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On uniformly bounded orthonormal
Sidon systems

GILLES PISIER

In answer to a question raised recently by Bourgain and Lewko, we
show that any uniformly bounded subGaussian orthonormal sys-
tem is ®2-Sidon. This sharpens their result that it is “5-fold tensor
Sidon”, or ®°-Sidon in our terminology. The proof is somewhat
reminiscent of the author’s original one for (Abelian) group char-
acters, based on ideas due to Drury and Rider. However, we use Ta-
lagrand’s majorizing measure theorem in place of Fernique’s met-
ric entropy lower bound. We also show that a uniformly bounded
orthonormal system is randomly Sidon if it is ®*tensor Sidon,
or equivalently ®*-Sidon for some (or all) k > 4. Various general-
izations are presented, including the case of random matrices, for
systems analogous to the Peter-Weyl decomposition for compact
non-Abelian groups. In the latter setting we also include a new
proof of Rider’s unpublished result that randomly Sidon sets are
Sidon, which implies that the union of two Sidon sets is Sidon.
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The study of “thin sets” and in particular Sidon sets in discrete Abelian
groups was actively developed in the 1970’s and 1980’s. Among the early
fundamental results, Drury’s proof of the stability of Sidon sets under fi-
nite unions stands out (see [14]). Rider’s work [26] connected Sidon sets to
random Fourier series. This led the author to a characterization of Sidon
sets in terms of Rudin’s A(p)-sets (see [15, 17]) and eventually in [20] to an
arithmetic characterization of Sidon sets. Bourgain [2] gave a different proof,
as well as a host of other results on related questions. The 2013 book [7] by
Graham and Hare gives an account of this subject, updating the 1975 one
[14] by Lopez and Ross. Concerning A(p)-sets see Bourgain’s survey [4]. See
also [12] for connections with Banach space theory.

Most of the results on lacunary sets crucially use the group structure
([3] is a notable exception). However, quite recently Bourgain and Lewko [5]
were able to obtain several analogues for uniformly bounded orthonormal
systems. We pursue the same theme in this paper.

Let 9o(z) = expa? — 1. Let C be a constant. We will say that an or-
thonormal system (¢y,) in La(T,m) (here (T,m) is any probability space) is
a C-subGaussian system if for any sequence y = (y,) in lo we have

(0.1) [Swmen, <c (Z\ynﬁ)%,

where Ly, is the Orlicz space on (T',m) associated to 12, with norm defined
by

(0.2) 1£lly, = inf{t > 0| Eexp £/t < e}.

In [5] this is called a 1 (C')-system but we prefer to use a different term. This
is a variant of the notion of subGaussian random process, as considered in
[9] or [15, p. 24]. It also appears under the name “o-generalized Gaussian”
in e.g. [28, p. 236]. Indeed, assuming without loss of generality that the ¢,’s
all have vanishing mean, then (0.1) holds for some C' iff for some o > 0 we
have for all y € £

(0.3) Eexp® (Z yn<pn> < expo? Z [Yn|? /2.

Clearly the latter forces Ep, = 0 for all n while (0.1) does not. But this is
the only significative difference. Indeed, assuming Ey,, = 0 for all n, it is not
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hard to show that (0.1) implies (0.3) for some 0 < o < oo depending only
on C'. Conversely (0.3) for some o implies (0.1) for some C' < oo depending
only on o (and C ~ o for the best possible values).

Classical examples of such systems include sequences of independent
identically distributed (i.i.d.) Gaussian random variables, or independent
mean zero uniformly bounded ones. They also include Hadamard lacunary
sequences of the form ¢, (t) = exp (iN(n)t) where {N(n)} is an increasing
sequence such that

liminf N(n +1)/N(n) > 1.

Roughly, one may interpret (0.1) as expressing a certain form of indepen-
dence of the system (p,). When the system is bounded in Lo (T, m), the
notion of Sidon system constitutes another form of independence: we say
that (¢p) is Sidon if there is a constant « such that for any finitely sup-
ported scalar sequence

(0.4) > lanl < @[3 ann

Assume that (¢,,) are characters on a compact Abelian group. Then (0.4) =
(0.1) by a classical result due to Rudin [27]. Conversely, in [17] the author
combined harmonic analysis results (due to Drury and Rider, see [26]) with
probabilistic results on stationary Gaussian processes (due mainly to Fer-
nique) to show that (0.1) = (0.4). Bourgain gave an alternate proof in [2].

Recently, Bourgain and Lewko [5] considered the question whether the
preceding implications still held for more general orthonormal systems
bounded in Lo (7, m). In such generality it is easy to see that (0.4) # (0.1),
because the direct sum of a Sidon system with an arbitrary system satisfies
(0.4). Conversely Bourgain and Lewko construct an example showing that
also (0.1) # (0.4), but that (0.1) nevertheless implies a weak form of (0.4),
namely they show in [5] that (0.1) implies that the system {¢y, (1) - - - @n(t5)}
defined on the 5-fold product 7" x --- x T satisfies (0.4). Since the latter
clearly implies (0.4) when the ¢,’s are group (or semi-group) morphisms,
this provides one more proof of (0.1) = (0.4) for characters. Naturally they
raised the question whether 5-fold can be replaced by 2-fold, which would
then be optimal. Our main result Theorem 1.1 gives a positive answer. We
give a more general version in §1 which leads to several possibly interesting
variants. The proof makes crucial use of a consequence (see Lemma 1.4) of
Talagrand’s majorizing measure Theorem from [29].

In §2 we consider the analogue of random Fourier series for uniformly
bounded orthonormal systems. We call randomly Sidon the systems that

o0
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satisfy the analogue of Rider’s condition (i.e. that satisfy (0.4) with the
right hand side replaced by the average over all signs of || > £a,¢nl|), and
we prove that 4-fold tensor Sidon is equivalent to randomly Sidon. Thus the
k-fold variant of the Sidon property (we use for this the term ®*-Sidon) is
the same notion for all k > 4.

In §3 we apply a similar generalization to the natural “non-commutative”
analogue of Sidon sets on non-Abelian compact groups. Here orthonormal
functions are replaced by matrix valued functions (generalizing irreducible
representations), for which the entries suitably renormalized form an or-
thonormal system. We obtain an analogue of subGaussian = ®2-Sidon (see
Corollary 3.11).

The simplest case of interest is provided by a random d x d-matrix

t = [pij (1]

with orthonormal entries satisfying (0.1), and such that for some C” we have
a uniform bound

(0.5) supier [[d7 2o (t) [ar, < .

Then Corollary 3.11 (see also Remark 3.14) shows that there is a constant
a = a(C,C") > 0 such that for any matrix a € My we have

(0.6) atrlal < supy, y,er [tr(d™ o(t)@(t2)a).

The prototypical example of ¢ satisfying (0.6) and (0.5) (with ¢/ = a =1)
with orthonormal entries satisfying (0.1) for some numerical C' (independent
of d) is the case when d—1/ 20 is a random unitary d x d-matrix uniformly
distributed over the unitary group. In §4 we illustrate by an example the
possible applications to matrices of our generalized setting.

In §5 we consider the notion of “randomly Sidon” for matrix valued
functions. We obtain an analogue of randomly Sidon = ®*-Sidon (see The-
orem 5.7).

In §6 we briefly discuss a reinforcement of the implication [{¢;;} C-
subGaussian | = (0.6) valid when d~/2¢ is a representation 7 on a compact
group. In that case it suffices to assume that the character of = (namely
ts tr(n(t)) = d=Y2 3 @y) is C-subGaussian.
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1. Sidon systems

Theorem 1.1. Let (p,) be an orthonormal system satisfying (0.1) and
moreover such that

(1.1) [nlloo < C

for any n > 1. Then there is a constant a = a(C,C") such that Ya € ¢,

(1.2) Slanl<a sup |3 angnlti)en(ts)|.

(t1,t2)6T><T

Proof. This will be deduced from the more general Corollary 1.12 below. [

Remark 1.2. The same proof also shows that

Z lan] <a  sup ‘Z anpn(ti)en(t2)| .

tl,tg GTXT

Actually, assuming that (¢) and (¢2) are two uniformly bounded orthonor-
mal systems satisfying (0.1) with respective constants C7,Cy and bounds
1, Ch. we will show there is o« = «(C1, Cq, C1, C}) such that Va € Iy

(1.3) Slanl <o sup | anght)edn)|.

(tl,tg)ETXT

n [5] the system is called ®2-Sidon if (1.2) holds, and ®*-Sidon if (1.2)
holds with k-factors (y,(t1)@n(t2)- - @n(tr)) in place of 2. Theorem 1.1
answers the question raised in [5], whether (0.1) implies ®2-Sidon. According
to [5], (0.1) implies ®5-Sidon but not ®!-Sidon, so “2” is optimal.

When the ¢,,’s are Abelian group characters Theorem 1.1 was estab-
lished in [17]. Our method closely follows our original approach in [17],
modulo the later progress allowed by Talagrand’s majorizing measure the-
orem from [29]. One could also use the subsequent proof of Talagrand’s
Bernoulli conjecture by Bednorz and Latata [1], and use Bernoulli random
variables in a similar fashion (as we did in our initial draft), but we will
content ourselves with the Gaussian case.

Let (gn) (resp. (g)) denote an i.i.d. sequence of complex (resp. real) val-
ued standard Gaussian random variables on a probability space (2, 4, P). In
the complex case g, = 271/2(g!, 4 ig") with (¢’,), (¢") mutually independent
and each having the same distribution as (gx).
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It is worthwhile to record here the following two easy and well known
observations: for any Banach space B and any z1,...,2x5 € B

(14)  27'2E HZ xngi‘fH <E HZ xngnH <2'’E HZ Tngn

For any matrix a € My with ||a|a, <1, we have

(1.5) E HZle Ti Zj a;jg;|| < B HZJIV T59;

Indeed, since equality holds when a is unitary, (1.5) follows by an extreme
point argument.

In the sequel, we mostly use the complex Gaussians (g,,) but one could
use the real ones (g&), except that it introduces irrelevant factors equal to
2 at various places.

In addition to Talagrand’s work, the crucial ingredient in the proof is
an “interpolation property” which uses the following observation (for con-
venience we state this only for N < oo but this restriction is not necessary).

Lemma 1.3. Let0 < d <1 and N > 1. Let Py be the orthogonal projection
onto the span of [g1,...,gn]. There is an operator Ty : L1(P) — L1(P) such
that for some wy(9) (independent of N ) we have

(16) T5(gn) = gn Yn=1,...,N, | Ts|| < wo(d)
. and || T5(1 = P1) : L2(P) — La(P)[| < 0.

Moreover the same result holds for (g~ ).

Proof. First consider the real case when (g,,) are real valued Gaussians. We
have a classical (hyper) contractive semigroup (sometimes called the Mehler
semigroup) t — T(e~!) multiplying the Hermite polynomials of (multivari-
ate) degree d by e~%. We prefer to replace e~ by §. More explicitly, if we
work on RY equipped with the standard Gaussian measure v, then

(L.7) T(6)(f) = / F(61 + (1 - 622 dn ().

Let Py be the projection onto the constant function 1. We can then take
Ts = 6 Y(T(6) — Py). Then (1.6) holds with wg(8§) = 2/6. The complex case
requires a small adjustment: We write g, = 271/2 (gh, 4+ ig)) and we apply the
preceding argument in R?V. This provides us with S5 such that S5(g,) = gn
but also S5(gn) = gn and [|S5(1 — Q) : La(P) — Lo(P)|| < 6§, where @Q is the
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orthogonal projection onto the orthogonal of span|g,, g,]. Consider now for
any z € T the measure preserving mapping V. : L; — Ly taking g, to zgy,,
and let W = [ zV.,. Note W(gn) = gn and W (g,) = 0. Clearly |W : L, —
Ly|| <1 forany 1 <p < oo and in particular for p = 1, 2. Then the operator
Ts = W S5 satisfies (1.6). O

We will use Talagrand’s work in the form of the following result from [29]
(see also [30, §2.4]).

Lemma 1.4 ([29]). Assume (0.1). There is a numerical constant K such
that for any N and any x1,...,xN in loo we have

(1.8) /HZapn(t)xn Oodm(t) SKC/HZgnxn

Proof. By (1.4) we may assume (g,,) are real Gaussians if we wish. In the tra-
dition originating in Slepian’s comparison Lemma, (1.8) is immediate from
Theorem 15 in [29]. This is a simple Corollary of the Fernique majorizing
measure conjecture, proved by Talagrand in [29]. O

dP.
o0

The next result, originally due to Mireille Lévy [11] in the case p =1 is
a consequence of the Hahn-Banach theorem. We use the following notation:
Let u : Ly(P) — Ly(m) be a linear operator. We say that u is regular if 3C
such that for any N and any x1,...,2y € L,(IP) we have

(1.9) sup [u(z,)[|| < C|{[sup |2y
n p n

p

More generally, we extend this definition to any linear operator v : E —
L,(m) defined only on a subspace E C L,(P). We denote by |[u|,eq the
smallest constant C' for which (1.9) holds for any finite set xy,...,zn € E.
By a well known property of Li-spaces with respect to the projective tensor
product when p = 1 and E is the full space we have ||ul,eq = |lul|.

Proposition 1.5 ([11, 22]). Let (Q,P) and (T,m) be arbitrary measure
spaces. Let 1 < p < oo.

Let {gn} C Lpy(QL,P), {on} C Ly(T,m) be arbitrary sets. The following are
equivalent, for a fized constant C.

(i) For any N and any 1, ...,2N € oo

(1.10) /HZgonxn Zodmng/HZgnxn

P
dP.
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(i)’ Same as (i) for any Banach space B any N and any x1,...,xn € B.

(ii) There is a reqular operator u : Ly(P) — Ly(m) with ||ul/yeq < C such
that u(gn) = @n-

Note that (i) < (i)’ holds because any separable Banach space embeds
isometrically in £.

It is worthwhile to observe that the assumption (0.1) can be replaced in
Theorem 1.1 by the following:

There are C' > 0 and u: L1(P) = Ly(m)

(1.11) ,
with ||u|| < C such that Vn u(gn) = ¢n.

Definition 1.6. When (1.11) holds we will say that (¢,) is C-dominated
by (gn)-

Combining Proposition 1.5 with Talagrand’s result, we find

Theorem 1.7. There is a numerical constant Ty such that any C-
subGaussian sequence {p,} C L1(T,m) is 19oC-dominated by (gn).

Remark 1.8. It would be interesting to find the best constant 7. We
suspect there may be an explicit formula for the kernel of the operator u
by which a subGaussian system (say assumed satisfying (0.3) with o = 1) is
dominated by (gn).

Remark 1.9 (Comparing L, and L,). Let f be a random variable on
(T',m). Recall that f € Ly, (ie. || flly, < oo) iff

f €Mpeooly and sup p_1/2||f||p < 00.
p<oo

Moreover, f — suPo<, <o p~2||f|l, is a norm equivalent to the norm (0.2)
on Ly,. These elementary and well known facts are proved using Stirling’s
formula and the Taylor expansion of the exponential function.

Therefore, a system (¢,) is subGaussian (i.e. satisfies (0.1)) iff there is a
constant L such that for any y € o and any 2 < p < o0

) < Lp'/? (Z‘%P)l/z.

Moreover the smallest C' in (0.1) and the smallest L in (1.12) are equivalent
quantities, up to numerical factors.

(1.12) |3 apn
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In particular, a sequence of characters on a compact Abelian group is sub-
Gaussian iff it is a A(p)-set (in Rudin’s sense [27]) for all 2 < p < oo with
A(p)-constant O(p'/?). See Bourgain’s survey for more information on A(p)-
sets.

We will prove a more “abstract” form of Theorem 1.1. Note that when
dealing with a tensor 7' € Li(m1) ® Li(mg) say T =) x; ®y; then the
projective and injective tensor product norm denoted respectively by || - ||
and || - ||v are very simply explicitly described by

I7ln = [ 35 ta)us )| dma 1))
Il = sup { |7 (s, v0) (w520 | Ialloo < 1, 2l < 1}

Theorem 1.10. Let (Th,my), (T2, me) be two probability spaces. Let (gy)
be an i.i.d. sequence of complex Gaussian random variables as above. For
any 0 < 6 < 1 there is w(d) > 0 for which the following property holds. Let
(oL) and (¢2) (1 < n < N) be functions respectively in L1(m1) and Li(ms).
Assume that (@) and (p2) are both 1-dominated by (gn) (i.e. they satisfy
(1.11) or equivalently (1.10) with p = C' = 1). Then there is a decomposition
in L1(m1) @ L1(m2) of the form

N
(1.13) Y en®en=ttr
satisfying
(1.14) [l < w(d)
(1.15) Irllv < o.

Moreover the same result holds with (g&) in place of (gn).

Corollary 1.11. In the situation of the theorem, for any matriz a € My
with |la||py < 1, there is a decomposition

E ol @ p? =
L<ijen BI¥E ©PF =TAT
such that (1.14) and (1.15) hold.

Proof. We simply observe that by (1.5) we can replace (¢?)1<;<n by the
“rotated” sequence (3, (ZijQO?)lSZ‘SN, which still satisfies (1.11). O
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The assumption that (¢,,) is orthonormal in Theorem 1.1 will now be weak-
ened. It suffices to assume given a system (1) in Lo that is biorthogonal
to (¢y), in the sense that [ @pipdm = d,5. The advantage of this formu-
lation is that it includes the Gaussian case, e.g. with ¢, = gX||g&||7' and
y, = sign(gX) (or the complex analogue).

Corollary 1.12. In the situation of Theorem 1.10, let (1), (12) be systems
biorthogonal respectively to (pk), (p2) and uniformly bounded respectively by
C1,CY, then

(1.16) Y lasl <@ sup }Zaw}l(tlmg(@),

(t1,t2)ETXT

where « is a constant depending only on C] and C%,.
In particular, for any uniformly bounded orthonormal system (vy,), subGaus-
sian implies ®2-Sidon.

Proof. Let &, € T be such that |a,| = epa,. By Corollary 1.11 we have a

decomposition Y e 0l @ @2 =t + 1. Let f(t1,t2) = . anthl(t1)12(t2). We
have

{t+rf) :/<Z<€n§0;®§02) (f) :Zgnan:Z‘an,-

Therefore

D lan] < &A1 I < w@)I flloo + D lanl[(r, by @ v3)]
< w(O)[|flloc +C1Cy > lan].

Choosing 0 such that 6C]C’ = 1/2 we obtain the conclusion with o = 2w ().
For the last part of Corollary 1.12 recall that by Theorem 1.7 subGaussian
implies domination by (g,). Thus the last assertion is obtained by taking
(up to a renormalization, as in Remark 1.18) ol = 2 = ¢, and ¢} = 2 =
On- OJ

Remark 1.13. Actually the preceding proof requires only that (¥} ® 12)
be biorthogonal to ()} ® ¢2). For instance, it suffices to have (1) biorthog-
onal to () and to have [ @22 =1 for all n.

Remark 1.14. It is worthwhile to observe that Theorem 1.10 actually
reduces to the case when ¢l = 2 = g,. Indeed, once we have obtained a
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decomposition Zf[ gn ® gn =t + 7, we simply let

Zj%%®¢%:@“®wﬂﬂ+ﬁn®uﬂ@)

However, it turns out that the proof below is essentially the same in the
case pL = @2 = g, as in the general case, so we proceed without using the
present observation.

Proof of Theorem 1.10. By (1.4) it suffices to prove this when the (g,,)’s are
real valued. This is arguably irrelevant but it simplifies notation, allowing
us to avoid complex conjugation. Let wu; : Li(P) — Li(m;) with [lu;| <1
such that u;(gX) = ¢, for 1 <n < N. By classical results on L;-spaces, for
any € > 0 there is a finite rank projection Q; on L1(m;) with [|Q;| <1 +¢
that is the identity on span[p], ..., ¢%]. Thus replacing u; by Q;u; we may
clearly assume that u; has finite rank. Thus each u; can be identified with
an element &7 € Loo(P) ® Li(m;).
It is easy and well known that, since u; has finite rank

197 @i () = Il

Indeed, if £ is the rank of u;, this is clear when PJ = Z]f Tq ® yq with z4,y4
measurable with respect to a finite o-subalgebra. The general case can then
be checked by a simple approximation argument by step functions.

A fortiori & € Lo(P) ® Lyi(m;).

The fact that ®7 represents u; is expressed for all 1/ € Lo (m;) by

(1.17) wj () = [ @pidm;
Let

(1.18) T:/¢w@®&wmmm.
Note that

(119) T = H [ w0 v are)|

<2 b sy (NP2 2 2 (ma)) < ]l
We claim that

(1.20) 1Tl < llur: Lo — Li|l|lug : Lo — La|| < |Jug||Juz]]-
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Indeed, by (1.17) we have

(1.21) <nw®w%:/@www@wﬂwmmm
and hence

(T, 9t @ ?)] < flui (@) l2llus (%) ]l2

<lui: Loo = Lol oo mllus = Loo = Lal 0] 1 (ma)s

from which (1.20) follows. We will now use the orthogonal projection P; :
Ly(P) — span[gX] from Lemma 1.3.

Let S = Zf? oL ® 2. We first claim that we have a decomposition (re-
call (1.18))

S=T+R
such that

(1.22) IRllv <lur(I = Pr) = Ly = Laf[Juz]-

Note that since S = (u1 ® u2)(Y_ g% ® g%) and 3_ g% ® g represents P, we
have

(S, ' @ p?) = / (g5 ui (1)) (g, ub(¥?))dP = / Pyui(ypyuz(¢?)dP,

and hence by (1.21)
S=T+R

where

mw%w&:—/a—HWMM@w%

Applying (1.20) to R we find (1.22) which proves our claim.

We will now use the “interpolation property” from Lemma 1.3.

Fix 0 < 0 < 1. We will now replace u; by ui7Ts. Note that we still have
u1Ts(g%) = u1(g%) = ) but in addition we now have

[ua Ts[[Juzll < wo(d)l[url[l[uzll and lurs Ts(I = Pr) = Lo — L[ < 8fjuall.

Therefore, the preceding decomposition becomes S =t +r with ||t <
wo (0)||ug|||ue|] < we(d) and [|r|ly < 0||ui]|||uz|] < we(d). The minor correc-
tion to pass from the real case to the complex one leads to doubled constants
’wo((S), d. Il
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Remark 1.15. Let J: Loo(P) — Li(P), Jo: Loo(P) — Lo(P) and Jy :
Ly(P) — L1 (IP) be the natural inclusions, so that J = J;.Jo. A more abstract
way to run the previous proof is to observe that the tensor S corresponds to
the operator wyJi Py Jous : Loo(mga) — L1(mq), which can be decomposed
as

u1J1P1J2u§ = U1J1T5J2u; — U1J1T5(1 — Pl)Jgu;
= ungJu§ — U1J1T5(1 — Pl)JQU;.

This is the operator version of the decomposition S =t + r. Then, |[|t]a
is equal to the integral norm of uTsJul which is clearly (since J ap-
pears inside) < [lurT5|[[uz]| < wo(d)|lusl[||uz| and [[r{ly is < [luriTs(1 -
P)|[[[F2u]| < 8fur il J2us | < offu[[|uz]-

Remark 1.16. It is known that the best estimate for wgy(d) with proper-
ties (1.6) is wo(d) = O(log(1/6)). This follows easily from a result proved
already in the Sidon set context by J.F. Méla, namely Lemma 3 in [16]. The
latter says that for any 0 < 6 < 1 there is a measure ¢ on [0, 1] such that
[ sdo(s) =1, | [ s"do(s)| <6 for all odd n and |o|([0,1]) < C|logé| with C'
independent of 0. Now let T'(s) be the operator defined in (1.7). We have
T(s) =) ,>05" Py where the P,’s are the orthogonal projections onto the
span (or the “chaos”) of Hermite polynomials of degree n. Consider then

Ty — /(T(s) ST(-s)/2do(s) = P+ Y Pn/s”da(s).

n odd>1

It is easy to check (1.6) with wg(d) < Cllogd|. Of course this implies the
same growth for w(J).

An alternate proof can be given using complex interpolation by the same
idea as in [18, p. 11].

Remark 1.17 (®" implies ®**1). Let (¢}) be a Sidon sequence. Then
for any sequence (¢2) such that § = inf ||[1)2||; > 0, the sequence (1} ® 12)
is Sidon. Indeed, for any fixed s we have > a2 (s)| < | Y- anti02 ()| oo,
which, after integration over s, implies § 3 |an| < a|| Y antl @ 2 ||o0. In
particular, for a uniformly bounded othonormal system, ®*-Sidon implies
®*+1-Sidon.

Remark 1.18 (On homogeneity). Assume that (¢,,) is biorthogonal
to (1) and |[¢p]|lee < C'. Let ¢ > 0. If (p,) is c-dominated by (g,,), then
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(¢ '¢y) is 1-dominated by (gy,), is biorthogonal to (c1/,,), and the latter has
norm < ¢C’ in Ly,. Thus Corollary 1.12 applies in this case too.

Corollary 1.19. Let {¢, |1 <n < N} C Loo(m) and {¢p |1 <n < N} C
Li(m). Let a;; = (i, ;). Assume that a = [a;;] is invertible and |la™ || ary <
c. Then if (pp) is 1-dominated by (gn), and if sup,, [|[¥n|lecc < C' there is a
number a = a(c,C") (depending only on ¢ and C') such that () is @3-
Sidon with constant o.

Proof. There is a system {¢), | 1 <n < N} C Li(m) that is biorthogonal to
(¢n) and c-dominated by (g,,). Indeed, setting b= a1, and ¢} = >, birer
we have (¢}, ;) = >, biwarj = 0;5. Clearly, (¢},) is 1-dominated by
(>4 bnkgr), and by the rotational invariance of Gaussian measure, the lat-

ter is c-dominated by (g,). Therefore the present statement follows from
Corollary 1.12 (and Remark 1.18). O

Remark 1.20 (On almost biorthogonal systems). In the situation of
the preceding Corollary, let @ = ||a — I||. If & < 1 then ||b]| < (1 —6)~%.

For convenience, we record here the following elementary fact.

Lemma 1.21. Let {g, |1 <n< N} CLi(P) and {on|1<n<N}C
Lo (m). Assume there is T : Li(P) — Li(m)** of norm 1 such that

(1'23) Vn,k <N <T(gn)’ 90k> = Onk-

Then for any € > 0 there is T° : Li(P) — Li(m) with norm <1+ ¢ satis-
fying (1.23).

Proof. Fix 0 <e < 1. Let E =span{T(g,) |1 <n <N} C Li(m)**. The
space Lj(m)** is an abstract Li-space and more generally a £-space in the
sense of [13]. In particular, there is a finite rank operator S : Lji(m)™ —
Li(m)*™ with norm < 1+ ¢/4 that is the identity on E. Let F' be the
range of S. Note E C F'. By the local reflexivity principle, the inclusion
F C Li(m)* is the weak* limit of a net J; : F' — Lq(m) with ||J;|| < 1+e.
By a simple perturbation argument (see [13] for details) we may adjust J;
so that (J;(e), px) = (e, pg) for any e € F' (and hence for any e € F). Then
T¢ = J;ST : Li(P) — Li(m) satisfies (1.23) and || T°]| < 1+¢ . O
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2. Randomly Sidon systems

In this section, we denote simply by (g,) the sequence denoted previously
by (¢%). In connection with Rider’s paper [26], let us say that a sequence
(1) is randomly Sidon if there is a constant C' such that for any finite scalar
sequence (a,) we have

Z la,| < CE HZgnanz/Jn

Clearly, Sidon implies randomly Sidon.

Assuming (¢,,) bounded in Lo, it is easy to see by a truncation argument
(as in [17] or in Lemma 3.2 below) that this is equivalent to the same prop-
erty with a Bernoulli sequence (e;,) (i.e. independent uniformly distributed
choices of signs) in place of (g,,). The latter case was considered by Rider
[26] when the ¢,,’s are distinct characters (7,,) on a compact Abelian group
and he proved that randomly Sidon sets of characters are Sidon.

Assume (1) bounded in Ls,. Bourgain and Lewko [5] observed using
Slepian’s lemma (see Remark 2.6) that, for any fixed k, if the k-fold tensor
product (¢, ® -+ ®1y,) is randomly Sidon, then (1);,) is randomly Sidon.
Thus every uniformly bounded ®*-Sidon sequence is randomly Sidon. In
particular, they proved that every uniformly bounded orthonormal system
satisfying (0.1) is randomly Sidon.

In the remarks that follow we try to clarify the relationship between
this notion and the notion of sequence dominated by (g,) introduced in
Definition 1.6.

[e.9]

Proposition 2.1. Consider a sequence (¢n)1<n<n in L1(m), The following
properties are equivalent.

(i) For any (fi1,...,fn) in Loo(m) we have Y |{fn, en)| < E| D gnfnllco-
(i) For any (f1,...,fn) in Loc(m) we have | 3-(fn, on)| <E[ 3 gnfollco-
(ii) There is an operator w : Li — L1 with ||u|| <1 such that u(g,) = ¢n.

Proof. The equivalence (i) < (i)’ is obvious because for any z, € T the right
hand side is unchanged when we replace (f,) by (znfn)-
Assume (i). Consider the linear form

Zgnfn = Z<fn’ 90n>
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and extend it by Hahn-Banach to ¢ € L'(IP; Lo (m))* of norm < 1 such that
E(gn @ fn) = (fn, @n). This linear form & € L'(P; Loo(m))* defines an oper-
ator u: LY(P) — Li(m)* with norm <1 such that (u(gn), fn) = £(gn ®
fn) = (fn,on). Therefore u(g,) = ¢,. Composing u with the norm 1 pro-
jection from Li(m)** to Li(m) (associated to the Hahn decomposition) we
obtain (ii). Conversely, if (ii) holds we have

[ XBOEE?

~ dm(t) <E HZ Gnfn

oo

and since
‘ / Zu(gn)(t)fn(t)dm(t)' < / essSgp’Zu(gn)(t) fn(s)‘dm(t)

and u(g,) = ¢, we obtain (ii) = (i)’. O

When the functions (¢y,)1<p<n are of the form ¢, =7,/C, where ()
are distinct characters on a compact Abelian group, and C' a fixed constant,
(1) implies

(iii) For any a, € C

< CE HZ nGnn

s

By the “sign invariance” (complex sense) of (g,,) the latter is equivalent to

(iil)” " |an| < CE[Y angnnlloo-

Moreover, a simple averaging shows that (iii) is equivalent to

e o]

(iv) For any f, € L

S 1a(v)l < CEI'S gufulloo:

Indeed, this follows from

1) E[Y gt

Lz sngsgp ‘Zgn%(S)fn(t - 5)

>E HZ gnnx fnl| =E Hzgnfn(%)%

o

Thus we conclude:

Remark 2.2. The set (,) is randomly Sidon with constant C' iff (v,,) (or
equivalently (7)) is C-dominated by (gy,).
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We now turn to the analogous questions for more general function sys-
tems.

Proposition 2.3. Consider a finite sequence (n)i1<n<n in Loo(m). The
following properties are equivalent.

(i) For any complex N x N-matriz [ang] we have

(2.2) ‘Z? tnp| < E HZn In <Zk G”W’“) Hoo

(ii) For any € > 0, there is an operator w: Li(P) — Li(m) with ||ul| <
1 + € such that (u(gy)) is biorthogonal to (1y,).

Proof. Let E = span[t),]. (1) = (ii) is proved using Hahn-Banach as for
Proposition 2.1, but a priori this leads to an operator w: L; — E* with
|lul| <1 and (u(gn)) biorthogonal to (). But since E (being finite di-
mensional) is weak*-closed, we may identify E* to L;/N where N is the
preannihilator of E. Applying the lifting property of Li-spaces, we obtain
(ii). More precisely, for any £ > 0 there is a subspace G C Li(P) containing
{gn} that is (1 + €)-isomorphic to a finite dimensional ¢;-space and (1 + ¢)-
complemented in L1 (IP). Then it suffices to lift u|; and that is immediate.
The proof of (ii) = (i) is similar to the one for (ii) = (i)’ in Proposi-
tion 2.1. U

Remark 2.4. By Theorem 1.10, if a sequence (¢,) assumed bounded in
L satisfies (2.2) for all N then (1, ® 1) is Sidon (in other words (¢,,) is
®2-Sidon).

Remark 2.5. In the converse direction, let (¢,,) and (1,) be mutually
biorthogonal sequences in Lo,. Assume [|¢y||o < 1 for all n. We claim that
if () is randomly Sidon with constant «, then (i, ® v,,) satisfies (2.2)
with the same constant «. Indeed, we have

25, o (o
> sng Hzn In (Zk gk (s) © W(')) Hoo

and since (gnpn(s)) is 1-dominated by (gy)

> sng Hzn Inpn(s) (Zk ank(s) @ W(')) Hoo
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Therefore, integrating in s and using Jensen again we obtain

20 (5, ot )] 2 B[, o] 2 ot S

This proves our claim.

Remark 2.6 (randomly ®*-Sidon implies randomly Sidon). As ob-
served by Bourgain and Lewko [5], a well known variant (due to Sudakov) of
Slepian’s comparison Lemma shows that if a uniformly bounded system is
randomly ®*-Sidon for some k > 2 then it is already randomly Sidon. This
can be seen by an idea due to Simone Chevet [6]: let K7, ..., K} be compact
sets, le € C(Ky),..., .CE? € C(K}) finitely supported families, then,

Zgj-l'J@ ®$] O X K2
k

< Vi (s IT hedl | B |32 gia7|.
m=1 J q#m

Chevet’s idea can be applied in a somewhat more general context (see [6]),
it gives a similar bound for

E Z 97;(1),...,1'(1@)3721(1)®"'®$f(k) ;
i(1),...,i(k) C(K1 % xKy)

with (gi1),....ik)) 1-1.d. real valued Gaussian.

In any case, if we apply this to :cjl = ::c? =Y, Bi=--= B =L
(recall Lo is isometric to C'(K') for some K'), we find that, for (¢);) uniformly
bounded in Lo, randomly ®*-Sidon implies randomly Sidon.

Theorem 2.7. Let (1) be bounded in Loo(T,m), and such that there is
another system (py,) bounded in Lo (T, m) such that [ Yn@rdm = 6, . Then
(¢) is randomly Sidon iff it is @*-Sidon and this holds iff it is @*-Sidon
for some (or all) k > 4. In particular, this is valid when (1) is a uniformly
bounded orthonormal system.

Proof. If (1) is randomly Sidon, by Remarks 2.5 and 2.4 (¢, ® ) is ®?2-
Sidon, which means (1/,,) is ®*-Sidon. Conversely, if (¢,) is ®*-Sidon for
some k > 4, then it is randomly ®*-Sidon, and by Remark 2.6 it is randomly
Sidon. O
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We can now state the generalization of Drury’s union Theorem in our con-
text.

Corollary 2.8. In the situation of Theorem 2.7, if {1} is the union of
two Sidon systems, then it is @*-Sidon.

Remark 2.9. We do not know whether, in the situation of Corollary 2.8,
the assumption already implies ®2-Sidon. By [25], it does not imply Sidon.

The next statement aims to clarify the connection between the subGaus-
sian property of a system and its domination by a Gaussian sequence.

We will need the following
Notation. Let (T;m) be a probability space. Let Z be a scalar valued
random variable on (T;m). we denote by (Z¥) an i.i.d. sequence of copies
of Z on (T;m)N so that

vieT™ zZW@) = Zz(t).

We will use the following well known elementary fact.
There is an absolute constant § > 0 such that for any Z with EZ =0

(2.3) 071 Zlly, < Esup|Z¥|(log k)~ < 0]1Z]]y,.

This is easily proved by relating the growth of the function t — P{|Z]| >
t} to the infinite product appearing in P{sup |Z*)|(logk)~1/2 > 20} =1 —
[1.(1 - P{|Z| > 20(log k)~'/2}.

Proposition 2.10. Let (¢,) (1 <n < N) be a system in L1(T;m). Con-
sider the following assertions, where C' and C' are positive constants.

(i) The system (py) (1 < n < N) satisfies (0.1) (i.e. it is C-subGaussian)
and is such that By, = 0 for all n.

(ii) The system (goq[f])) (1 <n < N,keN)isC"-dominated by the (Gaus-
sian i.i.d.) sequence (gq[zk})) (1<n<N,keN)

Then we have (1) = (ii) (resp. (ii) = (i)) for some constant C" (resp. C')
depending only on C' (resp. C").

Proof. Using the equivalence with (0.3), one checks easily that (i) is essen-
tially equivalent to:

(i)” The system (<p,[f]) (1 <n <N,k eN) satisfies (0.1) for some possibly
different constant C’ depending only on C.
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Then (i)’ = (ii) by Talagrand’s (1.8) and Proposition 1.5. The converse
(ii) = (i) follows from (2.3) and Proposition 1.5. Indeed, (1.10) with p =1
applied to ((,0%C ]) (with a suitable choice of x,, € {) yields for Z = a,p,

and S =) angn
E supy, |ZM|(log k) 712 < CEsupy, | S| (log k) ~4/2.
By (2.3) this implies (i). O
3. Systems of random matrices

Assume given a sequence of finite dimensions d,,.

From now on g, will be an independent sequence of random d,, X d,-
matrices, such that {d,,"/?g,(i,7) |1 <4,j < dy,} are ii.d. normalized C-
valued Gaussian random variables. Note ||g,,(7,7)||2 = dn 12,

For each n let (¢,,) be a random matrix of size d,, x d,, on (T, m). We
call this a “matricial system”. We will compare (¢,,) with the sequence (uy,)
that is an independent sequence where each wu,, is uniformly distributed over
the unitary group U(d,). The subGaussian condition becomes: for any N

and y, € My, (n < N) we have

. <C <Z dntr]yn|2> v = HZ dntr(Yngn)

In other words, {d}/Q(pn(i,j) |n>1,1<14,j <d,} is a C-subGaussian sys-
tem of functions. The uniform boundedness assumption becomes

(3.1) HZ dptr(Ynpn)

2

(3.2) 3" Nenllre o, < C"

As for the orthonormality condition it becomes
(3.3) / Pn(is §)on (K, 0) = dy 0,8 10 0.

In other words, {d}/zgon(i,j) |n>1,1<14,5 <d,} is an orthonormal sys-
tem.

This is modeled on the case when (¢,) is a sequence of distinct irre-
ducible representations on a compact group.

Actually, we will consider a slightly more general situation. We assume
that there are complex-valued {1, (¢,7) | n > 1,1 < 4,5 < d,} in Lo (m) such
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that
(3-4) Supy, [[¥nll Lo (mim,,) < €
and
(3.5) / On (i, 3)bn (k, ) dm = dyy 60 k050
Equivalently
/gon®¢n/dm:0ifn7én’
(3.6)

and /@n@)wndm:d;l Z eij @ e;;.

i,j<dy

Applying transposition on the second factor this is also equivalent to
/@n@)w;/ dm = 0if n # n

and /@n QU dm=d," Y ey ®eji.
i.j<dn

(3.7)

Note that

/son®¢31 dmn=d;' Y eij@ej
(3.8) ij<dn
& Va e My, /cpnawz dm = d,, 'tr(a)l,

and also
(3.9) & Va € My, / Ynawl dm = d,; "tr(a)l.

Thus, if both (3.2) and the orthonormality (3.3) hold, then (3.4) and (3.5)
hold for the choice v, = ¢,. In any case, we will conclude from this (see

Corollary 3.11) that Jo such that for any (ay) with a, € My,

(3.10) S dutrlag <@ sup ‘Z dptr(anthn (b )tn(t2)] -

(tl,tz)eTXT

Let U(d) denote the (compact) group of unitary d x d matrices. In the
next Lemma, we give a simple argument from [15] showing that the family
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{uk(z7])} (k >1,1<175< dk) is dominated by {gk(Z;])} (k >1,1<14,7<
dj;), using an explicit positive operator T', bounded on L, for all 1 < p < oo.
By work due to Figa-Talamanca and Rider, this family has long been known
to be subGaussian, see [8, §36, p. 390]. The idea in Lemma 3.1 was used in
[15] to give a simpler proof of the latter fact.

Lemma 3.1. Let (di)ker be an arbitrary collection of integers. Let G =
[I1cr U(dr). Let u = uy, denote the coordinates on G, and u(i, j) (1 <1i,j <
dy) the entries of ug. Let {gi(i,7)} (1 <i,j <dyj) be a collection of indepen-
dent complex valued Gaussian random variables such that E(gy(i,j)) = 0 and
E|gr(i,7)|? = 1/dy, on a probability space (2, P). For some Cy > 0 there is an
operator T : Li(2,P) = Li(G,mg) with | T : Ly(Q,P) = Ly(G,mag)|| <
Cy for all 1 < p < 0o such that

VEVi, j < di T(gk(i, ) = un(i, j)-

Proof. Let g, = vg|gx| be the polar decomposition of gi. The key observation
is that (vy) and (|gx|) are independent random variables, and that (vj) and
(ug) have the same distribution. Also for any fixed v € U(dy), gx has the
same distribution as (vgrv~!), and hence (|gr|) has the same distribution
as (v|gr|v™!). Let V denote the conditional expectation with respect to
(vg) on (©,P). Then V(gr) = vipE|gk|. Since E|gi| commutes with any v €
U(dy), we have E|gx| = 01 for some J; > 0. We claim that 0 = infy oy > 0.
Indeed, let ¢; = d,lc/2E\gk(i,j)\. Note that ¢; is independent of (k,4,j). We
have (3, (Blge(i, ))2)2 < E(S, ;|10 4)P)/? = Etrgi )12 and henee

di ey < E(tr]ge|2)2 < B(tr|gel[ e )"/
< (Etr|ge ) /2(El|gil) /2 = (5xdx) (|| gi])) />

and since, as is well known sup;, E||gx|| < oo, the claim ¢ > 0 follows.

Since (vg) and (uy) have the same distribution we can identify V' to an oper-
ator Vi : Li1(Q,P) — Li(G, mg) such that Vi(gr(i,7)) = dpui(i, 7). We will
now modify V to replace oy by d. Let & : L1(G,mqg) — L1(G, mg) denote
the conditional expectation with respect to the o-algebra generated by the
coordinates {u; | j # k} on G, so that & (u;) = u; if j # k, and E(uy) = 0.
Let Id denote the identity on Li(G, mg). Recall 0 < §/; < 1. Then let

W= [[((@ = 6/0x)&k + (5/81)1d).

By a simple limiting argument, this infinite product makes sense and defines
an operator W : L,(G,mqg) — Ly(G, m¢g) with ||W]| < 1forany 1 < p < oo,
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such that W (ug(4,5)) = (6/6)ur(i, j). Thus, setting 7' = ' WV we have

T(gr(i,5)) = 6 "W (Vi(gr(i, 7)) = ue(i, §),

and | T : Ly(G,mg) — Ly(G,ma)| < Co =61 In addition, note that T is
actually positive. O

The following basic fact compares the notions of randomly Sidon for (gy)
and (ug). It is proved by the same truncation trick that was used in [17].
See [15, Chap.V and VI] for further details and more general facts.

Lemma 3.2. Let ¢y, € Loo(m; Mg,) (n > 1) be an arbitrary matricial sys-
tem satisfying (3.4). The following are equivalent:

(i) There is a constant ay such that for any n and any xj € My,

Z ditr|zy| < aiE HZ ditr(zrgrtr) HOO -

(ii) There is a constant ca such that for any n and any xy € My,

detr|xk| < 042/ HZ dktf($kuk¢k)meG(dU)-

where u = (uy) denotes (as before) a random sequence of unitaries

uniformly distributed in G = [],~; U(dp).

Sketch. From Lemma 3.1 it is easy to deduce that

/ HZ dktr(wkukwk)Hoo me(du) < CoE HZ dktr(xkgk¢k)Hoo :

and hence (ii) = (i). To check the converse, recall the well known fact
that ¢4y = sup E||gn||* < oo, from which it is easy to deduce by Chebyshev’s
inequality that there exists c5 > 0 such that

sup E([|gn | 1{1g, [5es1) < (201C") 71

We may assume that the sequences (u,) and (g,,) are mutually independent.
Then the sequences (g,) and (u,g,) have the same distribution. Then by
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the triangle inequality and by Remark 5.1

E HZ ditr(Trgrtr) HOO =E HZ ditr(Tpurgrr) Hoo
<E HZ dktr(xkukgkl{ﬂgk||§c5}¢k)HOO

FE |3 ditr(@iungid g1 90)|
< B HZ dktr(xkuwk)Hoo +(200C) 7Y dytrfa [ ¢l oo
< csE HZ dktr(fﬂkuwk)Hoo +(200) 1Y ditra.

Using this we see that (i) implies

Z ditr|zy| < aicsE HZ dktr(xkukwk)Hoo +(1/2) Z ditr|zy),
and hence (i) = (ii) with as < 2a;c¢5. O

Definition 3.3. Let (¢,) be a sequence with ¢,, € Loo(T, m; My, ) for all
n and let C' > 0.

(i) We say that (¢y,) is Sidon with constant C'if for any n and any sequence
(x) with xp € My, we have

Z dktr\xk\ S C
1

> ditr(zrepr)
1

o

(ii) We say that (¢,,) is randomly Sidon with constant C'if for any n and
any xx € My, we have

Z dktl"’.ka’ S CE
1

> ditr(zrgrer)
1

o

By Lemma 3.2 this is equivalent to the previous definition with random
unitaries (ug) in place of (g).

If this holds only for scalar matrices (i.e. for x € Cly, ) we say that
() is randomly central Sidon with constant C'.

(iii) Let & > 1. We say that (¢y,) is ®"-Sidon with constant C if the system
{@n(t1) -~ @n(tr)} is Sidon with constant C.
We say that () is randomly &"_Sidon with constant C if {en(t1)---
on(tx)} is randomly Sidon with constant C.
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Now assume merely that {¢,} C La(T, m).

(iv) We say that (¢,,) is subGaussian with constant C' (or C-subGaussian)
if for any n and any complex sequence (zj) we have

n 1/2
<C <detrxk\2> .
1

Remark 3.4. Using (uy) for the randomization it is clear that Sidon im-
plies randomly Sidon (with at most the same constant). A fortiori, &*-Sidon
implies randomly &*-Sidon.

> ditr(zppr)
1

p2(m)

Remark 3.5. We should emphasize that central Sidon does not imply ran-
domly central Sidon, in contrast with the preceding remark.

As earlier, we will consider the following more general form of the assumption
(3.1):

3C >0 Ju: Li(P) = Li(m)

3.11
(3:11) such that [|ul| < C and Vn,i,j u(gn(i,7)) = on(i, 7).

In other words, the ¢,’s are entrywise C-dominated by the g,,’s.
Here again, Talagrand’s inequality (1.8) is crucial. Restated in the present
context:

Theorem 3.6. For any matricial system (¢p), (3.1) = (3.11) (possibly
with a different C').

Notation. Let (77, m1) and (T, m2) be probability spaces.
Let ¢! € Loo(T1, m1; My), ¥? € Loo(T2, ma; My). We denote by

Pronp? € Loo(Th x To,ma X ma; My)
the function defined on T} x T5 by
Prow? (t, t2) = ' ()Y (ta).
We now state the matricial generalization of Corollary 1.12.

Theorem 3.7. Assuming (3.4) and (3.5), we have (3.1) = (3.10). More
generally, given two systems (¢L), (p2) satisfying (3.11) with respective con-
stants C1,Cs, and two systems (YL), (V2) satisfying (3.4) with respective
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constants C},CY% and such that the pairs (L), (¥L) and (©32), (12) satisfy

n

(3.5), the system (YL@p?2) is Sidon with a constant depending only on C1,
Cy, O, CY.

Let v € L1 ® L. We denote

3500 =su {[ 3] o2 9

|

where the sup runs over all Z]lv 2j ®Y; € Loo ® Lo such that

N 1/2
(0w

Theorem 3.7 will be deduced rather easily from Theorem 1.10 using the
following simple fact.

<1.

1/2
’$]|2

Lemma 3.8. Let v € Li(m1) ® Li(mz2) be a tensor such that ~3(v) < 1.
Let x € My and let 17 € Loo(mj; My). Let f(t1,t2) = tr(ayp'y?) € Log(my x
ms). Then

(0, )] < trlal 19| L mosnti) 19 Lo (i)
Proof. We may assume (by polar decomposition) a = asa; with tr|ai|?> =

trlag|* = trlal. Then f = tr([a1y'][t%az]) = 3°; J(ar90") (4, k) © (Y2az) (K, L).
Then

(v, f) = ij(va (arp!)(¢, k) @ (Yaz) (k, 0))

and hence since 75 (v) <1

=S, latene) | | (S, e or)

but we have

(32, ) k)) " = (rlars! 2)12 < (exfar )2 0",

1/2

o0

and similarly for 1)%2as. Thus we obtain

(v, /)| < (trlar|®) 2 (txlazl*) 210 | 1o i 192 (01
= (trlaD) [ o ) 192 | e (01

proving the Lemma. O
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Remark 3.9. By Grothendieck’s well known inequality (see e.g. [23, The-
orem 2.1]) we have 73 (v) < K¢gl|v||v for any v € Li(m1) ® Li(mg). Thus in
Theorem 1.10 we have v (r) < Kq||r|lv < Kgd. But actually a close exam-
ination (see Remark 1.15) shows that we directly obtain a bound for ~;(r)
without recourse to Grothendieck’s theorem. Indeed, with the notation of the
proof of Theorem 1.10, one has v5(R) < ||T5(I — P1) : Lo — La||||u1]|||uz]|-

Remark 3.10. In case the reader is wondering about that, the general
definition of the 75-norm for an element r in the algebraic tensor product
X ®Y of two Banach spaces is

" / 1/2
7 = mf{nanMn (30 s ?) (Zf ”%“2) }

where the infimum runs over all possible ways to write r as
T:ZISi,anaij:L‘i@yj’ n>1, e X, Y €y, Qij e C.
When X =Y = L; this is identical to the preceding definition (see [23]).

Proof of Theorem 3.7. We will apply Theorem 1.10. By homogeneity, we
may assume that (¢L) and (p2) satisfy (3.11) with C; = Cy = 1 (then Cj is
replaced by C;C’ and ¢4, by Cj1%,). Let V;, be arbitrary in the unit ball of
My, . Consider the tensor

S=3 dn Y, Vali R)ph(k,0) @ G2 (L),

which roughly could be written as Y, dytr(Vaphe?) using tensor product
to form the products of matrix coefficients in . and 2. Let ¢/l =Vl
(this denotes product of the scalar matrix V,, by the Li-valued matrix ¢}).
Note that, by (1.5) (and Proposition 1.5) applied to the standard normal
family {d}/%pé(i,j) |1 <n<N,i,j <d,}, if we replace (¢}) by (¢/}), then
(3.11) still holds. This gives us

S=3" 3 a2, 0) @ [0 62 ().

By Theorem 1.10 (actually we could invoke Corollary 1.11), and using Re-
mark 3.9, this shows that we have a decomposition S =t + r with ||t[|x <
w(8) and 73 (r) < 8. Now let f =" dptr(anpiep?2) € Loo(m1) @ Loo(ma), or
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more explicitly

F=2 dn D, anli k) (k, 0) @i (L),

Recalling (3.5) we find (S, f) = dntr(*Vy,a,). Then (denoting simply
£ lloe = 1z (ms xms))

(&, A< N[EIAll flloo < w(S)]] flloo

and by Lemma 3.8 and (3.4)

[ )] <6 dutrlan| 19l musnton) 197 | Lo (mast, )
< 5Zdntr|an|C’iC’é.

Therefore

‘Z dntr(‘'Viyan)

and taking the sup over all V,,’s we find

= (S, ) < w(®)[[flloo + 8 dntrlas|C1Cs,

Zdntr|an| < w(0)[[flleo + 5Zdntr]an|0105,

and we conclude choosing § small enough so that §C7C% < 1 that we have
D dntrlan| < w(®)(1 = 0C1CH) 7| floe-

Taking §C]Ch = 1/2, this completes the proof with o = 2w((2C;C%)~!), and
using Remark 1.16 we obtain the announced bound on . O

In particular, we have

Corollary 3.11. Let{¢y, | 1 <n < N} C Lo(m; My, ) satisfying (3.4). As-
sume that the system {d}/an(i,j) |1<n<N,1<i,j<d,} admits a
biorthogonal system that is 1-dominated by {d}/zgn(i JI1<n<N,1<
i,7 <dp}. Then there is a number a = «(C") (depending only on C') such
that (1) is ®°-Sidon with constant .

Remark 3.12 (Returning to group representations). Let G be a
compact group. Let A = {m,} C G be a sequence of distinct unltary rep-
resentations on G. Let d,, = dim(7,). Then (Peter-Weyl) {dn 7rn(z J)} is
an orthonormal system in Lo(G). Thus we may apply Corollary 3.11 with
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Yy, = pn = mp on (G, mg). Recalling Theorem 3.6, we find that if A = {m,}
satisfies (3.1), then A is a Sidon set. Indeed, for representations, ©>-Sidon
(or ®k—Sidon) obviously implies Sidon. This was first proved in [17, 19].

Remark 3.13 (On almost biorthogonal systems). In the situation of
the preceding Corollary, just like in Remark 1.20 it suffices to have a sys-
tem almost biorthogonal to {drl/zi/}n(z’,j) |1<n<N,1<1i,j<d,}. More
precisely, let I ={(n,i,7) |1 <n<N,1<i,j<d,}. Let p=(n,i,j)el
and p' = (n/,4',7') € I. Let a = [a(p, p')] be the matrix defined by a(p,p’) =
(drl/ 2on i, j),d,ll{Q@Z)n/ (7/,4")). Assume a invertible with inverse b such that
bl <e. T {d?¢n(i,j) | 1<n<N,1<ij<d,} is l-dominated by
{d,l/zgn(i,j) |1 <n<N,1<4,j<d,}, then there is a number o = a(c, C")
(depending only on ¢, C") such that (1) is &>-Sidon with constant a.

Remark 3.14 (On almost biorthogonal single systems). The pre-
ceding Remark is already significant for a single random d X d-matrix ¢ €
Leo(m; My) with ||t 1. miaz,) <C”. Indeed, let ¢ € Ly (m; My). Let {d"/?g;; |
1 <i,j < d} be a family of Gaussian complex variables with E(g;;) = 0 and
E|gij|> = 1. We again replace (3.5) by almost orthogonality. Let a be the
d? x d*matrix defined by a(i, j; 7', j') = d Vi dm. If a is invertible and
la=Y|ar,. < ¢, and if (dY/2¢;;) is 1-dominated by (d'/2g;;), there is a(c,C")
(independent of d) such that

Vo € My tr|z] < aftr(z(¥@9))]co-
In other words, the singleton {¢} is ®°-Sidon with constant o.
4. An example

The following example provides us with an illustration of the possible use of
Corollary 3.11 and Remark 3.14. Although there may well be an alternate
argument, we do not see a direct proof of the phenomenon appearing in
Corollary 4.1.

Let x > 1 be a constant (to be specified later). Let T, be the set of
n X n-matrices a = [a;;] with a;; = £1/y/n. Let

Ap ={a e T la]l < x}-

This set includes the famous Hadamard matrices. We have then
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Corollary 4.1. There is a numerical x > 1 such that for some C we have

Vn>1Ve e M, trlz]<C sup |tr(zd'd”)|.

X
a’,a""€AN

Equivalently, denoting the set {a'a” | a’,a” € AX} by AXAY, its absolutely
convex hull satisfies

(x)%absconv[AXAX] C By, C Cabsconv[ AXAX]

Proof. Let (2, P) be a probability space. Let g~ (resp. ¢5) be a random n x
n-matrix on (£, P) with i.i.d. real-valued (resp. complex-valued) normalized
Gaussian entries of mean 0 and Lo-norm = (1/n)'/? as usual. Let

en(i, ) (w) = n~sign(gy (i, 1) (w))-

Let v(1) be the Li-norm of a normal Gaussian variable (i.e. y(1) = (27)
[ |z] exp —(2?/2)dx). Clearly, for any 4,7, j'

—-1/2

E(en(if)gn(i's)) = 0iud;5m~ 2Elgh (¢'5")| = 8ir8j5m (1)
We define 1, € Loo(P; M,,) by
Yn = (22 /7(1))enl, cax-

Note |[vnllar, < 2Y%x/v(1). We will use Corollary 3.11. Clearly E(y} ®
gn) = 0 whenever n # n’. To handle the case n = n’, it is well known that
there is ¢y > 0 such that

vnvx > co Plen & AY) = P{llen] > x} < exp —(conx?).
Therefore, if ¥ > ¢q for any ¢, j, 7', j we have

B (1 (i5)27 2R (1'5')) — 61008j5m ™ < v(1) T E(|lgh (7'5) 1o, 2axy)
< (1) ' exp —(conx?/2).

Fix x > ¢g. This shows that the matrix
a(i,j;i',j') = n / Un(if)27 g5 (75") dm

is a perturbation of the identity when n is large enough so that (say)
when n > ng(y) it is invertible with inverse of norm < 2. Let ¢, (ij) =
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(271/2¢R(i5)). Note that (¢, (ij)) is obviously 1-dominated by (¢S (i)). The
conclusion follows from Remark 3.14 (applied here with d =n and C’' =
21/2x /~(1)) for all n > ng(x). But the case n < ng(x) can be handled triv-
ially by adjusting a. O

5. Randomly Sidon matricial systems

We first recall a useful basic fact (see [15] for variations on this theme).

Remark 5.1 (Contraction principle). Let (u) and G be as in Lemma
3.1. Let {zx(i,7) | k> 1,1 <1i,j < d} be a finitely supported family in an
arbitrary Banach space B. For any matrix a € M, with complex entries,
we denote by ax and xa the matrix products (with entries in B). By con-
vention, we write tr(ugzy) = Zij ug (i, 7)xK(j, 7). With this notation, the fol-
lowing “contraction principle” holds

/ HZ dktr(akukbka:k) H de
< sup fau s, sup [, [ |3 detrtunan)| dme.

Indeed, this is obvious by the translation invariance of mg if ag, by are all
unitary. Then the result follows by an extreme point argument, since the
unit ball of My, is the closed convex hull of its unitary elements. The same
inequality (same proof) holds with (gx) (as in Lemma 3.2) in place of (uy).

Proposition 5.2. Let (1)) be a randomly central Sidon system with con-
stant Cy. Let (p2,%2) be a system satisfying (3.4) with constant Ch and
(3.8). Then the system (Y®¢?) is randomly Sidon with constant CyCY.

Proof. Let xp, € My, . We have (for simplicity in the sequel we always abu-
sively write sup for essential suprema)

> ditr(zegeth(t)h (t2) ‘ > supEsup

[E sup Z dytr(zrgriy (1) h (t2) | -

t17t2

Assume (¢)7) satisfies (3.4) with constant C5. Then, by Remark 5.1, we have
for a.a. fixed o

Esup| 3 detr(exgih(ta)ef t2)

1
> —[Esu
- (zjé tII)

> ditr(ai VA (1) gk () (t2)|
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and by the trace identity, this is

e (t) @i (t2) 2 |47 (t2)”

Cl

and hence

L) gh(ta)|

S drlavhen) | [ ehlailot damies)|

1
> —[Esu

and by (3.8) and the randomly central Sidon assumption on (¢}) the last
term is

=(Cy)”

Hnltalal)] = (GO Y dytla)
Since tr|zy| = tr|xy| this proves the announced result. O

Remark 5.3. For irreducible representations on a compact group Propo-
sition 5.2 shows that randomly central Sidon implies randomly Sidon with
identical constants.

Proposition 5.4. Let (12) be a randomly Sidon system on (Ty,ms). Let
(oL k) be a system satisfying (3.7), or equivalently (3.5), on (Ty,m1). We
also assume that (Y}), (¥2) and ((pn) are all uniformly bounded, i.e. satisfy
(3.4). Then the system (WL@)?2) is ®°-Sidon.

PT‘OOf. Let fk(tl, tg) = Zf akf(wl} (tl)’(ﬁg (tz))bkg where Qfy (resp. bkz) is a ma-
trix of size di x dy (vesp. dy x di). Assume (1)2) randomly Sidon with con-
stant Cy, and ||}l (v, ) < C] for all n. We claim that

> " ditr(age)tr(bee)| < CoC{E sup

t1,t2

> dytr( gkfk)}

By (3.7), (3.8) and (3.9) we have

dk/ﬁpxlg(tl)*fkdm(tl) = tr(agk)j (t2) by

Therefore since (1)2) is randomly Sidon with constant Co we have
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Z |tr(agk)tr(bgr)| < ColE Sllp

/ Z ditr(grepr(t1)” fr)dm(tr)

< Cg/Esup
ta

> dktf(gw}g(tl)*fk)‘ dm(ty)
S ditr(gok () 1)

< Cosup Esup
t t

1

and by the contraction principle in Remark 5.1

< CyC sup Esup Z ditr(gr fr) ‘
tl t2
and a fortiori

< C’QC{E sup
t1,ta

detr(gkfk)) :

Thus we obtain the claim.

Let m = my X ma. Let E C L1(P; Loo(m)) be the subspace formed of all the
functions of the form f =) ditr(gxfi). Let £ : E — C be the linear form
defined by

() =D tr(ap)tr(byr)-

By Hahn-Banach there is an extension £’ : L1 (IP; Loo(m)) — C with norm <
CyCY. Since L1 (IP; Loo(m)) can be identified to the projective tensor product
of L1(P) and Lo (m), & defines a bounded linear map 7" : L1(P) — Loo(m)*
with ||| < C2Cf such that

(5.1) VEVfi,  dy <Z T(gr(i, 7)), fk(j7i)> = tr(akk ) tr(bik)-

i,J

Let 0x(i,5) = T(gx(i,§)) and ¥, = };@¢2. Then (5.1) implies

dy / 0k (5" )0, 1) = Srebisbiy.

By Lemma 1.21 we may assume that 0y (i,j) € L1(m) and ||T']| < (1+¢)CoCY.
Then we have f9k®w dm =0if £ # k and

dk/9k®¢k dm = Z €ij & €jj5.

1,j<dp
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Thus if we let ¢, = 05, then (¢, ¥y) satisfies (3.7) and () (as well as (6%))
is || T||-dominated by (gi). Therefore, by Theorem 3.7 we conclude that (i)
is ©>-Sidon. 0

The next statement records a simple observation.

Proposition 5.5. Let (on, ) be systems satisfying (3.4) and (3.5). In
addition assume that (¢,,) satisfies (3.2). The following are equivalent:

(i) (1) is randomly Sidon.
(i1) (¢n) ts randomly &"-Sidon for all k > 1.

Proof. Assume (i). Let (11) be any randomly Sidon system. We will show
that (¢ ®1),,) is randomly Sidon. Fix t2. Then

> it (t)zk| < CEess Sup ‘Z dy.tr(y (t2)Trgribg (t)) ’

and hence

/detr|¢kxk|dm < CEess sup

t1,t2

Z ditr (g (t2)$k9k”¢1}1 (t1)) ‘

= CE| Y dptr(zrgrip@un)|.
Now we claim that (3.2) and (3.5) imply

S dtrlan] < € [ Y dtlin (Bl am)

Indeed, let xy = vg|zk| be the polar decomposition. Then

] = [ tx(uin(®) on(Ourlondm(e)
— [ tien(o vtz dme
<’ [ ulunle)odm)
from which the claim follows. This shows that (i) implies that (}@1,)
is randomly Sidon. In particular taking v} = 1, we find that (¢, @1y,) is

randomly Sidon. Iterating this argument we obtain (ii). (ii) = (i) is trivial.
O



On uniformly bounded orthonormal Sidon systems 927

Remark 5.6. By the same reasoning, assuming that (¢, ¥,,) satisfy (3.4)
and (3.5), and that (y,,) satisfies (3.2), one shows that if (¢,,) is ®"-Sidon
then it is @""'-Sidon.

We now come to the main point: the comparison between Sidon and ran-
domly Sidon. The generalization of Rider’s result from [26] in our new frame-
work is:

Theorem 5.7. Let (n, ) be systems satisfying (3.2), (3.4) and (3.5).
If (¢) is randomly Sidon (in particular if it is the union of two Sidon
systems), then it is &F_Sidon for all k > 4.

Proof. Proposition 5.4 with ¢! = ¢? and 9! = 1 = v shows that (¢n®21/1n)
is ©>-Sidon. Equivalently (v,) is &*-Sidon. By Remark 5.6, it is &"-Sidon
for all k > 4. O

Corollary 5.8 (Rider, circa 1975, unpublished). A sequence () of
distinct irreducible representations on a compact group is Sidon iff it is ran-
domly Sidon.

Remark 5.9. In the case of function systems, randomly ®k—Sid0n for some
k implies randomly Sidon (see Remark 2.6), and hence the converse to The-
orem 5.7 holds, but it seems unclear for general matricial systems. However,
the argument in Remark 2.6 based on Slepian’s Lemma does work for ran-
domly central & -Sidon.

Remark 5.10 (Rider’s unpublished results). For subsets of duals of
compact non-Abelian groups, Rider [26] announced in 1975 that he had
solved the (then still open) “union problem” by proving that the union of two
Sidon sets is Sidon. He also extended to the non-Abelian case that randomly
Sidon implies Sidon. However, he never published the proof. Around 1979,
since I needed to use his result, I wrote to him and he kindly sent me a long
detailed handwritten letter describing his proof, based on a delicate estimate
of the ratio of determinants appearing in Weyl’s famous character formulae
[31] for representations of the unitary groups. Unfortunately that letter was
lost since then and Rider passed away in 2008.

In Corollary 5.8 we have obtained a new proof of Rider’s unpublished
result that a randomly Sidon set A is Sidon when A is a set of irreducible
representations on a compact group. In particular, since randomly Sidon
is obviously stable by finite unions, this is the first published proof of the
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stability of Sidon sets under finite unions. (See however [32] for connected
compact groups, using the structure theory of Lie groups).

In a sequel to the present paper [24] we present what is most likely but a
reconstruction of Rider’s original proof. The heart of that proof is a uniform
spectral gap estimate for the sequence of the unitary groups U(n) (n > 1),
which may be of independent interest for random matrix or free probability
theory.

6. Sidon sets of characters on a non-Abelian compact group

Although we have nothing new to add to this, we would like to emphasize
here a curious phenomenon already observed in [19], concerning Sidon sets
that are singletons, i.e. simply formed of a single irreducible representation.
Though simple, this is a nontrivial example, because the dimension d is
allowed to tend to oo, while the constants remain fixed.

Theorem 6.1 ([19]). Let w be an irreducible representation of dimension
d on a compact group G equipped with its Haar probability me. Let x(z) =
tr(m(z)) be its character. Assume that for some constant C

(6.1) [, < C.

Then there is a depending only on C (and not on d = dim(w)) such that for
any a € My we have

(6.2) tr|a| < asup |tr(an(t))|.
teG

Conversely, (6.2) for some « implies (6.1) with a constant C' depending only
on a.

It seems curious that the subGaussian nature of the character of an
irreducible representation m expressed by (6.1) suffices by itself to imply the
strong property of the whole range of 7 expressed by (6.2).

Proof. Assume (6.1). Let g be a random d x d Gaussian matrix as in §3. Let
§ be the metric defined on G by §(z,y) = (d tr|r(z) — n(y)|>)"/2. Let N(e)
be the smallest number of a covering of G' by open balls of radius ¢ for the
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metric d. Since this metric is translation invariant, we have
ma({x | §(z,1) <e})™' < N(e)

(and in fact N(e) is essentially equivalent to mqg({x | (x,1) < e})~1). Since
tr|m(t) — I|> = 2(d — R(x(t))), we have for any 0 < & < v/2

63)  m({t]8(t1) < ed}) = m({R() > d(1 - 2/2)})
< eexp—(d*(1 —%/2)2C?).

Therefore Sudakov’s minoration (see e.g. [21, p.69] or [30]) tells us that that
there is a numerical constant ¢’ such that

1 vz
64)  suped <l°g ma({E1(61) < ed}) < cleupld tr(gm(t)]
Choosing e.g. € =1, (6.3) gives us d?(2C)~1 — 1 < Esup,e; |d tr(gn(t)],
and hence for all large enough d we have d?(2C) ™1 /2 < /Esup,c; |d tr(gm(t)].
The latter means that the singleton {r} is randomly central Sidon with
constant ¢’4C?/2. By Proposition 5.2, {r®}, and hence {7} itself, is Sidon
with the same constant. The converse implication follows from the non-
Abelian analogue (due to Figa-Talamanca and Rider) of Rudin’s classical
result that Sidon sets have A(p)-constants growing like ,/p, and hence (recall
(1.12)) are subGaussian. For details see [8, (37.25) p. 437] or [15]. O

In our follow-up paper [24] we review (and partly amend) the results of [19].
We refer the reader to [24] for more on the themes of the present paper.
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