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The orbit intersection problem for linear

spaces and semiabelian varieties

Dragos Ghioca and Khoa Dang Nguyen

Let f1, f2 : CN −→ CN be affine maps fi(x) := Aix + yi (where
eachAi is anN -by-N matrix and yi ∈ CN ), and let x1,x2 ∈ AN (C)
such that xi is not preperiodic under the action of fi for i = 1, 2.
If none of the eigenvalues of the matrices Ai is a root of unity,
then we prove that the set {(n1, n2) ∈ N2

0 : fn1
1 (x1) = fn2

2 (x2)} is
a finite union of sets of the form {(m1k + `1,m2k + `2) : k ∈ N0}
where m1,m2, `1, `2 ∈ N0. Using this result, we prove that for any
two self-maps Φi(x) := Φi,0(x) + yi on a semiabelian variety X
defined over C (where Φi,0 ∈ End(X) and yi ∈ X(C)), if none of
the eigenvalues of the induced linear action DΦi,0 on the tangent
space at 0 ∈ X is a root of unity (for i = 1, 2), then for any two
non-preperiodic points x1, x2, the set {(n1, n2) ∈ N2

0 : Φn1
1 (x1) =

Φn2
2 (x2)} is a finite union of sets of the form {(m1k + `1,m2k +

`2) : k ∈ N0} where m1,m2, `1, `2 ∈ N0. We give examples to show
that the above condition on eigenvalues is necessary and intro-
duce certain geometric properties that imply such a condition.
Our method involves an analysis of certain systems of polynomial-
exponential equations and the p-adic exponential map for semia-
belian varieties.

1. Introduction

Throughout this paper, let N denote the set of positive integers, N0 := N ∪
{0}, and let K be an algebraically closed field of characteristic 0. An arith-
metic progression is a set of the form {mk + ` : k ∈ N0} for some m, ` ∈ N0;
note that when m = 0, this set is a singleton. For a map f from a set X
to itself and for m ∈ N, we let fm denote the m-fold iterate f ◦ · · · ◦ f ,
and let f0 denote the identity map on X. If x ∈ X, we define the orbit
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1264 D. Ghioca and K. D. Nguyen

Of (x) := {fn(x) : n ∈ N0}. We say that x is preperiodic (or more precisely
f -preperiodic) if its orbit Of (x) is finite.

In algebraic dynamics, one studies the system {Φn : n ∈ N0} when X is
a (quasi-projective) variety over K and Φ is a K-morphism. Motivated by
the classical Mordell-Lang conjecture proved by Faltings [Fal94] and Vojta
[Voj96], the Dynamical Mordell-Lang Conjecture predicts that for a given
x ∈ X(K) and a closed subvariety V of X, the set {n ∈ N : Φn(x) ∈ V (K)}
is a finite union of arithmetic progressions (see [GT09, Conjecture 1.7] along
with the earlier work of Denis [Den94] and Bell [Bel06]). Considering X a
semiabelian variety and Φ the translation by a point x ∈ X(K), one re-
covers the cyclic case in the classical Mordell-Lang conjecture from the
above stated Dynamical Mordell-Lang Conjecture. So, it is natural to seek
a generalization of the Dynamical Mordell-Lang Conjecture (see [GTZ11])
to a statement which would contain as a special case the full statement of
the classical Mordell-Lang conjecture. Therefore one can study the general
dynamical Mordell-Lang problem by considering commuting K-morphisms
f1, . . . , fr from X to itself and asking whether the set

S(X, f1, . . . , fr, x, V ) := {(n1, . . . , nr) ∈ Nr0 : fn1

1 ◦ · · · ◦ f
nr
r (x) ∈ V (K)}

is a finite union of translates of subsemigroups of Nr0. This more general
problem turns out to be rather delicate even when the underlying variety
X is an algebraic group and each fi is an endomorphism. Indeed, a re-
cent theorem of Scanlon-Yasufuku [SY13] establishes that for any system of
polynomial-exponential equations, its set of solutions is equal to a set of the
form S(X, f1, . . . , fr, x, V ) where X is an algebraic torus, V is an algebraic
subgroup, and f1, . . . , fr are some commuting endomorphisms of X.

The Dynamical Mordell-Lang Conjecture has sparked significant interest
and there have been many partial results; we refer the readers to [BGT16]
for a survey of recent work. On the other hand, there are very few results
known for the more general dynamical Mordell-Lang problem. In fact, not
much is known even when we restrict to the following special case called the
orbit intersection problem:

Question 1.1. Let X be a variety over a K, let r ≥ 2. For 1 ≤ i ≤ r,
let Φi be a K-morphism from X to itself, and let αi ∈ X(K) that is not
Φi-preperiodic. When can we conclude that the set S := {(n1, . . . , nr) ∈ Nr0 :
Φn1

1 (α1) = · · · = Φnr
r (αr)} is a finite union of sets of the form {(n1k + `1, . . . ,

nrk + `r) : k ∈ N0} for some n1, . . . , nr, `1, . . . , `r ∈ N0?
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The orbit intersection problem 1265

Remark 1.2. For 1 ≤ i ≤ r, let fi be the self-map of Xr induced by the
map Φi on the i-th factor and the identity map on all the other factors. Let
∆ be the diagonal of Xr. The set S in Question 1.1 is exactly the set of
(n1, . . . , nr) ∈ Nr0 such that (fn1

1 ◦ . . . ◦ fnr
r )(α1, . . . , αr) ∈ ∆. This explains

why Question 1.1 is a special case of the general dynamical Mordell-Lang
problem with the further requirement that S is a finite union of translates of
subsemigroups of Nr0 whose rank is at most 1. When some αi is preperiodic,
it is trivial to describe the set S. This justifies our assumption on the αi’s.

Remark 1.3. Motivated by the examples in [GTZ11, Section 6], one may
ask whether the following condition is sufficient for Question 1.1: there do
not exist m ∈ N and a positive dimensional closed subvariety Y of X such
that Φm

i restricts to an automorphism on Y for some i ∈ {1, . . . , r}. This
condition is indeed sufficient when X is a semi-abelian variety (see The-
orem 1.4 and Proposition 4.4); also this condition is often necessary as
shown by various examples such as the following one. If X = A2, m = 2,
and Φ1 : A2 −→ A2 is given by Φ1(x, y) = (x+ y2, y3) while Φ2 : A2 −→ A2

is given by Φ2(x, y) = (x2 + y, y2), then both Φ1 and Φ2 restrict to endomor-
phisms of V := A1 × {1}, and moreover (Φ1)|V is actually an automorphism.
Then the set of all pairs (n1, n2) such that Φn1

1 (0, 1) = Φn2

2 (0, 1) is infinite,
but it is not a finite union of cosets of subsemigroups of N0 × N0.

Question 1.1 in the case X = P1
K and each Φi is a polynomial of de-

gree larger than 1 has been settled by Tucker, Zieve, and the first author
[GTZ08, GTZ12]. They also obtain various results for the general Mordell-
Lang problem when X is a semiabelian variety and the self-maps are endor-
mophisms satisfying certain technical conditions [GTZ11]. The case when
X = P1

K endowed by the action of certain generic rational functions is also
established in an ongoing joint work of Zieve and the second author.

The goal of this paper is to answer Question 1.1 when X is a semiabelian
variety and when X = AnK and the self-maps are affine transformations.

Theorem 1.4. Let X be a semiabelian variety over K and r ≥ 2. For
1 ≤ i ≤ r, let Φi : X → X be a K-morphism and let αi ∈ X(K) that is not
Φi-preperiodic. Let Φi,0 be a K-endomorphism of X and αi,0 ∈ X(K) such
that Φi(x) = Φi,0(x) + αi,0 and let DΦi,0 be the linear transformation of the
tangent space at the identity of X induced by Φi,0. If none of the eigenvalues
of DΦi,0 is a root of unity for every i, then the set

S := {(n1, . . . , nr) ∈ Nr0 : Φn1

1 (α1) = · · · = Φnr
r (αr)}
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is a finite union of sets of the form {(n1k + `1, . . . , nrk + `r) : k ∈ N0} for
some n1, . . . , nr, `1, . . . , `r ∈ N0.

We note that any self-map of a semiabelian variety is indeed a compo-
sition of a translation with an algebraic group endomorphism (see [NW14,
Theorem 5.1.37]). The structure for self-maps on semiabelian varieties X
is similar to the structure of affine self-maps on AN , and this allows us to
reduce Theorem 1.4 (using the p-adic exponential map on X) to proving
Question 1.1 for affine endomorphisms of AN (see Theorem 1.6).

Example 1.5. We present an example to illustrate that the conclusion of
Theorem 1.4 would fail without the assumption on the eigenvalues of the lin-
ear maps DΦi,0’s. Consider the case X = Gm, Φ1(x) = 2x, Φ2(x) = x2, α1 =
1, and α2 = 2; then {(m,n) ∈ N0 × N0 : Φm

1 (α1) = Φn
2 (α2)} = {(2n, n) : n ∈

N0}.

In Section 4, we present the proof of Theorem 1.4 and give some geomet-
ric conditions that imply the condition on the linear transformations DΦi,0

in Theorem 1.4. For instance, let Φ0 be an endomorphism of a semiabelian
variety X defined over K, then none of the eigenvalues of DΦ0 is a root
of unity if and only if Φ0 does not preserve a non-constant fibration (see
Proposition 4.3). Here we say that Φ0 preserves a non-constant fibration if
there exists a non-constant rational map f : X → P1

K such that f ◦ Φ0 = f .
In [GTZ11, Theorem 1.3 (a)], a special case of Theorem 1.4 was ob-

tained, i.e. when each Φi = Φi,0 is a group endomorphism and moreover, the
Jacobian at 0 ∈ X of each Φi is diagonalizable. The hypothesis from [GTZ11]
about the diagonalizability of the Jacobians of Φi greatly simplifies the prob-
lem since it allows one to reduce the problem to classical unit equations in
diophantine geometry. In the absence of the diagonalizability condition, we
have to use a much more refined analysis of the pairs (m,n) ∈ N0 × N0 such
that am = bn for two arbitrary linear recurrence sequences. The result from
[GTZ11] dealt only with the much easier case when the characteristic poly-
nomials for these two linear recurrence sequences have non-repeated roots.
As it was noted in [GTZ11, Section 6], if one of the maps Φi is an au-
tomorphism of X (or induces an automorphism of a positive dimensional
subvariety of X), then the set S may no longer be a finite union of cosets
of subsemigroups of Nr0. Essentially, the problem with one of the endomor-
phisms being actually an automorphism is the following: assuming X, αi
and Φi are defined over a number field, then the points in OΦi

(αi) are not
sufficiently sparse with respect to a Weil height on X and this increases the
probability that OΦi

(αi) intersects the other orbits.
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The orbit intersection problem 1267

The most important ingredient in the proof of Theorem 1.4 is the fol-
lowing result which also answers Question 1.1 when X = AnK and the maps
Φi’s are affine transformations.

Theorem 1.6. Let r,N ∈ N with r ≥ 2. For i ∈ {1, . . . , r}, let fi : KN −→
KN be an affine map which means there exist an N ×N -matrix Ai ∈MN (K)
and a vector xi ∈ KN such that fi(x) = Aix + xi for every x ∈ KN . For
i ∈ {1, . . . , r}, let pi ∈ KN that is not fi-preperiodic. If none of the eigen-
values of Ai is a root of unity for each i ∈ {1, . . . , r}, then the set

S := {(n1, . . . , nr) ∈ Nr0 : fn1

1 (p1) = · · · = fnr
r (pr)}

is a finite union of sets of the form {(n1k + `1, . . . , nrk + `r) : k ∈ N0} for
some n1, . . . , nr, `1, . . . , `r ∈ N0.

The conclusion of this theorem would fail without the assumption on
the eigenvalues of the matrices Ai. For example, let N = 1, r = 2, A1(x) =
x+ 1, A2(x) = 2x, p1 = 0, and p2 = 1, then S = {(2n, n) : n ∈ N0}. Also,
Theorem 1.6 fails if one does not assume the maps fi are affine, as shown
by the following example. Let r = 2, n = 1, f1(x) = 2x, f2(x) = x2, p1 = 1
and p2 = 2; then S = {(2n, n) : n ∈ N0}.

The organization of this paper is as follows. In Section 3, we present
the proof of Theorem 1.6 which requires a careful analysis of a certain sys-
tem of polynomial-exponential equations in two variables. Some results on
polynomial-exponential equations are given in the next section following
Schmidt’s exposition [Sch03]. In Section 4, Theorem 1.4 is reduced to Theo-
rem 1.6 thanks to the use of the p-adic exponential map for an appropriate
choice of the prime p.

We conclude this section with a brief discussion of the dynamical Mordell-
Lang problem over fields of positive characteristic. We note right from the
start that Question 1.1 fails even in the simplest examples of affine maps de-
fined over Fp(t). Indeed, let Φi : A1 −→ A1 be affine maps given by Φ1(x) =
tx− t+ 1 and Φ2(x) = (t+ 1)x. It is immediate to see that Φm

1 (2) = tm + 1
while Φn

2 (1) = (t+ 1)n. Then the set

S = {(m,n) ∈ N2
0 : Φm

1 (2) = Φn
2 (1)} = {(pn, pn) : n ∈ N0}.

The above example stems from similar examples disproving a naive formu-
lation of the Dynamical Mordell-Lang Conjecture in positive characteristic.
A variant of the Dynamical Mordell-Lang Conjecture has been proposed by
Scanlon and the first author [BGT16, Chapter 13]; however there are very
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few partial results since even the case of Gn
m seems to be closely related to

very difficult problems in diophantine geometry (see [Ghi]). We refer the
readers to the discussion in [BGT16, Section 13.3] for more details. A deep
theorem of Adamczewski and Bell [AB12, Theorem 1.4] implies that if K is
a field of characteristic p > 0, then the set S in Theorem 1.6 is p-automatic.

2. Some diophantine equations involving linear recurrence
sequences

2.1. Some classical results

A large part of this subsection follows the notation from Schmidt’s article
[Sch03]. All the sequences considered in this section are sequences of complex
numbers. A tuple (a1, . . . , ak) of non-zero numbers is called non-degenerate
if ai

aj
is not a root of unity for 1 ≤ i < j ≤ k. A linear recurrence sequence is

called non-degenerate if the tuple of (non-zero) characteristic roots is non-
degenerate. We begin with the following well-known result:

Theorem 2.1 (Skolem-Mahler-Lech). Let {un : n ∈ N0} be a linear re-
currence sequence. Then the set Z := {n : un = 0} is a finite union of arith-
metic progressions. Furthermore, if un is non-degenerate then Z is finite.

We now consider non-degenerate linear recurrence sequences that are
not of the form P (n)αn where α is a root of unity. It is convenient to write
such a sequence u as:

(1) un =

q∑
i=0

Pi(n)αni

with the following convention [Sch03, Section 11]. If some root of the charac-
teristic polynomial is a root of unity, let this root be α0, and α1, . . . , αq the
other roots. If no root of the characteristic polynomial is a root of unity, let
these roots be α1, . . . , αq, and set α0 = 1, P0 = 0. Let v be another sequence
written as

(2) vn =

q′∑
i=0

Qi(n)βni
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with the same convention. The two sequences u and v are said to be related
if q = q′ and after a suitable reordering of β1, . . . , βq we have:

αai = βbi for every i ∈ {1, . . . , q}

for certain non-zero integers a and b.
The next result follows from Schmidt’s reformulation of a theorem by

Laurent whose proof uses the celebrated Subspace Theorem:

Theorem 2.2 (Laurent). Let u and v be non-degenerate linear recur-
rence sequences given by (1), (2), and under the convention described above.
Consider the equation:

um = vn for (m,n) ∈ N2
0

and let Z be the set of solutions. We have the following:

(a) If u and v are not related then Z is finite.

(b) P0(m)αm0 = Q0(n)βn0 for all but finitely many (m,n) ∈ Z.

Proof. This follows from [Sch03, Theorem 11.2]. �

2.2. Some consequences

Proposition 2.3. Let k ∈ N, let a, b1, . . . , bk ∈ C∗ none of which is a root
of unity. Let P (x), Q1(x), . . . , Qk(x) ∈ C[x] \ {0} and let c ∈ C. Assume that
(b1, . . . , bk) is non-degenerate. If k ≥ 2 or c 6= 0, then the set

Z :=

{
(m,n) ∈ N2

0 : P (m)am = c+

k∑
i=1

Qi(n)bni

}

is finite.

Proof. When k ≥ 2, the two linear recurrence sequences um = P (m)am =
0 · 1m + P (m)am and vn = c · 1n +

∑k
i=1Qi(n)bni are not related. Hence Z

is finite by part (a) of Theorem 2.2. If Z is infinite, we have c = 0 by part
(b) of Theorem 2.2. �

If p is a prime, let Cp denote the completion of the algebraic closure of
Qp. It is well-known that Cp is algebraically closed. We have:
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Lemma 2.4. Let γ ∈ C∗ that is not a root of unity and let F be a finitely
generated subfield of C containing γ. Then there exists a field F that is
either C or Cp together with its usual absolute value | · |0 and an embedding
σ : F → F such that |σ(γ)|0 > 1.

Proof. It suffices to prove that there exist F that is C or Cp and an em-
bedding σ : Q(γ)→ F satisfying |σ(γ)|0 > 1. Then it is possible to extend
σ to F since F is algebraically closed and has infinite (in fact, uncountable)
transcendence degree over Q.

When γ is algebraic, since γ ∈ C∗ is not a root of unity, a result of
Kronecker (see, for instance, [BG06, Theorem 1.5.9]) gives that there is an
absolute value | · |v of the number field Q(γ) such that |γ|v > 1. This absolute
value | · |v gives rise to the desired embedding into C if v is archimedean,
or into Cp if | · |v restricts to the p-adic absolute value of Q. When γ is
transcendental, we simply map γ to any transcendental number outside the
unit disk. �

Proposition 2.5. Let α, β1, β2 ∈ C∗ none of which is a root of unity. Let
P1(x), P2(x), Q1(x), and Q2(x) be non-zero polynomials with complex coeffi-
cients. Let Z be the set of (m,n) ∈ N2

0 satisfying both P1(m)αm = Q1(n)βn1
and P2(m)αm = Q2(n)βn2 . If Z is infinite then β1

β2
is a root of unity and

deg(P2)− deg(P1) = deg(Q2)− deg(Q1).

Proof. For every fixed m (respectively n), there are only finitely many n
(respectively m) such that (m,n) ∈ Z. Hence in every infinite subset of Z,
m and n must be unbounded.

Fix any ε ∈ C∗ such that P1(x) + εP2(x) is not the zero polynomial.
If (m,n) ∈ Z, we have (P1(m) + εP2(m))αm = Q1(n)βn1 + εQ2(n)βn2 . By
Proposition 2.3, we have that β1

β2
is a root of unity.

For (m,n) ∈ Z, we have |P1(m)/P2(m)| = |Q1(n)/Q2(n)|. By taking
(m,n) ∈ Z when both of m and n are large, we have that deg(P2) = deg(P1),
deg(P2) > deg(P1), deg(P2) < deg(P1) respectively if and only if deg(Q2) =
deg(Q1), deg(Q2) > deg(Q1), deg(Q2) < deg(Q1). For the rest of the proof,
assume that deg(P2) 6= deg(P1) and deg(Q2) 6= deg(Q1). We have δ :=
deg(Q1)−deg(Q2)
deg(P1)−deg(P2) > 0 and we need to prove that δ = 1.

Assume that δ > 1. From |P1(m)/P2(m)| = |Q1(n)/Q2(n)| for (m,n) ∈
Z, we have C1n

δ < m < C2n
δ for some positive constants C1 and C2; this is

expressed succinctly as m = Θ(nδ). Let F be the field generated by α, β1, β2,
and the coefficients of P1, P2, Q1, Q2. By Lemma 2.4, we can embed F into a
field F which is C or Cp together with its usual absolute value | · |0 such that



i
i

“2-Ghioca” — 2017/12/2 — 0:08 — page 1271 — #9 i
i

i
i

i
i

The orbit intersection problem 1271

|α|0 > 1. Since m = Θ(nδ) and δ > 1, we have |Q1(n)βn1 |0 = o(|P1(m)αm|0),
contradiction.

The case δ < 1 can be dealt with by similar arguments. We have n =
Θ(m1/δ). We now embed F into F such that |β1|0 > 1 to obtain |P1(m)αm|0
= o(|Q1(n)βn1 |0), contradiction. This finishes the proof. �

3. Proof of Theorem 1.6

Since we may restrict to a finitely generated subfield of K over which all
the objects in the statement of Theorem 1.6 are defined, and we may embed
this subfield into C, for the rest of this section, we assume K is a subfield
of C.

3.1. Some reductions

First, we explain why it suffices to prove Theorem 1.6 when r = 2. Suppose
that Theorem 1.6 is proved for r = 2, and assume r ≥ 3. The set S′ of
pairs (m,n) satisfying fmr−1(pr−1) = fnr (pr) is a finite union of sets of the
form {(tr−1k + `r−1, trk + `r) : k ∈ N0} for some tr−1, tr, `r−1, `r ∈ N0. Fix
one such set and the corresponding tr−1, tr, `r−1, `r. By ignoring finitely
many pairs (m,n) in S′, we may assume that tr−1 and tr are positive. We
are now looking for tuples (n1, . . . , nr−2, k) ∈ Nr−1

0 such that:

fn1

1 (p1) = · · · = f
nr−2

r−2 (pr−2) = (f
tr−1

r−1 )k(f
`r−1

r−1 (pr−1)).

The map f
tr−1

r−1 is associated to the matrix A
tr−1

r−1 whose eigenvalues are not

root of unity. So we have reduced to r − 1 maps f1, . . . , fr−2, f
tr−1

r−1 at the

starting points p1, . . . ,pr−2, f
tr−1

r−1 (pr−1) that satisfy the hypothesis of The-
orem 1.6.

We now focus on the case r = 2. Let x̃1 be a fixed point of f1, equivalently
A1x̃1 + x1 = x̃1. This is possible since A1 − IN is invertible. Define ψ(x) =
x + x̃1 so that ψ−1 ◦ f1 ◦ ψ(x) = A1x. Hence fn1 (x + x̃1) = An1x + x̃1. Sim-
ilarly, let x̃2 be a fixed point of f2, then we have fn2 (x + x̃2) = An2x + x̃2.
Therefore we reduce to the problem of studying the set of pairs (n1, n2) ∈ N2

0

satisfying An1

1 u = An2

2 v + w where u, v, and w are given vectors such that
u (respectively v) is not preperiodic under the map x 7→ A1x (respectively
x 7→ A2x).

Let P and Q be in GLN (K) such that A1 = P−1J1P and A2 = Q−1J2Q
where J1 and J2 are respectively the Jordan form of A1 and A2. The equation
An1

1 u = An2

2 v + w is equivalent to Jn1

1 Pu = PQ−1Jn2

2 Qv + Pw. Replacing
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(u,v,w) by (Pu, Qv, Pw), we reduce to proving the following (after a slight
change of notation):

Theorem 3.1. Let A,B ∈MN (K) be in Jordan form and let C ∈ GLN (K).
Let u,v,w ∈ KN such that u and v are respectively not preperiodic under
the maps x 7→ Ax and x 7→ Bx. If neither A nor B have an eigenvalue which
is a root of unity, then the set S := {(m,n) ∈ N2

0 : Amu = CBnv + w} is a
finite union of sets of the form {(m0k + `1, n0k + `2) : k ∈ N0} for some
m0, n0, `1, `2 ∈ N0.

3.2. Proof of Theorem 3.1

From now on, we assume the notation of Theorem 3.1. We start with the
following easy result:

Lemma 3.2. Let P ∈MN (K), p ∈ KN , and V a closed subvariety of ANK .
The set {n ∈ N0 : Pnv ∈ V (K)} is a finite union of arithmetic progressions.

Proof. Let f1, . . . , fk be polynomials defining V . Then each {fi(Pnv) : n ∈
N0} is a linear recurrence sequence and we can apply Theorem 2.1. One can
also get this result as an immediate consequence of [Bel06, Theorem 1.3]. �

We may assume that the tuple of non-zero eigenvalues of A and the tuple
of non-zero eigenvalues of B are non-degenerate. This is possible since we
can replace the data (A,B,C,u,v,w) by (AM , BM , C,Ar1u, Br2v,w) for
some M ∈ N and for all 0 ≤ r1, r2 ≤M − 1 and establish the conclusion of
Theorem 3.1 for the set of pairs (m,n) ∈ S satisfying m ≡ r1 mod M and
n ≡ r2 mod M .

For λ ∈ C and s ∈ N, let Jλ,s be the Jordan matrix of size s and eigen-
value λ. We have the formula:

Jnλ,s =


λn

(
n
1

)
λn−1

(
n
2

)
λn−2 · · ·

(
n
s−1

)
λn−s+1

0 λn
(
n
1

)
λn−1 · · ·

(
n
s−2

)
λn−s+2

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · λn


For convenience, we follow the convention that assigns any negative

number to be a degree of the zero polynomial.
The key observation is that if λ 6= 0, then there are polynomials Pi,j of

degree j − i for 1 ≤ i, j ≤ s such that the (i, j)-entry of Jnλ,s is Pi,j(n)λn for
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every n ∈ N. If λ = 0 and n ≥ s, then Jnλ,s = 0s,s (the zero matrix) so that
we can still express the (i, j)-th entry of Jnλ,s as λn · Pi,j(n) where Pi,j is any
chosen polynomial of degree j − i.

So, if a = (a1, . . . , as)
T is a fixed column vector in Ks and n ≥ s, then

there are polynomials P1, . . . , Ps such that:

Jnλ,sa = (P1(n)λn, . . . , Ps(n)λn)T

for every n ∈ N. Moreover, if a 6= 0 and d := max{j : aj 6= 0} then by a direct
calculation, we have deg(P1) = d− 1 ≤ s− 1, deg(P2) = d− 2, . . . ,deg(Ps)
= d− s ≤ 0.

We assume that the set S is infinite; otherwise there is nothing to prove.
Since u and v are not preperiodic, for every fixed m (respectively n), there
is at most one value of n (respectively m) such that (m,n) ∈ S. Hence m
and n must be unbounded in every infinite subset of S. Hence it suffices to
prove that the set

S≥N := {(m,n) ∈ S : m,n ≥ N}

is a finite union of cosets of subsemigroups of N0 × N0 of rank at most equal
to 1.

Let p be the number of Jordan blocks in A, let Jαi,mi
for 1 ≤ i ≤ p,

αi ∈ C, mi ∈ N, and
∑

imi = N be the Jordan blocks of A. Let q be the
number of Jordan blocks in A, let Jβj ,nj

for 1 ≤ j ≤ q, βj ∈ C, nj ∈ N, and∑
j nj = N be the Jordan blocks of B. Note that the αi’s and βj ’s are not

root of unity. By a previous observation, there exist polynomials Pi,k for
1 ≤ i ≤ p and 1 ≤ k ≤ mi such that for m ≥ N , we have

Amu = (P1,1(m)αm1 , . . . , P1,m1
(m)αm1 , P2,1(m)αm2 , . . . , P2,m2

(m)αm2 ,(3)

. . . , Pp,1(m)αmp , . . . , Pp,mp
(m)αmp )T .

Moreover, for 1 ≤ i ≤ p, let di = deg(Pi,1), then we have di ≤ mi − 1 and
deg(Pi,k) = di − k + 1 for 1 ≤ k ≤ mi. Similarly, there exist polynomials Qj,`
for 1 ≤ j ≤ q and 1 ≤ ` ≤ nj with ej := deg(Qj,1) ≤ nj − 1, deg(Qj,`) = ej −
`+ 1 such that for n ≥ N , we have

Bnv = (Q1,1(n)βn1 , . . . , Q1,n1
(n)βn1 , Q2,1(n)βn2 , . . . , Q2,n2

(n)βn2 ,(4)

. . . , Qq,1(n)βnq , . . . , Qq,nq
(n)βnq )T .

Since u is not preperiodic under the map x 7→ Ax, there is at most one
value of m such that Amu is zero. Hence the set I := {i : αi 6= 0 and di ≥ 0}
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is non-empty. Similarly, the set J := {j : βj 6= 0 and ej ≥ 0} is non-empty.
We have the following result.

Proposition 3.3. The following hold:

(a) Let i ∈ {1, . . . , p} and k ∈ {1, . . . ,mi} be such that αi 6= 0 and
deg(Pi,k) ≥ 0. Then there exist j∗ ∈ {1, . . . , q}, `∗ ∈ {1, . . . , nj∗}, and
a polynomial Q(x) such that βj∗ 6= 0, deg(Q) = deg(Qj∗,`∗) ≥ 0, and
Pi,k(m)αmi = Q(n)βnj∗ for every (m,n) ∈ S≥N .

(b) Let j ∈ {1, . . . , q} and ` ∈ {1, . . . , nj} be such that βj 6= 0 and
deg(Qj,`) ≥ 0. Then there exist i∗ ∈ {1, . . . , p}, k∗ ∈ {1, . . . ,mi∗}, and
a polynomial P (x) such that αi∗ 6= 0, deg(P ) = deg(Pi∗,k∗) ≥ 0, and
P (m)αmi∗ = Qj,`(n)βnj for every (m,n) ∈ S≥N .

Proof. For part (a), fix i ∈ {1, . . . , p} and k ∈ {1, . . . ,mi} such that αi 6= 0
and deg(Pi,k) ≥ 0. Write µ = m1 + · · ·+mi−1 + 1 so that Pi,1(m)αmi is the
µ-th entry of Amu. Write w = (w1, . . . , wN )T and express the µ-th row of
the matrix C as:

(c1,1, . . . , c1,n1
, . . . , cq,1, . . . , cq,nq

)T .

For (m,n) ∈ S≥N , from Amu = CBnv + w, (3), and (4), we have:

(5) Pi,1(m)αmi − wµ =

q∑
j=1

(
nj∑
`=1

cj,`Qj,`(n)

)
βnj =

q∑
j=1

Qj(n)βnj

where Qj(x) :=
∑nj

`=1 cj,`Qj,`(x).
Recall our assumption that the non-zero elements in {β1, . . . , βq} form a

non-degenerate tuple. By Proposition 2.3, wµ = 0 and there is a unique j∗ ∈
{1, . . . , q} such that βj∗ 6= 0, Q(x) := Qj∗(x) 6= 0, and for j ∈ {1, . . . , q} \
{j∗}, we have Qj(n)βnj ≡ 0 (this means either βj = 0 or Qj(x) is the zero
polynomial) so that equation (5) becomes:

(6) Pi,1(m)αmi = Q(n)βnj∗ .

Since Q =
∑nj∗

`=1 cj∗,`Qj∗,`, if we let `∗ be minimal such that cj∗,`∗ 6= 0 then
deg(Qj∗,`∗) = deg(Q) ≥ 0. This finishes the proof of part (a).

The proof of part (b) is completely similar, this time we consider the
equation Bnv = C−1Amu− C−1w and compare the rows corresponding to
the entry Qj,`(n)βnj in Bnv. �
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Let ĩ ∈ I be such that dĩ = max{di : i ∈ I}. By part (a) of Proposi-
tion 3.3, there exist j∗, `∗, and a polynomial Q(x) such that e∗ := deg(Q) =
deg(Qj∗,`∗) ≥ 0 and

(7) Pĩ,1(m)αm
ĩ

= Q(n)βnj∗

for every (m,n) ∈ S≥N . We have:

Proposition 3.4. The following hold:

(a) dĩ = e∗, in other words deg(Pĩ,1) = deg(Q).

(b) There exist ω ∈ K∗ such that αm
ĩ

= ωβnj∗ for every (m,n) ∈ S≥N .

Proof. First, we prove dĩ ≤ e∗ as follows. For the entry Pĩ,dĩ+1(m)αm
ĩ

in
Amu, we have that deg(Pĩ,dĩ+1) = 0. Applying part (a) of Proposition 3.3

to the pair (̃i, dĩ + 1), we obtain j∗, `∗, and a polynomial R(x) such that
βj∗ 6= 0, deg(R(x)) = deg(Qj∗,`∗) ≥ 0, and

(8) Pĩ,dĩ+1(m)αm
ĩ

= R(n)βnj∗

for every (m,n) ∈ S≥N . Applying Proposition 2.5 to the pair of equations

(7) and (8), we have that dĩ = e∗ − deg(R) ≤ e∗. We also have βj∗

βj∗
is a root

of unity, hence j∗ = j∗ since the tuple of non-zero eigenvalues of B is non-
degenerate.

The inequality e∗ ≤ dĩ can be proved by similar arguments, as follows.
We consider the entry Qj∗,`∗+e∗(n)βnj∗ in Bnv for which deg(Qj∗,`∗+e∗) = 0.
Applying part (b) of Proposition 3.3 to the pair (j∗, `∗ + e∗), we obtain i∗,
k∗, and a polynomial U(x) such that αi∗ 6= 0, deg(U(x)) = deg(Pi∗,k∗) ≥ 0,
and

(9) U(m)αmi∗ = Qj∗,`∗+e∗(n)βnj∗

for every (m,n) ∈ S≥N . Applying Proposition 2.5 to the pair of equations (7)
and (9), we have that dĩ − deg(U) = e∗. This finishes the proof of part (a).

For part (b), from dĩ = e∗ − deg(R) and part (a), we have that deg(R) =
0. Hence both polynomials Pĩ,dĩ+1 and R are non-zero constants. Since j∗ =
j∗, equation (8) finishes the proof. �

It is possible to use the arguments in Proposition 3.4 to prove that
dĩ = max{ej : j ∈ J }; however we will not use this fact. We can now easily
complete the proof of Theorem 3.1. Part (b) of Proposition 3.4 shows that
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the set S≥N is contained in one single set of the form {(m0k + `1, n0k + `2) :
k ∈ N0} with `1, `2 ∈ N0 and m0, n0 ∈ N. In fact we can choose (m0, n0) to be
the minimal pair of positive integers such that αm0

ĩ
= βn0

j∗ and choose (`1, `2)

to be the minimal pair of non-negative integers such that α`1
ĩ

= ωβ`2j∗ . Both
of these pairs exist by part (b) of Proposition 3.4 and our assumption that
S≥N is infinite. It remains to study the set of k ∈ N0 satisfying:

(10) (Am0)kA`1u = C(Bn0)kB`2v + w, m0k + `1 ≥ N, n0k + `2 ≥ N.

We now consider K2N with the coordinates (x,y) (where x,y ∈ KN ),
the linear map L : K2N → K2N given by L(x,y) = (Am0x, Bn0y), the start-
ing point (A`1u, B`2v), and the subvariety defined by x = Cy + w. Applying
Corollary 3.2 to the current data, we have that the set of k ∈ N satisfying
(10) is a finite union of arithmetic progressions. This finishes the proof of
Theorem 3.1.

4. Proof of Theorem 1.4 and further remarks

4.1. Some reduction

By using similar arguments as in Subsection 3.1, we reduce to the case r = 2.
In other words, after a slight change of notation, we reduce to proving the
following:

Theorem 4.1. Let X be a semiabelian variety over K. Let Φ and Ψ be
K-morphisms from X to itself. Let Φ0 and Ψ0 be K-endomorphisms of X
and α0, β0 ∈ X(K) such that Φ(x) = Φ0(x) + α0 and Ψ(x) = Ψ0(x) + β0.
Let α, β ∈ X(K) such that α is not Φ-preperiodic and β is not Ψ-preperiodic.
If none of the eigenvalues of DΦ0 and DΨ0 is a root of unity, then the set

S := {(m,n) ∈ N0 × N0 : Φm(α) = Ψn(β)}

is a finite union of sets of the form

{(m0k + `1, n0k + `2) : k ∈ N0}

for some m0, n0, `1, `2 ∈ N0.
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4.2. Proof of Theorem 4.1

Assume the notation of Theorem 4.1 throughout this subsection. We start
with a further reduction.

Lemma 4.2. Let k be a positive integer. It suffices to prove Theorem 4.1
for the maps Φ̃ and Ψ̃ and starting points α̃ = kα and β̃ = kβ, where Φ̃(x) =
Φ0(x) + kα0 and Ψ̃(x) = Ψ0(x) + kβ0.

Proof. Assume Theorem 4.1 holds for endomorphisms Φ̃ and Ψ̃ and starting
points α̃ and β̃. Then OΦ̃(α̃) = k · OΦ(α) and OΨ̃(β̃) = k · OΨ(β), where for
any set T of points of X, we define

k · T := {k · x : x ∈ T}.

So, we know that the set S := {(m,n) ∈ N0 × N0 : Φ̃m(α̃) = Ψ̃n(β̃)} is a
finite union of sets of the form {(m0`+ r1, n0`+ r2) : ` ∈ N0} for given
m0, n0, r1, r2 ∈ N0. So, it suffices to prove that for each such m0, n0, r1, r2 ∈
N0, the set of ` ∈ N0 such that Φm0`+r1(α) = Ψn0`+r2(β) is a finite union of
sets of the form {`0s+ r0}s∈N0

. Indeed, this last statement is a consequence
of [BGT10, Theorem 4.1]. �

Let R be a finitely generated Z-subalgebra of K over which X (along
with its points α, α0, β, β0), and also Φ and Ψ are defined. By [BGT10,
Proposition 4.4] (see also [GT09, Proposition 3.3] and [BGT16, Chapter 4]),
there exist a prime number p and an embedding of R into Zp such that

(i) X has a smooth semiabelian model X over Zp;

(ii) Φ and Ψ extend to endomorphism of X ;

(iii) α, α0, β, β0 extend to points in X (Zp).

Let f0 and g0 denote the linear maps induced on the tangent space at
0 by Φ0, respectively Ψ0. By (ii) above and [BGT10, Proposition 2.2], if
one chooses coordinates for this tangent space via generators for the com-
pleted local ring at 0, then the entries of the N -by-N matrices A and B
corresponding to f0 and g0 will be in Zp (where N = dim(X)). Fix one such
set of coordinates and let | · |p denote the corresponding p-adic metric on
the tangent space at 0. We let Cp be the completion of an algebraic closure
of Qp.

According to [Bou98, Proposition 3, p. 216] there exists a p-adic analytic
map exp which induces an analytic isomorphism between a sufficiently small
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neighborhood U of CNp and a corresponding p-adic neighborhood of the origin
0 ∈ X (Cp). Furthermore (at the expense of possibly replacing U by a smaller
set), we may assume that the neighborhood U is a sufficiently small open
ball, i.e., there exists a (sufficiently small) positive real number ε such that U
consists of all (z1, . . . , zN ) ∈ CNp satisfying |zi|p < ε. Because exp(U) ∩ X (Zp)
is an open subgroup of the compact group X (Zp) (see [GT09, p. 1402]),
we conclude that exp(U) ∩ X (Zp) has finite index k ∈ N in X (Zp). Us-
ing Lemma 4.2 (at the expense of replacing α, α0, β, β0 by kα, kα0, kβ
and respectively kβ0), we may assume that α, α0, β, β0 ∈ exp(U). Therefore,
there exists u, u0, v, v0 ∈ U such that exp(u) = α, exp(u0) = α0, exp(v) = β
and exp(v0) = β. Also, we let f, g : AN −→ AN be the affine transforma-
tions given by f(x) = f0(x) + u0 and respectively g(x) = g0(x) + v0 for each
x ∈ AN . Since the entries of the matrices A and B (corresponding to the
linear transformations f0 and g0) have entries which are p-adic integers,
we conclude that Of (u),Og(v) ⊂ U . So, because exp is a local isomorphism,
while Φm(α) = exp (fm(u)) and Ψn(β) = exp (gn(v)) for each m,n ∈ N0, the
desired conclusion follows from Theorem 1.6.

4.3. Further remarks

Let X be a semiabelian variety over an algebraically closed field K of charac-
teristic 0. We conclude this paper by introducing some geometric conditions
that imply the condition that none of the eigenvalues of DΦ0 is a root of
unity as required in the statement of Theorem 1.4 (or Theorem 4.1).

Recall (see, for example, [MS14, Section 7]) that a dominant K-
endomorphism Φ0 of X is said to preserve a non-constant fibration if there
is a non-constant rational map f ∈ K(X) such that f ◦ Φ0 = f . We have the
following:

Proposition 4.3. Let Φ0 be a dominant K-endomorphism of X. Then Φ0

preserves a non-constant fibration if and only if at least one of the eigenval-
ues of DΦ0 is a root of unity.

Proof. First we note that by [GS17, Lemma 4.1], for any positive integer
`, we know that Φ0 preserves a non-constant fibration if and only if Φ`

preserves a non-constant fibration.
Assume now that DΦ0 has an eigenvalue which is a root of unity, say

of order ` ∈ N. Therefore it suffices to prove that Φ1 := Φ`
0 preserves a non-

constant fibration.
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Let f ∈ Z[z] be the minimal (monic) polynomial for DΦ1; alternatively,
f(z) is the minimal monic polynomial with integer coefficients such that
f(Φ1) = 0 ∈ End(X). We know that f(1) = 0; hence there exists g ∈ Z[z]
such that f(z) = (z − 1) · g(z). In particular, we know that g(Φ1) is not
the trivial endomorphism of X. We let Y := g(Φ1)(X); then Y is a non-
trivial semiabelian subvariety of X. We also let π : X −→ Y be the map
x 7→ g(Φ1)(x) and note that π ◦ Φ1 = π on X. Thus Φ1 preserves a non-
constant fibration, contradiction.

Assume now that DΦ0 has no eigenvalue which is a root of unity; we
will show that Φ0 does not preserve a nonconstant fibration. Again, at the
expense of replacing Φ0 by an iterate Φ1, we may assume that all eigenvalues
λi of DΦ1 have the property that if λi/λj is a root of unity, then λi = λj .
Also, note that since Φ0 and therefore its iterate Φ1 is a dominant morphism,
then each eigenvalue λi of DΦ1 is nonzero and not equal to a root of unity
according to our hypothesis.

Arguing identically as in the proof of Theorem 1.4, we can find a prime
number p and a suitable model X of X over Zp such that each entry of
A := DΦ1 is a p-adic integer, and moreover the p-adic exponential map exp
induces a local isomorphism between a sufficiently small ball B in CNp and
a corresponding small p-adic neighborhood U of the origin of X .

We can write A = B−1JB, where B is an invertible matrix and J is in
Jordan form. Because B is invertible, we can choose v ∈ B such that Bv
has all its entries nonzero. Then arguing identically as in Section 3, we get
that the entries of JnBv are of the form

(P1,1(n)λn1 , . . . , P1,m1
(n)λn1 , P2,1(n)λn2 , . . . , P2,m2

(n)λn2 , . . . , Pr,mr
(n)λnr )T ,

where each Pi,1 is a nonzero polynomial, and moreover deg(Pi,j) =
deg(Pi,1)− j + 1 for each i = 1, . . . , r and for each j = 1, . . . ,mi. Then for
each w ∈ CNp and for each a ∈ Cp, we have that

{
wT · JnBv + a

}
n≥1

is a
linear recurrence sequence with non-degenerate characteristic roots, unless
w is the zero-vector. Therefore, given any proper linear subspace W ⊂ CNp ,
there are finitely many vectors Anv = B−1JnBv contained in the same coset
a +W (for any given a ∈ CNp ).

Let now x = exp(v) ∈ U . We claim that OΦ1
(x) is Zariski dense in X.

Indeed, otherwise there exists a coset β +H of a proper algebraic subgroup
H of X containing infinitely many points from the orbit OΦ1

(x). This last
statement follows by noting that OΦ1

(x) is contained in a finitely generated
subgroup of X (because there exists a monic nonzero polynomial f ∈ Z[z]
such that f(Φ1) = 0 ∈ End(X)) and then using the classical Mordell-Lang
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theorem (see [Voj96]). Because all entries of DΦ1 are p-adic integers, then
we know that OΦ1

(x) ⊂ U . Since H is a proper algebraic subgroup of X,
then exp−1(H ∩ U) = H0 ∩ B for some proper linear subgroup H0 ⊂ CNp .
But then there are infinitely many vectors Anv contained in a coset of H0,
which is a contradiction.

Now, since OΦ1
(x) is Zariski dense in X, we immediately get that Φ1 and

thus Φ0 cannot preserve a non-constant fibration (see also [MS14, Section 7]).
This concludes the proof of Proposition 4.3. �

Another condition has been mentioned in Remark 1.3.

Proposition 4.4. Let Φ be a self-map of X over K with Φ(x) = Φ0(x) + α0

where Φ0 is a K-endomorphism and α0 ∈ X(K). Assume there does not exist
m ∈ N and a positive dimensional closed subvariety Y of X such that Φm

restricts to an automorphism on Y . Then none of the eigenvalues of DΦ0 is
a root of unity.

Proof. We argue by contradiction and therefore, we assume DΦ0 has an
eigenvalue which is a root of unity. At the expense of replacing Φ by an iter-
ate Φm we may assume that all eigenvalues of DΦ0 are either equal to 1, or
they are not roots of unity. We let (similar to the proof of Proposition 4.3)
f ∈ Z[z] be the minimal monic polynomial such that f(Φ0) = 0. Then f(t) =
(t− 1)r · f1(t) for some monic polynomial f1 ∈ Z[t] such that f1(1) 6= 0, and
some r ∈ N. We let Y := f1(Φ0)(X) and Z := (Φ0 − id |X)r (X), where for
any subvariety V ⊆ X, we denote by id |V the identity map on V . Then Y
and Z are semiabelian subvarieties of X. As proven in [GS17, Lemma 6.1],
we have that X = Y + Z and Y ∩ Z is finite. Strictly speaking, [GS17,
Lemma 6.1] is written for endomorphisms of abelian varieties, but the proof
goes verbatim to semiabelian varieties since no property applicable only to
abelian varieties (such as the Poincaré’s Reducibility Theorem—see [GS17,
Fact 3.2]) is used; essentially, all one uses is that the polynomials (z − 1)r

and f1(z) are coprime. So, Φ0 restricts to an endomorphism τ of Z with the
property that

(τ − id |Z) : Z −→ Z

is an isogeny. Note that we allow the possibility that Z is the trivial algebraic
subgroup of X; in this case, it is still true that τ − id |Z is surjective. We let
β0 ∈ Y and γ0 ∈ Z such that α0 = β0 + γ0. Hence there exists γ1 ∈ Z such
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that

(11) Φ0(γ1) + γ0 = γ1.

In the case Z is the trivial subgroup, then clearly γ0 = γ1 = 0.
We claim that Φ restricts to an automorphism on the positive dimen-

sional subvariety V := γ1 + Y (note that r ≥ 1 and thus dim(Y ) ≥ 1). First
we note that Φ0 restricts to an automorphism σ on Y ; indeed, Φ0 induces
an endomorphism σ of Y by definition, and then since (σ − id |Y )r = 0, we
get that σ : Y −→ Y is an automorphism. Then for each y ∈ Y we have that

Φ(y + γ1) = Φ0(y) + Φ0(γ1) + β0 + γ0 = σ(y) + β0 + γ1.

Because σ is an automorphism of Y , while β0 ∈ Y , we conclude that

y 7→ σ(y) + β0

is an automorphism of Y . This concludes the proof of Proposition 4.4. �
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