
(ZS Xﬁz? X—OHX 62])_(/32?62)5()(527)(—,32)) .
a€A

Rewriting the above equality, we obtain C(81,82) = (81, f2)B(32) for any
roots 1, B2 € h*. The proof of the second equality in claim ({il) is similar.
Let us now turn to the proof of claim . For any roots «, 8 such that

(o, B) # 0, by , we have
C(a, B) = (o, B)B(B) and C(ev, B) = (B, a) B(a).

Thus, B(a) = B(8) and £ = Cif (a, B) # 0.

Since the Dynkin diagram of the simple Lie algebra g is connected, it
follows that (a( a")) is the same constant when «; is a simple root. Now for
any root «, there exists a simple root «;, such that (a, a;) # 0. This implies

that (C(a)) (5(5)) for any two roots a, 3. O

Theorem 4.1. For any root B of g, C(B) is a central element of the algebra
(g)-

It suffices to show that C(/) commutes with the generators of D(g).
This will follow from the next two lemmas.

Lemma 4.1. For any X € g, we have [C(8), X] = 0.

Proof. 1t suffices to take X to be a root vector X, for a root . We then
have:

U (H5), Q). X
= (3K CG). QU+ (59, QUE, )
= BP( HD) + P S S0 X X 1)

a€A
+ (8,7 P([Hgp, X5])

6747 > S([Hp, Xal, [X-a, X,]) Dby (1) and

a€cA
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= A Z S([[H&XVLXOJ? [X—a Hﬁ])

aGA

+2 Z (Hg, X as [Hs, X, ]])

aEA

*Z[ [Hg, Xol, [X -0 Hg)), X, | by (9.

aEA

Hence, the conclusion follows. Il
Lemma 4.2. If the two roots 3,7 are such that (3,7) = 0, then

(C(8), K (H,)) = 0 = [C(8), Q(H,)].
Proof. Since [K(Hg), K(H,)] =0,

[K(H,), [K(Hp), Q(HB)H
= [K(Hp), [K(H,), Q(Hp)]]

[K ) Zw,a)(ﬂ,a)S(Xa,X_a)] by Lemma

aEA

(8,0 ( K (Xa), X-a) = S(Xa, K (X))

_2A
1
% S(K (Xa), X _a).

Z v, 0
EA

2.
EA

On the other hand,

[ Z S([Hg, X}, [X_a HB])]

aGA

= [K(H) ;\Z(ﬁ, @)28(X,, X_ )] by Lemma [3.2]

aEA
=0 " (r.0)(8,0)* (S(K(Xa), X-a) = S(Xa, K(X-0)))
Y () (8.0 S (K (Xa). X o).

The assertion follows from these computations. The proof that [C(3), Q(H,)]
= 0 is analogous. 0
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Proof of Theorem[{.1. By Lemma and Proposition C(B) commutes
with K (Hz) for at least one root 7 (since g has rank at least > 3 by assump-

tion). Moreover, for any X in g, K (X) can be obtained by applying ad(X1) o
ad(Xg)o---o0ad(X;) to K(Hy) for certain elements X, Xo,...,X; €g.
Therefore, C () commutes with K(X)V X € g.

Similar arguments show that [C(5),Q(X)] =0 for any X € g. D(g) is
generated by X, K(X),Q(X) for all X € g: therefore, C(f) is central in
D(g). O

5. The deformed double current algebra of type A with two
parameters

The deformed double current algebra of type A with two parameters was
introduced in [I0] Definition 12.1. In this section, we obtain in this case
results similar to those in the previous two sections - see Lemma [5.1] and
Theorem We also establish one connection with the Yangian of sl, in
Theorem (.3l

As usual in type A, h denotes the subspace of diagonal matrices of trace
zero. The standard orthonormal basis of C" is denoted {ei,...,€e,}. The
set A of roots of sl,, can be identified with {¢; —¢; | 1 <i# j <n}, with a
choice of positive roots AT given by {¢; —¢; | 1 <i < j <n} as usual. For
i # j,set €;; = ¢; — €. The longest positive root ¢ equals €1,,. The elementary
matrices will be written as F;; € sl,,, so XZ-+ =F;;it1,X; = F;i;1;and H; =
Eii — Eiy1441 for 1 <7 < n — 1. We will assume in this section and the next
that n > 4.

Definition 5.1. Let A, 5 € C. We define D), g(sl,) to be the C-algebra
generated by elements X, K(X),Q(X), P(X) for X € sl, subject to the fol-
lowing relations:

e The assignment X — X, X @ v K(X) (resp. X —» X, X Qur—
Q(X)) extends to an algebra homomorphism (sl,[v]) — D) 5(sly)
(resp. il(s[n[u]) - Qk,ﬁ(ﬁln));

e P(X)islinear in X, and for any X, X’ € sl,,, [P(X), X'] = P([X, X]).
Moreover, for a # b, ¢ # d, and (a,b) # (d, c¢), the following relation holds:
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(33) [K(Eab)7 Q(Ecd)]
- P([ ab7 ]) + <ﬁ - )\> (5bcEad + 5adEcb)

A
- Z(eaba 6cd)S(E‘abv Z S Euw, E [E]U EcdD
1<17$]<n

When = %, the relation coincides with relation of the de-
formed double current algebra ®(sl,,) in Definition

We first list some relations of © g(sl,,) which are parallel to those found
in Lemma The proof for D) g(sl,,) is similar, so we omit it. In particular,
the second relation follows from the first one using the automorphism of

Proposition

Lemma 5.1. Let Hy, = Egq — Ewp, for a,b € N. For any a # b, and ¢ # d,
the following relations hold in the algebra ©y g(sly,):

[K(Eab)vQ(Hcd)] = P([Eaba Z S Euw, E [EJMH D
1<z;éj<n

A
+ (ﬁ - 2> (6a + €, ecd)Eab'
and

[K(Hap), Q(Eeca)] = P([Hap, E Z S([Hab Eij; [Ejis Eecal)
1<z;éj<n

A
+ <ﬁ - 2> (Eaba €c + 6cl)-Ecd-

In particular,

[K(Eab)aQ(Ha )] = _2P Z S Euw, E [EJZaH ])
1<z;é]<n

In [10], in the definition of D) g(sl,), the generators P(X) were also
imposed the condition that they had to satisfy the defining relations of the
Yangian of sl,, as given in [2] in terms of elements X, J(X), X € sl,. It
turns out that this is not necessary as explained in Theorem below. For
the proof of that theorem, we will need certain elements W, so we will
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now introduce these and a related central element (see Theorem below)
similar to the one obtained in the previous section in the one-parameter
case.

5.1. Some central elements in Dy g(sly,)

Set

(34) Zab,cd = [K(Hab) cd - = Z S ab7 [E]Z7 H ])
1<z;ég<n

and denote Zgp q by Zgp. Set
(35)  Wap = [K(E b)s Q(Eba)] — P(Hap)

A
- Z S aba [EjzaEba]) 2S(EabaEba)-
1<z;é]<n

The following proposition is parallel to Proposition and its proof is also
similar, so we omit it.

Proposition 5.1. The following relations hold in Dy g(sl,), n > 4:

(i) Foranyl<a#b<nandl<c#b<mn,
Zabed = (€aby €ca)Wap + <5 - ) (€a + €y €ca)Hap
= (Eaba 6cd) cd T <B - ) (ec + €d, eab)Hcd'
In particular, we have Z,, = 2Wy,, and when a,b,c,d are distinct,
Zab,cd =0.
(ii) For1<a#b<nandl<c#d<n,
Wap — Weqg = (5 - ) ( ac Hbd) (Ifa =, then Hg,e = 0-)

(iii) For1<a#b<nandl<c#d<n,

Zab_ cd—2</8_)( ac+Hbd)
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Theorem 5.1. Set
A
Z = szl Z [K(Ha), QUH) =5 Y S([Ha Eij), [Eji, Hal)
a=1 1<i#j<n

where Hy, = Eyq — Egt1,041 when1 <a <n—1, and H, = Ey, — E11. The
element Z is central in Dy g(sly,).

Proof. We first show that Z commutes with all the elementary matrices E.q
in sl,. We have

(36) Zas Eed] = (ﬁ) (cass o) (€e + 0 €as) Evcs

since

“K(Hab)v Q(Hab)]v Ecd]
= (faba 6cd)[}'((chd) Q(Hab)] + (ﬁaby 6cd)[}'((]ymb) Q(Ecd)]

= (faln 6cd) (P([Ecd7 Z S ed> B [E]u Hab])
1<17éj<n
A
+ (B - 2> (Gc + €4, 6ab)-Ecd>
+ (Eaba Ecd) (P([Hab7 Z S Hy, E [E]zaE ])
1<'L;éy<n

A
+ <5 - 2> (€abs €c + Ed)Ecd) by Lemma

:ﬁ . [SqHab,E 1, By Ha DE]
1<i#j<n

A
2 (/B - 2> (ellba ch)(ec + €4, ﬁab)Ecd'

Thus,

n

[Z, E;iq1) = Z[Za,a+17 E;it1]

a=1

n
= <B - > Z ea ,a+15 € z+1 62 + €i+1, Ea,a—l—l)Ei,i-l—l =0

a=1
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for any 1 <4 < n. Similarly, it can be shown that [Z, E;y1,] =0 for any
1 <¢ < n, thus Z commutes with any element in sl,.

In the following, we show that Z commutes with K (H.q) for some diag-
onal matrix H.q of sl,. Since [K(h),h'] =0 for any two diagonal matrices
h, R, it follows from Proposition E . ) that

(37) [Zab, K(h)] = [Zcq, K (h)] for any diagonal matrix h.

Consider four distinct integers a,b,c,d in {1,2,...,n}. Let’s check that
[Zab, K(Hcq)] = 0. On the one hand,

[K(Hcd)>[K(Hab)a Q(Hab)]] = [K(Hab), [K(Hcd), Q(Hab)]]

= % > [K(Hab), (€cas €ij) (€av, €i5)S(Eij, Eji))
1<i,j<n

since Zgp g = 0 by Proposition (@

= % Z (€cds €ij) (€an» €i5)* S (K (Eij), Eji).

1<i#j<n

On the other hand, we have:

Z S aba [E]’L’ Hab])

1<z;é]<n
1
= Z Z [K(HCd)v (Eaba 6ij) S(Elja E )]
1<i#j<n
1
= 5 Z (60d7eij)(eaba€ij)25(K(Eij),Eji).
1<i#j<n

Combining the above computations, we conclude that [K(Hcq), Zap) = 0.
This is true in particular when b = a + 1 and a,a + 1,¢,d are all distinct.
Thus, using , we obtain:

[K(Hcd)a Z] = n[K(Hcd)a Za,a+1] = 0.

It follows from this and [Z, X] =0V X € sl,, that [Z, K(X)] =0 for all X €
sly,.

A similar argument shows that [Z, Q(X)] = 0 for all X € sl,,. D, g(sly,) is
generated by X, K(X), Q(X) for X € sl,,, hence Z must be a central element
in @)\75(5[71). ]
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5.2. Connection with the Yangian of sl,

In this subsection, we will prove that the elements X, P(X) for all X € sl,
satisfy the defining relations of the Yangian Y (sl,) as given in [2] (with
J(X) replaced by P(X)). In order to prove this, it will be easier to use a
simpler presentation of Y (sl,,) and the isomorphism given in [3] between the
two presentations, which is recalled below.

Theorem 5.2. [16] The Yangian Y (sl,) of sl, is isomorphic to the C-
algebra generated by elements X = H;i, for1<i<n-—1andr=0,1 which

@7

satisfy the following relations for 1<4,5<n:

(38) (Hip, Hjs) =0, [Hio, X7 = +c; X5 Vr s €{0,1},

[X:I: X:I:] [X:t Xi} )\CU

+ +
2,1 4,07 S(XZO7X )

(39) 4 + )\C, +
[H’L,la Xj70] — [H@Q, Xj,l] =+ 2] S(Hi,07 Xj,O)’
(40) [Xi—;, X]_’s] = (5in1‘7¢+5 fOT’ r+s=0,1, [[X;l, Xijl]? Hz',l] =0,

(41) ad(X;)' (X)) = 0.

Remark 5.1. The most complicated relation is the second one in . It
turns out that it is needed only when n = 2: since we are assuming that
n > 4, we will disregard it.

The isomorphism between this presentation of Y (sl,) and the one given
in [2] in terms of generators X, J(X) for all X € sl,, sends X5 5 to J(XE) -
Awi: see [3].

Theorem 5.3. Set X[ = X;°, Hio = H;, X} = P(X]") — \wj" and H;; =
P(H;) — \vj. These elements of”D)\ 3(sl,) satisfy the defining relations of the
Yangian Y (sl,) as given in Theorem[5.4

Proof. Most of the relations in Theorem [5.2] follow directly from the fact
that [P(X), X'] = P([X, X']) for all X, X’ € sl,, and the isomorphism given
in the paragraph just before the theorem. The main difficulty is in showing
that [H;1,H;1] =0foralli,j € {1,2,...,n—1}.

The relation [H; 1, Hj 1] = 01is equivalent to [P(H;), P(H;)] + N[y, vj] =
0. Indeed,

[HZ'J,H]‘J] = [P(HZ) — AVZ',P(H]') — )\l/j} = [P(HZ), P(Hj” =+ )\2[V1‘, I/j]
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By symmetry, one has [v;, P(H;)] = [v;, P(H;)| as desired.

That the equality [P(H;), P(H;)] + A[v;, v;] = 0 holds is the content of
Lemma which in turn depends on Lemmas [5.2 and these can all be
found below. O

For any three elements z1, 29, 23 of sl,, set

1
{71, 22,23} = 21 Z Z5(1)%0(2) %o (3)-
[SCH
(&3 is the symmetric group on 3 letters.)

Lemma 5.2. If1<i+# j <n, we have:
n n
i, vs] = — <E{Elia Eiji1, Biy} — > _{Biks Brji1, Bjia}
=1 k=1
n n
- Z{El,i—i-ly Eiv1jv1, Ejp} + Z{Ez’+1,ka Bk ji1, Ej—i—l,i—i—l})
=1 k=1

n n
+ (Z{Eli,Ei,ja B} — Z{Eikv Eyj, Eji}
=1 k=1

n n
(42) > A{Eiir1, By, Bjiy + > _{Eiv1kr Brjs Ej,i+1}> :
=1 k=1
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Proof. Let (z,y) = tr(zy) be the inner product of sl,, given by the trace.
Recall the following defining relation of the Yangian Y)(sl,) [2]:

[J(x), J([y, 2D] + [ (2), [J ([, ]D)]] + [T (v), I ([2, 2])]
= \2 Z ([:p, Zals [[y, xp), 2, :L'c]]){l‘a’7 :L"b, °}

a,b,c

where {z,}, {z?} are dual bases of sl,, with respect to the inner product (-, -).
The isomorphism between the two presentations of the Yangian [3] gives the
equality:

N[vi,vj) = =[J(Hy), J (Hj)]
=N Z([HH :Ea]v [[Xj_v xb]v [Xj—7$c”){xa7xb’x0}‘

a,b,c

Tedious but straightforward computations show that

= 37 (il [0 ), 15 ]] ) {22, 2)

a,b,c

is the right hand side of . Complete computations can be found in Sec-
tion OJ

We will need one more lemma to treat the case j =i 4+ 1 below. The sec-
ond identities below follows from the first one via the anti-automorphism of
D, 5(sly) given by X — X' K(X) = Q(X"), Q(X) — K(X') and P(X) —
P(Xh.

Lemma 5.3. The following identities hold in ®y g(sly,) for 1 <i<n —2:

[P(H;), K(Eit1,i+2)]

1 A
= 5P K (B + (8- 5 ) K(Binsea)
A
+ 3 (SE(Bis1), Biisa) + S(Biprs, K(Biis2))

8

)\ n
+3 Z S(K(Ep,it2), Eit1p) + S(K(Eiy1p), Ep7i+2)>
p#l‘fll,iﬁ
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and

[P(H;), Q(Eiy2,iv1)]
1 A
= —§[P(HZ~+1),Q(E1-+2,7;+1)] - <5 — 2) Q(Eiy2i11)
A

7 (S(Q(Ez‘,i+1), Eivo;) + S(Eiiv1, Q(Ei+2,i))>

n

_g > (S(Q(Ei+2,p),Epz+1)+S(Q( Epit1), Em,p)).

pHit1,i+2

Proof. We only show the relation of [P(H;), K(Eit+1,+2)], the other one
[P(H;),Q(Fit2,+1)] follows from a similar argument. Set Rgpcq=

P([Eabv Ecd]) - [K(Eab)a Q(Ecd)] and /Wab = P(Hab) - [K(Eab)v Q(Eba)] +
Wy for simplicity, both of which are in Usl,. We have:

[P(H;, i+2) K(Eii1,i42)]
= [[K(Eii+2), Q(Eiy2,)] + Wz’,i+2 — Wiit2, K(Eit1,i42)]
[K(Eiit2), [Q(Eiv2,), K(Eiy1,i+2)]] + [Wi,i—i-Z — Wiiyo, K(Eiy142)]
_[K(Ei 7;+2) P(Eiy1;) — Riv1i42,i42,4) + [Wi,i+2 — Wiivo, K(Eiy1,i42)]
—[[Bik, K(Erjit2)], P(Biz13)] + [K(Eiiv2), Rig1i+2,i42,]
+ W,

iit2 — Wiive, K(Eiq1,i42)],

where k,i,7 + 1,7 + 2 are distinct.
For the term — [[E; i, K(Ej,it2)], P(Ei+1,)], we use the following trick:

—[[Bik, K(Erjit2)], P(Eiz1)]
= [P(Eiz14), K(Briv2)] — [Eig, [K (Egit2), P(Eis1,)]]
= [P(Bit14), [Brit1, K(Bi1iv2)]] — [Eik, [K(Bkiva), P(Bit1,)]]
= [P(H, z+1 k), K(Eip1i42)] + [Erit1; [P(Biy1k), K(Bit1,i42)]]
— [Eik, [K(Bkiv2), P(Bit1,)]]
= [P(Hit1,), (Ez+1,1+2)] + [P(Hik), K (Eit1,i42)]
+ [Bri1, [P(Biy1k), K(Biy1i2)]] — [Eik, [K (Egyiva), P(Eiv1,)]]-
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Therefore,

[P(Hiit2), K(Eit1,i+2)]
= [P(Hit1,i), K(Eit1i+2)] + [P(Hig), K(Eit1,i+2)]
+ [Brit1, [P(Bis1), K (Biy1,42)])] — [Bik, [K(Bg,iv2), P(Eiv1,)]]
+ [K(Eji42), Rig1,i+2,i+2,4] + [/Wv/z',wz — Wiit2, K(Eiy1,i+2)].

We now compute:

(43) [P(Hit1,i+2), K (Eit1,i+2)]
= [P(Hit1,i), K(Eit1,i+2)] + [P(Hiiv2), K(Eit1,i4+2)]
= —2[P(H,), K(Ez+1z+2)] [P(Hi), K(Eit1,i+2)]
— [Eiks [K(Egit2), P(Bit1,0)] + [Bryit1, [P(Big1k), K (Eiy1,i42)]]
+ [K (Bijiva), Rivis,ir2i + Wiise — Wiy, K(Eip1,i42)].

To compute [Wj iy, K(Ejt1,+2)], we can proceed in the following way. By
Proposition 5.1} W; ;10 = %Zik + (6 — A) H; 5}, so we are reduced to find-
ing [Zik, K(Eit1+2)]. It is established in the proof of Theorem [5.1| that
[Zik, K(Hit1,i+2)] = 0 since 7,i+ 1,7+ 2, k are all distinct. It follows that
(Ziks K(Eiy1,42)] = 0.

The rest of the proof follows from long, but direct computations which
can be found in Section O

As explained earlier, to establish Theorem it is enough to prove the
last lemma of this section.

Lemma 5.4. For any 1 <i# j <n, we have:
[P(H;), P(H;)] + X*[vi, v;] = 0.

Proof. To establish Lemma we compute [P(H;), P(H;)] explicitly and
show that it equals the right-hand side of . We consider two cases:
li —j] >1and |i —j| =1.
Case 1: |i — j| > 1.

When |i — j| > 1, we have that i,i + 1, j, 7 + 1 are all distinct. Therefore,
[Xf,X;] =0 and [X;, X ] = 0. Moreover,

[P(H;), P(Hj)] = [P([X;, X7 ]), P(IX;, X;])]
([P, PO X T %7

J J ?
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To compute [P(X;"), P(X;r)], we use the equality:

[K(X;"),Q(H;)] = —2P(X;") + Z S(X;, Xal, [X—a, Hi])  (see (B2)).
aEA

Then:

(44)  [-2P(X]"), P(X])] = [[K(X+) QH;)], P(X]")]

A Z S(IX; Xal, [X—a, Hi]), P(X])]
aEA

[[E(X"), P(X])], Q(H;)]
+ [K(X+) [Q(H:), P(X])]]

A Z S(IX; Xal, [X—a, Hil), P(X])].
aGA

We now need the following relations in Dy g(sl,,) when [Egp, Ecq] = 0:

[K(Eab)¢ P(Ecd)] = _2 <S(K(Ead)v Ecb) + S(K(Ecb)v Ead)) ’
[Q(Eab)a P(Ecd)] = 2<S(Q(Ead)a Ecb) + S(Q(Ecb)7 Ead)) .

The given relations were obtained in step 2 of the second one follows
from the first one using the automorphism in Proposition Using these
and the defining relations of D) g(sl,), we can compute [P(X;F)7P(X]7L)]
explicitly. The result is provided by equation in Section

[P(X;r)ap(X;r)] = 1\2 (ZS Ej+1, Eik), Ej,i+1>

—S<ZS Eji, Eiv1), ,]+1>~

The conclusion that Lemma is true when |i — j| > 1 follows by apply-
ing [[-,X X ] to the previous formula. The detailed computation is in
Section
Case 2: j=i+1

Since n > 4, we can choose k € {1,2,...,n} such that i, + 1,7 + 2,k are
all distinct. Set S; = [P(Hz), K(EH_LH_Q)] + %[P(Hz—l-l); K(EH_LH_Q)] and
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Si = [P(H), Q(Eit2i11)] + 3[P(Hit1), Q(Eiy2,11)]. We have:

1 _
=3 [P(Hit1), P(Hiz1) + Witti02 — Wigtiv2] + [Si, Q(Eig2,i41)]

+ [K(Eiy1it2), Si] + [P(H,), Wi+1,i+2 — Wit1,i+2]
= [Si, Q(Bit2,i1+1)] + [K(Eit1,i+2), Si

1 _
+ | P(H;) + 5 P(Hiv1), Wirriv2 = Wz’+1,z'+2] :
To compute [P(H;), Wiy1,i4+2], we can use that

A
Wittive = Wiite + (5 - 2) Hiy1k,

which follows from Proposition (ii), so we are reduced to computing
[P(H;), Whit2]:

(46) [P(H;),Wit1,iv2] = [P(H;), Wi,it2]
= [[K(Ei;i+1), Q(Bit1,)] + Wiit1 — Wiig1, Wi it

and [K(E;it1), Wk,it2] =0, [Q(Eit1,), Wk,i+2] = 0 (as shown above in the
proof of Lemma . Moreover, by Proposition

A
[(Wiit1, W iya] = [Wk,i+2 + <5 - 2) (Hig + Hit1,i42), Wiiza| =0
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and it follows from that [W; 11, Wi iyo] = 0. Therefore, by ,
[P(H;),Wit1i42) =0, and [P(H;11), Wit1,i+2] =0 can be obtained simi-
larly. - -

Since Wit1,i42 € Usl,, [P(H;) + %P(Hi+1),Wi+1,i+2] can be computed
directly. Using the explicit formula of Si,gi in Lemma it is possible
to determine [S;, Q(Eit2,i+1)] + [K(Eit1,i+2), 5] and hence the right-hand
side of . The conclusion that [P(H;), P(H;11)] + A[vs, vip1] = 0 follows
from a direct computation which can be found in Section §A.4] O

6. The center of the deformed double current algebra
D p(sln)

In this section, we show that, when nA = +4 (B — %), the center of ) g(sly,)
is very large. This is made precise in Theorem below.

If X ® u® is an element of sl,[u], then we denote its image in D g(sl,)
under sl [u] — D) 5(sl,) also by X ® u® or by X (u®). The same applies to
s[n[v] — @)\75(5[71). Set

(47) Zab,cd(s) = [K(Hab)7 Hcd(us)]
- 2 S > S([Hap Ei)(uP), [Bji, Hea) (u))

1<i#j<n p+q=s—1

and

(48)  Zapca(s) = [Q(Hap), Hea(v®)]
+2 Yo > S([Hav Eij)(vP), [Eji, Hea) (v7)).

1<ij<n p+q=s—1
Zabab(s) and Zzb’ab(s) will be abbreviated Zg;(s) and Zlb(s), respetively.

Theorem 6.1. Assume that n >4 and n\ = +4 (B — %) The center of
the deformed double current algebra D g(sl,) contains two subrings iso-
morphic to the polynomial rings in infinitely many variables Clay, az, as, . ..]
and Clb1,by,bs,...]; the isomorphism sends as (resp. bs) to Z(s) (resp.
Z(s)) where Z(s) = Z12(s) + Za3(s) + -+ + Zn1(s) (resp. Z(s) = Z12(s) +
223(8) + -+ an(s)).

This theorem was inspired by an analogous result about rational Chered-
nik algebras, namely Proposition 3.6 in [§] which states that the center of
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the rational Cherednik algebra when the parameter ¢ = 0 contains the sub-
algebra C[h]"" @ C[h*]", b being here the reflection representation of the
Weyl group W. In type A, the condition ¢ = 0 corresponds to the condition

nA = —4 (ﬂ — %) when the parameters A, are related to the parameter
t,c of the rational Cherednik algebra as in [9] [10], namely 5 = % — @

and A\ = c¢. These two conditions on the parameters are necessary for the
construction of the Schur-Weyl functor in loc. cit. If M is a right mod-
ule over a rational Cherednik algebra H;.(S;) of type gl; (S; being the
symmetric group on [ letters), then M ®¢(g,] (C™)®! is a left module over
D) a(sly). If 2 is a central element of H .(.5;), then the multiplication by =z
on M ®c¢g,) (C™®! given by m ® v — mz ® v produces an element R, of
Endg, ,(s1,) (M ®c[s.] (C™)®"). Proposition 3.6 in [8] states that the center
of Ho () contains Clzy,. .., 7% ®c Cly1, ..., y]>. If 2 =af + a5+ +
x7, then lengthy computations show that R.(m ® v) = Z(s)(m ®@v). Z(s)
can also be viewed was an element of Endg, ,(sr,) (M ®c[s.] (C™)®!) be-
cause Z(s) is central, so we can say that, in Endg, ,(s1,) (M ®c(s,] (Cm)®h),
R.=Z(s) . A similar remark applies to y{ +y5 + --- + ] and Z(s)

6.1. Higher commutation relations
We will need the following proposition, which is also of independent interest.

Proposition 6.1. For any s > 0 and any X € sl,, there exists in D g(sl,)
an element Ps(X) with the property that the assignment X +— Py(X) is lin-
ear, [Ps(X), X'] = Ps([X, X']) for any X' € sl,,, and such that, for any in-
tegers 1 < a,b,c,d <n with a #b, ¢ # d and (a,b) # (d,c), the following
relation holds:

(49) [K(Eaw), Eca(u®)] = Ps([Eabs Eea))
+s (B - /2\> (5bcEad + 5adEcb)(uS_1)

B W Z S(Eab(up)vECd(uq))

prg=s—1
P2 S (BB (B Bl

1<i#j<n p+q=s—1

Remark 6.1. When s =0, Py(X) = K(X) and the right-hand side equals
K([Eab; Ecdl)-
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The following identities are essential for the proof of the previous propo-
sition, which is given below. They are generalizations of and can be
obtained in the same way. As for , let v be either a root and X, a cor-
responding root vector, or let v = 0 and X, be interpreted as an element of
h. Then, for any roots 31, B2, we have:

(50) 3 [S(X,, Xalw”), [X-a(u?), X5,]), X

aEA

= 3 5([1X6 X3, Xal?)], [X _au?), X5,))

aeA

+ Z S([Xﬁl,Xa(up)], [X—a(uq)a [X52’X’Y]]>

aEA

= (7, 82)8 ([ Xp,, X5] (uP), X, (u?))
— (7,818 (X5, (uP), (X, X, ] (u?)),

(51) S S X)) [X—au?), Xg,]), X (w)]

acA ptqg=s—1

= (S (11X ] Ko (0], (X ), X))

a€A ptqg=s
—|—S([X51,Xa(up)], [X_a(u9), [XﬁvaH))

= > (0 B)S([Xp,, X5 ) (), X, (u))

ptg=s
+ (7, 81)8 (X, (uP), [Xg,, X5](u?)))

= 3 (5[0 Xl X ] X X ()

aEA
+S<[X51,Xa}(u5), [[X_a,ng],X7]>) .

Proof of Proposition[6.1 Let’s start with relation in the case when
a,b, c and d are all distinct. Applying [Q(Hcq), ] to [K(Euw), Ecq(u®™1)] and
using Lemma along with allow us to obtain, by induction on s,
the formula for [K(Ey), Ecq(u®)]. The case when [Eyp, E.q] = 0 follows from
this. (For instance, if a,b, ¢ are all distinct and d is chosen different from
a,b and ¢, then we have [K(FEgy), Ea(u®)] = [[K(Eab),ECd(uS)],Edb] and
the right-hand side can be computed using (50)).)

Step 1.1: The proof of the existence of Ps(X) is by induction on s, the

case s = 1 being given by the definition of © 5(sl,). Let s > 2 and assume
that Ps_1(X) satisfying is known to exists for all X € sl,, and with the
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property that the assignment X +— Ps_1(X) is linear and [Ps—1(X), X'] =
P,_1([X, X"]) for any X' € sl,,. Set

) 8] = ) B (5-3) Buler™)
- Z S n,n— 1up) n— 11( q))

p+qsl

4 Z Z Enn-1, l]](up)’[EjivEn*Ll](uq))‘

1<z;£j<n pt+q=s—1

Consider the finite-dimensional (s, )-submodule V' of D 5(sl,) gener-
ated by Ps(Ey1) under the adjoint action of sl,, on Dy g(sl,). Let us see why
Ps(Ep1) is a lowest weight vector. Ps(FEy,1) is a weight vector since it is a
sum of weight vectors of the same weight €,, — €1. Suppose that e > f. Then
[Ecf, Ps(En1)] = 0: this can be checked quickly using if e and f are
both # n — 1. What is less clear is that [E.f, Ps(Ep1)] =0 when e =n — 1
or f =n — 1. For instance, if e=n —1 and f < n — 1, then

[En—1,f, Ps(En1)] = —[K(Ep,f), En-1,1(u”)]
+2 S S, Buera )
ptg=s—1
A

72 X 5By Byl wh), (B Baa)@?)

1<i#j<n p+q=s—1

A
—*1+5f1 Z S(Eng(uf), En—1,1(u?))

ptq=s—1
= 0.

Here, we used the expression for [K(Eyf), Ern—1,(u®)] which was estab-
lished previously since [Ey ¢, Ep—1,1) = 0. Similarly, [Ecf, Ps(En1)] = 0 when
e=nand f =n—1, so Ps(F,1) is indeed a lowest weight vector.

Step 1.2: The next step is to check that ad(F; ;1)1 (Py(E,;)) = 0
fori=1,2,...,n—1. When i # 1,n — 1, (€s1, ;) = 0, so we have to verify
that [Ej ;y1, Ps(En1)] = 0 in those cases. This is quite clear if i # n — 2 (and
1# 1,n— 1) using . If i = n — 2, we compute the following using again
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(O):
[Enf2,n71a Ps (Enl)]

= [K(Epn-1), En—21(u’)] — = Z S(Enn-1(uf), En—21(u?))
p+q s—1

1 Z Z Enn-1, z]](up)v[EjhEn—Qal](uq))

1<7,7£]<np+q s—1

—i-* Z S(Enn-1(uf), Ep_g1(u?))

P+QS1

and the right-hand side vanishes as a consequence of relation for
[K(Enn-1), En—21(u®)], which was established earlier since [Ey, 5,—1, Ep—21]
=0.

Step 1.3: We also want to check that

ad(E12)*(Ps(En1)) =0 and ad(E,_1.,)*(Ps(En1)) = 0.
We give the details in the second case. We start with:
[Enfl,na Ps(Enl)]

— K (1) Bnora(0)] =5 (5= 5 ) Bncaalu™)

_% Z (S(Hn—l,n(up)aEn—l,l(uq))+S( n—1,n( p)vEn—l,l(uq)))

p+QS1

1 Z Z Hy 1, ZJ](up)v[Ej%En—lvl](uq))’

1<z7£]<n pt+g=s—1

which follows from . Applying ad(E,—1,,) again yields:

[Enfl,na [Enfl,ny Ps(Enl)H

= —2[K(En-1.0): En_11( Z S(En-1n(u?), Bp_1,1(u?))
p+q s—1

+f S© S S(Eaim Byl (), [Eji, By](u?))

1<z7£]<n ptgq=s—1

- = Z S n— 1n ) n— ll(uq))

p-HIsl

Z S n— 1n ) n— ll(uq))

P-HISI
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The right-hand side vanishes because of , which has been established
previously since [Ey—1p, En—11] = 0.

Step 1.4: Once all this has been proved, we can conclude that the finite
dimensional {(sl,,)-submodule V' of D) g(sl,) generated by Ps(E,1) is iso-
morphic to the adjoint representation of sl, on itself. This implies that if
X € sl,, then Ps(X) can be defined as the element in V' corresponding to
X under the isomorphism V'~ sl,, of sl,-modules which sends Ps(FE,1) to
the lowest root vector E,.

Step 2.1: It remains to prove that Ps(X) satisfies the formula for all
X € sl,. By definition, this is true when X = 1, Eg, = Ep, p—1 and E.q =
E,_1,1. Relation has also already been established when [E,, E.q] = 0.
It remains to check that it holds when b = ¢ and a, b, d are all distinct, and
also when a = d and a, b, ¢ are all distinct. For the first case, we employ an
idea that was used in section [2, namely start with formula for Ps(Fn1)
and apply a sequence of operators s; which sends E,; to £F,q4, Ey, -1 to
:I:Eab and En—l,l to :l:Ebd-

To deal with the case a = d and a, b, ¢ all distinct, we see that we only
need to show that holds in one of these cases since then we can apply
the same argument involving the operators s; as in the previous paragraph.

Step 2.2: By induction on s, using , we can assume that the following
identity holds in ®) g(sl,):

[K(En—l,l)a En,n—l(U871)] + [K(En,n—l)a En—l,l(U871)]
A —2
e (1) et
+f Z S(Enp-1(uf), Ep_1,1(u))

p+q52

Z S S(Ban1, Ei)(w?), [Eji, Bn-1,1)(u?))

1<z;éj<n p+q=s—2

Let us apply [Q(H12), -] to both sides of the previous equality to obtain,

using :
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[[Q(Hi2), K(En—11)], Epp—1(u®")]
+ [[Q(H12), K(Enn-1)], En- 11( 8_1)] — [K(Enn-1), En-1,1(u”)]
:_2<3_1) <B_;\>E Z S n,n— 1 ) n— 11(Uq+1))

p+QS2

2SS S(Bunet Bl [Ei Buya](a))

1<i#j<n p+g=s—1

> (S([Hw’[EnmEH (B Bara)(w)

1<i#j<n

+S([En,n—17 Eij](u871)’ [HlQ’ [Ejis En_l’l]])> '

N | > w\

We want to rewrite the left-hand side using the following consequence
of Lemma [5.1}

[K(Enfl,l), Q(le)] + [K(Enfl,l), Q(anl,Q)]
= A Z S([En-11,Eijl, [Eji, Hia + Hp—12]) + (5 _ ) 11

4 -
1<i#j<n

Substituting this into the left-hand side of the previous expression and us-
ing the relation [Q(ng), K(En,nfl)] = %(S(Enl, El,nfl) - S(EnQ, E27n,1))
yields:

(53)

- “Q(anl,Q)a K(Enfl,l)]a En,nfl(us_l)] - [K(En,nfl)a Enfl,l(us)]

=2 S [S(Bar Bl By i) + S(Bor 1 B

1<i#j<n
[EJ’L’ H,— ]) En,nfl(us_l)]
A

2 <S(En1, Hip1(u™)) = S(Ena, EQl(ukl)))

_23(5—;> @) =3 S S (), B ()

P+QS2

Z > S([Bnn-1. Eij)(uP), [Eji, En-1.1)(u?))

1<z;£]<np+q s—1
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_% Z (S([ng,[ nn—1, Ei ]]v[Eji’E"—lvﬂ(ukl))

1<izj<n

+8(1Bun-1, Bigl (™), [Hiz, [Bji, Ba-14]]) )
Step 2.3: The left-hand side of the previous expression is equal to

(54) (K (Enn-1), Bno10(0?)] = [Q(Hn-12), K (En11), Ennoa (u*H)]]
+ [K(Ep-1,1), [Q(Hn-12), Enn—1(u*1)]].

The last term is equal to —[K(En—1,1), Enn—1(u®)], which is exactly (up to
a sign) what we want to determine. The first term was determined earlier
when we treated the case b = ¢ and a, b, d all distinct, so holds for it.
By induction on s, we can assume that relation holds for [K(En—1,1),
Epnn—1(u*1)], so the second term in can be determined using (51)):

(55) [Q(Hn-12), [K(En-1.1), Enn1(u’"")]]
= ~QHn1.2), Pea(Ba)] + 2 S(Bn 1 (w"™), B )
2 8(Enat, Bur (7))

+ZZ( 32 S([1Hu12, Bucral By) (), [Eji, Bnp)(u?))

i#j \ptg=s—1

—S([ n—1,2+ [En—1,1, Eijl], [Eji, Enpn—1)(u®~ 1)))

+22( > S(Bur1 Byl (0), [Bis Ha1,2, B ]] (w9

i#j \pt+gq=s—1

— S([Enfl’l, El-j](us_l), [Hn—1,27 [Ejl7 En nfl]] ))

A
= _[Q(anl,Z)a Psfl(Enl)] + ZS(Enfl,l(us_l)a En,nfl)
A
- ZS(Enfl 1, B, nfl(us_l))

- *Z( ( n—1,2; En—l,laEz‘j]]y[EjiaEn,n—l](us_l))
i#]
+ S([En_u, B, [Ho 10, [Eji, E,m_l]])).
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[Q(Hp—-12), Ps—1(Ep1)] can be determined because [Hy—1 2, Ep1] = 0. In-
deed, we can use Lemma below (which we can assume holds by induction)
with a =n =d, b=1= ¢ to obtain an expression for Ps_;(E,1) and then
use this expression, along with , to compute [Q(Hp—12), Ps—1(En1)]:

(56) [Q(Hn—1,2)=Ps—1(Enl)]
A

=7 (5(En,n—1(u8_l), En11) +S(Enn-1, En_11(u®"h))
— S(Ena(u®™Y), Ea1) — S(Epo, Em(uH)))
£ 20 (S([Huro (Bar, Bl 1By il ™)

1<i#j<n

+S([En1, Eil(u*™), [Hn 2, [Eji, Hl"]D)

Step 2.4: Substituting into and then substituting the resulting
expression into , we obtain an expression for the left-hand side of
from which we can isolate [K(Ey,—1,1), Enn—1(u®)]. Relation has already
been established for [K(Ey n—1), En—1,1(u®)]; using it and performing a few
elementary simplifications, we obtain:

[K(En-1,1); Enn-1(u’)]
= —Ps(Enl) +s <6 - A) Enl(u571)

+f Z S(Enn-1(uf), Ep_1,1(u?))

P+q -
"1 Z Y S([Bun-1s Byl [Eji, Baora](u?))
175] pt+q=s—1
+ %( — S$(Ena(u*Y), Ea1) — S(Ena, E21<us,1)))
3,5, (st )
<i#j<n

+ S([Enl, Ey](u*™Y), [Ho-1,2, [Eji, Hln]]))

+ = Z( ( n-12, [En-11, Eij]], [Equnnfl](uS_I»
i#j

+ S([En—l,h Ez‘j](usil), [Hn—1727 [Eji7 En,n—lH))
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A
~-1 > [S(En-11. Eij), [Eji, Hi2 + Hp12]), Enn1 (w71)]
1<i#j<n
A s—1 s—1
+ 5 (S(Bnt, Hin1 (™) = $(Bua, Bnn(u™)))

+ % Z <S<[H127 [Enm,—l, Eij]], [Ejia En—l,l](U871)>

1<ij<n

—l—S([En,n_l,Eij](us_l), [Hi2,[Eji, B H))

It can be checked that the previous long relation simplifies to:

[K(En-1,1), Enn—1(u”)]
= —Ps(Enl) +s (ﬁ - A) Eni (u871)

Z S n— 11 ) n,n— 1(uq))

p+qsl

Z > S([En-11, Egl(wP), [Eji, Epna](u)).

1<z;é]<n p+q=s—1

This shows that holds also for at least one case with a = d and a, b, ¢

all distinct. As mentioned earlier, this is enough to complete the proof.

The identities that we proved in Section [f] still hold more generally in
type A and with only a slightly modified proof (using for instance (50))
instead of ), which we omit in this section. The following lemma is

parallel to Lemma,

Lemma 6.1. For any a #b and ¢ # d, and for any s > 0, the following

relations hold in D g(sly):

[K(Eab)7Hcd(us)] =P ([Eaba Hcd])

Y Y ([ B, (B Hoal ()

1<z¢j<n pt+g=s—1

s (ﬁ — ;) (€a + €bs €cd) Eap(u®1)
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and
[K(Hab)a Ecd(us)] = Ps([Haln Ecd])

Z E ab; ( )[E]’L’E ]( ))

1<z;é]<np+q s—1
A _
s <ﬁ — 2) (€ap, €c + €4) Eea(u® 1).
6.2. Proof of Theorem [6.1]

The elements Zg(s) and Zg(s) (see and (48))) can be expressed in a
different way (compare with Z,, and Wy, in and ) Set

Wan(s) = [K(Eap), Epa(u®)] — 8( b)
Eap, Eij)(uP), [Eji, Epa](u?))

HM

S(Eqp(uP), Epg(u?)).
The next proposition is parallel to Proposition[5.1]and its proof is analogous.
Proposition 6.2. (i) Foranyl<a#b<nandl<c#b<mn,
A s—1
Zab,cd(s) = (Gaba 6cd)VVab(S) +s( 68— 5 (Ga + €b, 6ccl)f]ab(u )
A _
— CaccaWeal) 5 (5= 5 ) (e e o) Hoau ).
In particular, we have Zg(s) = 2Wap(s), and when a,b,c,d are dis-
tinct, Zapcd(s) = 0.
(ii) For1<a#b<nandl<c#d<n,
Wab(s) - ch(s) </B - ) ( ac t Hbd)( o 1)-

(iii) For1<a#b<nandl<c#d<n,

Zap(8) — Zea(s) = 2s <5 - 2) (Hoe + Hypg)(u®™h).
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Lemma 6.2. For any s > 1 and any \, B € C, the element Z(s) commutes
with the subalgebra U(sl,[u]) of Dy g(sly).

Proof. Tt suffices to show that VX € sl,, the commutator [Z(s), X] is 0
and [Z(s),Q(X’)] =0 for at least one non-zero element X’ € sl,, because
{X,Q(X') | X €sl,} is a set of generators for the image of LU(sl,[u]) —
D )\,5(5[”).

Slightly modifying the proof of Theorem and using Lemma [6.1] we
have, for any a # b and ¢ # d,

[Zab(s)y Ecd] = 2s (6 - 2) (6aba 6cd)(faby €c + 6cl)chd(us*l)-

Therefore,

n

A _
[Z(s), Eiit1] = 2s <5 - 2> Z(Ea,a+1, €iit1)(€aart; € + €ir1) Eiip1 (u®)

a=1

=0,

and similarly [Z(s), Eiy1,] = 0. Thus, Z(s) commutes with sl,,.

By our assumption that n > 4, there exist 1 < ¢,d < n, such that a,b, ¢, d
are distinct. We claim that [Z,;(s), Q(Hq)] equals 0, so X’ can be taken to be
H_4. Indeed, by Proposition (i), we have Z(s) — nZqp(s) € h @c Clus~1].
Therefore,

[Z(S)¢Q(Hc )] = n[Zab(s)a Q(HC )] =0.

We now show the claim that [Z,(s), Q(H.q)] = 0 by direct calculations. On
the one hand,

(57)  [[K(Hap), Hap(w*)], Q(Hea)]

= [[K (Ha), Q(Hoa)], Hap (u®)]

:% Z (€abs €i5) (€cds €i) [S(Eij, Eji)y Hap(u®)]

1<i#j<n
since a, b, ¢, d are distinct, see Proposition .

:_% Z (Eab;eij)2(ecd7eij)S(Ei‘(us)’Ejiy

1<i#j<n
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On the other hand,

(58) Y > [S(Ha E)w?), By, Ha)(u)), Q(Hea)

1<i#j<n p+qg=s—1

= > (ean )2 S(By(wP), Eji(u?)), Q(Hea)]

1<i#j<n p+g=s—1

= Z Z (€abs €i) €cda€ij)<_S(Eij(up+1)ani(uq))

1<i#j<n p+q=s—1
+ S(Eiy (u?), Ejz‘(uq’Ll)))

=2 Y (cavs€ij)*(ccar €17) S (Eij(u®), Bji).
1<iAj<n

By the definition of the element Z,,(s), we conclude from and that
[Zab(s)v Q(Hcd)] =0. O

In the remainder of this section, we compute the commutator [K(H.q), Z(s)]
and deduce that [K(H.q), Z(s)] = 0 if and only if nA = +4 (8 — 3), which
implies, in light of the previous lemma, that Z(s) is in the center of © g(sl,,)
(see Theorem [6.1]).

Lemma 6.3. Assume that a,b,c,d are distinct integers. For s> 2, in
D 5(sln), we have the relation:

(K (Hed), Zab(s)]

=— (;) nA? Heg(u®~?)

+ s (,3 - ;) 3 ( — S(Eae(t?), Eea(u?)) + S(Eqq(uP), Egq(u))

p+g=s—2

— S(Bpe(u”), Eap(u”)) + S(Bya(u”), Eap(u")) ).
Proof. Step 1: On the one hand,
[K(Hcd)a [K(Hab)vHab(us)]] = [K(Hab)v [K(Hcd)aHab(us)H
S [KCHw). S ((Hea, Byl (), [y, Ha)(u?)) |

1<i#j<npt+q=s—1
by Proposition [6.2] E .
Z > (€cds €ij) (€avs €ij) {K(Hab)a S(Eij(uP), Eji<uq))]

1<z¢j<n pt+g=s—1
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My

Yoo D (e eab,eij)(S([K(Hab),EZ-j(up)],Eji(uq))

1<i#j<n p+g=s—1
+ S(Eij(uP), [K (Hap), Eji(uq)]))

E § 6ccla 623 6aba eij)

1<z;£j<np+q s—1

( Z Z [Hab, Exa) (u), [Eu, Eij) (u!))

kAl e+ f=p—1
+ (€ap, €i5) Bp(Eij) +p (ﬁ - ;) (€avs €i + ) Eij (uP™1), Ejz'(uq)>
by Lemma
Z Z (€cds €ij) (€avs €17)* S (Py(Eij), Eji(u?))

1<z7éj<np+q s—1
+7 Z Z Z Z (€cds €ij) (€ab, €ij) (€ab, €x1)
1<i#j<n p+q=s—1 k#l e+ f=p—1
X S(S’(Ekl(ue) [Elk,E--](uf)),Ej,-(uq))

5 >y (6—) (€abs €i + €5)(€cas €i5) (€an, €i5)

1<i#j<n p+q=s—1

X S(EU (’u,pfl), Eji(uq)) .
On the other hand, using Lemma

1YY ) U<up>,Eﬂ<uq>>]

1<7,7é]<np+q s—1

Z > (eabs€iy) ( ([K(Hca), Eij(uP)], Eji(u?))

1<z;£]<n pt+q=s—1

+ (B (), [ (Hea), ji(ut)])

= g Z Z (Ealu 6ij)25<2 Z S([Hcd, Ekl](ue), [Elka EZ]](uf))

1<i#j<n p+g=s—1 1<k#I<n
e+f=p—1

+ (€cds €ij) Pp(Eij) +p <ﬁ - ) (€cas € + &) Eij(uP ™), Ejz‘(uq)>
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Z Z 6aba 61] 6cda €ij)S(Pp(Eij)7 Eji (uq))

1<z¢]<n ptg=s—1

Y Y Y Y )

1<i#j<npt+q=s—11<k#l<ne+f=p—1

X S(S(Ekl(ue), [Ew, Eijl(w))), Eji(uq)>
A

A _
ta > p <ﬁ - 2) (€eds €0 + €5) (€avy €i5)° S (Bij (uP ™), Eji(u?)).
prgZo1

Substituting the above computations into the formula for Z,p(s) and
cancelling out the obvious terms, we get:

[K(Hea)s Zap(s)]
2
(59) :% > > ((ccas€ij)(€ans €55) (€an, k1)

1<i#£] kA I<n et frq=s—2 )
— (€ab» €i5)*(€cds €x1))

x 8 (8 (Bua(u), B, Byj)(w!)), Eji(u?))

Z <6 - ;) (€ab, €45)

% ((€abs €i+€5) (€cds €55) — (€cd, €+ €5) (€ap, €ij))
X S(Eij(uP™1), Eji(u?)).

w\y

(60) +
<i#j<n p+q=

Step 2: Let’s simplify the expression . It can be written in a more
general form as follows. is equal to the following:

2
% > Y (v ) B8) — (1,0 (Y, B))

et+f+q=s—2a,BEA
x5 (S(X5 (), X Xl (), Xa(u) ).

where v,7" € b*, and A is the root system of a Lie algebra g with root vectors
{Xa | @ € A}. Let us simplify using the following two observations.
Observation 1: Interchanging a <> —f yields:

S ((rna),a)(r.8) = (v,0)*(+,8))

a,fEA
(S (Xp(0), . Xl ), X))
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= Y (B B)(r0) ~ (,8( )

a,fEA
x S (S(Xau), [X s, Xo] (uT), Xs(u?)).

Observation 2: Note that if a — 3 is not a root of the Lie algebra g, then
[X_g3, X4] is automatically zero. Therefore,

> ((he) )7, 8) = (v, ) (Y, 8))

a,fEA
X S(S(Xﬁ(ue)’ [X,ﬁ,Xa](uf)),X_a(qu
= > (he ) 8) — (1,02, B))

{a,BE€A |a—BeA}
x (S (Xa(u), [X g, Xa](u!)), X -a(u?))
= > (. B—),B—a)(7,8) — (v,8—a)’(¥,B))

{a,a,BEA | B—a=a}
X S<S(X (u®), [XfﬁaXB—&](Uf))vX&—ﬁ(uq)>
= - Z ’7 ﬁ /Ya ) (Vaﬁ)z(’ylﬂa))

a,BeEA

X S(S(X (UE) X:(uf),[X—ﬁ,X&](Uq))
- > ( @) (7, 8) — (v, @), 8))

a,feEA

x S(S<X5<ue>,x_a<uf>>, (X5, Xa] (u?)).

For the above equality, we used the following computations. Assume
[X_g,X5] = kX5_p and @ = — . Then

(Xa, [X-p, Xp-a]) = ([Xa, X—p], Xp-5) = —k(Xa—p, Xs-a) = —k,

which gives us [X_g, Xg_5] = —kX_3.
After splitting into three identical expressions, then switching o <>
—f in the second one and applying the two observations above to the third
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expression, we obtain that % . is equal to the following:

D DD D (CRSICRSICHD S SR

et fro=s—2a,feA
(5 (Xp(u), X, X (uf)),X_a(qu

+é > 2 ((%5)(7’,6)(%04)—(%5)2(7/’0‘)>

et+f+q=s—2a,BEA
% S(S (X a(u),[X s, Xa)(w)), Xs(u?))
—s X Y (A Ama) - 6,870 0)
et+f+q=s—2a,BEA
X S(S(X (u®), X_a(uf)) [X_p, X ](uq))
= Y Y ()0 )08) - (e )
et+f+q=s—2a,BEA
x S(S(X5<ue>,x_a<uf>>, X, Xa(u?))
=3(5) T (068 - Girer.0)
a,BEA
Xﬂ, [[X_ﬁ,Xa]vX—aH (u872)

;) > ((%ﬂ)(%ﬁ)(%a) - (%5)2@/7(1))

x ([X3, X—al, [X-3, Xa]) Hp(u""?)
where the second equality uses the fact
S(S(A7 B), C) - S(S(A, ), B) = [A, (B, C]],

and (3) appears as the cardinality of the set {(e, f,q) € N’ [e+ f+¢q=
s —2}.
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Now specialize 7 to €4, 7' to €4, a to €;j and 3 to €x; by direct com-
putations, we obtain:

Z ((Gab, €ij) (€cds €i7) (€aby €k1) — (€abs €i5)* (€cas fkl))

1<ij,k#I<n
X (B, Ejil, [Euk, Eij]) Hi

= 12and~
Thus,

N2 (s 5—2 5 2 5—2
(61) :—§§ 5 12nH q(u®"*) = — 5 nA“Heq(u®™ ).

Step 3: We move on to computing the term . Under the assumption
that a, b, ¢, d are all distinct and ¢ # j, we can compute the constants which
appear in by using the basic rule (g, €;) = 04;:

(€abs € + €5) (€cds €ij) (€abs €ij)
= —04i0cj + 0aiddj — Oaj0ci + 0aj0di — Obidcj + Obiddj — Objlci + ObjOdi

= —(€cas € + €5)(€ap, Eij)2~
Substituting this into the expression , we obtain that is equal to

(62

)
A Z Z p <,8 - ;) ( - 5(11'503' + 5ai5dj - (5aj(sci

1<i#j<npt+q=s—1
+ 5aj5di — 5bi5cj + 5bi5dj — 5bj5ci + 5bj5di> S(EZ '(upfl), Ejz‘ (uq))

A 3 p(8-3) (=SBl ), Bulu) 4 8(Busla ), Banlu)
p+gq=s—1
— S(Eca(upfl), Eqc(u9)) + S(Eda(upfl), Eqq(u?)) — S(Ebc(upfl), Eep(u?))
,E

+ S(Ebd(up_l db(uq)) — S(Ecb(up_l), Ebc(uq)) + S(Edb(up_l), Ebd(uq))>
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=2 Y (p+1 (5 - ) (= 8 (Bae(u), Ecalut)

ptg=s—2
+ S (Baa(), Eaa(u)) = §(Bpe(u?), Eap(u?)) + S(Bpa(w?), Eap(u?)) )
2 Y @0 (8-3) (- 8l Bae)
p+q=s—2
S(Eqa(u?), Ega(u?)) — S(Epe(u?), Ecp(uP)) + S (Epa(u?), Edb(up)))

_.I_
= \s (,B — % Z ( — S(Eac(up),Eca(uq)) + S(Ead(up),Eda(uq))

pHq=s—2
— S(Bpe(uP), Eay(u?)) + S (Epa(uP), Edb(uq))>.

Step 4: We can combine the results of steps 2 and 3 to complete the proof
of the Lemma [6.3k

[K(Hcd)a Zab(s)] = +
_ (;) nAZH g (u®~2)
+ As (5 - A) > (= S(Baclw?). Bealu) + S (Baalu?), Eaa(u)
2 b ca a b a

pHq=s—2

— S(Ebc(up),Ecb(uq)) + S(Ebd(up) Edb ul )) by and .

The main theorem of this section relies on the following proposition.

Proposition 6.3. Assume n >4, s€ N and s > 2. For any X € sl,, in
the algebra Dy g(sl,), we have

(K (X), Z(s)) = (16 (5~ ;) - w) (5)-xw

As a consequence, we conclude that

[K(X),Z(s)] = 0 < n?X? = 16 (5 >2

<:>n)\:4<ﬁ2> or n)\=4<ﬁ;\>,
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which completes the proof that Z(s) is in the center of © g(sly,) (see The-
orem [6.1]).

Proof. By Proposition we have:

(63) Z(s) = Zaar1(s)
—nZia(s) + 25 (5= 5 ) (0o + Haa)u ).

By the same proposition, we also have:

n

Z(Z34,a1(3 — 1)+ Zsa,a2(s — 1))
a=3
= 2(63 — €4,€q4 — 61)W34(S — 1)
a=3

+(s—1) (6 - ;) (€3 + €1, €a — €1) Haa(u*"?)
+ Z(es —€4,6q — €2)W3a(s — 1)

a=3
+(s—1) (ﬁ — ;) (€3 + €4, €q — €2) Haa(u®?)

—4(s—1) <5 - ;) Hay(u®™?),

which is equivalent to the identity

n

(64) [K(H34), Z(Hal + Hag)(us‘l)]

a=1

:22 > S<[H347Eij](up)7

i#j p+q=s—2

Eji, Y (Ha1 + Haz)

a=1

(uq)>

+4 (5 - ;> (s — 1) Hsa(u®"2).
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Substituting into the commutator [K (H34), Z(s)], we obtain:
(K (Hz4), Z(s)]
A
= n[K(H34), Zlg(s)] + 2s (,8 — 2)

x>y 5<[H34’Ez'j](up)v

i#j pra=s—2

| >

n

EjiaZ(Ha1+Ha2)

a=1

)

2
48 <5 _ ;) (5 — 1) Hya (u*=2) by
= n[K(H34), Z12(s)]

+8(B—/2\);\Z Z (63—64,6ij) <226a—n61—n62,6m’>

i#j p+q=s—2 a=1
2
x S(Eij(u), Byi(u)) + 85 (5 - ;) (s — 1) Haa(u"?)

2
— WK (Ha), Zas(8)] + 85 (B - ;) (s — 1) Ha (")

—sn(ﬁ—é)é\z Z (035 — 035 — 0ai + 045)

i#j ptg=s—2
X (01; — 01 + 025 — 025) S (Ei;(uP), Eji(u?))
2
- _ (;) n?\?Hzy(u®"%) 4 8s (5 — ;) (5 — 1)Hza(u®"?)

+nAs (ﬁ — ;) Z ( — S(E13(up)7 E31(uq)) + S(E14(up), Ey (uq))

ptq=s—2
- S(Egg (up), E32 (Uq)) + S(E24 (up), E42 (uq))) by Lemma @

o (8-5)5 X (- SE). Eulw) - S(En(w). Bulu?)
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We have shown that Z(s) commutes with X for any X € sl,, (see Lemma
[6.2). Using [K(X),Y] = K([X,Y]), it follows that, for any X € sl,,

[K(X), Z(s)] = <16 <ﬁ - ;)2 - n2)\2) <;)X(us_2).

Proof of Theorem [6.1. In the preceding pages, we have shown that the el-
ements Z(s) are all in the center of @) g(sl,). The proof that Z(s) is
central is similar. To complete the proof of Theorem we have to see
why they generate a subalgebra isomorphic to a polynomial ring in in-
finitely many variables. This is a consequence of the PBW Theorem for
D) 3(sl,) established in [I0] which states that the associated graded ring
of ©) s(sl,) is isomorphic to the enveloping algebra of sl, [u,v], the uni-
versal central extension of sl,[u,v]. The center of sly[u,v] is known to be
isomorphic to Q' (C[u, v])/dClu, v] (see [15]) and, as vector spaces, sl [u, v] =
sl [u, v] ® QY (Clu, v])/dClu, v]. The associated graded ring gr(Dy 5(sl,)) is
obtained from the filtration Fy on ) g(sl,) that assigns degree 1 to Q(X)
and degree 0 to X and K(X) for all X € sl,,. (Under the isomorphism of
Theorem the corresponding filtration on D(g) is given by assigning de-
gree 7 to X; and H;, for r = 0,1.) The central element Z(s) has filtration

degree s, so Z(s) is an element of Fy/F,_; which, under the isomorphism
between the center of sl,[u,v] and Q!(C[u,v])/dC[u,v], corresponds to the
central element given by 2nvu®~'du. The elements vu*~'du for s > 1 are all
linearly independent in QY (C[u,v])/dC[u,v] and are all algebraically inde-
pendent in U(sl,[u,v]) = grp (D) g(sly)). Therefore, the elements Z(s) for
s > 1 must be algebraically independent in D) g(sl,). O

Appendix A.
A.1. Computations for the proof of Lemma

Here is an alternate version of Lemma

Lemma A.1. Set S(z,y,z) = S(S(z,y),2) + S(S(x, 2),y) + S(S(y, 2), z).
Assuming that i # j, we have:
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1 n
[vi,v;] = 18 Z (S(Em‘, Eijv1, Ejpix) — S(Bik, By jy1, Ejr1i)
k=1
- S(Ek i+1 Big1j+1, By g) + S(Eirik, Er 1, Ejr1iv)
(Ekw i k)+S( lk7Ekj7Eji)

S(Ek,it+1: Eit1,5, Eji) — S(Eit1 5, Eijo Ej,i+1)>-
Note that in the case j =i+ 1, the last two terms cancel, so

1

n
> (S(Ekia Eijit2, Eivax) — S(Eik, Eriv2, Eiva,)

>_A

f—
— S(Eki+1, Pivi,i+2, Eivor) + S(Bit1.k: Erjive, Eit2,i+1)
— S(Eki, Eiiv1, B k) + S(Eik, By g, Ei+1,i)-)

Proof. We know that

—[Vi7 Vj] = Z ([HZ‘,JI@], [[Xj,(l)b], [X;7xc]}>{xa7xb’xc}.

a,b,c

As dual bases of sl,,, we choose {E;j, Hy |1 <i# j<n,1<k<n-—1}and
(Bji, Hi|1<i#j<n, 1<k<n—1} with Hf =% E; - ES" By
We now compute the right-hand side as follows:

([Hi,:va], [[X_"—,:Bb], [X-_, xc]]){x“, xb,mc}
- ZZZ ( Hi, Etl, [[Ejj+1, Epgl; [Ejt1,5, E H){Elk’EqpaEts}
k#l p#£q s#t
+ZZZ (H“Ekl ]]+17H*] [Ejt1,5, B H){ElkaHmaEts}

kAL m st

+ 3> (1 B, [(Byns Bpals (Birg, Hi] ) {Euks Bqpy Hon)

k#l p#£q m
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= ZZZ(HwEkl [Ejj+15 Epgls [Ejy1,5, B ]]){Elk,Equts}

k#l p#q s#t

+ZZ<H“EM Bjj+1, Hyl, [Ejvj, Eil]

kAl m )
+ZZ(H’ME]€Z E; i1, B, [Ejy5, H )

k#L m

= S (1 Bl (1B, Byl (B Bol] ) { By Eaps B}

k#l p#q s#t

{E, Hm, Epi }

{Ek, B, Hn}

Now under the assumption that ¢ # j, we obtain:

ZZZ < HuEkl ]]+17E ] [Ej+1 'K ]]){ElkyEqp;Ets}

k#l p#£q s#t

= > (e —€ir1,ex — @) En,

k#l,p#q,s#t
[0j11.0Eiq = 0jqEpjt1,0jsEjr1e — 0416 Bsjl) { Bk, Egp, B}
= Z ((5z‘k — 0t = Oiy 1k + 0iv1,) Bkl
k#l,p#q,s#t
<5j+1:P5J5[EJ<17E +1,t] - j+1,p5j+1 t[quvE ]

- 5jq5j8[Ep,j+1v Ej+1,t] + 5jq5j+1,t [Ep J+17 ])) {Elkv Eqpv Ets}

= Y ((&'k — 6t — Gi+ 1,k + 0it1,0) B, <5j+1,p5js(5q,j+1Ejt —0tjEj+1,9)
k#l,p#q,s#t

— 0j+1,p05+1,t(0gs Ejj — Esq) — 6jq0js(Ept — OptEj41,5+1)

+ 05q0541,6(0541,5Epj — 5ijs,j+1))) {Eik, Eqp, Eis }

= > ((&'k — 0it = Oit 1,k + 0i1,0) Ekty 6j41,p05s0q,5+1 Ejt
k#l,p#q,s#t

= 0j4+1,p0550t Ejr1,q + 0j41,p0541,t Fsg — 0q0js Ept
+ 5Jq59+1 t5]+1 stpj 5Jq5j+1 t(SPJE 7]+1> {Ellm Eqpv Ets}
= ) ((&'k — 0it = Oit1 e + 0i1,0) Bt 01 p0j1,6Esq — 5jq5jsEpt>

k#l,p#q,s#t
X {Elk ) Eqpa Ets}
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= Z ((5ik — 01 = Oip 1k + 0i41,)0541,p054+1,60150kq

k#l,p#q
s#t

— (03 — 6it — Oir1k + 5i+1,l)5jq5js5lp5kt) {Ek, Eqp, Eis}

n n
= > A{Bu Eiji1, By — Y {Bik Brjr1, Bjaa}

=1 k=1
I#i,5+1 k#i,5+1
- Z {ELiv1, Biv1jr1, iy}
=1
I#i+1,5+1
+ Z {Eis1.ks B i1, Ejrie}
k=1
k#i4+1,54+1
n n
— > {Ei.E;,Ep} + > {Ei, Exj, Eji}
=1 k=1
I#i,5 k#i,5
n
+ Z {Eiv1, Biv1j, Ej} — Z {Eit1,k Erj, Ejiv1}
=1 k=1
1#i+1,j k#i+1,5
n
Z Elz’ i,J+1 ]—l—ll} Z{EzkaEk,j+la 741, 2}
-1 k=1
n
- Z{El,m, Eir1je1, Ejpi} + ) {Bivip Brjirs Ejrrin}
=1 k=1

n n
- Z{Eli; Eij, Ej} + Z{Eilm Eyj, Eji}
=1 k=1

n n
+ Y {Eiiv1, Biv1, By — Y ABiv1k Brjy B}
=1 k=1

Denote by S(z,y, z) the sum S(S(z,y),2) + (S(z, 2),y) + S(S(y, 2), z).
We then have the equality:

1 1
@5(21,2’2%3) 24(;; Z0(1)%0(2)%0(3) = {71, 22, 23}
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Therefore,

n

1
48

i, vj] = (5 Eyi, Biji1, Ejr1x) — S(Eik, By j11, Ejy1)
=1

?T‘

— S(Brit1, Eiv1,j41, Ejr1k) + S(Eig1ky Erjr1, Ejr1it1)
S(Ek27 E’L]7 E]k) + S( ik Ekj7 E]Z)
S(

+ S(Ekit1, z+1,j7Ejk)_S(Ei+1,kaEkjan,i+1))-

A.2. Computations for Lemma

To continue the computations that were started in for [P(Hi1,i+2),
K(FEit1,i+2)], let us determine [P(H;i), K(Ejt142)] (in Step 1), and then
[Eik, [K (Eriv2), P(Eiy1,0)]], [Briv1, [P(E@,k),K(EHLHz)H (in Step 2),
[K(Ei,§+2),Ri+1,i+2,i+27i] (in Step 3) and [Wiir2 — Wiit2, K(Eit1,i+2)] (in
Step 4).

Step 1: To obtain the formula for [P(H;x), K(Ejt1,+2)], recall from the
proof of Theorem that [Wig, K(Eit1,i+2)] = 0 because i,k,i+ 1,7+ 2
are all distinct.

[P(Hik), K(Eit1i42)]
= [Wir + [K(Eir), Q(Eri)] — Wik, K(Eit1,i4+2)]
= [Wika(EiH,H?)] + [K(Eir), [Q(Eki), K(Eit1,i42)]]
= Wik, K(Biy1.412)] + %[K(Eik:), S(Eit1, Bk it2)]
= E(S(K(EHU), Eiivo) — S(K(Eiy1k), Eriv2)
+ S(Eit1,i, K(Eijiv2)) — S(Bit1 s, K(Erit2))).

Step 2: Applying [—, Ex] to the conclusion of Step 1 and reordering the
indices, we have

R

[K(Erit2), P(Eix1,)] = == (S(K(BEri), Bit1,i+2) + S(K(Eit1,i+2), ki)

(B, [K (B ia2), P(Ein ] = — 2 (S(K (Hig), Eipri2)

+ S(K (Eit1,i+2), Hir)).
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Applying [—, E;+1 %] to the conclusion of Step 1, we have

SO

[P(Eit1k), K(Eit112)]]
A
4

(S(K(Eis1,); Eiv1,iv2) + S(K(Eit1,it2), Eit1k))

[Erit1, [P(Eig10), K(Eig142)]]

A
=7 (S(K(Hk,i+1)7 Eit1+2) + S(K(Eit1 k), Bk iv2)

+ S(K(Byjis2), Bis1p) + S(K (Biyis2), Hiis) ).

Step 3: We now compute [K(E;+2), Rit1i+2,i+2,]. Recall that:

(A1) Riyrit2i+2i=— (5—> i+1i

»h\y

ZS i1, Bgi) — 25(Eiy14, Eiv2i12)

Thus,

(A.2)

[K(Eiiv2), Rit1,i42,i4+2,4)

A A [ —
[(5 - 2> Eii1;+ 1 Z S(Eivi1,q, Eqi) —2S(Eix1,, Eivoi42) | , K(Eiit2)

A
(5 — 2) K(Eit1,42) + (ES Egit2) Bis1q) + S(K(Eis1i42), Eii)

— S(K(Ei), Eit1,42) — 2<S(K(Ei+1,i+2)a Eit2i+2) — S(K(E;t2), Ei+1,i))> .

Step 4: We now compute [Wi 12, K (Ei;1,i42)]. By Proposition[5.1} we have

1 1
Wiive = §Zi,i+2 3 Zik + (5 — > i+2,k-



1368 N. Guay and Y. Yang

Therefore,

1
(A3)  [Wiiv2, K(Eiy1i42)] = [2 ik + <ﬁ - > 2.k K(Bit1,iv2)

- _ <5 - 2) K(Eii1,iv2)-

Let us turn our attention to [Wi,i+2, K(Eit1,i42)]:

(Ad)  [Wiiso, K(Eig1i42)]

n

A n
T [Z S(Eip, Ep;i) + Z S(Bit2.p Bpit2)

p=1 p=1

—28(Ey, Eig2iv2), K(Eit1,i42)

A
1 (5(K(Ei,z'+2), Eit1:) — S(K(Eit1,), Biiv2)
+ S(K(Eit2i+42), Eit1i42) — S(K(Eit1,i+2), Eiv2,i+2)

— Y S(K(Eis1p), Bpita) + 25(K (Eit1t2), Eii)) :
p=1

Step 5: Let us now simplify

[K(Eiiv2), Rit1iv2i42] + Wiive — Wi, K(Ei1i42)]
using (A.2), (A.3) and (A.4):

(K (Eii+2), Rit1i+2,i+2,i] + Wiive — Wiito, K(Eit1,i+2)]
A
=2 (5 - 2> K(Eii1,iv2) + (Z S(K(Eqiv2), Biy1,q)
+ S(K(Eit1,i42), Eii) — S(K(Ei i), Eit1,i42)

- 2<S(K(Ei+1,i+2)7 Eii9iv2) — S(K(E;it2), Ez—l—lz)))



On deformed double current algebras 1369

A
1 (5(K(Ez',i+2), Eii1i) — S(K(Eiy14), Eiiv2)

+ S(K(Eit2,42), Biv1,iv2) — S(K(Eit1,i+2), Eiy2it2)

n

—ZS Eit1p), Epit2) +25(K (z+1,i+2)aEn')>

=2 (5 - ;) K(Eit1,i42)

)\ n
=+ 4<ZS(K q7,+2 Z+1q +ZS ’H—lp p72+2)
q=1

— S(K(Eit1,i+2), Bii) — S(K(Ez‘,i), Eii1it2)
— S(K(Eit1,i42); Eiv2,iv2) + S(K(Eiit2), Eit1,)

+ S(K(Eit1), Eiiv2) — S(K(Eiy2,i42), Ei+1,i+2)>

Step 6: The expressions above implies that the right-hand side of can
be expanded and then simplified in the following way:

[P(Hit1,it2), K(Eit1i+2)]
= —2[P(H;),K(Ei;1,i12)] +2 (5 — ;) K(Eiy1,i42)

A
+ 1 (S(K(Ei—i-l,i)a Eiiv2) — S(K(Eit1k), Ekiv2)

S(Eit1,i, K(Eiiv2)) — S(Eit1,k, K(Ekit2))
S(K(Hii+1), Eit1,i+2) + S(K(Eiy1k), Exiv2)
( (Bk,i+2), Biy1k) + S(K ( it+1,i+2), Hiit1)

"‘ZS(K qH—Q z+17q )+ ZS H_lm p,z+2)

— S(K(Eit1,i42), Eii) — S(K(Ei,i)a Ei1,i+2)
— S(K(Eit1,i+2), Big2,i42) + S(K(Ejit2), Eit1,)

+ S(K(Eiy1,), Eiiy2) — S(K(Eij2,i42), Ei+1,i+2))
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= AP K (i) +2 (- 5 ) KB o

+ | S(IK(Eit14), Biiv2) + S(Eit1,i, K(Eiiv2))

R

K(Hiiv1), Bit1,i42) + S(K(Eig1,iv2), Hiiy1)

S(K(Eqi+2); Eit1,4 +ZS Eit1p), Epit2)

Rl o
=2

NE

1
K(Eit1,i+2), Eii) — S(K(Eu) Eii1i+2)
K(Eit1,+42), Fiy2,it2) + S(K(Eiiv2), Eit14)

Q
Il

(
(

U O»

+ S(K(Eit1,), EBiiv2) — S(K(Eit2,i+2), Ei+1,i+2)>

= AP K (i) +2 (0 § ) K(Biniro

A
+ Z (2S(K(EZ-+17,~), Eijit2) +28(Eiv1,i, K(Eijit2))
S(K(=FEiy1,i41 — Biy2i12), Biy1,iv2)
S(K(Eiy1,i42), —Eiy1i41 — Ei+2,i+2)>

+ - Z Epiv2): Eit1p) + S(K(Eit1,p); Epit2))

= —2[P(H;), K(Eit1,i42)] +2 (ﬁ - ;) K(Eit1,i42)

A
+ 5 (S(K(Ei+1,i), Eiit2) + S(Eit1,s K(Ezz—l-Q)))

- 2 Z (S(K(Ep7i+2)’ B p) + S( ( z+1,p) Ep,i+2))

p=1
pAit1,i+2

Lemma [5.3] follows directly from this last expression.

A.3. Detailed proof of Lemma Case 1

Step 1: The first term on the right-hand side of is:
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[[K(X;5), P(X])], Q(H,)]
= — —[S(K(Eij+1), Ejiv1) + S(K(Ejit1), Eij+1), Q(H;)]
= = 2 (SUK(Bige1), QUE] Bjasr) = S(K (Bijin), Q(Ejis))

+ SR (Byis1), QU] Biget) = S(K (Bjir1), Q(Ei)))
The second term on the right-hand side of is:

[K(X). (). P = K, ([0, PG x|
(KX [S(QB 1), Byirn) + S(Q(Bris), Bigin), Bisn]|

[K(X["), =S(Q(Eit1,j11), Ejiv1) + S(Q(Eijt1), Eji)
(Eji), Eijj+1) — S(Q(Ejit1), Biy1j+1)]
<_ S([K(X;"), Q(Bit1,j+1)], Ejis1) + S (K (X]), Q(Eij41)], Eji)
S(Q( zg+1) K(Bjit1)) + S([K(X]). Q(Ej)], Eij1)
— S([K( (Ejit1)], Bivrg1) — S(Q(Ej,m)aK(Ei,jH))

Step 2: The sum of the first and the second terms on the right-hand side

of is:

(A5)  [[K(X[H), P(X])], Q(H:)] + [K(X;"), [Q(H:), P(X[)]]

= %( = S([K(Eijv1),Q(H;)], Ejiv1) + S(K(Esjv1), Q(Ejit1))
[ ( Jz+1) Q(Hl)] ElJJrl)JFS( ( j2+1) Q(ElJJrl))

[ (EH-LJ-H)] JH—I) +S<[ ( (Ez,j-x-l)]?Eji)

Q( m+1) K(Eji+1)) + S(K(X;"),Q(E z)] E; j+1)

(K (

S(
S(
S(
SUK(X), Qi) Biri ) = S(Q(Ejii1), K (Biji)) )
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| >

( — S([K(Eij1), QUH)), Ejiy1) — S(IK(X;"), Q(Eig1,541)]; Ej,i-‘,—l))
(= SUK (Bjan). QU Eigin) + SUK(XH), QUE), Eigi))

(+SUKCG, QBig4n)]s Byi) = SUK (X, Q(Ejin) Biri i) ).

+

+

> | >

We need the following relations (the first and the third equation follows from
Lemma the rest are the defining relations):

A
[K(Eij+1), Q(H;)] = —P(Ej j11) + <5 - 2) E;
)\ n
7 (Z S(Exj+1, Bir) — 28 (Ei j+1, Eii) + 25(Eji41, Ei+1,j+1))
=1
A
[K(X;7),Q(Eiy1j41)] = P(Eij1) + (5 - 2> Eij

)\ n
+7 (Z S(Ei; B 1) — 25(Ei j11, Ei-i—l,i—i—l))

=1
[K(Eji+1), Q(Hi)] = —P(Eji+1) — (/5’ - ;) Ejit1

A

n
t31 ( - Z S(Eji, Epiv1) +2S(Ejit1, Eig1,i41) — 2S(Ejs, Ez’,i+1)>
=1

[K(X;"),Q(E;:)] = —P(Ejit1) + (5 - ;) Ejit1

)\ n
t <—25(Eii’ Ejip1) + Y S(Bri, Ejk:))
k=1
A
[K(X;"),Q(Eij+1)] = —§S(Ei,j+1,E¢,i+1),

A
[K(X]),Q(Eji+1)] = —§S(Ei,i+1,Ej,z‘+1)

Using these and (A.5)), we get a formula for the sum of the first and the
second term on the right-hand side of :
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(A.6)

(K ("), P(X])], Q(H:)] + [K(X), [Q(H;), P(X])]]

A
=-S5 (Z S(Ek,j+1, Eik) — 25(Es ji1, Eii) + 28(Eiiv1, Eiga,j41)
k=1

n
+> S(Ei, Erj1) — 28(Eiji1, Bir1ata), Ej,i+1>
=1

A2 =
+ =S5 (Z S 3l El H—l) - 25( 7yi+1 Ez-i—l z+1) + 2S(E]27 Ez H—l)

=1

n
—2S(Eii, Ejiv1) + Z S(Er,it1, Ejr), Ez‘,j+1>
k=1

- — (S(S(Ei,jJrla Eiit1), Eji) — S(S(Eiit1, Ejit1), Ei+1,j+1)>
= _75 ( Z S Ek,j+17 Ezk) S(Ei,j-i-l, zz) + S( i,0+15 Ei—l—Lj-H)
— S(Eijt+1, Eiy1,i41)s Ej,z'—l—l)
)\2
- *S — Z S(Eji, Epit1) + S(Ejit1, Bit1,i+1) — S(Eji, Eiiv1)
]
+S( (8 z+1)aEz‘,j+1>

- — (S(S(Ei,jJrla Eiiv1),Ej) — S(S(Eiiv1, Ejiv1), Ei+1,j+1)>

A2 A2
= —*S < Z S(Ex,j+1, Er.), Ej,i+1) + gs ( zl: S(Eji, Eyiv1), Ei,j+1> .
where the last equality follows from the equality

S(S(A, B),C) — S(S(A,C), B) = [A, B, C]l.
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Step 3: The third term on the right-hand side of is, up to a scalar:

D IS(XF Xl [X—a, Hil), P(X])] = =2[S(Eijira, Hi), P(Ejj41)] = 0.
acA

We can now deduce from and (A.6) the following formula for
[P(X;"), P(X]7)):

(A7) [P(Xj)’P( j (ZS Ek‘j—l—la zk jz+1>

- 165<ZS Ej, Epi) ,]+1>

Step 4: We will also use the following two formulas:

NE

(A.8) [[S(S(Ek,jJrly Eix), Ej,i-‘rl)vXj_]?Xi_:|

T

H
Mz
I

S(Ekj, Eir), Eji+1), Eit1,]

n
- [S(S(Ekj+1, Eir), Ej+1,i41), Bit1]
k=1
n
=D S(5(Ek, Ei ZS (Ekjs Eiv1,k), Ejji+1)
k=1
n
+ D S(S(Erjt1, Eiv1k), Ejrri1) ZS (Erji1, Eir), Eji1i)-
k=1

Exchanging i <+ j and using [ X, , X ;] = 0, we obtain:

(A9) Y [[S(S(Bu, Buanr). Bign), X7 ] X
=1
= S(S(Bjyr, Bri1)s Bir111) — > S(S(Bjyr, Bii), Biji)
=1 1=1
+ZS(S(EJZ7EZZ ZS ]laEl z+1) Ei+1,j)'

=1 =1
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The right-hand side of (A.7) can be substituted into the right-hand side
of [P(H;), P(H;)| = [[[P(Xj), P(Xj)],xj—},xi—} and then formulas (A.8)
and (A.9) can be applied to finally obtain:

[P(H;), P(Hj)]
P
16 Pt

.

“S(S(Ek,jJrl,Eik),Ej,zurl),Xj_LXi_]

[[S(S(Ejl,El,i—&—l)aEi,jJrl)?Xj_]’Xi_}

— = (S(S(Ej414, Epis1), EBit1,541) — S(S(Ejt11, Eii), Eiji1)
=1
+ S(S(Eji, Ey), Eij) — S(S(Eji, Eyis1), Eiy1,5))-

Comparing this with the formula for [v;, v;] given in Lemma completes
the proof of Lemmal5.4] when |i — j| > 1. For this, one needs the observation
that for any three elements x,y, z of Usl,:

1 1
{z,y,2} = 2 (xzy +yzx + yrz + 2wy + i(y:cz + [z,y]z + z2y

+ zly, 2] + yzx + [z, y]z + zzy + 2]y, x]))
A.4. Remainder of the proof of Lemma Case 2

Here are more details to show that the right-hand side of equals
— N2y, viy1].

Step 1: From Lemma 5.3, we know:
A
Si= 18- 5 K(Eit1,i42)

A

t7 (S(K(Ei+1,i)> Eiiv2) + S(Bit1, K(Ei,i+2)))
A n

+3 > (S(K(Ep,m)a Eit1p) + S(K(Eit1,p), Ep7z‘+2)>

p=1
pit1,i+2
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and
5 A
= - <5 - 2) Q(Ei+2,z‘+1)
A
- Z (S(Q(Em-&—l) EH—Q z) + S( 1,41, Q(E7,+277,))>
A n
- g Z; <S(Q(Ei+2,p) Ep z+1) + S(Q( P, z+1) Ei+2’p)) .
p#l‘iliﬂ
Therefore,
(A.10

)
[Si, Q(Eit2,41)] + [K (Eit1,i42), Si)

A

=7 [( (Bit1,), Eiit2) + S(Eiv1,, K(Eiit2))), Q(Ei+2,z‘+1)}
A

+

3 Z [(S(K(Ep,i+2)7E’i+Lp)+S(K(Ei+l,p)7Ep,i+2))aQ(E’i+2,i+1):|

p;éerl i+2
A
- — [K(Ei—i-l,H—Z)a (S(Q(Eiit1), Eiyas) + S(Eiit, Q(Ei+2,z‘)))]

n

Z |:K(Ei+1,i+2)v (S(Q(Eiv2p): Epit1) + S(Q(Epit1), Ei+2,p)):|
p;éii:fz'ﬂ

( Eit1:),Q(Eiv2,+1)], Eiiv2) + S([K(Eiiv2), Q(Eig2,i+1)), Ei-i—l,i))
A
8

Z <S([K(Epi+2),Q(Ei+2,i+1)]7Ei+1,p)

p=1

pFit+1,i4+2

+ S([K(Eit1p), Q(Eit2,4+1)], Ep,i+2))
- 2 (S([K(Ez‘+l,i+2)a Q(Eiit1)], Eiyo,)
+ S([K(Bit1,i+2), Q(Eit2,)), Ei,i+1))

—% 3 (s([K(Em,m),Q(Em,p)J,EmH)

p#ij—:ll,i-i-Q
+ S([K (Eit1,i+2), Q(Epit1)], Ez‘+2,p)> -

o >

+ »My
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Step 2: Using the following relations of the deformed double current algebra
of sl,,

[K(ECL )7Q(Ebd>] - P(Ead) + <5 - ;\) Eua

A — A
t7 ; S(Eat, Erg) — §S(Ead, Ey,)

[K(Ea )7 Q(Eca)] - _P(Ecb) + (xB - 2) Ecb

P A
+ Z ;S(Ecta Etb) - §S(EaaaEcb)7

we get the following equalities (where B =8- %)

[K(Eit14), Q(Eiy2i11)] = —P(Eiyos) + BEiyo.
)\ — A
+7 ; S(Eti, Eiyayt) — §S(Ei+1,z‘+1, Eito;)
(K (Eiiy2), Q(Eiy2it1)] = P(Eiit1) + BEiin
)\ — A
+ Z tZ:; S(Eit7 Et,i—f—l) - §S(Ei7i+1, Ei+2,i+2)
[K(Epit2), Q(Eiso,i41)] = P(Epis1) + BEpis1
A\ — 2
+ Z ; S(Ept) Et,i+l) - §S(Ep,i+l, Ei+2,i+2)
(K (Eit1), Q(Eit2i11)] = —P(Eiy2p) + BEitay
)\ — 2
+ Z tzl S(Ei+2,t7 Etp) - §S(Ei+1,i+1, Ei+2,p)
K (Eis1,42), Q(Eiis1)] = —P(Eiiv2) + BEiiso
)\ — A
+ 4 tz:; S(Eit, Et,z‘+2) - §S(Ei+1,z‘+1, Ei,i+2)
(K (Eiy1i42), Q(Eiyai)] = P(Eit14) + BEis14

)\ — A
+ 1 ; S(Eit14, Bu) — §S(Ei+1,ia Eit2i+2)
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(K (Eis1+2), Q(Eip2p)] = P(Eit1) + BEit1,
+ i\g S(Eit14, Eyp) — %S(Ei-‘rl,p, Eii2i42)
[K (Eii1i42), Q(Epi1)] = —P(Epita) + BEp iy
+ Zg S(Ept, Etiv2) — %S(Ei+1,i+1, Epit2).
Step 3: Substituting the above equalities into (A.10)), we obtain a long

expression. The sum of the terms that involve P(X) in that long expression
is:

A
Z( — S(P(Eiy2), Eijive) + S(P(Eiiv2), i)

+ S(P(Eii+1); Eiv1,i) — S(P(Eit1,), Ei,i+1)>

(A.11)

A n
t3 Z (S(P(Ep,i+1)>Ei+1,p) — S(P(Eit1p), Epit1)
pi L it2

= S(P(Eit2p), Epit2) + S(P(Epit2), Ei+2,p))
A
= Z( — S(P(Eiy2,), Eiiv2) + S(P(Eiit2), Eit2,)
+ S(P(Eijit1), Eit1,i) — S(P(Eit1,), Ei,i—i-l))

>\ n
+3 <S(P(Ep,i+1)7 Eit1p) — S(P(Eit1p), Epit1)
p=1

= S(P(Eiy2.), Bpiv2) + S(P(Epir2), Eiray) ).

Step 4: In the long expression for ({A.10), the sum of the terms involving
(ﬁ — %) E,, for some a,b is zero. The sum of the terms involving
Yoty S(Eqt, Ey,) for various a, b is:

(A.12)
2 &
6 (S(S(Eti7 Eiv24), Eiiv2) + S(S(Eit, Eriv1), Ei+1,i)>
=1
22 n n
T @ Z Z (S(S(Ept7 Et7i+1)7 E’H-l,p) + S(S(Ei-‘rQ,ta Etp)7 Ep,i+2)>

p=1 t
pFi+1,i+2



On deformed double current algebras 1379

PR
16 <S(S(Eita Etiv2), Eiv2;) + S(S(Eis1, Eu), Ei,iJrl))
=1

Az n n
- ﬁ Z Z (S(S(Ei—i-l,t; Etp); Ep,z’—i—l) + S(S(Ept, Et7i+2)v Ei+2,p)>

=1 t=1
pAi+1,i+2
A2 &
=T (S(S(Etiy Eita4), Ei,i+2) + S(S(Eit, Etit1), EHM))
t=1

)\ n n
32 Z Z (S(S(Ept7 Eiit1), Eiv1p) + S(S(Eivor, Erp), Ep,i+2)>

p=1t=1
PR
B @@ (S(S(Em,t, Eyiv1), Biv,i1) + S(S(Ei+2,t,Et,m),EiH,Hg))
t=1
P
32 <S(S(Ei+2,tv Eti+1), Biv1,42) + S(S(Eijat, Eriva), Ei+2,i+2)>
22 "
-5 <S(S(Eit, Etit2), Ez’+2,z’) + S(S(EHM,EM), Ei,i+1)>
N
-EYY (S(S(Em,p, Ew), Erit1) + S(S(Eip, Bpita), Em,t))
p=1t=1
A2
+ 32 Z (S(S(Ewrl tEtiv1), Biv1i41) + S(S(Bit1t, Briv2), Eito l+1)>
A2 n
t 3 ) (S(S(Eerl t: Etiv2), Bivait1) + S(S(Eitot, Eritv2), Eito z+2))
t=1
N &
=16 (S(S(Etu Eit24), Eiit2) + S(S(Eit, Evii1), Eit1,)
t=1
- S(S(Ez+2t7Et z—i—l z+1z+2 )
P
16 (S(S(E”’ EBtita), Eit2i) + S(S(Eiy1t, Bu), Eiiv1)

— S(S(Eis1t, Eriv2), Biv2,it1)

Step 5: In the long expression for (A.10]), the sum of the terms involving
S(FEaa, Ee) for various a, b, ¢ is the following:
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(A.13)
AZ
_§ (S(S(Ei+1,i+la Ei+2,i), Ei,i+2) + S(S(E¢7i+1, Ei+2,i+2), Ei+1,i)>
PR
16 Z (S(S(Emﬂa Eit2i12), Eiv1p)
p#ii:ll,wrz
+ S(S(Bitvi+1, Bivap), Ep,i+2))
)\2
tE (S(S(E”L”l’ Eiit2), Bivai) + S(S(Eiv1i, Biva,it2), Ei,z’+1)>
A2 i
16 Z (S(S(EZ-H,},, Eit2i42), Epit1)
P Lt
+ S(S(Biv1,11, Bpiv): Eivzy) )
)\2
— —g([Ei—l-l,i—l-la [Eit2,, Eiivo)] + [Bit2,i+2, [Biit1, Ei+1,¢]]>
A2 i
T Z ([Ei+2,i+2a [Ep,iH,EiH,p]] + [Ei+1,i+17 [Ei+27p,Ep7i+2]j|)
P Lt
=0.

Step 6: As a consequence, from (A.10), (A.11), (A.12)) and (A.13]), we ob-
tain:

(A.14) [S;,
( — S(P(Eit2,i); Eiiv2) + S(P(Eiiv2), Eit24)

+ S(P(Eiit1), Biv1:) — S(P(Eit1,), Ei,i+1))

A

2 2 (S(P(Bpi1). Bivr) = S(P(Bigry). Bpin)

~ S(P(Bis2p): Epit2) + S(P(Epis2), Fitay))

+ = Z (S(S(Em', Eit24), Eiiv2) + S(S(Eit, Eti+1), Big1,)

=1
— S(S(Eita, Erig1), Ei+1,i+2)>
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n

AQ
16 =

— S(S(Eix1t, Eriv2), Eiva,it1))

(S(S(Eita Etiv2), Eivai) + S(S(Eiy14, Bui), Bii1)

Step 7: To continue with our computation of the right-hand side of .,
we now determine [P(H;) + 1P(HHl) Wig1,i2):
Recall that

— A&
Wittive = 1 (Z_: S(Eiv1p, Epiv1)
n
+ Z S(Eiv2p, Epiva) — 2S(Bit1,i41, Ei+2,i+2)> :
p=1
Therefore,
(A.15)
1 —
[P(Hi) + §P(Hi+1)7Wi+1,i+2}
=— S(P(Eit+1,i); Eiiv1) + S(P(Eiiv1), Eit1,)

) — 1

1 > {P(Hi) + 5 P(Hiv1), S(Bit1p, Epiv1) + 5(Eivap, Bpit2)
=1

Al

4

Z S(P i+1 p p,z+1 + Z S p z—i—l ’H—l,p)
=1

S(P(Eit2:), Eiiy2) +S(P ( i,i+2>7 Eit24)
S(P(Eit2,i+1): Eit1,i+2) — S(P(Eit1,i+2), Eit2,i+1)

1 n
2 Z ( %+1p Ep,iJrl) - S(P(Ep,iﬂ)a EHLP)

n

1
= S(P(Birap), Epir2)) + 5 3 S(P(Bpis2), Fisay)
p=1

_|_
+

+ S(P(Eit1,i42), Biv2,i+1) — S(P(Eit2,i11), Ez'+1,i+2)>
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A
= _Z< — S(P(Eit1,i), Eiiv1) + S(P(Eijiv1), Eit14)

— S(P(Eiy2,), Eijit2) + S(P(Eiit2), Ei+2,z’)>
)\ n
) p; ( - S(P(Eiﬂ,p)a Ep,i+1) + S(P( pH—l) Ei+1,p)

= S(P(Biyayp), Epir2) + S(P(Epira), Eiszp))-

Step 8: We see from (A.T5) that [P(H;) + $P(H;41), /W-/Z'+172'+2] can be can-
celled with the first two hnes of (A.14] m As a conclusion, going back to
and using (A.14]), we finally obtain:

[P(H;), P(Hi1)]
= [Si, Q(Bit2,i+1)] + [K(Eiy1,i+2), Si
1 .
+ [P(Hi) + §P(Hi+1), Wit1ivo — Wi+1,i+2]
A&

16 p

(S(S(Eti7Ez+2 1), Eiiv2) + S(S(Eit, Etit1), Bit1,)

— S(S(Eita1, Etiv1), Eit1,i42)
PR
16 prt

<S(S(Ezta Etiv2),Eivai) + S(S(Eiy1t, Bui), Biiv1)
— S(S(Eis1,t, Eriv2), Biv2,i41 )

Comparing this with the formula for [v;, v;] given in Lemma com-
pletes the proof of Lemma [5.4 when j =i + 1.
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