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Buon compleanno!

We undertake the study of an analogue of the Yamabe problem
for complex manifolds. More precisely, for any conformal Hermi-
tian structure on a compact complex manifold, we are concerned in
the existence of metrics with constant Chern scalar curvature. In
this note, we set the problem and we provide an affirmative answer
when the expected constant Chern scalar curvature is non-positive.
In particular, this result can be applied when the Kodaira dimen-
sion of the manifold is non-negative. Finally, we give some remarks
on the positive curvature case, showing existence in some special
cases and the failure, in general, of uniqueness of the solution.

Introduction 646

1 Preliminaries and notation 650

2 Chern-Yamabe problem 655

3 Solution of the Chern-Yamabe problem for zero
Gauduchon degree 659

4 Solution of the Chern-Yamabe problem for negative
Gauduchon degree 660

5 Towards the case of positive Gauduchon degree 664

Acknowledgements 674

2010 Mathematics Subject Classification: 53B35, 32Q99, 53A30.
Key words and phrases: Chern-Yamabe problem, constant Chern scalar curva-

ture, Chern connection, Gauduchon metric.

645



646 D. Angella, et al.

References 675

Introduction

In this note, as an attempt to study special metrics on complex (possibly
non-Kähler) manifolds, we investigate the existence of Hermitian metrics
having constant scalar curvature with respect to the Chern connection. A
first natural basic question to be addressed, motivated by the classical Yam-
abe problem, is whether such metrics can actually exist in any (Hermitian)
conformal class. We are going to show, via standard analytical techniques,
that the answer is indeed affirmative in many situations. On the other hand,
definitely not too surprisingly, things become more subtle in the case when
the expected value of the constant Chern scalar curvature is positive. This
can happen only when the Kodaira dimension of the manifold is equal to
−∞. We hope to discuss more systematically this last case in subsequent
work.

Let us now formulate our problem more carefully, while explaining the
mathematical context. The solution of the Yamabe problem for compact
differentiable manifolds (see, e.g., [1, 10, 17, 22, 24]) assures us the exis-
tence of a special Riemannian metric in every conformal class, characterized
by having constant scalar curvature. In Kähler geometry, one seeks Kähler
metrics with constant scalar curvature in given cohomology classes, hoping
to find necessary and sufficient conditions for their existence. On the other
hand, for general complex non-Kähler manifolds, the quête for special met-
rics yields many still open questions. In fact, the abundance of Hermitian
metrics leads us to restrict our attention to special metrics characterized by
“cohomological” conditions. In this sense, a foundational result is the the-
orem proven by P. Gauduchon in [5]. It states that, on a compact complex
manifold of complex dimension n ≥ 2, every conformal class of Hermitian
metrics contains a standard, also called Gauduchon, metric, that is, the as-
sociated (1, 1)-form ω satisfies ∂∂ ωn−1 = 0. On the other hand, one can
look instead at metrics with special “curvature” properties, related to the
underlying complex structure. The focus of the present note is exactly on
this second direction: in particular, we look for metrics with the property
of having constant Chern scalar curvature in a chosen Hermitian confor-
mal class (hence neglecting cohomological conditions, for the moment). We
should remark that this goes in different direction from both the classical
Yamabe problem and the Yamabe problem for almost Hermitian manifolds
studied by H. del Rio and S. Simanca in [3] (compare Remark 2.2). One
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motivation for considering exactly this “complex curvature scalar”, among
other natural ones [12, 13], comes from the importance of the Chern Ricci
curvature in non-Kähler Calabi-Yau problems (compare, for example, [21]).
We also stress that it would be very interesting, especially in view of hav-
ing possibly “more canonical” metrics on complex manifolds, to study the
problem of existence of metrics satisfying both cohomological and curvature
conditions (e.g., Gauduchon metrics with constant Chern scalar curvature).

We now describe the problem in more details. Let X be a compact
complex manifold of complex dimension n endowed with a Hermitian metric
ω. Consider the Chern connection, that is, the unique connection on T 1,0X
preserving the Hermitian structure and whose part of type (0, 1) coincides
with the Cauchy-Riemann operator associated to the holomorphic structure.
The Chern scalar curvature can be succinctly expressed as

SCh(ω) = trωi∂∂ logωn,

where ωn denotes the volume element.
Denote by CHX the space of Hermitian conformal structures on X. On a

conformal class there is an obvious action of the following “gauge group”:

GX({ω}) := HConf(X, {ω})× R+,

where HConf(X, {ω}) is the group of biholomorphic automorphisms of X
preserving the conformal structure {ω} and R+ the scalings. It is then nat-
ural to study the moduli space

ChYa(X, {ω}) :=
{
ω′ ∈ {ω}

∣∣∣ SCh(ω′) is constant
}/
GX({ω}) .

In analogy with the classical Yamabe problem, it is worth asking whether in
each conformal class there always exists at least one metric having constant
Chern scalar curvature. That is, one can ask whether the following Chern-
Yamabe conjecture holds true.

Conjecture 2.1 (Chern-Yamabe conjecture). Let X be a compact
complex manifold of complex dimension n, and let {ω} ∈ CHX be a Hermitian
conformal structure on X. Then

ChYa(X, {ω}) �= ∅.
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Note that, under conformal transformations, the Chern scalar curvature
changes as

SCh (exp(2f/n)ω) = exp(−2f/n)
(
SCh (ω) + ΔCh

ω f
)
.

Here, ΔCh
ω denotes the Chern Laplacian with respect to ω, that is,

ΔCh
ω f := (ω, ddcf)ω = 2itrω∂∂f = Δdf + (df, θ)ω,

where θ = θ(ω) is the torsion 1-form defined by dωn−1 = θ ∧ ωn−1. Hence
the above conjecture is reduced to finding a solution (f, λ) ∈ C∞(X;R)× R
of the Liouville type equation

(ChYa) ΔChf + S = λ exp(2f/n),

where S := SCh(ω) and ΔCh := ΔCh
ω . In this way, the metric exp(2f/n)ω ∈

{ω} has constant Chern scalar curvature equal to λ. Equation (ChYa) gener-
alizes the classical equation for the Uniformization Theorem. For a discussion
on a related type of equations, see [14].

As one can expect, the difficulty of the above problem can be related
to the “positivity” of a certain invariant concerning curvature. Thanks to
the Gauduchon theorem in [5], one can introduce the following quantity.
Assume that n = dimCX ≥ 2. For a given {ω} ∈ CHX , let η ∈ {ω} be the
unique Gauduchon representative of volume 1. Define the Gauduchon degree
as the invariant of the conformal class given by

ΓX({ω}) := 1

(n− 1)!

∫
X
cBC
1 (K−1

X ) ∧ ηn−1 =
∫
X
SCh(η)dμη.

Under a suitable normalization of the conformal potential, we have that
ΓX({ω}) is indeed exactly equal to the value of the expected constant Chern
scalar curvature, see Proposition 2.6. Furthermore, its sign is related to
other invariants of the complex structure. For example, thanks to [6], the
positivity of the Kodaira dimension implies that the Gauduchon degree of
any conformal class is negative, see Proposition 2.4. Note that the positivity
of the Kodaira dimension is sufficient but not necessary for the expected
constant Chern scalar curvature being negative: e.g., consider the Inoue
surfaces in class VII, compare [19] and Example 5.2.

At present, we are able to solve the Chern-Yamabe conjecture at least
for Hermitian conformal classes having non-positive Gauduchon degree. In
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the case of zero Gauduchon degree, this follows from the fact that the equa-
tion (ChYa) reduces to a second-order linear elliptic equation. In the case
of negative Gauduchon degree, we apply a continuity method to get a solu-
tion, by a straightforward extension of the techniques used in the standard
analytic proof of the Uniformization Theorem for surfaces of genus g ≥ 2.
More precisely, we get the following result.

Theorem 3.1 and Theorem 4.1. Let X be a compact complex manifold
and let {ω} ∈ CHX . If ΓX({ω}) ≤ 0, then ChYa(X, {ω}) = {p}. Moreover, the
constant Chern scalar curvature metric is unique up to scalings.

In particular, thanks to the relations between the Gauduchon degrees
and the Kodaira dimension, we have the following corollary.

Corollary 4.3. The Chern-Yamabe Conjecture 2.1 holds true for any com-
pact complex manifold X having Kod(X) ≥ 0.

Not too surprisingly, the study of the space ChYa(X, {ω}) in the posi-
tive case, even its possibly being non-empty, seems to definitely need more
advanced analytical tools and geometric considerations. We hope to treat in
details this missing case in subsequent work. Here, we just point out some
easy observations.

In some cases as well as in some examples, it is definitely possible to
have (non-Kähler) metrics with positive constant Chern scalar curvature, at
least in some Hermitian conformal classes. For example, we can prove the
following result.

Proposition 5.7. Let X be a compact complex manifold of complex di-
mension dimCX ≥ 2 endowed with a Hermitian conformal class {ω} with
ΓX({ω}) > 0. Take any compact complex curve Σg of genus g ≥ 2. Then
X × Σg admits Hermitian conformal classes with metrics having positive
constant Chern scalar curvature.

Another fact to be noticed is that, if we restrict to conformal classes
admitting a balanced representative (that is, a Hermitian metric whose as-
sociated (1, 1)-form η satisfies dηn−1 = 0, where n denotes the complex di-
mension of the manifold, [15]) then the equation (2.1) is the Euler-Lagrange
equation for a natural functional. In fact, this assumption is necessary in
order to let the equation be the Euler-Lagrange equation with multiplier for
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the standard L2 pairing, see Proposition 5.3. The functional is:

(5.1) F(f) := 1

2

∫
X
|df |2ηdμη +

∫
X
SCh(η)fdμη,

with constraint

(5.2)

∫
X
exp(2f/n)dμη = 1.

A possible strategy to attack the existence problem may be via the
Chern-Yamabe flow, see Definition 5.5. However, we remark that the analyt-
ical challenge of the Chern-Yamabe problem in positive Gauduchon degrees
may suggests that the naive Chern-Yamabe conjecture is not always true in
this case. If this happens, then it will be still interesting to understand what
are the possible obstructions and to find some situations when a solution,
or many solutions, actually exist, also providing a description of the moduli
spaces. Regarding this last point, we notice that, in general, solutions to
the Chern-Yamabe problem are not unique in case of positive Gauduchon
degree.

Proposition 5.11. In general, on a compact complex manifold X, constant
Chern scalar curvature metrics in a fixed conformal class {ω} with positive
Gauduchon degree are not unique, even up to the action of GX({ω}).

In other words, ChYa(X, {ω}) � {p}. This follows by the bifurcation
techniques via odd crossing numbers, see [23, Theorem A]. (See also [9,
II.4]. Compare also [2], founded on [18]: there, bifurcation theory is used
to study multiplicity of solutions for the classical Yamabe problem.) Non-
uniqueness phenomena already happen on CP1 × CP1 × CP1 in the natural
conformal classes given by suitably scaled products of the round metrics.

The structure of this note is as follows. In Section 1, we recall the relevant
definitions. In Section 2, we define precisely the Chern-Yamabe problem and
we show some of the basic facts related to it. Sections 3 and 4 are devoted
to the solution of the problem in case of Gauduchon degree being zero or
negative respectively. In the final Section 5, we discuss some remarks in view
of the study of the case of positive Gauduchon degree.

1. Preliminaries and notation

Let X be a compact complex manifold of complex dimension n. We will
usually confuse Hermitian metrics h and their associated (1, 1)-forms ω :=
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h(J-, �). Given a Hermitian metric ω, its volume form will be denoted by
dμω, and its total volume by Volω :=

∫
X dμω.

The Hodge-de Rham Laplacian associated to ω will be denoted by Δd,ω.
(Hereafter, the reference to the metric will not be specified when it is clear.)
We assume the following sign convention: whenever u is a smooth function
on X with real values, then at a point p where u attains its local maximum
there holds (Δdu) (p) ≥ 0. In this notation, Δdu = d∗du on smooth functions
u, where d∗ denotes the adjoint operator of d with respect to ω. In particular,
integration by parts is written as∫

X
uΔdvdμω =

∫
X
(du, dv)ωdμω,

for u, v smooth functions on X.
For any Hermitian structure (J, ω) on X, we denote by ∇Ch the Chern

connection, that is, the unique Hermitian connection on T 1,0X (namely,
∇ChJ = ∇Chh = 0,) such that its part of type (0, 1) coincides with the
Cauchy-Riemann operator ∂ associated to the holomorphic structure; see,
e.g., [8]. Denote by TCh the torsion of ∇Ch.

1.1. Special Hermitian metrics

Suppose n ≥ 2. For a Hermitian metric ω on X, consider the operator

L : ∧• X → ∧•+2X, L := ω ∧ -.

It satisfies that

Ln−1 : ∧1 X
�→ ∧2n−1X

is an isomorphism. In particular, there exists θ ∈ ∧1X such that

dωn−1 = θ ∧ ωn−1.

This θ is called the (balanced) Lee form, or torsion 1-form, associated to ω.
In terms of the torsion of the Chern connection, it can be given as follows,
[7, page 500]. Take an ω-orthonormal local frame {vi}i=1,...,2n of TX. Then

θ =

2n∑
j=1

g
(
TCh(-, vj), vj

)
.

The Hermitian metric ω is called balanced (in the sense of Michelsohn
[15]) if θ = 0, that is, dωn−1 = 0. It is called Gauduchon (or standard in the
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notation of [5]) if d∗θ = 0. Note that the condition d∗θ = 0 is equivalent to
i∂∂ωn−1 = 0 (use that θ = �ωdω

n−1 where �ω = J∗ is the symplectic Hodge-
�-operator, see, e.g., [4, §1.10]).

1.2. Chern Laplacian

Fix a Hermitian metric ω onX, and consider the associated Chern Laplacian
ΔCh := ΔCh

ω : on smooth functions f , it is defined as

ΔChf = (ω, ddcf)ω = 2itrω∂∂f,

or, in local holomorphic coordinates {zj}j such that ω
loc
= ihjk̄dz

j ∧ dz̄k, as

ΔCh loc
= −2hjk̄∂j∂k̄,

where
(
hjk̄

)
j,k

denotes the inverse matrix of
(
hjk̄

)
j,k
.

Note that the Chern Laplacian is a Hopf operator, that is, a differential
elliptic operator of 2nd order without terms of order 0. Its index is equal to
the index of the Hodge-de Rham Laplacian. (See [5, page 388].)

As regards the comparison between the Hodge-de Rham Laplacian Δd

and the Chern Laplacian ΔCh on smooth functions, the following holds.

Lemma 1.1 ([7, pages 502–503]). Let X be a compact complex manifold
endowed with a Hermitian metric ω with Lee form θ. The Chern Laplacian
on smooth functions f has the form

ΔChf = Δdf + (df, θ)ω.

In particular, Chern Laplacian and Hodge-de Rham Laplacian on smooth
functions coincide when ω is balanced.

1.3. Hermitian conformal structures

We will denote by CHX the space of Hermitian conformal structures on X. Its
elements are as follows: the Hermitian conformal class of ω will be denoted
by

{ω} := {exp(2f/n)ω | f ∈ C∞(X;R)} .
We recall the foundational theorem by P. Gauduchon on the existence

of standard metrics in any Hermitian conformal class.
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Theorem 1.2 ([5, Théorème 1]). Let X be a compact complex manifold
of complex dimension dimCX ≥ 2, and fix a Hermitian conformal struc-
ture {ω}. Then there exists a unique Gauduchon metric η in {ω} such that∫
X dμη = 1.

We will consider the following normalization: denote by η ∈ {ω} the
unique Gauduchon representative of volume 1, and set

{ω}1 :=
{
exp(2f/n)η ∈ {ω}

∣∣∣∣
∫
X
exp(2f/n)dμη = 1

}
⊂ {ω}.

1.4. Underlying gauge group

The relevant gauge group to be considered in our problem is the finite di-
mensional group of holomorphic conformal maps and scalings, that is,

GX({ω}) := HConf(X, {ω})× R+ ⊆ Aut(X)× R+ ⊆ Diff+(X)× R+,

where

HConf(X, {ω}) := {φ ∈ Aut(X) | φ∗ω ∈ {ω}} .
The natural action of GX({ω}) on the conformal class {ω} is

(φ, λ). (exp(2f/n)ω) := λ · exp(2f ◦ φ/n)φ∗ω.

We prove that, if X � CP1, then HConf(X, {ω}) is a compact Lie group
in Aut(X), as a consequence of the uniqueness of the Gauduchon representa-
tive with volume normalization. Thanks to this lemma, it follows also that,
once the Gauduchon representative η of volume 1 has been fixed as reference
point in the conformal class, the action of HConf(X, {ω}) ∼= HIsom(X, η)
on {ω} = {η} is just given by φ. exp(2f/n)η = exp (2f ◦ φ/n) η. In particu-
lar, the subset {ω}1 is invariant for HConf(X, {ω}), and then a slice for the
action GX({ω}) � {ω}.

Lemma 1.3. Let X be a compact complex manifold of complex dimension
n ≥ 2, and let {ω} ∈ CHX . Then HConf(X, {ω}) is isomorphic to the compact
Lie group of holomorphic isometries of the Gauduchon representative η ∈
{ω} of volume 1, i.e.,

HConf(X, {ω}) ∼= HIsom(X, η).
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Proof. The inclusion of HIsom(X, η) in HConf(X, {ω}) is obvious. To prove
the other inclusion, let φ ∈ HConf(X, {ω}). Since φ is holomorphic, we have

0 = φ∗(i∂∂̄ηn−1) = i∂∂̄(φ∗η)n−1,

that is, φ∗η is also a Gauduchon representative in {ω} with volume 1. But
then, by the uniqueness of the Gauduchon metric with volume normaliza-
tion, we get φ∗η = η, that is, φ is a holomorphic isometry of (X, η).

Finally, to see that such a group is a compact subgroup of Aut(X), take a
sequence {φj}j ⊂ HIsom(X, η). By compactness of the space of Riemannian
isometries, we can take a subsequence {φjk}k converging, in the C∞ sense, to
an isometry φ∞ of (X, η). However, since Aut(X) is closed in Diff(X), as a
consequence of the Montel theorem, then φ∞ is also holomorphic. Therefore
φ∞ ∈ HIsom(X, η), as we claimed. �

We should remark that the fact that the group of (holomorphic) con-
formal isometries is compact follows also from the classical theorems of M.
Obata [16] and J. Lelong-Ferrand [11].

As an immediate consequence, we see that the fibres over [ω′] of the
quotient map

{ω}1 −→ {ω}1/HConf(X, {ω})
are compact homogeneous spaces of the form HIsom(X, η)/HIsom(X,ω′). In
particular, the holomorphic isometry group of the Gauduchon metric is the
largest within the conformal class.

1.5. Chern scalar curvature

For any Hermitian structure (J, ω) on X, denote by SCh the Chern scalar
curvature, that is, the scalar curvature with respect to the Chern connection.
We have the following result.

Proposition 1.4. Let X be a 2n-dimensional smooth manifold endowed
with an almost complex structure J , and let ∇ be an affine connection on
T 1,0X, for which there holds ∇J = 0. Take a Hermitian metric h on X.
Fix a local coordinate frame {Zi}i=1,...,n of vector fields on T 1,0X. Then the
scalar curvature of ∇ is given by

S∇ = hjk̄
(
∂jΓ

�
k̄� − ∂k̄Γ

�
j�

)
.

In particular, for the Chern connection, we get the following well-known
result.
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Proposition 1.5. Let X be a complex manifold of complex dimension n
endowed with a Hermitian metric ω. In local holomorphic coordinates {zj}j
such that ω

loc
= ihjk̄dz

j ∧ dz̄k, the scalar curvature SCh of the Chern connec-

tion ∇Ch is given by

SCh(ω)
loc
= hjk̄ (−∂j∂k̄ log det(h�m̄)�,m) = trωi∂∂ logωn.

Proof. Notice that, for the Chern connection, there holds

Γj
ij = ∂i log dethk�̄,

(see, e.g., [4, Proposition 1.7.1],) and that Γ�
j̄k

= 0. Thus, by means of Propo-
sition 1.4, we get the statement. �

2. Chern-Yamabe problem

For any Hermitian conformal structure {ω} on a compact complex manifold
X, we aim for finding the “best” Hermitian metric. Here, we understand the
problem in terms of constant Chern scalar curvature.

Note that, for ω′ ∈ {ω} and for (φ, λ) ∈ GX({ω}), it holds SCh(λφ∗ω′) =
1
λφ
∗SCh(ω′). Hence the condition of having constant Chern scalar curvature

is invariant under the action of the gauge group. That is, the problem of
finding metrics with constant Chern scalar curvature in the conformal class
{ω} moves to the quotient {ω}/GX({ω}).

2.1. Chern-Yamabe conjecture

We define now the relevant moduli spaces for our Chern-Yamabe problem.
Let X be a compact complex manifold of complex dimension n, and let
{ω} ∈ CHX . Then we define the moduli space of metrics with constant Chern
scalar curvature in the fixed conformal class to be the set

ChYa(X, {ω}) := ˜ChYa(X, {ω})
/
HConf(X, {ω}) ,

where

˜ChYa(X, {ω}) :=
{
ω′ ∈ {ω}1

∣∣∣ SCh(ω′) is constant
}
.

Then the Chern-Yamabe conjecture reads as follows.
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Conjecture 2.1 (Chern-Yamabe conjecture). Let X be a compact
complex manifold of complex dimension n, and let {ω} ∈ CHX be a Hermitian
conformal structure on X. Then

ChYa(X, {ω}) �= ∅.

Remark 2.2. We observe that the above Chern-Yamabe conjecture goes
in different direction from both the classical Yamabe problem and the Yam-
abe problem for almost Hermitian manifolds studied by H. del Rio and
S. Simanca in [3]. In fact, by [12, Corollary 4.5], on a compact complex man-
ifold, if the (average of the) Chern scalar curvature of a Hermitian metric
is equal either to the (average of the) scalar curvature of the correspond-
ing Riemannian metric or to the (average of the) J-scalar curvature of the
corresponding Riemannian metric, then the metric has to be Kähler.

Example 2.3 (Compact complex curves). On compact real surfaces,
fixing the conformal class is the same as fixing the (necessary integrable)
complex structure, since CO(2) ∼= GL(1,C). Hence the conformal biholo-
morphic maps are all the biholomorphic maps of the complex curve C, that
is, HConf(C, {ω}) = Aut(C). Thus ChYa(CP1) = {p}, where p corresponds
to the standard round metric. Note that the metric is unique only up to
Aut(CP1) ∼= PGL(2,C). Thus the point p still has a stabilizer equal to the
isometries, i.e., SO(3). For any other complex curve C of genus g ≥ 1, one
has again ChYa(C) = {p}, where p corresponds to the unique metric gcst of
(negative, if not torus) constant scalar curvature. In particular, if g ≥ 2, then
the stabilizer is the discrete group Aut(C) ∼= Isom(C, gcst) and the metric is
unique, even before taking the quotient.

2.2. Gauduchon degree

From now on, let us assume dimCX ≥ 2. Thanks to the foundational theo-
rem by P. Gauduchon, we can introduce a natural invariant of the conformal
class {ω} ∈ CHX , namely, the Gauduchon degree

ΓX({ω}) ∈ R

defined as follows: take the unique Gauduchon representative η ∈ {ω} in {ω}
of volume 1, and define

ΓX({ω}) := 1

(n− 1)!

∫
X
cBC
1 (K−1

X ) ∧ ηn−1 =
∫
X
SCh(η)dμη.
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It corresponds to the degree of the anti-canonical line bundle K−1
X . Recall [6]

(see also [7, §I.17]) that the degree of a holomorphic line bundle is equal to
the volume of the divisor associated to any meromorphic section by means
of the Gauduchon metric.

Finally we have the following result, after Gauduchon, concerning the
relation between ΓX({ω}) and the Kodaira dimension Kod(X) of X. We
recall that

Kod(X) := lim sup
m→+∞

log dimCH0(X;K⊗m
X )

logm
.

We recall also that KX is said to be holomorphically torsion if there exists
	 ∈ N \ {0} such that K⊗�

X = OX ; in this case, cBC
1 (X) = 0.

Proposition 2.4. Let X be a compact complex manifold. If Kod(X) > 0,
then ΓX({ω}) < 0 for any Hermitian conformal class {ω} ∈ CHX . If Kod(X) =
0, then ΓX({ω}) < 0 for any class {ω} ∈ CHX beside the case when KX is
holomorphically torsion, when ΓX({ω}) = 0.

A few remarks are in order. When the canonical bundle is holomorphi-
cally torsion, one gets that the first Bott-Chern class vanishes, i.e., cBC

1 (X) =
0. Hence any conformal class actually carries a metric with vanishing Chern-
Ricci curvature, by using the Chern-Ricci potential as a conformal potential;
see [20, Theorem 1.2]. Moreover note that Kod(X) = −∞ does not imply
that ΓX({ω}) > 0. An example is given by the Inoue surface, see Exam-
ple 5.2. In fact, the following holds: if there exists at least one non-trivial

pluri-anti-canonical section s ∈ H0(X;K
⊗(−m)
X ), then ΓX({ω}) > 0 for all

{ω} in CHX .

2.3. Semi-linear PDE for the Chern-Yamabe problem

Let X be a compact complex manifold of complex dimension n, and fix a
Hermitian metric ω in the normalized Hermitian conformal class {ω}1. In
this section, we restate the Chern-Yamabe problem in terms of a semi-linear
elliptic equation of 2nd order.

Consider a conformal change ω̃ = exp(2f/n)ω. By Proposition 1.5, the
Chern scalar curvature changes as follows:

(2.1) SCh (exp(2f/n)ω) = exp(−2f/n)
(
SCh (ω) + ΔCh

ω f
)
,

where we recall that ΔCh
ω f = Δd,ωf + (df, θ)ω, see Lemma 1.1.
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Hence, the Chern-Yamabe Conjecture 2.1 translates into the following.

Conjecture 2.5 (Chern-Yamabe conjecture — analytic equation).
Let X be a compact complex manifold of complex dimension n and let {ω} ∈
CHX be a Hermitian conformal structure on X. Let S := SCh(ω) be the Chern
scalar curvature of a fixed representative ω ∈ {ω}. Then there exists (f, λ) ∈
C∞(X;R)× R solution of the equation

(ChYa) ΔChf + S = λ exp(2f/n).

We may also suppose that f satisfies the following normalization. Let
η be the unique Gauduchon representative in {ω} with volume 1. Let η =
exp(−2g/n)ω. Then we assume that

(ChYa-n)

∫
X
exp(2(f + g)/n)dμη = 1.

In fact, the metric exp(2f/n)ω = exp(2(f + g)/n)η ∈ {ω}1 has constant
Chern scalar curvature equal to λ, and therefore it yields a class in
ChYa(X, {ω}).

Concerning the sign of the expected constant Chern scalar curvature λ
as above, it is related to the Gauduchon degree as follows.

Proposition 2.6. Let X be a compact complex manifold and let {ω} ∈ CHX .
Assume that ω′ ∈ {ω}1 has constant Chern scalar curvature equal to λ ∈ R.
Then

ΓX({ω}) = λ.

In particular, the sign of the Gauduchon degree ΓX({ω}) is equal to the sign
of the expected constant Chern scalar curvature metric in the class {ω}.

Proof. As representative in {ω}, fix the unique Gauduchon metric η ∈ {ω}
of volume 1. Equation (ChYa) yields∫

X
ΔCh

η fdμη +

∫
X
SCh(η)dμη = λ

∫
X
exp(2f/n)dμη

where (denote by θ the Lee form associated to η,)∫
X
ΔCh

η fdμη =

∫
X
Δdfdμη +

∫
X
(df, θ)dμη

=

∫
X
Δdfdμη +

∫
X
(f, d∗θ)dμη = 0
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since η is Gauduchon. Therefore

ΓX({ω}) =
∫
X
SCh(η)dμη = λ

∫
X
exp(2f/n)dμη = λ,

yielding the statement. �

It is maybe interesting to point out a remark on the relation between
the above normalization and the constant volume one slice. By the Jensen
inequality, it follows that the volume of metrics in the slice {ω}1 is always
greater than or equal to 1. This implies that, on the more natural slice of
volume one metrics, the value of the (non-zero) expected constant Chern
scalar curvature is in modulus always greater than or equal to the Gaudu-
chon degree.

3. Solution of the Chern-Yamabe problem for zero
Gauduchon degree

In case of zero Gauduchon degree, the semi-linear elliptic differential equa-
tion (ChYa) becomes just linear, and so we get a solution for the corre-
sponding Chern-Yamabe problem. In the following, we omit some analytical
details concerning the precise function spaces where we realize the equation:
similar issues will be more carefully addressed in the next section, when we
will consider a non-linear situation.

Theorem 3.1. Let X be a compact complex manifold and let {ω} ∈ CHX . If

ΓX({ω}) = 0, then ˜ChYa(X, {ω}) = {p}. In particular, denoting with ωp ∈
{ω}1 this unique metric with constant Chern scalar curvature, we have:

• SCh(ωp) = ΓX({ω}) = 0;

• HIsom(X,ωp) ∼= HIsom(X, η) ∼= HConf(X, {ω}), where η ∈ {ω}1 de-
notes the unique Gauduchon representative in {ω} with volume 1.

Proof. Fix η ∈ {ω} the unique Gauduchon representative in {ω} with vol-
ume 1. We are reduced to solve

ΔChf = −SCh(η).

Notice that the (formal) adjoint of ΔCh on smooth functions g is

(ΔCh)∗g = Δdg − (dg, θ)η ,



660 D. Angella, et al.

where θ denotes the Lee form of η. It has ker(ΔCh)∗ equal to the constants.
Indeed, take u in the kernel of (ΔCh)∗. By standard regularity, we may
assume that u is smooth. Then

0 =

∫
X
u(ΔCh)∗udμη =

∫
X

(
|∇u|2 − 1

2
(du2, θ)

)
dμη =

∫
X
|∇u|2dμη,(3.1)

since d∗θ = 0 because η is Gauduchon.
Since the integral of −SCh(η) is zero, it means that

−SCh(η) ∈
(
ker(ΔCh)∗

)⊥
= imΔCh.

We thus conclude the existence of a metric of zero Chern scalar curvature.
The uniqueness follows immediately by the fact that the kernel of the Chern
Laplacian at the Gauduchon metric consists of constant functions.

The last statements follow from Proposition 2.6 and the assumption,
and from Lemma 1.3 and the uniqueness. �

We should remark that the case of zero Gauduchon degree is genuinely
interesting only when Kod(X) = −∞.

4. Solution of the Chern-Yamabe problem for negative
Gauduchon degree

In this section, we provide a first positive answer for the Chern-Yamabe
conjecture in case of negative Gauduchon degree.

Theorem 4.1. Let X be a compact complex manifold and let {ω} ∈ CHX . If

ΓX({ω}) < 0, then ˜ChYa(X, {ω}) = {p}. In particular, denoting with ωp ∈
{ω}1 this unique metric with constant Chern scalar curvature, we have

• SCh(ωp) = ΓX({ω}) < 0;

• HIsom(X,ωp)∼=HIsom(X, η)∼=HConf(X, {ω}), where η∈{ω} denotes
the unique Gauduchon representative in {ω} with volume 1.

Proof. Fix η ∈ {ω} the unique Gauduchon representative in {ω} with vol-
ume 1. By assumption, we have

ΓX({ω}) =
∫
X
SCh(η)dμη < 0.
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A preliminary step consists in showing that, without loss of gener-
ality, we may assume that SCh(ω) < 0 at every point. In fact, we choose
a representative in {η} as follows. Fix η as reference metric. Consider the
equation

ΔCh
η f = −SCh(η) +

∫
X
SCh(η)dμη .(4.1)

Since η is Gauduchon, arguing as in the proof of Theorem 3.1, the above
equation has a solution f ∈ C∞(X;R); such a solution is unique if we require∫
X exp(2f/n)dμη = 1. Then exp(2f/n)η ∈ {ω}1 satisfies

SCh(exp(2f/n)η) = exp(−2f/n)
(
SCh(η) + ΔChf

)
= exp(−2f/n)

∫
X
SCh(η)dμη

= exp(−2f/n)ΓX({ω}) < 0.

The next step consists in applying, under this further assumption on
the reference metric, the continuity method to prove existence of a
constant Chern scalar curvature metric in {ω} of class C2,α, and then to
obtain smooth solutions by regularity.

We set up the following continuity path. We fix λ = ΓX({ω}), and fix
the above metric ω with SCh(ω) < 0 as reference metric in the conformal
class. Consider the equation, varying t ∈ [0, 1]:

ChYa(t, f) := ΔChf + tSCh(ω)− λ exp(2f/n) + λ(1− t) = 0.

For α ∈ (0, 1), we have the map

ChYa: [0, 1]× C2,α(X;R)→ C0,α(X;R).

Let us define

T :=
{
t ∈ [0, 1]

∣∣ ∃ft ∈ C2, α(X;R) such that ChYa(t, ft) = 0
}
.

Now, 0 ∈ T since ChYa(0, 0) = 0 as we can directly check. Thus, T is non
empty.

In order to show that T is open we argue as follows. The implicit
function theorem guarantees that T is open as long as the linearization of
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ChYa with respect to the second variable is bijective. That is, we claim that,
for a fixed t0 ∈ T , with corresponding solution ft0, the operator

D : C2, α(X;R)→ C0, α(X;R)

defined by

v �→ Dv := ΔChv − λ exp (2ft0/n) · 2v/n
is bijective. We begin by showing the injectivity of the linear operator D.
Since D is an elliptic operator, by standard regularity theory, we can use
the ordinary maximum principle for functions in the kernel: if v belongs to
kerD, then at a maximum point p for v there holds

−λ exp(2ft0(p)/n) · 2v(p)/n ≤ 0 ,(4.2)

whence v(p) ≤ 0. Similarly, at a minimum point q for v, there holds v(q) ≥ 0.
Whence, kerD = {0}.

To see that D is surjective, we notice that the injectivity directly implies
surjectivity, since the index of the linear operator D is the same as the index
of the Laplacian (from whom D differs by a compact operator).

Finally, we claim that T is closed. We first prove uniform L∞ estimates
of the solutions.

Lemma 4.2. If {tn} ⊂ T and ftn ∈ C2,α(X;R) are such that

ChYa(tn, ftn) = 0

for any n, then there exists a positive constant C0, depending only on X, ω,
λ, such that, for any n,

‖ftn‖L∞ ≤ C0.(4.3)

Proof. Consider the following equality

ΔChftn + tnS
Ch(ω)− λ exp (2ftn/n) + λ(1− tn) = 0 ,(4.4)

and suppose that p is a maximum point for ftn . Then, at p, there holds

−λ exp (2ftn(p)/n) ≤ −tnSCh(ω)(p)− λ(1− tn)(4.5)

≤ −
(
max
X

SCh(ω)

)
− λ,
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(recall that λ < 0 and that SCh(ω) is a negative function). Similarly, at a
minimum point for ftn , say q, there holds

−λ exp (2ftn(q)/n) ≥ −tnSCh(ω)(q)− λ(1− tn) ≥ tn(−SCh(ω)(q) + λ)− λ

≥ min

{
min
X

(
−SCh(ω)

)
, −λ

}
> 0.

The above estimates provide the wanted uniform constant C0. �

Now, consider the equality

Lnftn = λ exp (2ftn/n) ,

where

Lnf := ΔChf + tnS
Ch(ω) + λ(1− tn)

is regarded as an elliptic operator. The estimate of Lemma 4.2 gives a uni-
form L∞ control of the right-hand side λ exp (2ftn/n) of the equation. Then,
by iterating the Calderon-Zygmund inequality and using Sobolev embed-
dings, we get an a-priori C3 uniform bound. Thus by the Ascoli-Arzelà theo-
rem, we can take a converging subsequence to a solution of the equation, and
we conclude that the set of parameters t for which the equation ChYa(t, -)
admits a C2,α solution is closed in the Euclidean topology.

So far, we accomplished the existence of a C2,α solution f to the Chern-
Yamabe equation, ChYa(1, f) = 0. We are left to prove the smooth regu-
larity of the solution. But this follows by the usual bootstrap argument
via Schauder’s estimates.

Now we turn to the uniqueness issue. Suppose that ω1 = exp(2f1/n)ω ∈
{ω} and ω2 = exp(2f2/n)ω ∈ {ω} have constant Chern scalar curvature equal
to λ1 < 0 and λ2 < 0 respectively. Hence we have the equations

ΔCh
ω f1 + SCh(ω) = λ1 exp (2f1/n) and

ΔCh
ω f2 + SCh(ω) = λ2 exp (2f2/n) .

Then we get the equation ΔCh
ω (f1 − f2) = λ1 exp (2f1/n)− λ2 exp (2f2/n).

At a maximum point p for f1 − f2, we find f1(p)− f2(p) ≤ n log (λ2/λ1) /2.
Similarly, at a minimum point q, we have f1(q)− f2(q) ≥ n log (λ2/λ1) /2.
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Thus

f1 = f2 + n log (λ2/λ1) /2.

By considering now our normalization condition, we get the uniqueness. The
last statements follow now from Proposition 2.6 and the assumption, and
from Lemma 1.3 and the uniqueness. �

By combining Theorems 3.1 and 4.1 with Proposition 2.4, we obtain the
following corollary.

Corollary 4.3. Let X be a compact complex manifold with non-negative

Kodaira dimension. Then, for any {ω} ∈ CHX , it holds ˜ChYa(X, {ω}) = {p}.

5. Towards the case of positive Gauduchon degree

In this last section we give some remarks on the behaviour of the Chern-
Yamabe problem in the case of positive Gauduchon degree. As we mentioned
in the introduction, it is evident that many of the good analytical properties
of the Chern-Yamabe equation disappear for ΓX({ω}) > 0 (mostly the ones
related to the maximum principle). In principle, it may be as well that the
“naive” Chern-Yamabe conjecture 2.1 does not hold for every conformal
class. In any case, it seems interesting to find some sufficient and, possibly,
necessary conditions which ensure the existence of metrics with positive
constant Chern scalar curvature.

To show some easy examples of (non-Kähler) metrics with constant pos-
itive Chern scalar exist, we discuss a couple of analytic observations that
may be useful for the general study of the problem. Finally we give a “suffi-
cient” criterion for the existence of positive constant Chern scalar curvature
metrics (based on deformations of flat Chern-scalar metrics).

5.1. Elementary examples

As we discussed, conformal classes having positive Gauduchon degrees could
exist only on manifolds with Kodaira dimension equal to −∞. If it happens
that there exists at least one non-trivial antiplurigenus, then all the Gaudu-
chon degrees are positive. One of the easiest (non-Kähler) manifold having
such a property is the standard Hopf surface: in this case, one can easily
find a metric with constant positive Chern scalar curvature.

Example 5.1 (Hopf surface). Consider the Hopf surfaceX = C2 \ {0}/G
where G = 〈z �→ z/2〉. It is diffeomorphic to S1 × S3 and it has Kodaira
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dimension Kod(X) = −∞. The standard Hermitian metric ω(z) = 1
|z|2ω0,

where ω0 is the flat Hermitian metric on C2, has constant positive Chern
scalar curvature.

The above example can be easily generalized in other similar situations.
By blowing-up an Hopf surface, one obtains examples where the Gaudu-

chon degrees can take either positive, or zero, or negative values [19]. We
remark that it is not true that every manifold having negative Kodaira di-
mension admits conformal classes with positive Gauduchon degree, as the
following example shows.

Example 5.2 (Inoue surfaces). Let us consider an Inoue surface X. It
is a compact complex surface in class VII, hence it has Kod(X) = −∞ and
b1 = 1. In [19, Remark 4.2], it is shown that ΓX({ω}) < 0 for any {ω} ∈ CHX .

In particular, combining the above with Theorem 4.1, we obtain ex-
amples of manifolds with negative Kodaira dimension where all conformal
classes admit metrics of (negative) constant Chern scalar curvature.

In by-hand-constructed examples, which are typically very symmetric,
the metrics are usually of Gauduchon type. It is then interesting to see
that non-Gauduchon metrics with positive constant Chern scalar curvature
actually exist. For an easy construction of such manifolds, it is sufficient to
take the product of CP1 with the standard round metric ωFS , scaled by a
small factor ε, with a non-Gauduchon solution (X,ω) of the Chern-Yamabe
problem for negative Gauduchon degree, (for example take any non-cscK
Kähler metric on a manifold X with non-negative Kodaira dimension and
apply our previous Theorems to find ω). Then it is immediate to check that
(CP1 ×X, εpr∗1(ωFS) + pr∗2(ω)) has constant positive Chern scalar curvature
provided ε is small enough, but it is not Gauduchon.

5.2. Chern-Yamabe equation as an Euler-Lagrange equation

In order to attack the problem when the Gauduchon degree is positive, it
may be useful to see if our equation

(ChYa) ΔChf + S = λ exp(2f/n),

where S := SCh(ω), can be written as an Euler-Lagrange equation of some
functional, with multiplier (and then try to apply direct methods to converge
to a minimizer). However, as we are now going to show, in general such a
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property does not hold. For this, we say that a Hermitian conformal class
{ω} is called balanced if its Gauduchon representative η is balanced, i.e.,
dηn−1 = 0. Note that, if η is balanced, then ΔCh

η = Δd,η on smooth functions.

We denote the set of such conformal classes as CbX ⊆ CHX .

Proposition 5.3. Let X be a compact complex manifold of complex dimen-
sion n and let {ω} ∈ CHX . The 1-form on C∞(X;R)

α : h �−→
∫
X
h · (df, θ)ωdμω

is never closed, beside the case when it is identically zero, which happens
only if ω is balanced.

It follows that equation (ChYa) can be seen as an Euler-Lagrange equa-
tion (with multiplier) for the standard L2 pairing if and only if {ω} = {η} ∈
CbX with η balanced. In this case, the functional takes the form

(5.1) F(f) := 1

2

∫
X
|df |2ηdμη +

∫
X
SCh(η)fdμη,

subject to the integral constraint

(5.2)

∫
X
exp(2f/n)dμη = 1.

Note that the Lagrange multiplier coincides with the Gauduchon degree
of the balanced conformal class.

Proof. Note that dαf (h, g) ≡ 0 if and only if
∫
X h(dg, θ)dμω=

∫
X g(dh, θ)dμω,

for all h, g ∈ C∞(X;R). In particular, by taking h to be a constant and g
arbitrary, we have, by integration by parts, that θ has to be co-closed (i.e.,
ω has to be Gauduchon). Now, since the integral

∫
X(d(gh), θ)dμω is always

zero for a Gauduchon metric ω, it follows that
∫
X g(dh, θ)ωn = 0 for all g, h.

Thus θ = 0, as we claimed. �

Remark 5.4. We notice here some facts.

• The above proposition makes sense even in the case of negative Gaudu-
chon degree. (As a natural question, one may ask whether the constant
Chern-Scalar metric is an absolute minimum in this case.)

• Thanks to Lemma 1.3, the functional F is “gauge” invariant, that is,
F(f ◦ φ) = F(f) for any φ ∈ HConf(X, {ω}).
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• Instead of working with constraints, one can use the following scale
invariant normalization:

F∗(f) := F(f)
n

− λ log

(∫
X
exp(2f/n)dμη

)
.

Its Euler-Lagrange equation is now given by:

ΔChf + S = λ
exp(2f/n)(∫

X exp(2f/n)dμη

) ,
which essentially coincides with the constant Chern scalar curvature
equation, since we can always normalize

(∫
X exp(2f/n)dμη

)
= 1. We

remark that some care is needed when trying to define the functional
F∗ on some Sobolev spaces due to the exponential term involved in
its expression.

• At a smooth critical point f of F for λ > 0, one gets (by applying
Jensen’s inequality):

F(f) ≥ −1

2

∫
X
|df |2ηdμη;

however, it is not clear if the functional is bounded from below.

5.3. On Chern-Yamabe flow

Another possible candidate tool to study the existence problem in the case
of positive Gauduchon degree can be the Chern-Yamabe-flow.

Definition 5.5. Let X be a compact complex manifold and let {ω} ∈ CHX
be a Hermitian conformal class. Fix any ω ∈ {ω}1 (e.g., the Gauduchon
representative with unit volume) as reference metric in the class. We call
Chern-Yamabe flow the following parabolic equation:

(ChYa-f)
∂f

∂t
= −ΔCh

ω f − SCh(ω) + λ exp

(
2f

n

)
.

Since the principal symbol of the Chern Laplacian coincides with the
one of the standard Laplacian, it follows that the above flow always starts
given any smooth initial datum.

A few remarks are in order. First note that the constraint condition
(ChYa-n) is not preserved under the flow. Nevertheless, it seems interesting
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to note that, if we take as base point for the flow a balanced Gauduchon
representative η and the initial value being equal to f0 = 0, then, by a simple
calculation, it follows that F(ft) ≤ 0 for t small enough.

Finally, from a more analytic prospective, it may be interesting to see
whether in the case of negative Gauduchon degrees the above Chern-Yamabe
flow actually converges to the unique solution we constructed in the previous
sections.

5.4. On weak versions of the Chern-Yamabe problem

On any compact complex manifold X with some non-vanishing anti-
plurigenera, the possible values of Gauduchon degree are always positive. In
particular, at the current state of art, we do not even know whether on such
manifolds a metric with (necessary) positive constant Chern curvature can
actually exist for some conformal class (a kind of weak Chern-Yamabe con-
jecture). We hope to discuss in a subsequent paper sufficient “computable”
conditions on (X, {ω}) for the existence of constant Chern scalar curvature
metrics. For the purpose of this note, we restrict ourselves to show three
elementary results along these lines.

The first result is about complex manifolds which admit both conformal
classes with zero and conformal classes with positive Gauduchon degrees.

Proposition 5.6. Let X be a compact complex manifold and let ηs∈[0,1) be
a smooth path of Gauduchon metrics on X such that the Gauduchon degree
ΓX({ηs}) is equal to zero for s = 0 and is positive for s > 0. Then constant
Chern scalar curvature metrics, with positive small Chern scalar curvature,
exist in all conformal classes {ηs} for s > 0 small enough.

Proof. Denote the smooth function ΓX({ηs}) with Γs. The equation that
we want to solve is the usual ΔCh

ηs
f + SCh(ηs) = Γs exp(2f/n), for s small

enough. Then the statement follows immediately by using Theorem 3.1 and
the Implicit Function Theorem for Banach manifolds after imposing the
natural constraints (compare later in this section for more details). Note
that SCh (exp(2fs/n)ηs) = Γs > 0 for s > 0. �

The second result, which is a consequence and an example of the above
proposition, says that given any compact complex manifold X, possibly
having all Gauduchon degrees positive, it is sufficient to take the product
X × Σg with some complex curve Σg of genus g ≥ 2 to have some conformal
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classes in the product admitting positive constant Chern scalar curvature
metrics.

Proposition 5.7. Let X be a compact complex manifold of complex di-
mension dimCX ≥ 2 endowed with a Hermitian conformal class {ω} with
ΓX({ω}) > 0. Take any compact complex curve Σg of genus g ≥ 2. Then
X × Σg admits Hermitian conformal classes with metrics having positive
constant Chern scalar curvature.

The proposition is a consequence of the following lemma.

Lemma 5.8. Let X be a compact complex manifold of complex dimension
n ≥ 2 endowed with a Gauduchon metric η with ΓX({η}) > 0 and

∫
X ηn = 1.

Let Σg be a compact complex curve of genus g ≥ 2 equipped with a (Kähler)
metric ω with

∫
Σg

ω = 1. Define the family of Hermitian products (X ×
Σg, ωδ), where ωδ := pr∗1(η) + δpr∗2(ω). Then:

• ωδ is a smooth path of Gauduchon metrics;

• the Gauduchon degree Γδ := Γ({ωδ}) is a smooth function satisfying

sgn (Γδ) = sgn (ΓX({η})δ + 4π(1− g)) ,

where sgn denotes the sign function.

Thus, by Proposition 5.6, it exists ε = ε(X × Σg, η, ω) > 0 such that for
all δ ∈ (4π(g − 1)ΓX({η})−1, 4π(g − 1)ΓX({η})−1 + ε) the conformal classes
{ωδ} admit metrics with positive constant Chern scalar curvature.

Proof. Abusing notation, let us write ωδ = η + δω. It follows by dimension
reasons that ωn

δ = ηn + δnηn−1 ∧ ω. Thus i∂∂̄ωn
δ = 0, i.e., ωδ is a smooth

family of Gauduchon metrics. Observe that ωδ is not normalized, in partic-
ular the quantity

∫
X×Σg

SCh(ωδ)ω
n+1
δ is only proportional, by an explicitly

computable smooth positive function of δ, but not equal to the Gauduchon
degree. Thus

sgn (Γδ) = sgn

(∫
X×Σg

(SCh(η) + δ−1S(ω))δ(n+ 1)ηn ∧ ω

)

= sgn (ΓX({η})δ + 4π(1− g)) ,

where the last equality simply follows by Fubini and Gauss-Bonnet theorems.
Since, for δ = 4π(g − 1)ΓX({η})−1, the Gauduchon degree Γδ vanishes, we
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can apply Proposition 5.6 to conclude the existence of positive constant
Chern scalar curvature metrics for δ slightly bigger than the zero threshold.

�

Finally, the third result is another application of the Implicit Function
Theorem, when Chern scalar curvature is “small”; this is in view of the case
of small (possibly positive) Gauduchon degree.

Theorem 5.9. Let X be a compact complex manifold of complex dimen-
sion n, and let {ω} ∈ CHX . Let η ∈ {ω} be the unique Gauduchon represen-
tative of volume 1. There exists ε > 0, depending just on X and η, such
that, if

∥∥SCh(η)
∥∥
C0,α(X)

< ε, for some α ∈ (0, 1). In particular, this yields

ΓX({η}) < ε. Then there exists a constant Chern scalar curvature metric in
{η}1.

Proof. Fix α ∈ (0, 1). Consider the Banach manifolds of class C1

X :=

{
(u, λ, S) ∈ C2,α(X;R)× R× C0,α(X;R)∣∣∣∣

∫
X
Sdμη − λ ·

∫
X
exp(2u/n)dμη = 0

}
,

Y :=

{
w ∈ C0,α(X;R)

∣∣∣∣
∫
X
wdμη = 0

}
.

Consider the map of class C1 given by

F : X → Y, F (u, λ, S) = ΔCh
η u+ S − λ · exp(2u/n).

Note that F (0, 0, 0) = 0, and that

∂F

∂u

⌊
(0,0,0)

= ΔCh
η

is invertible on T0Y � Y.
Hence, by applying the implicit function theorem, there exists a neigh-

bourhood U of (0, 0) in R× C0,α(X;R) and a C1 function (ũ, id) : U → X
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such that

F (ũ(λ, S), λ, S) = 0.

Take ε > 0, depending on X and η, such that

{λ ∈ R | |λ| < ε} ×
{
S ∈ C∞(X;R)

∣∣∣ ‖S‖C0,α(X;R) < ε
}
⊂ U.

Let η be such that SCh(η) ∈ C∞(X;R) satisfies
∥∥SCh(η)

∥∥
C0,α(X;R)

< ε.

By taking λ := ΓX({η}), (as expected by Proposition 2.6,) we have also

λ = ΓX({η}) =
∫
X
SCh(η)dμη ≤

∥∥∥SCh(η)
∥∥∥
L∞(X)

·
∫
X
dμη < ε.

Since
(
λ, SCh(η)

) ∈ U , take u := ũ
(
λ, SCh(η)

) ∈ C2,α(X;R) as above. By
regularity, u belongs to C∞(X;R). Then exp(2u/n)η ∈ {η}1 has constant
Chern scalar curvature equal to λ. �

Remark 5.10. In the previous statement, note the condition on the bound
of SCh(η) in terms of ε, where ε depends by η itself. Notwithstanding,
we notice that the previous result is not empty: there are examples to
which Theorem 5.9 can be applied. For example, take a compact complex
manifold X endowed with a Gauduchon metric η having SCh(η) = 0. Let
εη > 0 be the constant in Theorem 5.9: it depends continuously on η. Con-
sider a perturbation ω of η in C2,α(X;T ∗X ⊗ T ∗X), where α ∈ (0, 1), such
that ‖SCh(ω)− SCh(η)‖C2,α(X;R) < εη/4 with ΓX({ω}) > 0, and |εω − εη| <
εη/4, where εω is the constant in Theorem 5.9 associated to ω. Then in par-
ticular ‖SCh(ω)‖C2,α(X;R) < εω, and Theorem 5.9 applies, yielding a constant
positive Chern scalar curvature metric in the conformal class of ω.

5.5. Non-uniqueness of solutions for positive Gauduchon degree

In this section, we show that uniqueness does not hold, in general, in the
case of positive Gauduchon degree.

Proposition 5.11. In general, on a compact complex manifold X, constant
Chern scalar curvature metrics in a fixed conformal class {ω} with positive
Gauduchon degree are not unique, even up to the action of GX({ω}).

Proof. In [2], local rigidity and multiplicity of solutions for the classical Yam-
abe problem on, in particular, products of compact Riemannian manifolds
are investigated. Notwithstanding, it is not clear to us whether the argument
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in [18, Theorem 2.1], on which [2, Theorem A.2] is founded, still holds true
in our non-variational setting. Hence, we apply similar arguments by using
instead a version of the Krasnosel’skii Bifurcation Theorem, see, e.g., [9,
Theorem II.3.2], proving bifurcation in case of odd crossing numbers. More
precisely, we apply [23, Theorem A] by D. Westreich.

Consider the compact complex manifold X :=CP1×CP1×CP1 endowed
with the path {gλ}λ∈(0,+∞) of Hermitian metrics, where

ωλ := V (λ)−1/3 · (π∗1ωFS + π∗2ωFS + λ · π∗3ωFS) ;

here, πj : X → CP1 denotes the natural projection, and ωFS is the Fubini
and Study metric on CP1; the constant V (λ) = (4π)3λ is chosen in such a
way that Vol(ωλ) = 1.

We consider the Banach spaces

D :=

{
f ∈ C2,α(X;R)

∣∣∣∣
∫
X
fdμω1

= 0

}
,

and

E :=

{
ϕ ∈ C0,α(X;R)

∣∣∣∣
∫
X
ϕdμω1

= 0

}
,

(note that dμωλ
= λV (λ)−1dμω1

for any λ ∈ (0,+∞),) and the smooth map

F : D × (0,+∞)→ E , F (f, λ) := SCh (exp(2f/3)ωλ)

−
∫
X
SCh (exp(2f/3)ωλ) dμωλ

.

Note that exp(2f/3)ωλ ∈ {ωλ} is constant Chern scalar curvature if and
only if F (f, λ) = 0.

For any λ ∈ (0,+∞), we have that F (0, λ) = 0, since ωλ is cscK, with
constant curvature S(λ) := 2 · (2 + λ−1) · V (λ)1/3. This gives condition (a)
of [23, Theorem A]. Conditions (b) and (c) of [23, Theorem A] are guaranteed
as in [23, Remark at page 610].

Consider

A(λ) : D → E A(λ)[β] :=
∂

∂f
F

⌊
(0,λ)

[β] = −2

3
S(λ)[β] + Δωλ

[β],

which is a closed Fredholm operator of index 0, for any λ ∈ (0,+∞). In
particular, we study the value

λ0 := 1/4.
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For condition (d) of [23, Theorem A], we prove that ∂
∂fF

⌊
(0,λ0)

is a Fred-

holm operator of index 0 such that dimker ∂
∂fF

⌊
(0,λ0)

is odd. Indeed, recall

that the eigenvalues of ΔωFS
on CP1 are j(j + 1) varying j ∈ N, with mul-

tiplicity 2j + 1 respectively. We have hence that ker ∂
∂fF

⌊
(0,λ0)

is generated

by

V (2,1,0) ∪ V (1,2,0) ∪ V (0,0,1),

where, meaning here below for β a generic element of C∞(CP1 × CP1 ×
CP1;R),

V (j1,j2,j3) :=
{
β(p1, p2, p3) := β1(p1)β2(p2)β3(p3)∣∣∣ Δ(�)β� = j�(j� + 1)β� for 	 ∈ {1, 2, 3}

}
,

and, abusing notation, Δ(�) := π∗� ◦ΔωFS
◦ ι∗� denotes the Laplacian on the

	-th factor CP1, where π� : X → CP1 and ι� : CP1 → X are the natural pro-
jection, respectively inclusion, of the 	-th object CP1 in X, for 	 ∈ {1, 2, 3}.
In fact, we have

dimker
∂

∂f
F

⌊
(0,λ0)

= dimV (2,1,0) + dimV (1,2,0) + dimV (0,0,1)

= 15 + 15 + 3 = 33,

which is odd.
Compute

∂2

∂f∂λ
F

⌊
(0,λ0)

[β] = −2

3
S′(λ0)[β] +

d

dλ

⌊
λ0

Δωλ
[β].

We now verify condition (e) of [23, Theorem A]. More precisely, we have to

show that, if ṽ ∈ ker ∂
∂fF

⌊
(0,λ0)

\ {0}, then ∂2

∂f∂λF
⌊
(0,λ0)

[ṽ] �∈ im ∂
∂fF

⌊
(0,λ0)

.

With the above notation, we have

∂2

∂f∂λ
F

⌊
(0,λ0)

[β] =
4π

3
· 42/3 ·

(
8[β] + Δ(1)[β] + Δ(2)[β]− 8Δ(3)[β]

)
.

If ṽ ∈ V (j1,j2,j3), with (j1, j2, j3) ∈ {(2, 1, 0) , (1, 2, 0) , (0, 0, 1)}, then
∂2

∂f∂λ
F

⌊
(0,λ0)

[ṽ]
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is a non-zero constant multiple of ṽ itself, where the constant depends on λ0

and (j1, j2, j3). In any case, ṽ ∈ ker ∂
∂fF

⌊
(0,λ0)

⊥ im ∂
∂fF

⌊
(0,λ0)

, the operator

∂
∂fF

⌊
(0,λ0)

being self-adjoint. This proves the condition above.

Hence, by [23, Theorem A], we get that (0, λ0) is a bifurcation instant
for the equation F (f, λ) = 0. In particular, we get a non-trivial solution
exp(2f/3)ωλ ∈ {ωλ} for some λ near λ0, whence non-uniqueness.

Notice that the function f ∈ D, being a solution of (ChYa), is actually
a smooth function; moreover the metrics exp(2f/3)ωλ and ωλ in {ωλ} are
not equivalent under the action of HConf(X, {ωλ})× R+, since

HConf(X, {ωλ}) ∼= HIsom(X,ωλ)

and, from the very definition of D, exp(2f/3)ωλ cannot be a non-trivial
scaling of ωλ. �
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Paris Sér. A-B 285 (1977), no. 5, A387–A390.
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Università degli Studi di Firenze

viale Morgagni 67/a, 50134 Firenze, Italy

E-mail address: daniele.angella@unifi.it

Dipartimento di Matematica e Informatica “Ulisse Dini”
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