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The chiral index of the fermionic

signature operator

Felix Finster

We define an index of the fermionic signature operator on even-
dimensional globally hyperbolic spin manifolds of finite lifetime.
The invariance of the index under homotopies is studied. The def-
inition is generalized to causal fermion systems with a chiral grad-
ing. We give examples of space-times and Dirac operators thereon
for which our index is non-trivial.

1. Introduction

In the recent papers [6, 7] the fermionic signature operator was introduced
on globally hyperbolic Lorentzian spin manifolds. It is a bounded symmetric
operator on the Hilbert space of solutions of the Dirac equation which de-
pends on the global geometry of space-time. This raises the question how the
geometry of space-time is related to spectral properties of the fermionic sig-
nature operator. The first step in developing the resulting “Lorentzian spec-
tral geometry” is the paper [5] where the simplest situation of Lorentzian
surfaces is considered. In the present paper, we proceed in a somewhat dif-
ferent direction and show that there is a nontrivial index associated to the
fermionic signature operator. This is the first time that an index is defined
for a geometric operator on a Lorentzian manifold.

We make essential use of the decomposition of spinors in even space-time
dimension into left- and right-handed components (the “chiral grading”).
The basic idea is to decompose the fermionic signature operator S using the
chiral grading as

(1.1) S = SL + SR with S
∗
L = SR ,

and to define the so-called chiral index of S as the Noether index of SL.
After providing the necessary preliminaries (Section 2), this definition will
be given in Section 3 in space-times of finite lifetime. In order to work out the
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mathematical essence of our index, in Section 4 we also give its definition in
the general setting of causal fermion systems (for an introduction to causal
fermion systems see [3] or [4]). Section 5 is devoted to a variant of the chiral
index which applies in the special case of the massless Dirac equation and a
Dirac operator which is odd with respect to the chiral grading. In Section 6
we analyze the invariance properties of the chiral indices when space-time
or the Dirac operator are deformed by a homotopy. In Sections 8–10 we
construct examples of fermionic signature operators with a non-trivial index
and illustrate the homotopy invariance. Finally, in Section 11 we discuss our
results and and give an outlook on potential extensions and applications,
like the generalization to space-times of infinite lifetime.

We point out that the purpose of this paper is to define the chiral index,
to study a few basic properties and to show in simple examples that it is in
general non-trivial. But we do not work out any physical applications, nor do
we make the connection to geometric or topological invariants. These short-
comings are mainly due to the fact that we only succeeded in computing the
index explicitly in highly symmetric and rather artificial examples. More-
over, it does not seem easy to verify the conditions needed for the homotopy
invariance. For these reasons, we leave physically interesting examples and
geometric stability results as a subject of future research. All we can say for
the moment is that the chiral index describes the “chiral asymmetry” of the
Dirac operator in terms of an integer. This integer seems to depend on the
geometry of the boundary of space-time and on the singular behavior of the
potentials in the Dirac equation. Smooth potentials in the Dirac equation,
however, tend to not affect the index.

2. Preliminaries

We recall a few basic constructions from [6]. Let (M, g) be a smooth, globally
hyperbolic Lorentzian spin manifold of even dimension k ≥ 2. For the signa-
ture of the metric we use the convention (+,−, . . . ,−). We denote the spinor
bundle by SM. Its fibres SxM are endowed with an inner product ≺.|.�x of
signature (n, n) with n = 2k/2−1 (for details see [1, 8]), which we refer to as
the spin scalar product. Clifford multiplication is described by a mapping γ
which satisfies the anti-commutation relations,

γ : TxM → L(SxM) with γ(u) γ(v) + γ(v) γ(u) = 2 g(u, v) 11Sx(M) .

We write Clifford multiplication in components with the Dirac matrices γj

and use the short notation with the Feynman dagger, γ(u) ≡ ujγj ≡ /u. The
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metric connections on the tangent bundle and the spinor bundle are denoted
by ∇.

In the even-dimensional situation under consideration, the spinor bundle
has a decomposition into left- and right-handed components. We describe
this chiral grading by an operator Γ (the “pseudoscalar operator,” in physics
usually denoted by γ5),

Γ : SxM → SxM ,

having for all u ∈ TxM the properties

(2.1) Γ∗ = −Γ , Γ2 = 11 , Γ γ(u) = −γ(u) Γ , ∇Γ = 0

(where the star denotes the adjoint with respect to the spin scalar product).
We denote the chiral projections to the left- and right-handed components
by

(2.2) χL =
1

2

(
11− Γ

)
and χR =

1

2

(
11 + Γ

)
.

The sections of the spinor bundle are also referred to as wave func-
tions. We denote the smooth sections of the spinor bundle by C∞(M, SM).
Similarly, C∞

0 (M, SM) denotes the smooth sections with compact support.
On the compactly supported wave functions, one can introduce the Lorentz
invariant inner product

<.|.> : C∞
0 (M, SM)× C∞

0 (M, SM)→ C ,(2.3)

<ψ|φ> :=

∫
M

≺ψ|φ�x dμM .(2.4)

The Dirac operator D is defined by

D := iγj∇j +B : C∞(M, SM)→ C∞(M, SM) ,

where B ∈ L(Sx) (the “external potential”) typically is a smooth multipli-
cation operator which is symmetric with respect to the spin scalar product.
In some of our examples, B will be chosen more generally as a convolution
operator which is symmetric with respect to the inner product (2.4). For a
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given real parameter m ∈ R (the “mass”), the Dirac equation reads

(D −m)ψ = 0 .

We mainly consider solutions in the class C∞
sc (M, SM) of smooth sections

with spatially compact support. On such solutions one has the scalar product

(2.5) (ψ|φ) = 2π

∫
N

≺ψ|/νφ�x dμN(x) ,

where N denotes any Cauchy surface and ν its future-directed normal. Due
to current conservation, the scalar product is independent of the choice of N

(for details see [6, Section 2]). Forming the completion gives the Hilbert
space (Hm, (.|.)).

For the construction of the fermionic signature operator, we need to
extend the bilinear form (2.4) to the solution space of the Dirac equation.
In order to ensure that the integral in (2.4) exists, we need to make the
following assumption (for more details see [6, Section 3.2]).

Definition 2.1. A globally hyperbolic space-time (M, g) is said to be m-

finite if there is a constant c > 0 such that for all φ, ψ ∈ Hm ∩ C∞
sc (M, SM),

the function ≺φ|ψ�x is integrable on M and

|<φ|ψ>| ≤ c ‖φ‖ ‖ψ‖

(where ‖.‖ = (.|.)
1

2 is the norm on Hm).

Under this assumption, the space-time inner product is well-defined as a
bounded bilinear form on Hm,

<.|.> : Hm ×Hm → C .

Applying the Riesz representation theorem, we can uniquely represent this
bilinear form with a signature operator S,

(2.6) S : Hm → Hm with <φ|ψ> = (φ | Sψ) .

We refer to S as the fermionic signature operator. It is obviously a
bounded symmetric operator on Hm. We note that the construction of the
fermionic signature operator is manifestly covariant and independent of the
choice of a Cauchy surface.



The chiral index of the fermionic signature operator 41

3. The chiral index

We now modify the construction of the fermionic signature operator by in-
serting the chiral projection operators into (2.4). We thus obtain the bilinear
forms

(3.1) <ψ|φ>L/R =

∫
M

≺ψ |χL/R φ�x dμM .

For the space-time integrals to exist, we need the following assumption.

Definition 3.1. A globally hyperbolic space-time (M, g) is said to be Γ-
finite if there is a constant c > 0 such that for all φ, ψ ∈ Hm ∩ C∞

sc (M, SM),
the function ≺φ|Γψ�x is integrable on M and

|<φ|Γψ>| ≤ c ‖φ‖ ‖ψ‖ .

There seems no simple relation between m-finiteness and Γ-finiteness. But
both conditions are satisfied if we assume that the space-time (M, g) has
finite lifetime in the sense that it admits a foliation (Nt)t∈(t0,t1) by Cauchy
surfaces with t0, t1 ∈ R such that the function 〈ν, ∂t〉 is bounded on M (see [6,
Definition 3.4]). The following proposition is an immediate generalization
of [6, Proposition 3.5].

Proposition 3.2. Every globally hyperbolic manifold of finite lifetime is
m-finite and Γ-finite.

Proof. Let ψ ∈ Hm ∩ C∞
sc (M, SM) and C(x) one of the operators 11Sx

or
iΓ(x). Applying Fubini’s theorem and decomposing the volume measure, we
obtain

<ψ|Cψ> =

∫
M

≺ψ|Cψ�(x) dμM(x) =

∫ t1

t0

∫
Nt

≺ψ|Cψ�〈ν, ∂t〉 dt dμNt

and thus

∣∣<ψ|Cψ>
∣∣ ≤ sup

M

〈ν, ∂t〉

∫ t1

t0

dt

∫
Nt

|≺ψ|Cψ�| dμNt
.

Rewriting the integrand as

|≺ψ|Cψ�| = |≺ψ|/ν (/νC)ψ�| ,
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the bilinear form ≺.|/ν.� is a scalar product. Moreover, the operator /νC is
symmetric with respect to this scalar product. Using that

(/ν)2 = 11 = (i/νΓ)2 ,

we conclude that the sup-norm corresponding to the scalar product ≺.|/ν.�
of the operator /νC is equal to one. Hence∫

Nt

|≺ψ|Cψ�| dμNt
≤

∫
Nt

≺ψ|/νψ� dμNt
= (ψ|ψ) ,

and consequently ∣∣<ψ|Cψ>
∣∣ ≤ (t1 − t0) sup

M

〈ν, ∂t〉 ‖ψ‖
2 .

Polarization and a denseness argument give the result. �

Assuming that our space-time is m-finite and Γ-finite, the bilinear
forms (3.1) are bounded on Hm ×Hm. Thus we may represent them with
respect to the Hilbert space scalar product in terms of signature opera-
tors SL/R,

(3.2) SL/R : Hm → Hm with <φ|ψ>L/R = (φ | SL/R ψ) .

We refer to SL/R as the chiral signature operators. Taking the complex
conjugate of the equation in (3.2) and using that χ∗

L = χR, we find that (1.1)
holds, where the star denotes the adjoint in L(Hm).

We now define the chiral index as the Noether index of SL (sometimes
called Fredholm index; for basics see for example [9, §27.1]).

Definition 3.3. The fermionic signature operator is said to have finite
chiral index if the operators of SL and SR both have a finite-dimensional
kernel. The chiral index of the fermionic signature operator is defined by

(3.3) ind S = dimker SL − dimker SR .

4. Generalization to the setting of causal fermion systems

Our starting point is a causal fermion system as introduced in [3].

Definition 4.1. Given a complex Hilbert space (H, 〈.|.〉H) and a param-
eter n ∈ N (the “spin dimension”), we let F ⊂ L(H) be the set of all self-
adjoint operators on H of finite rank, which (counting with multiplicities)
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have at most n positive and at most n negative eigenvalues. On F we are
given a positive measure ρ (defined on a σ-algebra of subsets of F), the so-
called universal measure. We refer to (H,F, ρ) as a causal fermion system.

Starting from a Lorentzian spin manifold, one can construct a corresponding
causal fermion system by choosing H as a suitable subspace of the solution
space of the Dirac equation, forming the local correlation operators (possibly
introducing an ultraviolet regularization) and defining ρ as the push-forward
of the volume measure on M (see [6, Section 4] or the examples in [4]). The
advantage of working with a causal fermion system is that the underlying
space-time does not need to be a Lorentzian manifold, but it can be a more
general “quantum space-time” (for more details see [2]).

We now recall a few basic notions from [3]. On F we consider the topol-
ogy induced by the operator norm ‖A‖ := sup{‖Au‖H with ‖u‖H = 1}. For
every x ∈ F we define the spin space Sx by Sx = x(H); it is a subspace of H
of dimension at most 2n. On Sx we introduce the spin scalar product ≺.|.�x

by

(4.1) ≺u|v�x = −〈u|xu〉H (for all u, v ∈ Sx) ;

it is an indefinite inner product of signature (p, q) with p, q ≤ n. Moreover,
we define space-timeM as the support of the universal measure,M = supp ρ.
It is a closed subset of F.

In order to extend the chiral grading to causal fermion systems, we
assume for every x ∈M an operator Γ(x) ∈ L(H) with the properties

(4.2) Γ(x)|Sx
: Sx → Sx and xΓ(x) = −Γ(x)∗ x .

We define the operators χL/R(x) ∈ L(H) again by (2.2). In order to explain
the equations (4.2), we first note that the right side of (4.2) obviously van-
ishes on the orthogonal complement of Sx. Using furthermore that, by defi-
nition of the spin space, the operator x is invertible on Sx, we infer that

Γ(x)|S⊥
x
= 0 .

Moreover, the computation

≺ψ |Γ(x)φ�x = −〈ψ |xΓ(x)φ〉H = −〈Γ(x)∗xψ |φ〉H
(4.2)
= 〈xΓ(x)ψ |φ〉H = −≺Γ(x)ψ |φ�x
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(with ψ, φ ∈ Sx) shows that Γ(x) ∈ L(Sx) is antisymmetric with respect to
the spin scalar product. Thus the first equation in (2.1) again holds. This
implies that the adjoint of χL(x) with respect to ≺.|.�x equals χR(x). How-
ever, we point out that our assumptions (4.2) do not imply that Γ(x) is
idempotent (in the sense that Γ(x)2|Sx

= 11Sx
). Hence the analog of the sec-

ond equation in (2.1) does not need to hold on a causal fermion system.
This property could be imposed in addition, but will not be needed here.
The last two relations in (2.1) do not have an obvious correspondence on
causal fermion systems, and they will also not be needed in what follows.

We now have all the structures needed for defining the fermionic sig-
nature operator and its chiral index. Namely, replacing the scalar product
in (2.6) by the scalar product on the particle space 〈.|.〉H, we now demand
in analogy to (2.4) and (2.6) that the relation

〈u|Sv〉H =

∫
M
≺u|v�x dρ(x)

should hold for all u, v ∈ H. Using (4.1), we find that the fermionic signature
operator is given by the integral

S = −

∫
M

x dρ(x) .

Similarly, the left-handed signature operator can be introduced by

(4.3) SL = −

∫
M

xχL dρ(x) .

In the setting on a globally hyperbolic manifold, we had to assume that the
manifold was m-finite and Γ-finite (see Definitions 2.1 and 3.1). Now we
need to assume correspondingly that the integral (4.3) converges. For the
sake of larger generality we prefer to work with weak convergence.

Definition 4.2. The topological fermion system is SL-bounded if the in-
tegral in (4.3) converges weakly to a bounded operator, i.e. if there is an
operator SL ∈ L(H) such that for all u, v ∈ H,

−

∫
M
〈u |xχLv〉H dρ(x) = 〈u|SLv〉H .

Introducing the right-handed signature operator by SR := S∗L, we can define
the chiral index again by (3.3).
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5. The chiral index in the massless odd case

We return to the setting of Section 3 and consider the special case that the
mass vanishes and that the Dirac operator is odd,

(5.1) m = 0 and ΓD = −D Γ .

In this case, the solution space of the Dirac equation is obviously invariant
under Γ,

Γ : H0 → H0 .

Taking the adjoint with respect to the scalar product (2.5) and noting that Γ
anti-commutes with /ν, one sees that Γ is symmetric onH0. Hence χL and χR

are orthogonal projection operators, giving rise to the orthogonal sum de-
composition

(5.2) H0 = HL ⊕HR with HL/R := χL/R H0 .

Moreover, the computation

<χLψ|χc′φ>c =

∫
M

≺χLψ |χc χc′φ�x dμM

=

∫
M

≺ψ |χR χc χc′φ�x dμM = δRc δcc′ <ψ|φ>c

with c, c′ ∈ {L,R} (and similarly for L replaced by R) shows that Smaps the
right-handed component to the left-handed component and vice versa. More-
over, in a block matrix notation corresponding to the decomposition (5.2),
the operators SL and SR have the simple form

SL =

(
0 0
A 0

)
and SR =

(
0 A∗

0 0

)
with a bounded operator A : HL → HR. As a consequence, both SL and SR

have an infinite-dimensional kernel, so that the index cannot be defined
by (3.3). This problem can easily be cured by restricting the operators to
the respective subspace HL and HR.

Definition 5.1. In the massless odd case (5.1), the fermionic signature
operator is said to have finite chiral index if the operators SL|HL

and SR|HR

both have a finite-dimensional kernel. We define the index ind0 S by

ind0 S = dimker(SL)|HL
− dimker(SR)|HR

.
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6. Homotopy invariance

We first recall Dieudonné’s general theorem on the homotopy invariance of
the Noether index (see for example [9, Theorem 27.1.5”]).

Theorem 6.1. Let T (t) : U → V , 0 ≤ t ≤ 1, be a one-parameter family of
bounded linear operators between Banach spaces U and V which is continu-
ous in the norm topology. If for every t ∈ [0, 1] the vector spaces

(6.1) kerT and V/T (H) are both finite-dimensional ,

then

indT (0) = indT (1) ,

where indT := dimker(T )− dimV/T (H).

In most applications of this theorem, one knows from general arguments
that the index of T remains finite under homotopies (for example, in the
prominent example of the Atiyah-Singer index, this follows from elliptic
estimates on a compact manifold). For our chiral index, however, there is no
general reason why the chiral index of S should remain finite. Indeed, the
fermionic signature operator is bounded and typically has many eigenvalues
near zero. It may well happen that for a certain value of t, an infinite number
of these eigenvalues becomes zero (for an explicit example see Example 10.1
below).

Another complication when applying Theorem 6.1 to the fermionic signa-
ture operator is that the image of SL does not need to be a closed subspace of
our Hilbert space. To explain the difficulty, we first consider the chiral index
of Definition 3.3. Using that ker SR = ker S∗L = SL(Hm)⊥, the assumption
that the fermionic signature operator has finite chiral index can be restated
that the vector spaces ker SL and SL(Hm)⊥ are finite-dimensional subspaces
of Hm. Since

dim SL(Hm)⊥ = dimHm/
(
SL(Hm)

)
,

this implies that the closure of the image of SL has finite co-dimension. If the
image of SL were closed in Hm, the finiteness of the chiral index would imply
that the conditions (6.1) hold if we set T = SL and U = V = Hm. However,
the image of SL will in general not be a closed subspace of Hm, and in this
case it is possible that the condition (6.1) is violated for T = SL and U =
V = Hm, although S has finite chiral index (according to Definition 3.3). In
the massless odd case, the analogous problem occurs if we choose T = SL,
U = HL and V = HR (see Definition 5.1).
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Our method for making Theorem 6.1 applicable is to endow a subspace
of the Hilbert space with a finer topology, such that the image of SL lies in
this subspace and is closed in this topology.

Theorem 6.2. Let S(t) : Hm → Hm, t ∈ [0, 1], be a family of fermionic
signature operators with finite chiral index. Let E be a Banach space together
with an embedding ι : E ↪→ Hm with the following properties:

(i) For every t ∈ [0, 1], the image of SL(t) lies in ι(E), giving rise to the
mapping

(6.2) SL(t) : Hm → E .

(ii) For every t ∈ [0, 1], the image of the operator SL, (6.2), is a closed
subspace of E.

(iii) The family SL(t) : Hm → E is continuous in the norm topology.

Then the chiral index is a homotopy invariant,

ind S(0) = ind S(1) .

In the chiral odd case, the analogous result is stated as follows.

Theorem 6.3. Let S(t) : H0 → H0, t ∈ [0, 1], be a family of fermionic sig-
nature operators of finite chiral index in the massless odd case (see (5.1)).
Moreover, let E be a Banach space together with an embedding ι : E ↪→ HR

such that the operator SL|HL
: HL → HR has the following properties:

(i) For every t ∈ [0, 1], the image of SL(t) lies in ι(E), giving rise to the
mapping

(6.3) SL(t) : HL → E .

(ii) For every t ∈ [0, 1], the image of the operator SL, (6.3), is a closed
subspace of E.

(iii) The family SL(t) : HL → E is continuous in the norm topology.

Then the chiral index in the massless odd case is a homotopy invariant,

ind0 S(0) = ind0 S(1) .

In Example 10.2 below, it will be explained how these theorems can be
applied.
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7. Example: shift operators in the setting of causal

fermion systems

In the remainder of this paper we illustrate the previous constructions in sev-
eral examples. The simplest examples for fermionic signature operators with
a non-trivial chiral index can be given in the setting of causal fermion sys-
tems. We let H = �2(N) be the square-summable sequences with the scalar
product

〈u|v〉H =

∞∑
l=1

ulvl .

For any k ∈ N we define the operators xk by

(xk u)k = −uk+1 , (xk u)k+1 = −uk ,

and all other components of xku vanish. Thus, writing the series in compo-
nents,

(7.1) xk u = ( 0, . . . , 0︸ ︷︷ ︸
k − 1 entries

,−uk+1,−uk, 0, . . .) .

Every operator xk obviously has rank two with the non-trivial eigenval-
ues ±1. We let μ be the counting measure on N and ρ = x∗(μ) the push-
forward measure of the mapping x : k �→ xk ∈ F ⊂ L(H). We thus obtain a
causal fermion system (H,F, ρ) of spin dimension one.

Next, we introduce the pseudoscalar operators Γ(xk) by

(7.2) Γ(xk)u = ( 0, . . . , 0︸ ︷︷ ︸
k − 1 entries

, uk,−uk+1, 0, . . .) .

Obviously, these operators have the properties (4.2). Moreover,

xχL(xk)u = (0, . . . , 0, −uk+1, 0, 0, . . .)

xχR(xk)u = (0, . . . , 0, 0, −uk, 0, . . .) .

Consequently, the operators

(7.3) SL/R = −

∞∑
k=1

xχL(xk)

take the form

SL u = (u2, u3, u4, . . .) , SR u = (0, u1, u2, . . .)
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(note that the series in (7.3) converges weakly; in fact it even converges
strongly in the sense that the series

∑
k(xkχLu) converges in H for every u ∈

H). These are the usual shift operators, implying that

ind S = 1 .

We finally remark that a general index p ∈ N can be arranged by modi-
fying (7.1) and (7.2) to

xk u = ( 0, . . . , 0︸ ︷︷ ︸
k − 1 entries

,−uk+p, 0, . . . , 0︸ ︷︷ ︸
p− 1 entries

, −uk, 0, . . .)

Γ(xk)u = (
︷ ︸︸ ︷
0, . . . , 0 , uk,

︷ ︸︸ ︷
0, . . . , 0, −uk+p, 0, . . .) .

Moreover, a negative index can be arranged by exchanging the left- and
right-handed components.

8. Example: a Dirac operator with ind0 S �= 0

We now construct a two-dimensional space-time (M, g) together with an
odd Dirac operator D such that the resulting fermionic signature operator
in the massless case has a non-trivial chiral index ind0 (see Definition 5.1).
We choose M = (0, 2π)× S1 with coordinates t ∈ (0, 2π) and ϕ ∈ [0, 2π).
We begin with the flat Lorentzian metric

(8.1) ds2 = dt2 − dϕ2 .

We consider two-component complex spinors, with the spin scalar product

(8.2) ≺ψ|φ� =

〈
ψ|

(
0 1
1 0

)
φ

〉
C2

.

We choose the pseudoscalar matrix as

(8.3) Γ =

(
−1 0
0 1

)
,

so that

(8.4) χL =

(
1 0
0 0

)
, χR =

(
0 0
0 1

)
.
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The space-time inner product (2.4) becomes

(8.5) <ψ|φ> =

∫ 2π

0

∫ 2π

0
≺ψ(t, ϕ) |φ(t, ϕ)� dϕ dt .

The Dirac operator D should be chosen to be odd (see the right equation
in (5.1)). This means that D has the matrix representation

(8.6) D =

(
0 DR

DL 0

)

with suitable operators DL and DR. In order for current conservation to
hold, the Dirac operator should be symmetric with respect to the inner
product (8.5). This implies that the operators DL and DR must both be
symmetric,

(8.7) D∗
L = DL , D∗

R = DR ,

where the star denotes the formal adjoint with respect to the scalar product
on the Hilbert spaceL2(M,C). We consider the massless Dirac equation

(8.8) Dψ = 0 .

The scalar product (2.5) on the solutions takes the form

(8.9) (ψ|φ) = 2π

∫ 2π

0
〈ψ(t, ϕ)|φ(t, ϕ)〉C2 dϕ ,

giving rise to the Hilbert space (H0, (.|.)). As a consequence of current con-
servation, this scalar product is independent of the choice of t.

We assume that the system is invariant under time translations and is a
first order differential operator in time. More precisely, we assume that

(8.10) DL/R = i∂t −HL/R

with purely spatial operators HL/R, referred to as the left- and right-handed
Hamiltonians. Moreover, we assume that these Hamiltonians are homoge-
neous. This implies that they can be diagonalized by plane waves,

Dc e
ikϕ = ωk,c e

ikϕ with k ∈ Z and c ∈ {L,R} .
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As a consequence, the Dirac equation (8.8) can be solved by the plane waves

(8.11) ek,L =
1

2π
e−iωk,Lt+ikϕ

(
1
0

)
, ek,R =

1

2π
e−iωk,Rt+ikϕ

(
0
1

)
.

The vectors (ek,c)k∈Z,c∈{L,R} form an orthonormal basis of the Hilbert space
H0. We remark that the Dirac operator of the Minkowski vacuum is obtained
by choosing

HL = i∂ϕ , HR = −i∂ϕ

(see for example [5] or [4, Section 7.2]). In this case, ωk,L/R = ∓k. More gen-
erally, choosing Dc as a homogeneous differential operator of first order, the
eigenvalues ωk,c are linear in k. Here we do not want to assume that the op-
erators Dc are differential operators. Then the eigenvalues ωk,L and ωk,R can
be chosen arbitrarily and independently, except for the constraint coming
from the symmetry (8.7) that these eigenvalues must be real.

More specifically, for a given parameter p ∈ N we choose

(8.12) ωk,L = −k and ωk,R =

{
k if k ≤ 0

k + p if k > 0

(see Figure 1).
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Figure 1: The eigenvalues ωk,L/R in the case p = 2.
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Then the space-time inner product of the basis vectors (ek,c)k∈Z,c∈{L,R}

is computed by

<ek,L|ek′,L> = 0 = <ek,R|ek′,R>

<ek,R|ek′,L> =
1

2π
δk,k′

∫ 2π

0
ei(ωk,R−ωk,L)t dt = δk,k′ δωk,R, ωk,L

= δk,0 δk′,0 .

We conclude S does not have finite chiral index.
In order to obtain a non-trivial index, we need to modify our example.

The idea is to change the space-time inner product in such a way that the
inner product between two different plane-wave solutions with the same
frequencies becomes non-zero. As a consequence, the corresponding pair of
plane-wave solutions will disappear from the kernel. The only vectors which
remain in the kernel are those which do not have a partner for pairing, so
that

ker SL|HL
= span

(
e−1,L, . . . , e−p,L

)
, ker SR|HR

= {0} .

(see again Figure 1, where the pairs are indicated by horizontal dashed lines,
whereas the vectors in the kernel correspond to the circled dots). Generally
speaking, the method to modify the space-time inner product for states with
the same frequency is to insert a potential into the Dirac equation which
is time-independent but has a non-trivial spatial dependence. It is most
convenient to work with a conformal transformation. Thus we go over from
the Minkowski metric (8.1) to the conformally flat metric

(8.13) ds̃2 = f(ϕ)2
(
dt2 − dϕ2

)
,

where f ∈ C∞(R/(2πZ)) is a non-negative, smooth, 2π-periodic function.
The conformal invariance of the Dirac equation (for details see for exam-
ple [4, Section 8.1] and the references therein) states in our situation that
the Dirac operator transforms as

(8.14) D̃ = f− 3

2 D f
1

2 ,

so that

D̃ =

(
0 D̃R

D̃L 0

)
with D̃L/R = f− 3

2 DL/R f
1

2 .

The solutions of the massless Dirac equation are modified simply by a con-
formal factor,

(8.15) ψ̃ = f− 1

2 ψ .



The chiral index of the fermionic signature operator 53

The space-time inner product (8.5) and the scalar product (8.9) transform
to

<ψ̃|φ̃> =

∫ 2π

0

∫ 2π

0
≺ψ̃(t, ϕ) | φ̃(t, ϕ)� f(ϕ)2 dϕ dt(8.16)

=

∫ 2π

0

∫ 2π

0
≺ψ(t, ϕ) |φ(t, ϕ)� f(ϕ) dϕ dt

(ψ̃|φ̃) = 2π

∫ 2π

0
〈ψ̃(t, ϕ)|φ̃(t, ϕ)〉C2 f(ϕ) dϕ(8.17)

= 2π

∫ 2π

0
〈ψ(t, ϕ)|φ(t, ϕ)〉C2 dϕ = (ψ|φ) .

To understand these transformation laws, one should keep in mind that the
spin scalar product remains unchanged under conformal transformations.
The same is true for the integrand ≺ψ|/νφ�x of the scalar product (2.5),
because the operator /ν is normalized by /ν2 = 11.

From (8.17) we conclude that the scalar product does not change un-
der conformal transformations. In particular, the conformally transformed
plane-wave solutions

(8.18) ẽk,L/R = f(ϕ)−
1

2 ek,L/R

are an orthonormal basis of H̃0. The space-time inner product (8.16), how-
ever, involves a conformal factor f(ϕ). As a consequence, the space-time
inner product of the basis vectors (ẽk,c)k∈Z,c∈{L,R} can be computed by

<ẽk,L |̃ek′,L> = 0 = <ẽk,R |̃ek′,R>

<ẽk,R |̃ek′,L> =

∫ 2π

0
dt

∫ 2π

0
f(ϕ) dϕ ≺ẽk,R(t, ϕ) | ẽk′,L(t, ϕ)�

=
1

2π
δωk,R, ωk′,L

∫ 2π

0
f(ϕ) e−i(k−k′)ϕ dϕ =

1

2π
δωk,R,ωk′,L

f̂k−k′ ,

where f̂k is the kth Fourier coefficient of f ,

f(ϕ) =
1

2π

∑
k∈Z

f̂k e
ikϕ .
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Using the explicit form of the frequencies (8.12), we obtain the following
invariant subspaces and corresponding matrix representations of S,

Ŝ|span(ẽ−k,L,ẽk,R) =
1

2π

(
0 f̂2k
f̂2k 0

)
if k ≤ 0

Ŝ|span(ẽ−k−p,L,ẽk,R) =
1

2π

(
0 f̂2k+p

f̂2k+p 0

)
if k > p

Ŝ|span(ẽ−1,L,ẽ−p,L) = 0 .

In particular, we can read off the chiral index:

Proposition 8.1. Assume that almost all Fourier coefficients f̂k of the
conformal function in (8.13) are non-zero. Then the fermionic signature
operator in the massless odd case has finite chiral index (see Definition 5.1)
and ind0 S = p.

We finally compute the Dirac operator in position space. The dispersion
relations in (8.12) are realized by the operators

DL = i(∂t − ∂ϕ)

DR = i(∂t + ∂ϕ) +B ,

where B is the spatial integral operator

(
Bψ

)
(t, ϕ) =

∫ 2π

0
B(ϕ,ϕ′) ψ(t, ϕ′) dϕ′

with the distributional integral kernel

B(ϕ,ϕ′) = −
p

2π

∞∑
k=1

eik(ϕ−ϕ′) = −
p

2
δ(ϕ− ϕ′)−

p

2π

PP

e−i(ϕ−ϕ′) − 1
.

Hence, choosing the Dirac matrices as

(8.19) γ0 =

(
0 1
1 0

)
, γ1 =

(
0 1
−1 0

)

and using (8.4), we obtain

(8.20) D = iγ0∂t + iγ1∂ϕ + γ1χR B .
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Performing the conformal transformation (8.14), we finally obtain

(
D̃ψ)(t, ϕ) =

i

f(ϕ)

(
γ0∂t + γ1∂ϕ +

f ′(ϕ)

2f(ϕ)
−

p

2
γ1χR

)
ψ(t, ϕ)(8.21)

−
p

2π

γ1χR

f(ϕ)
3

2

∫ 2π

0

PP

e−i(ϕ−ϕ′) − 1
ψ(t, ϕ′)

√
f(ϕ′) dϕ′ .(8.22)

Thus (8.21) is the Dirac operator in the Lorentzian metric (8.13) with a
constant right-handed potential. Moreover, the summand (8.22) is a nonlocal
integral operator involving a singular integral kernel.

This example shows that the index of Proposition 8.1 in general does not
encode the topology of space-time, because for a fixed space-time topology
the index can take any integer value. The way we understand the index is
that it gives topological information on the singular behavior of the potential
in the Dirac operator.

9. Example: a Dirac operator with ind S �= 0

We now construct an example of a fermionic signature operator for which
the index ind S of Definition 3.3 is non-trivial. To this end, we want to mod-
ify the example of the previous section. The major difference to the previous
setting is that the Hilbert space Hm does not have a decomposition into two
subspaces HL and HR, making it necessary to consider the operators SL

and SR as operators on the whole solution space Hm. Our first task is to
remove the infinite-dimensional kernels of the operators SL and SR. This
can typically be achieved by perturbing the Dirac operator, for example by
introducing a rest mass. The second and more substantial modification is to
arrange that the operators SL and SR have infinite-dimensional invariant
subspaces. This is needed for the following reason: In the example of the
previous section, the operator SL|HL

: HL → HR mapped one Hilbert space
to another Hilbert space. Therefore, we obtained a non-trivial index simply
by arranging that the operator SL|HL

gives a non-trivial “pairing” of vectors
of HL with vectors of HR (as indicated in Figure 1 by the horizontal dashed
lines). In particular, if considered as an operator on H0, the operator SL

had at most two-dimensional invariant subspaces. For the chiral index of
Definition 3.3, however, we have only one Hilbert space Hm to our disposal,
so that the operator SL : Hm → Hm is an endomorphism of Hm. As a con-
sequence, the chiral index is trivial whenever Hm splits into a direct sum of
finite-dimensional subspaces which are invariant under SL (because on each
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Figure 2: The action of SL on the transformed plane-wave solutions in the
case p = 1.

invariant subspace, the index is trivial due to the rank-nullity theorem of
linear algebra).

The following example is designed with the aim of showing in explicit
detail that the index is non-zero. Our starting point are the plane-wave
solutions (8.11) with the frequencies according to (8.12) with p ∈ N. In Fig-
ure 2 the transformed plane-wave solutions ẽk,c (where the transformation
from ek,c to ẽk,c will be explained below) are arranged according to their
frequencies and momenta on a lattice. We shall construct the operator SL

in such a way that these plane-wave solutions are mapped to each other as
indicated by the arrows. Thus similar to a shift operator, SL maps the basis
vectors to each other “spiraling in,” implying that the vector ẽ−1,L (depicted
with the circled dot) is in the kernel of SL. Likewise, the operator SR acts
like a “spiraling out” shift vector, so that it is injective. In this way, we
arrange that ind S = 1. Similarly, in the case p > 1 we shall obtain p spirals,
so that ind S = p.

Before entering the detailed construction, we point out that our method
is driven by the wish that the example should be explicit and that the
kernels of the chiral signature operators should be given in closed form. This
makes it necessary to introduce a Dirac operator which seems somewhat
artificial. In particular, instead of introducing a rest mass, we arrange a
mixing of the left- and right-handed components using a time-dependent
vectorial gauge transformation. Moreover, we again work with a conformal
transformation with a carefully adjusted spatial and time dependence. We
consider these special features merely as a requirement needed in order to
make the computations as simple as possible. In view of the stability result
of Theorem 6.2, we expect that the index is also non-trivial in more realistic
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examples involving a rest mass and less fine-tuned potentials. But probably,
this goes at the expense of longer computations or less explicit arguments.

We begin on the cylinder M = (0, 6π)× S1, again with the Minkowski
metric (8.1) and two-component spinors endowed with the spin scalar prod-
uct (8.2). The space-time inner product (2.4) becomes

(9.1) <ψ|φ> =

∫ 6π

0

∫ 2π

0
≺ψ(t, ϕ) |φ(t, ϕ)� dϕ dt ,

whereas the scalar product on solutions of the Dirac equation is again given
by (8.9). We again consider the massless Dirac equation (8.8) with the Dirac
operator (8.6) and the left- and right-handed operators according to (8.10).
Moreover, we again assume that the operators DL/R have the plane-wave
solutions (8.11) with frequencies (8.12). For a fixed real parameter ν �= 0,
we consider the transformation

U(t) =
11 + iνγ0 cos t/3√
1 + ν2 cos2 t/3

(9.2)

=
1√

1 + ν2 cos2 t/3

(
1 iν cos t/3

iν cos t/3 1

)
.

Obviously, U(t) ∈ U(2) is a unitary matrix. Moreover, it commutes with γ0,
implying that it is also unitary with respect to the spin scalar product.
As a consequence, the transformation U(t) is unitary both on the Hilbert
space H0 and with respect to the inner product (9.1). Next, we again con-
sider a conformal transformation (8.14) and (8.15), but now with a conformal
function f(t, ϕ) which depends on space and time. Thus we set

(9.3) D̃ = f− 3

2U DU∗f
1

2 and ψ̃ = f− 1

2 U ψ .

Similar to (8.16) and (8.17), the inner products transform to

<ψ̃|φ̃> =

∫ 6π

0

∫ 2π

0
≺ψ(t, ϕ) |φ(t, ϕ)� f(t, ϕ) dϕ dt and (ψ̃|φ̃) = (ψ|φ) .

In particular, the transformed plane wave solutions ẽk,c are an orthonormal
basis of H0. Keeping in mind that the chiral projectors in (3.1) do not
commute with U , we obtain

<ψ̃|φ̃>L =

∫ 6π

0

∫ 2π

0
≺U(t)ψ(t, ϕ) |χL U(t)φ(t, ϕ)� f(t, ϕ) dϕ dt
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Figure 3: The transformation V in momentum space.

and thus, in view of (3.2),

(9.4) (ẽk,c | SL ẽk′,c′) =

∫ 6π

0

∫ 2π

0
≺Uek,c |χLUek′,c′� f(t, ϕ) dϕ dt .

In order to get rid of the square roots in (9.2), it is most convenient to set

(9.5) V (t) =

(
1 iν cos t/3

iν cos t/3 1

)
and μ(t, ϕ) =

f(t, ϕ)

1 + ν2 cos2 t/3
.

Then (9.4) simplifies to

(9.6) (ẽk,c | SL ẽk′,c′) =

∫ 6π

0

∫ 2π

0
≺V ek,c |χLV ek′,c′� μ(t, ϕ) dϕ dt .

Let us first discuss the effect of the transformation V . A left-handed
spinor is mapped to

V

(
1
0

)
=

(
1
0

)
+

i

2
eit/3

(
0
1

)
+

i

2
e−it/3

(
0
1

)
.

Thus two right-handed contributions are generated, whose frequency differ
from the frequency of the left-handed component by ±1/3. Similarly, a right-
handed spinor is mapped to

V

(
0
1

)
=

(
0
1

)
+

i

2
eit/3

(
1
0

)
+

i

2
e−it/3

(
1
0

)
,

generating two left-handed components with frequencies shifted by ±1/3.
Again plotting the frequencies vertically, we depict the transformation V as
in Figure 3. The same notation is also used in Figure 2 for the transformed
plane-wave solutions.

The inner product ≺.|χL.� in (9.6) only gives a contribution if the argu-
ments on the left and right have the opposite chirality. Since the transformed
plane-wave solutions V ek,c have a fixed chirality at every lattice point, one
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sees in particular that (9.6) vanishes if μ is chosen as a constant. By adding
to the constant μ = 1 contributions with different momenta, we can connect
the different lattice points in Figure 2. This leads us to the ansatz

(9.7) μ(t, ϕ) = 1 + μhor(t, ϕ) + μvert(t, ϕ) ,

where the last two summands should describe the horizontal respectively
vertical arrows in Figure 2. For the horizontal arrows we can work similar
to (8.18) with a spatially-dependent conformal transformation. However, in
order to make sure that the left-handed component generated by V (corre-
sponding to the two Ls at the very right of Figure (2)) are not connected hor-
izontally, we include two Fourier modes which shift the frequency by ±2/3,

(9.8) μhor(t, ϕ) = a(ϕ)
(
1− e

2it

3 − e−
2it

3

)
,

where a has the Fourier decomposition

(9.9) a(ϕ) =

∞∑
k=1

(
ak e

ikϕ + a−k e
−ikϕ

)
.

For the vertical arrows we must be careful that the left-handed contribution
of V ek,L is not connected to the right-handed component of V ek,R, because
then the arrow would have the wrong direction. To this end, we avoid integer
frequencies. Instead, we work with the frequencies in Z± 1/3, because they
connect the left-handed component V ek,R to the right-handed component
of V ek,L. This leads us to the ansatz

(9.10) μvert(t, ϕ) = μvert(t) =
∑
n∈Z

eint
(
bn e

it

3 + b−n e
−it

3

)
.

The ansätze (9.9) and (9.10) ensure that μ is real-valued. Moreover, by
choosing the Fourier coefficients sufficiently small, one can clearly arrange
that the first summand in (9.7) dominates, so that μ is strictly positive. We
thus obtain the following result.

Proposition 9.1. Assume that the Fourier coefficients ak and bn in (9.9)
and (9.10) are sufficiently small and that almost all Fourier coefficients are
non-zero. Then the function μ defined by (9.8) and (9.7), is strictly positive.
Consider the Dirac operator (9.3) with U and f according to (9.2) (for some
fixed ν ∈ R \ {0}) and (9.5). Then the chiral index of the fermionic signature
operator (see Definition 3.3) is finite and ind S = p.
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We finally discuss the form of the Dirac operator in position space. Sub-
stituting (8.20) into (9.3) and using the above form of U and f , the Dirac
operator D̃ can be computed in closed form. Similar as discussed in the
previous section, the Dirac operator contains a nonlocal integral operator
with a singular potential. Moreover, the transformation U modifies the Dirac
matrix γ1 to

γ1 → Uγ1U∗ =
1

1 + ν2 cos2(t/3)

((
1− ν2 cos2(t/3)

)
γ1 − 2ν cos2(t/3) γ2

)
,

where

γ2 :=

(
i 0
0 −i

)
.

Thus the representation of the Dirac matrices becomes time-dependent; this
is the main effect of the vectorial transformation U . This transformation
changes the first order terms in the Dirac equation. Moreover, the confor-
mal transformation also changes the first order terms just as in (8.21) by a
prefactor 1/f .

10. Examples illustrating the homotopy invariance

We now give two examples to illustrate our considerations on the homo-
topy invariance of the chiral index. We begin with an example which shows
that the dimension of the kernel of SL does not need to be constant for
deformations which are continuous in L(H0). It may even become infinite-
dimensional.

Example 10.1. We consider the space-time M = (0, T )× S1 with coordi-
nates t ∈ (0, T ) and ϕ ∈ [0, 2π) endowed with the Minkowski metric

ds2 = dt2 − dϕ2 .

We again choose two-component complex spinors with the spin scalar prod-
uct (8.2). The Dirac operator is chosen as

D = iγ0∂t + iγ1∂ϕ ,

where the Dirac matrices are again given by (8.19). The pseudoscalar matrix
and the chiral projectors are again chosen according to (8.3) and (8.4).
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We consider the massless Dirac equation

Dψ = 0 .

This equation (8.8) can be solved by plane wave solutions, which we write
as

(10.1) ek,L(ζ) =
1

2π
e+ikt+ikϕ

(
1
0

)
, ek,R(ζ) =

1

2π
e−ikt+ikϕ

(
0
1

)
,

where k ∈ Z (the indices L and R denote the left- and right-handed com-
ponents; at the same time they propagate to the left respectively right).
By direct computation, one verifies that (ek,c)k∈Z,c∈{L,R} is an orthonormal
basis of H0.

We next compute the space-time inner product (2.4),

<ek,R|e0,L> =

∫ T

0
dt

∫ 2π

0
dϕ ≺ek,R(t, ϕ) | e0,L(t, ϕ)�

=
1

2π

∫ T

0
δk,0 dt =

T

2π
δk,0

<ek,R|ek′,L> =
1

2π
δk,k′

∫ T

0
e2ikt dt =

e2ikT − 1

4πik
(k′ �= 0)

<ek,L|ek′,L> = 0 = <ek,R|ek′,R> .

Thus the fermionic signature operator S is invariant on the subspaces H
(k)
0

generated by the basis vectors ek,L and ek,R. Moreover, in these bases it has
the matrix representations

S|
H

(0)
0

=
T

2π

(
0 1
1 0

)
and

S|
H

(k)
0

=
1

4πik

(
0 e2ikT − 1

e−2ikT − 1 0

)
(k �= 0) .

If T �∈ πQ, the matrix entries e±2ikT − 1 are all non-zero. As a conse-
quence, the operators SL|HL

and SR|HR
are both injective. Thus S has finite

chiral chiral index in the massless odd case (see Definition 5.1). If T ∈ πQ,
however, the chiral index vanishes for all k for which 2kT is a multiple
of 2π. As a consequence, the operators SL|HL

and SR|HR
both have an

infinite-dimensional kernel, so that S does not have a finite chiral index.

This example also explains why we need additional assumptions like
those in Theorems 6.2 and 6.3. In particular, when considering homotopies
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of space-time or of the Dirac operator, one must be careful to ensure that
the chiral index remains finite along the chosen path.

We next want to construct examples of homotopies to which the stability
result of Theorem 6.3 applies. To this end, it is convenient to work similar
to (8.13) with a conformal transformation.

Example 10.2. As in Example 10.1 we consider the space-time (0, T )× S1,
but now with the conformally transformed metric

ds̃2 = f(t)2
(
dt2 − dϕ2

)
where f is a non-negative C2-function with

supp f ⊂ (−T, T ) and f(0) > 0 .

Similar to (8.18) and the computation thereafter, transforming the plane-
wave solutions (10.1) conformally to ẽk,L/R = f(t)−

1

2 ek,L/R, we again obtain
an orthonormal basis of H0 and

<ẽk,R |̃ek′,L> =
1

2π
δk,k′

∫ T

0
f(t) e2ikt dt

<ẽk,L |̃ek′,L> = 0 = <ẽk,R |̃ek′,R>

for all k, k′ ∈ Z.
The integration-by-parts argument

∫ T

0
f(t) e2ikt dt =

1

2ik

∫ T

0
f(t)

d

dt
e2ikt dt = −

f(0)

2ik
−

1

2ik

∫ T

0
f ′(t) e2ikt dt

= −
f(0)

2ik
−

f ′(0)

4k2
−

1

4k2

∫ T

0
f ′′(t) e2ikt dt

shows that the space-time inner products have a simple explicit asymptotics
for large k given by

<ẽk,R |̃ek′,L> =
f(0)

4πik
δk,k′ + O

( 1

k2

)
.

Hence the operator SL has the form

SLek,L = ck ek,R



The chiral index of the fermionic signature operator 63

with coefficients ck having the asymptotics

ck =
f(0)

4πik
+ O

( 1

k2

)
.

From this asymptotics we can read off the following facts. First, it is obvious
that the restriction SL|HL

has a finite-dimensional kernel. Exchanging the
chirality, the same is true for SR|HR

, implying that S has a finite chiral index
(according to Definition 5.1). Next, the vectors in the image of SL are in the
Sobolev space W 1,2,

SL|HL
: HL → HR ∩W 1,2(S1,C2) .

Moreover, the image of this operator is closed (in the W 1,2-norm). Finally,
our partial integration argument also yields that

‖SLψ‖W 1,2 ≤ |f |C2 ‖ψ‖H0
,

showing that the family of signature operators is norm continuous for a
C2-homotopy of functions f .

Having verified the assumptions of Theorem 6.3, we conclude that the
chiral index in the massless odd case is invariant under C2-homotopies of
the conformal function f , provided that f(0) stays away from zero.

11. Conclusion and outlook

Our analysis shows that the chiral index of a fermionic signature operator is
well-defined and in general non-trivial. Moreover, it is a homotopy invariant
provided that the additional conditions stated in Theorems 6.2 and 6.3 are
satisfied. As already mentioned at the end of the introduction, the physical
and geometric meaning of this index is yet to be explored.

We now outline how our definition of the chiral index could be general-
ized or extended other situations. First, our constructions also apply in the
Riemannian setting by working instead of causal fermion systems with so-
called Riemannian fermion systems or general topological fermion systems
as introduced in [4]. In this situation, one again imposes a pseudoscalar
operators Γ(x) ∈ L(H) with the properties (4.2). Then all constructions in
Section 4 go through. Starting on an even-dimensional Riemannian spin
manifold, one can proceed as explained in [4] and first construct a corre-
sponding topological fermion system. For this construction, one must choose
a particle space, typically of eigensolutions of the Dirac equation. Once the
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topological fermion system is constructed, one can again work with the in-
dex of Section 4. If the Dirac operator anti-commutes with the pseudoscalar
operator, one can choose the particle space H to be invariant under the
action of Γ. This gives a decomposition of the particle space into two chiral
subspaces, H = HL ⊕HR. Just as explained in Section 5, this makes it pos-
sible to introduce other indices by restricting the chiral signature operators
to HL or HR. Moreover, one could compose the operators from the left with
the projection operators onto the subspaces HL/R and consider the Noether
indices of the resulting operators.

Another generalization concerns space-times of infinite lifetime. Using
the constructions in [7], in such space-times one can still introduce the
fermionic signature operator Sm provided that the space-time satisfies the
so-called mass oscillation property. By inserting chiral projection operators,

one can again define chiral signature operators S
L/R
m and define the chiral

index as their Noether index. Also the stability results of Theorems 6.2
and 6.3 again apply. It is unknown whether the resulting indices have a geo-
metric meaning. Since Sm depends essentially on the asymptotic form of the
Dirac solutions near infinity, the corresponding chiral indices should encode
information on the metric and the external potential in the asymptotic ends.

We finally remark that the fermionic signature operator could be local-
ized by restricting the space-time integrals to a measurable subset Ω ⊂ M.
For example, one can introduce a chiral signature operator SL(Ω) similar
to (3.1) and (3.2) by

(φ | SL(Ω)ψ) =

∫
Ω
≺ψ |χL φ�x dμM .

Likewise, in the setting of causal fermion systems, one can modify (4.3) to

SL(Ω) = −

∫
Ω
xχL dρ(x) .

The corresponding indices should encode information on the behavior of the
Dirac solutions in the space-time region Ω.
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