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Interpolating local constants in families

GILBERT MoOSS

We extend the theory of local constants developed by Jacquet,
Piatetski-Shapiro, and Shalika in [10] to f-adic families of repre-
sentations of GL, (F) where F is a p-adic field with ¢ not equal to
p. We construct zeta integrals and gamma factors for representa-
tions coming from the conjectural “local Langlands correspondence
in families” of Emerton-Helm, proving their rationality and func-
tional equation. We also construct a universal gamma factor with
coefficients in the integral Bernstein center.

1. Introduction

Let G = GL,(F), let k be an algebraically closed field of characteristic ¢,
and W (k) its ring of Witt vectors. By an f-adic family of representations
we mean an A[G]-module V where A is a commutative W (k)-algebra with
unit; then each point p of A gives a k(p)[G]-module V ®4 x(p) where x(p)
denotes the residue field at p. In [6], Emerton and Helm conjecture a local
Langlands correspondence for ¢-adic families of admissible representations.
To any continuous Galois representation p: Ggp — GL,(A), they conjec-
turally associate an admissible smooth A[G]-module 7(p), which interpolates
the local Langlands correspondence for points A — k with k characteristic
zero. They prove that any A[G]-module which is subject to this interpola-
tion property and a short list of representation-theoretic conditions (see [6,
Thm. 6.2.1]) must be unique.

In [8], Helm further investigates the structure of 7(p) by taking the list
of representation-theoretic conditions in [6, Thm. 6.2.1] as a starting point
for the theory of “co-Whittaker” A[G]-modules (see Section 2.5 below for
the definitions). Using this theory, he is able to reformulate the conjecture
in terms of the existence of a certain homomorphism between the integral
Bernstein center and a universal deformation ring ([8, Thm. 7.8]).

Roughly speaking, representations of G L, (F') over C are completely de-
termined by data involving only local constants ([9]), and in particular the
bijections of the classical local Langlands correspondence are uniquely de-
termined using L- and epsilon-factors (see, for example, [12]). However, L-
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and epsilon-factors are absent from the the local Langlands correspondence
in families. Thus it is natural to ask whether it is possible to attach L- and
epsilon-factors to an f-adic family such as 7(p) as in [6], or more generally
any co-Whittaker A[G]-module, in a way that interpolates the L- and epsilon
factors at each point.

Over C, L-factors L(m, X) arise as the greatest common denominator
of the zeta integrals Z (W, X; j) of a representation 7w as W varies over the
space W(m, 1) of Whittaker functions (see Sections 2.2, 3.1 for definitions).
Epsilon-factors e(m, X, 1) are the constant of proportionality (i.e. not de-

pending on W) in a functional equation relating the modified zeta integral
Z(W.X)
L(m,X) o

variable X replaces the complex variable qf(SJrT) appearing in [10] and
other literature, and we consider these objects as formal series.

It appears difficult to construct L-factors in a way compatible with arbi-
trary change of coefficients. To see this, consider the following simple exam-
ple: let ¢ =1 mod ¢, and let xi, x2 : F* — W(k)* be smooth characters
such that x; is unramified but xs is ramified, and such that y; = x2 mod /.
Following the classical procedure (see for example [4, 23.2]) for finding a gen-
erator of the fractional ideal of zeta integrals, we get L(y;, X) € W (k)(X)
and find that L(xi, X) = m, and L(x2,X) = 1. Now let A be the
Noetherian local ring {(a,b) € W (k) x W(k) : a =b mod ¢}, which has two
characteristic zero points p1, p2 and a maximal ideal £A. Let 7 be the A[F*]-
module A, with the action of F* given by z - (a,b) = (x1(z)a, x2(z)b). In-
terpolating L(x1, X ) and L(x2, X) would mean finding an element L(7, X)
in A[[X]][X '] such that L(w, X) = L(x;, X) mod £ for i = 1,2, but such a
task is impossible because L(x1,X) and L(x2, X ) are different mod ¢.

On the other hand, zeta integrals themselves seem to be much more
well-behaved with respect to specialization. Classically, zeta integrals form
elements of the quotient field C(X) of C[X, X ~!]. Our first result is identify-
ing, for more arbitrary coefficient rings A, the correct fraction ring in which
our naive generalization of zeta factors will live:

to its pre-composition with a Fourier transform. Here, the formal

Theorem 1.1. Suppose A is a Noetherian W (k)-algebra. Let S be the mul-
tiplicative subset of A[X, X 1] consisting of polynomials whose first and last
coefficients are units. Then if V' is a co- Whittaker A[G]-module, Z(W, X j)
lies in the fraction ring S~ A[X, X~Y) for all W € W(V, %) and for 0 <
j<n-—2.

The proof of rationality in the setting of representations over a field relies
on a useful decomposition of a Whittaker function into “finite” functions
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([10, Prop. 2.2]). In the setting of rings, such a structure theorem is lacking,
but certain elements of its proof can be translated into a question about the
finiteness of the (n — 1)st Bernstein-Zelevinsky derivative. This finiteness
property, combined with a simple translation property of the zeta integrals,
yields Theorem 1.1 (see §3.2).

Classically, zeta integrals satisfy a functional equation which does not in-
volve dividing by the L-factor. The constant of proportionality in thi§ fl%nc—
tional equation is called the gamma-factor and equals e(m, X ,w)%,
when the L-factor makes sense. Our second main result is that garﬁma—
factors interpolate in f-adic families (see §4.1 for details on the notation):

Theorem 1.2. Suppose A is a Noetherian W (k)-algebra and suppose V' is
a primitive co- Whittaker A|G|-module. Then there exists a unique element

Y(V, X, %) of STHA[X, X)) such that
: — 1 .
for any W € W(V,4) and for any 0 < j <n —2.

To prove Theorem 1.2 we use the theory of the integral Bernstein center
to reduce to the characteristic zero case of [10].

The question of interpolating local constants in f-adic families has been
investigated in a simple case by Vigneras in [16]. For supercuspidal repre-
sentations of G La(F) over Qq, Vigneras notes in [16] that it is known that
epsilon factors define elements of Zy, and proves that for two supercuspi-
dal integral representations to be congruent modulo £ it is necessary and
sufficient that they have epsilon factors which are congruent modulo ¢ (we
call a representation with coefficients in a local field E integral if it stabi-
lizes an Opg-lattice). The classical epsilon and gamma factors are equal in
the supercuspidal case, so when the specialization of an f-adic family at a
characteristic zero point is supercuspidal, the gamma factor we construct in
this paper specializes to the epsilon factor of [10, 16]. Since two representa-
tions Vi, V3 over Op which are congruent mod mg define a family Vi x¢ Va
over the connected W (k)-algebra Op xj, Op, Theorems 1.1 and 1.2 give
the following corollary (implying the “necessary” part of [16]):

Corollary 1.3. Let K denote the fraction field of W (k). If © and ©' are
absolutely irreducible integral representations of GLy(F) over a coefficient
field E which is a finite extension of K, then:
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1) v(m, X, ¢) and v(7', X, 1)) have coefficients in the fraction ring
S_l(oE[XaX_l])'

2) If mg is the mazimal ideal of Op, and m=7' mod mg, then
v(m, X, ) = v(r', X,4) mod mp.

The question of extending the theory of zeta integrals to the f-modular
setting has been investigated in [14], and very recently in [13] for the Rankin-
Selberg integrals. The question of deforming local constants over polynomial
rings over C has been investigated by Cogdell and Piatetski-Shapiro in [5],
and the techniques of this paper owe much to those in [5].

Analogous to the results of Bernstein and Deligne in [3] for Repq(G),
Helm shows in [7, Thm. 10.8] that the category Repyy(;)(G) has a decom-
position into full subcategories known as blocks. Our third main result is
constructing for each block a gamma factor which is universal in the sense
that it gives rise via specialization to the gamma factor for any co-Whittaker
module in that block. We will now state this result more precisely.

Each block of the category Repyy 1y (G) corresponds to a primitive idem-
potent in the Bernstein center Z, which is defined as the ring of endomor-
phisms of the identity functor. It is a commutative ring whose elements con-
sist of collections of compatible endomorphisms of every object, each such
endomorphism commuting with all morphisms. Choosing a primitive idem-
potent e of Z, the ring eZ is the center of the subcategory e - RepW(k)(G)
of representations satisfying eV = V. The ring eZ has an interpretation as
the ring of regular functions on an affine algebraic variety over W (k), whose
k-points are in bijection with the set of unramified twists of a fixed conju-
gacy class of supercuspidal supports in Rep,(G). See [7] for details. In [8],
Helm determines a “universal co-Whittaker module” with coefficients in eZ,
denoted here by €2, which gives rise to any co-Whittaker module via spe-
cialization (see Prop. 2.31 below). By applying our theory of zeta integrals
to e we get a gamma factor which is universal in the same sense:

Theorem 1.4. Suppose A is any Noetherian W (k)-algebra, and suppose V
is a primitive co- Whittaker A[G]-module. Then there is a primitive idem-
potent e, a homomorphism fy :eZ — A, and an element I'(e20, X, 1) €
S~ L(eZ[X, X)) such that v(V, X,v) = fi (T'(e2V, X, )).

Interpolating gamma factors of pairs may be the next step in obtaining
a local converse theorem for ¢-adic families. By capturing the interpolation
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property, families of gamma factors might give an alternative characteri-
zation of the co-Whittaker module m(p) appearing in the local Langlands
correspondence in families.

1.1. Notation and conventions

Let F' be a finite extension of Q,, let ¢ be the order of its residue field, and
let k be an algebraically closed field of characteristic ¢, where ¢ # p is an
odd prime. Denote by W (k) the ring of Witt vectors over k. The assumption
that ¢ is odd is made so that W (k) contains a square root of ¢. When ¢ = 2
all the arguments presented will remain valid, after possibly adjoining a
square root of ¢ to W (k). The letter G or G,, will always denote the group
GL,(F). Throughout the paper A will be a Noetherian commutative ring
which is a W (k)-algebra, with additional properties in various sections, and
k(p) will denote the residue field of a prime ideal p of A. For any locally
profinite group H, Rep 4(H) denotes the category of smooth representations
of H over the ring A, i.e. A[H]-modules for which every element is stabilized
by an open subgroup of H. Even when this category is not mentioned, all
representations are presumed to be smooth. When H is a closed subgroup
of G, we define the non-normalized induction functor Ind% (resp. c-Ind%)
:Repy(H) — Repy(G) sending 7 to the smooth part of the A[G]-module,
under right translation, of functions (resp. functions compactly supported
modulo H) f: G — 7 such that f(hg) =7(h)f(g9), h€ H, g € G.

The integral Bernstein center of [7] (see the discussion preceding The-
orem 1.4) will always be denoted by Z. If V is in Repy(G), then it is
also in Repyy () (G), and we frequently use the Bernstein decomposition of
Repyy (1) (G) to interpret properties of V.

If A has a nontrivial ideal I, then I-V is an A[H]-submodule of V,
which shows that most content would be missing if we developed the rep-
resentation theory of Rep 4(H) around the notion of irreducible objects, or
simple A[H]-modules. Thus conditions appear throughout the paper which
in the traditional setting are implied by irreducibility:

Definition 1.5. V in Rep4(H) will be called

1) Schur if the natural map A — End 4(g)(V) is an isomorphism;
2) G-finite if it is finitely generated as an A[G]-module.

3) primitive if there exists a primitive idempotent e in the Bernstein
center Z such that eV = V.
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We say a ring is connected if it has connected spectrum or, equivalently,
no nontrivial idempotents, for example any local ring or integral domain.
Note that if A is connected, Corollary 2.32 implies all co-Whittaker A[G]-
modules are primitive.

Denote by N,, the subgroup of G,, consisting of all unipotent upper-
triangular matrices. Let v : F' — W (k)* be an additive character of F' with
ker 1) = p. Then 9 defines a character on any subgroup of N, (F") by

(u)i,j = (urg + -+ un—Lﬂ)?

we abusively denote this character by 1 as well.

If H is a subgroup normalized by another subgroup group K, and 6 is
a character of the group H, denote by 6% the character given by 0%(h) =
O(khk=') for h € H, k € K. For V in Rep4(H), denote by Vy ¢ the quotient
V/V(H,0) where V(H,6) is the sub-A-module generated by elements of
the form hv — @(h)v for h € H and v € V; it is K-stable if 0¥ =0, k € K.
Given a standard Levi subgroup M C G,, with unipotent radical U, and 1
the trivial character, we denote by Jj; the non-normalized Jacquet functor
Reps(G) — Repy(M) : V = Vg,

For each m <mn, let G, denote GL,,(F) and embed it in G via
(GO*" 1(3 ). We let {1} = P, C --- C P, denote the mirabolic subgroups of
G C --- C Gy, where P, is given by {(g"b‘1 1) gm-1 € Gm1, T € Fm_l}.
We also have the unipotent upper triangular subgroup U,, of P,, given
by {(I’”('J*1 f) tx € Fm_l}. In particular, U,, ~ F™ ! and P, = U;,,Gm—1.
Note that this is different from the groups N(r) defined in Proposition 2.3.

Since G,, contains a compact open subgroup whose pro-order is invertible
in W (k), there exists a unique (for that choice of subgroup) normalized Haar
measure, defining integration on the space C2°(G, A) of smooth compactly
supported functions G — A ([15, 1.2.3]).

2. Representation theoretic background
2.1. Co-invariants and derivatives

As in [2, 6], we define the following functors with respect to the character 1.

@ :Repy(Pn-1) — Repa(Py) Ut :Rep(Gn-1) — Rep(P,)
Ve cIndl V(U acts via ¢) V=V (Uy acts trivially)
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&+ :Rep(Pn_1) — Rep(Py) U™ :Rep(P,) — Rep(Gp-1)
Vi Indy o,V V = V/V (U, 1)

&~ :Rep(P,) — Rep(P,-1)
V= V/V(Uy, 1)

Note that we give these functors the same names as the ones originally
defined in [1], but we use the non-normalized induction functors, as in [2, 6],
because they are simpler for our purposes. As observed in [6], these functors
retain the basic adjointness properties proved in [2, §3.2]. This is because
the methods of proof in [1, 2] use properties of l-sheaves which carry over to
the setting of smooth A[G]-modules where A is a Noetherian W (k)-algebra.

Proposition 2.1 ([6],3.1.3). (1) The functors U=, U, &=, &+, & are
exact.

(2) @ is left adjoint to ®~, W~ is left adjoint to U, and ®~ is left adjoint
to O

(3) =0T =~ Ut =0

(4) U0t bt and DT are naturally isomorphic to the identity func-
tor.

(5) For each V in Rep(P,) we have an exact sequence
0= & e (V) =V =¥ U (V) = 0.

(6) (Commutativity with Tensor Product) If M is an A-module and F is
U=, Ut @ &F or &t we have F(V@a M) = F(V)®4 M.

For 1 < m <n we define the mth derivative functor
(=)™ = U= (@)L : Rep(P,) — Rep(Grm).

This gives a functor Rep(Gy,) — Rep(Gy,—r,) by first restricting representa-
tions to P, and then applying (—)); this functor is also denoted (—)(™).
The zero’th derivative functor (—)® is the identity. We can describe the
derivative functor (—)(m) more explicitly by using the following lemma on
the transitivity of coinvariants:

Lemma 2.2 ([1] §2.32). Let H be a locally profinite group, 6 a character
of H, and V a representation of H. Suppose Hi, Hs are subgroups of H
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such that HHHy = H and Hy normalizes Hy. Then

(VH2’6|H2>H1 o = V.
’ 1

Define N (r) to be the group of matrices whose first  columns are those
of the identity matrix, and whose last n — r columns are those of elements of
N, (recall that N,, is the group of unipotent upper triangular matrices). For
2 <r <n we have U,N(r) = N(r — 1) and U, normalizes N(r). As N(r)
is contained in N, we define ¢ on N(r) via its superdiagonal entries. We
can also define a character 1) on N(r) slightly differently from the usual
definition: v will be given as usual via 1 on the last n — r — 1 superdiagonal
entries, but trivially on the (r,r 4 1) entry, i.e.

Y(z) =0+ zpqp1 042+ +xp_1,) for ze€ N(r).

The functors (®~)™ and (—)(™), defined above, can be described more
explicitly. Let m = n — r. By applying Lemma 2.2 repeatedly with H; = U,,
and Hy = N(r — 1), we get

Proposition 2.3 ([15] II1.1.8). (1) (®7)™V equals the module of coin-
variants V/V(N(n —m),1).

(2) V™) equals the module of coinvariants V/V (N (n —m), ).

In particular, if m = n, this gives V(™ = V/V(N,,, ). Note that V(") is
simply an A-module.

2.2. Whittaker and Kirillov functions

The character ¢ : N,, — A* defines a representation of N,, in the A-module
A, which we also denote by 1. By Proposition 2.3 we have Hom4(V (™), A) =
Homy, (V, ).

Definition 2.4. For V' in Repy4(G,), we say that V is of Whittaker type
if V(") is free of rank one as an A-module. As in [6, Def 3.1.8], if A is a field
we refer to representations of Whittaker type as generic.

If V is of Whittaker type, Homy, (V%) is free of rank one, so we may
choose a generator A\. The image of A under the Frobenius reciprocity iso-
morphism Homy;, (V,v) = Homg, (V, Ind%; ) is the map v — W, where
Wy(g9) = A(gv). The A[G]-module formed by the image of the map v — W,
is independent of the choice of A.
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Definition 2.5. The image of the homomorphism V — Ind%: 1 is called
the space of Whittaker functions of V' and is denoted W(V, 1)) or just W.

Choosing a generator of V(™ and allowing N,, to act via 1), we get
an isomorphism V(™ 5 4. Composing this with the natural quotient map
Vv gives an N-equivariant map V' — 1, which is a generator A. Note
that the map V' — W(V, v) is surjective but not necessarily an isomorphism,
unlike the setting of irreducible generic representations with coefficients in
a field. Different A[G]-modules of Whittaker type can have the same space
of Whittaker functions:

Lemma 2.6. Suppose V', V in Repy(G) are of Whittaker type, and sup-
pose there is a G-equivariant homomorphism o : V' — V such that o™ :
(V™) = V() s an isomorphism. Then W(V' 1) is the subrepresentation
of W(V,4) given by W(a(V'), ).

Proof. Let ¢/ : V! — V' /V'(N,,¢) and q : V. — V/V(N,, ¢) be the quotient
maps. Choosing a generator for V(") gives isomorphisms n, n such that the
following diagram commutes.

Given v € V' we get

Waw(9) = nlg(gan’)) = n((g o a)(gv)) = 7'(d'(gv") = Wu(g), g€G.
This shows W(V', 1) = W(a(V'), ) C W(V, ). O

If V in Rep4(G,,) is Whittaker type and v € V', we will denote by W, |p,
the restriction of the function W, to the subgroup P, C G,,.

Definition 2.7. The image of the P,-equivariant homomorphism V —
Indﬁi v Wylp, is called the Kirillov functions of V' and is denoted
K(V, ) or just K.

The following properties of the Kirillov functions are well known for
Repc(G), but we will need them for Rep 4 (G):
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Proposition 2.8. Let V' be of Whittaker type in Rep4(Py), and choose a
generator of V™ in order to identify V™) with A. Then the following hold:

(1) (@) V ) = e-Indy ¥ and (&F)"1V ™) = Ind}! 4.

(2) The composition ()" 1V 5V — Ind]I\Df"; Y differs from the inclu-
sion C—Indﬁ’; v — Indf}; ¥ by multiplication with an element of A*.

(3) The Kirillov functions K(V,) contains C—Indf&’tﬂ as a sub-A[P,]-
module.

Proof. The proof in [1] Proposition 5.12 (g) works to prove (1) in this con-
text.

Let & = (®)» 'V, There is an embedding & — V by Propo-
sition 2.1 (5); denote by ¢ the composition & — V — Indv. Then
t™ . &M - Indy™ is a nonzero homomorphism between free rank
one A-modules, hence given by multiplication with an element a of A. By
Proposition 2.1 (6), For any maximal ideal m of A, t™ ® x(m) must be an
isomorphism because it is a nonzero element of

Homm, (o) (S(V) ® k(m))™), (Ind ¢ ® #(m))™) = k(m).

Thus @ is nonzero in x(m) for all m, hence a unit, so ¢ is an isomor-
phism. On the other hand there is the natural embedding c-Indy —
Ind+, which we will denote s. Since s is an isomorphism by (2,
Prop. 3.2 (f)], we have s =wut™ for some uwe€ AX. Thus, if K :
ker(s — ut) then K™ = S(V)™ = V™ whence Homp(S(V)/K,Ind )
Hom((S(V)/K)™, A) = Hom4 ({0}, A) = 0, which implies s — ut = 0.
To prove (3), note that since K(V, ) is defined to be the image of the
map V — Indﬁ’; 1, this follows from (2).

11l

O

Definition 2.9 ([6],8§3.1 ). If V is in Rep(F,), the image of the natural
inclusion (®+)*~ V(") — V is called the Schwartz functions of V and is
denoted S(V). For V' in Rep(G,) we also denote by S(V) the Schwartz
functions of V restricted to P,.

We can ask how the functor &~ is reflected in the Kirillov space of a
representation. First we observe that &~ commutes with the functor K:

Lemma 2.10. For 0 <m <mn, the A[P,]|-modules K((®7)"""V,¢) and
(@) ™IC(V, %) are identical.
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Proof. The image of the P,,_,,-submodule V(N (m),1) in the map V — K
equals the submodule (N (m), ). The lemma then follows from Proposi-
tion 2.3 ]

Following [5], we can explicitly describe the effect of the functor &~
on the Kirillov functions K. Recall that K(U,, ) denotes the A-submodule
generated by {uW — Y (u)W :u e U,, W € K} and &K := K/K(Up, ).
Proposition 2.11 ([5] Prop. 1.1).

K(Un, ) ={W € K: W =0 on the subgroup P,—1 C P,}.

Proof. The proof of [5, Prop. 1.1] carries over in this setting. It utilizes the
Jacquet-Langlands criterion for an element v of a representation V' to be in
the subspace V(U,,,%), which remains valid over more general coefficient
rings A because all integrals are finite sums. O

Thus &~ has the same effect as restriction of functions to the subgroup
P,,_1 inside P,:

SR ={W (2V): W e W(V,¢), p € Po}.

By applying for each m = 1,...,n — 2 the argument of [5, Prop. 1.1] to the
P41 representation

{W (g Im9_1> :We W(V7¢)) pE Pn—m-i—l}
instead of to IC, we can describe (®)"kC:

Corollary 2.12. Form=1,...,n—1,
(&~)"K = {W (g 2 ) W e W(V,4), pe Pn_m} .
2.3. Partial derivatives
Given a product Hi x Ho of subgroups of G, and a character 1 on the
unipotent upper triangular elements of Hy, we can define “partial” versions

of the functors ®*, ¥+ as follows: given V in Rep 4(H; x Hs), restrict it to
a representation of Hy = {1} x Hy, then apply the functor ®* or ¥*, and
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observe that H; x {1} acts naturally on the result, since it commutes with
{1} x Ha. More precisely:

®T2 :Reps(Grnom X Pr_1) — Repa(Gnm X Pn)
Vi c—Indg:::iiz_lUm(V), with {1} x U,, acting via 1)
dT2 :Rep(Gpom X Pm_1) = Rep(Gpom X Pp)
Vi eIndgm i o (V)
® 2 :Rep(Gpom X Pn) = Rep(Gpom X Pr_1)
Vi V/V{1} x Up, )
U2 Rep(Grom X Gm-1) = Rep(Gp_m X Pp)
V=V ({1} x Uy, acts trivially)
U2 :Rep(Grm X Pn) — Rep(Grm X Gr1)
Vi V/V{1} x Up,1)

Because Hy x {1} commutes with {1} x Hy, we immediately get

Lemma 2.13. The analogue of Proposition 2.1 (1)-(6) holds for &2,
ot2 @2, UH2 and U2,

Definition 2.14. We define the functor (—)(O’m) :Repa(Grem X G) —
Rep 4(Grn—m) to be the composition ¥—2(d—2)m-1,

The proof of the following Proposition holds for W (k)-algebras A:

Proposition 2.15 ([17] Prop. 6.7, [15] I11.1.8). Let M = G,—p, X Gy
For 0 <m <n the m’th derwative functor (=)™ is the composition of
the Jacquet functor Jyr: Rep(Gr) — Rep(Grn—m X Gi,) with the functor
(=) O™ Rep 4 (Grom X Gm) — Rep4(Grm).

Lemma 2.16. Let V be in Repy(Gp—m X Gy,). Then V' contains an A-
submodule isomorphic to V(0:m).

Proof. The image of the natural embedding (®*2)m=1w+2(V(0m) v,
which is given by Proposition 2.13 (5), will be denoted S%?(V). By
Proposition 2.13 (4), the natural surjection V — V(™) restricts to a sur-
jection S%2(V) — V(0 By Proposition 2.13 (6), the map of A-modules
SO2(V) — VOm) arises from the map (®+2)"~1¥+H2(A) — A by tensoring
over A with V(™) Take the A-submodule generated by any element
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of (®T2)m=1u+2(A) that maps to the identity in A; then tensor with
y(Om), O

2.4. Finiteness results

In this subsection we gather certain finiteness results involving derivatives,
most of which are well-known when A is a field of characteristic zero.

Let H be any topological group containing a decreasing sequence {H; }i>o
of open subgroups whose pro-order is invertible in A, and which forms a
neighborhood base of the identity in H. If V' is a smooth A[H]-module we
may define a projection m; : V — VHi 1y — fH hv for a Haar measure on
H; where H; has total measure 1. The A-submodules V; := ker(m;) N VHi+
then satisfy @, V; = V.

Lemma 2.17 ([6] Lemma 2.1.5, 2.1.6). A smooth A[H]-module V is
admissible if and only if each A-module V; is finitely generated. In particular,
quotients of admissible A[H|-modules by A[H|-submodules are admissible.

Thus the following version of the Nakayama lemma applies to admissible
A[H]-modules:

Lemma 2.18 ([6] Lemma 3.1.9). Let A be a Noetherian local ring with
mazimal ideal m, and suppose that M is a submodule of a direct sum of
finitely generated A-modules. If M/mM s finite dimensional then M is
finitely generated over A.

If V is admissible, then it is G-finite if and only if V/mV is G-finite. To
see this, take S C V/mV an (A/m)[H]-generating set, let W be the A[H]-

span of a lift to V. Since V/W is admissible, we can apply Nakayama to
each factor (V/W); to conclude V/W = 0.

Proposition 2.19 ([6] 3.1.7). Let k be a W(k)-algebra which is a field,
and V' an absolutely irreducible admissible representation of Gy,. Then V(™)
s zero or one-dimensional over k, and is one-dimensional if and only if V
is cuspidal.

Proposition 2.20 ([15] I1.5.10(b)). Let k be a W (k)-algebra which is a
field. If V' is a k[G]-module, then V is admissible and G-finite if and only if
V' is finite length over k[G].
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Proof. Suppose V is admissible and G-finite. If x were algebraically closed
of characteristic zero (resp. characteristic ¢), this is [2, 4.1] (resp. [15,
I1.5.10(b)]). Otherwise, let & be an algebraic closure, then V ® % is finite
length, so V is finite length.

If V is finite length, so is V ®, k. Over an algebraically closed field of
characteristic different from p, irreducible representations are admissible (|2,
3.25],[15, 11.2.8]). Since admissibility is preserved under taking extensions
V ® K being finite length implies it is admissible, hence V is admissible.
Thus we can reduce proving G-finiteness to proving that, given any exact
sequence of admissible objects, 0 — Wy — V — W; — 0 where Wy and W;
are G-finite, then V is G-finite. But there is a compact open subgroup U
such that Wy and Wi are generated by Wéj and WY, respectively. It follows
that that V is generated by VV. O

Lemma 2.21. Let k be a W (k)-algebra which is a field. If V is an absolutely
irreducible k[Gy)-module, then form >0, V"™ is finite length as a k[Gp_m]-
module.

Proof. We follow [15, IT1.1.10]. Given j, k positive integers, let M = G; x G},
and let P = M N be the associated standard parabolic subgroup. Given 7 in
Rep,(G;) and o in Rep,. (G},), we define 7 x o to be the normalized induction
C—Indp(6]1\,/2(a ® 7)) in Rep,,(Gj+), where 0y denotes the modulus character
of N (for the definition of dy see [2, 1.7]). There exists a multiset {71, ..., 7}
of irreducible cuspidals such that V' C 7y x - -+ X 7. The Liebniz formula for
derivatives says that (w1 x m2)®) has a filtration whose successive quotients
are w79 x T('éi). Its proof, given in [2, §7], carries over in this generality.
Then V™ C (m; x --- x m,.)™) which is finite length by induction, using
Proposition 2.19 combined with the Liebniz formula. O

Proposition 2.22 ([8] Prop. 9.15). Let M be a standard Levi subgroup
of G. If V in Rep4(G) is admissible and primitive, then JpV in Rep (M)
s admissible.

Corollary 2.23. If A is a local Noetherian W (k)-algebra and V' is admis-
sible and G-finite, then V"™ is admissible and G-finite for 0 < m < n.

Proof. Let M = Gp_p X Gp. By Proposition 2.15, V™) = (J,V)©0m) 5o
by Lemma 2.16, there is an embedding V(™) — J,;V. Admissibility and G-
finiteness mean V is generated over A[G] by vectors in V& for some compact
open subgroup K. Since VX is finite over A, eV is nonzero for only a finite
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set of primitive idempotents e of the Bernstein center, so eV % 0 for at
most finitely many primitive idempotents e of the integral Bernstein center.
Therefore, Proposition 2.22 applies, showing V(™ embeds in an admissible
module. Thus by Lemma 2.18, we are reduced to proving the result for
V :=V/mV. Since V is admissible and G-finite, and A/m is characteristic ¢,
Lemma 2.20 shows V is finite length, therefore it follows from Lemma 2.21
that V(m) is finite length. Applying Lemma 2.20 once more, we have the
result. O

Loosely speaking, the (n — 1)st derivative describes the restriction of a G-
representation to a Gp-representation (see Corollary 2.12). The next result
shows that this restriction intertwines a finite set of characters:

Theorem 2.24. If A is a local W (k)-algebra and V in Rep 4(G) is admis-
sible and G-finite, then V"=V is finitely generated as an A-module.

Proof. By Lemma 2.18 and Corollary 2.23 it is sufficient to show that V(nfl)
is finite over the residue field x. We know V(n_l) is G-finite and admissible by
Corollary 2.23, hence finite length as a x[G1]-module by Proposition 2.20.
Since (7 is abelian, all composition factors are 1-dimensional, so V(n_l)
being finite length implies it is finite dimensional over k. Il

Since the hypotheses of being admissible and G-finite are preserved un-
der localization by Proposition 2.1 (6), we can go beyond the local situation:

Corollary 2.25. Let A be a Noetherian W (k)-algebra and suppose that V
is admissible and G-finite. Then for every p in Spec A, Vp(n_l) is finitely

generated as an Ap-module.

2.5. Co-Whittaker A[G]-modules

In this subsection we define co-Whittaker representations and show that
every admissible A[G]-module V' of Whittaker type contains a canonical
co-Whittaker subrepresentation.

Definition 2.26 ([8] 3.3). Let x be a field of characteristic different from
p. An admissible smooth object U in Rep,, (G) is said to have essentially AIG
dual if it is finite length as a k[G]-module, its cosocle cos(U) is absolutely
irreducible generic, and cos(U)™ = U™ (the cosocle of a module is its
largest semisimple quotient).
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This condition is equivalent to U™ being one-dimensional over s and
having the property that W) = 0 for any nonzero quotient k[G]-module
W (see [6, Lemma 6.3.5] for details).

Definition 2.27 ([8] 6.1). An object V in Repy(G) is said to be co-
Whittaker if it is admissible, of Whittaker type, and V ® 4 x(p) has essen-
tially AIG dual for each p.

Proposition 2.28 ([8] Prop. 6.2). LetV be a co-Whittaker A[G]-module.
Then the natural map A — End 4i)(V') is an isomorphism.

Lemma 2.29. Suppose V is admissible of Whittaker type and, for all
primes p, any non-generic quotient of V& k(p) equals zero. Then V' is gen-
erated over A[G] by a single element.

Proof. Let = be a generator of V(" and let & € V be a lift of z. If V' is
the A[G]-submodule of V generated by #, then (V/V')(®) = 0. Since any
non-generic quotient of V ® k(p) equals zero, (V/V') ® k(p) = 0 for all p.
Since V/V" is admissible, we can apply Lemma 2.18 over the local rings A,
to conclude V/V' is finitely generated, then apply ordinary Nakayama to
conclude it is zero. 0

Thus every co-Whittaker module is admissible, Whittaker type, G-finite
(in fact G-cyclic), and Schur, so satisfies the hypotheses of Theorem 3.5,
below. Moreover, every admissible Whittaker type representation contains
a canonical co-Whittaker submodule:

Proposition 2.30. Let V in Repy(G) be admissible of Whittaker type.
Then the sub-A[G]-module

T:=ker |V = 11 V/U
{UCV: (V/U)m=0}

1s co- Whittaker.

Proof. (V/T)™ =0so T is Whittaker type. Since V' is admissible so is 7'
Let p be a prime ideal and let 7" := T'® r(p). We show that cos(T') is abso-
lutely irreducible and generic. By its definition, cos(T') = @; W; with W; an
irreducible (p)[G]-module. Since the map T — P ; Wj is a surjection and
(=)™ is exact and additive, the map (7)™ — @ ; Wj(n) is also a surjec-

tion. Hence dimy ) (€D, Wj(n)) < dimﬁ(p)(T(n)). Since T is Whittaker type



Interpolating local constants in families 1805

and 7" — W) is nonzero, there can only be one j such that Wj(n) is po-
(n)

tentially nonzero. On the other hand, suppose some W, were zero, then
W; is a quotient appearing in the target of the map

V- H V/U,

{Ucv: (V/U)™m=0}

hence as a quotient of T it would have to be zero, a contradiction. Hence
precisely one W; is nonzero. Now applying [6, 6.3.4] with A being x(p) and
V being cos(T), we have that Endg(cos(T)) = k(p) hence absolutely irre-
ducible. Tt also shows that cos(T)™ = Wj(n) # 0. Hence 7™ = cos(T) ™).
By Lemma 2.29, T is x(p)[G]-cyclic; since it is admissible, it is finite length
by Lemma 2.20. O

2.6. The integral Bernstein center

If A is a Noetherian W (k)-algebra and V is an A[G]|-module, then in par-
ticular V' is a W(k)[G]-module, so we use the Bernstein decomposition of
Repyy (1) (G) to study V.

Let 20 be the W (k)[G]-module c—Indg: . If e is a primitive idempotent
of Z, the representation e2J lies in the block e Repyy(r)(G), and we may
view it as an object in the category Rep,.z(G). With respect to extending
scalars from eZ to A, the module 2V is “universal” in the following sense:

Proposition 2.31 ([8] Thm. 6.3). Let A be a Noetherian eZ-algebra.
Then eV @z A is a co- Whittaker A[G]-module. Conversely, if V' is a prim-
itive co-Whittaker A[G] module in the block e Repyy (1)(G), and A is an eZ-
algebra via fy : eZ — A, then there is a surjection o : W ® 4.5, A — V such
that o™ : (W @4 5, A)™ — V) is an isomorphism.

If we assume A has connected spectrum (i.e. no nontrivial idempotents),
then the map fy : Z — A would factor through a map eZ — A for some
primitive idempotent e, hence:

Corollary 2.32. If A is a connected Noetherian W (k)-algebra and V is
co- Whittaker, then V' must be primitive for some primitive idempotent e.

Remark 2.33. Theorems 1.1, 1.2, and 1.4 remain true if the hypothesis
that V is primitive is replaced with the hypothesis that A is connected.
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3. Zeta integrals

In this section we use the representation theory of Section 2 to define zeta
integrals and investigate their properties.

3.1. Definition of the Zeta integrals

We first propose a definition of the zeta integral which is the analog of that
in [10], and then check that the definition makes sense.

Definition 3.1. For W e W(V,4) and 0 < j <n — 2, let X be an indeter-
minate and define

z(WX-j)=Z(q”‘1x)m/ / W[(w;n“foj 0 )]dxad:ﬂ
T z€Fi JaeUp 0 0Ly ’

MEeEZ neIt

and Z(W, X) = Z(W, X;0)
We first show that Z(W, X;0) defines an element of A[[X]][X 1.

Lemma 3.2. Let W be any element of Ind]%n 1. Then there exists an in-
teger N < 0 such that W(§{ ;%) is zero for vp(a) < N. Moreover if W is
compactly supported modulo Ny, then there exists an integer L > 0 such that
W (4% ) is zero for vp(a) > L

n—1

i .
oo ) stabilizes W. For x in p/,

1
Proof. There is an integer j such that <8 (1) ,
n—2

we have

a0 O a0 O 1z O lax O a0 O
W(01 0>:W<<01 0)(01 0)):1/)(01 0)W(01 0)
0017,_2 001, 0017, » 00 I,_» 00171,

Whenever vp(a) is negative enough that az lands outside of kery = p, we
1 0
get that <8 ag ; 0 ) is a nontrivial p-power root of unity ¢ in W (k), hence

1 — ( is the lift oﬁiszomething nonzero in the residue field k, and defines an
element of W (k)*. This shows that W(§ ;° ) =0. O

Just as in [10], the next two lemmas show that Z(W, X;j) defines an
element of A[[X]][X~!] when 0 < j <n —2 by reducing it to the case of
Z(W, X:0).
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Lemma 3.3 ([10] Lemma 4.1.5). Let H be a function on G, locally fized
under right translation by G, and satisfying H(ng) = ¢(n)H(g) for g € G,
n € N,. Then the support of the function on F7 given by

w34,

is contained in a compact set independent of a € F*.

o8a
of~o

Corollary 3.4. If p denotes right translation (p(g)¢)(x) = ¢(xg), and U
is the unipotent radical of the standard parabolic subgroup of type (1,n — 1),
then there is a finite set of elements uq, ..., u, of U such that

Z(W, X;7) §:Z (fui)W, X;0)

for any W € Ind]GV“ .

In [10], the zeta integrals form elements of the field C((X)) and it is
proved that in fact they are elements of the subfield C(X) of rational func-
tions. Whereas C((X)) (resp. C(X)) is the fraction field of the domain C[[X]]
(resp. C[X, X 1)), our rings A[[X]][X '] and A[X, X '] are not in general
domains. The first main result of this paper is determining the appropriate
fraction ring of A[X, X ~!] in which the zeta integrals Z(W, X;j) live:

Theorem 3.5. Suppose A is a Noetherian W (k)-algebra. Let S be the mul-
tiplicative subset of A[X,X~'] consisting of polynomials whose first and
last coefficients are units. Then if V is admissible, Whittaker type, and
G-finite, then Z(W,X;j) lies in STYA[X, X71] for all W in W(V,4) for
0<j<n-—2.

In particular, the result holds if V' is co-Whittaker, as in Theorem 1.1.
The proof of Theorem 3.5 will occupy the remainder of this section. The
key idea is that the zeta integrals Z(W, X) are completely determined by
the values W (8 In,071) for a € F*, and as W ranges over W(V, 1)), the set
of these values is equivalent to the data of the Py-representation (®~)"~2K.
Determining the rationality of Z (W, X) will then reduce to a finiteness result
for the quotient (1) or more generally for V(1.
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3.2. Proof of rationality

Denote by 7 the right translation representation of G; on K1, Let B
be the commutative A-subalgebra of End(K(™~1) generated by 7(w) and
7(w 1), where @ is a uniformizer of F'. It follows from Corollary 2.25 that
IC,(Jnfl) is finitely generated over A,. For every p of Spec A, the inclusion
B, C End(K™V), End(lCl(Jn_l)), shows By, is finitely generated as an
Ap-module.

Lemma 3.6. B is finitely generated as an A-module.

Proof. B is the image of the map A[X, X '] — End4 (K1) sending X to
7(w). By is the image of the localized map A, [X, X 1] — (EndA(IC(”*l)))p,
which is finitely generated. Thus for every p, 7(w) and 7(w~!) satisfy monic
polynomials s,(X), t,(X) with coefficients in A,. Since s, and ¢, have
finitely many coefficients there exists a global section f, ¢ p such that s,(X),
tp(X) lie in Ay, [X]. The open subsets D(f,) cover Spec A and we can take a
finite subset {f1,..., fn} C {fp} such that (f;) = 1. Since 7(ww) and 7(w 1)
satisfy monic polynomials over Ay, we have that By, is finitely generated
over Ay, for each i. It follows that B is finitely generated over A. O

Since B is finitely generated over A, 7(w) and 7(cw~!) satisfy monic poly-
nomials cog + 1 X + ¢, 1 X" '+ X"and by + b1 X + -+ be_ 1 X 4+ X*
respectively. The degrees r and s are nonzero because 7(w) and 7(ww 1) are
units in B. Adding these together we have

0=7(w)* +bs_17(w) T+t byt o+ +er1m(@) T+ (@),

hence 7(w) satisfies a Laurent polynomial whose first and last coefficients
are units.
The final ingredient in proving rationality is the following transformation

property.

Lemma 3.7. Z(@"W,X)=X""Z(W,X) for any W €¢ W(V,v), and any
nteger n.

Proof of Lemma. Denote by b, the coefficient fUF W(w™u)d*u. Then

Z(w"W,X) is Y cz X bmin, which can be rewritten X " Z(W, X). [
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Deducing Theorem 3.5. The representation (™1 is formed by restricting
the right translation representation on (®~)" 2K from P to G1, then tak-
ing the quotient by the Gj-stable submodule (®~)" 2K (Us,1). By Corol-
lary 2.12, the right translation representation on (®~)" 2K is given by trans-
lations of the restricted Kirillov functions W|(f§ 0), denoted W (z) for short.

As an endomorphism of the quotient module K("~1, 7(w) satisfies a poly-
nomial X" —a, 1 X" ! —... — a1 X — ag (in fact we can take ag to be —1).
Hence for any restricted Kirillov function W (z) we have

n—1
@"W(z) =Y aw'W(z) + Wi(z),
=0

for some element W of ((®~)"2K)(Uz, 1). Therefore we get a relation

n—1
Z(@"W,X) =Y a:Z(@'W,X) + Z1(X)
=0

with Z1(X) being a Laurent polynomial by Lemma 3.2. Using Lemma 3.7,
then multiplying through by X™ and rearranging we get Z(W,X)(1 —
Z?:_(]l a; X"%) = X" Z;(X) which completes the proof since ag is a unit. [

4. Functional equation and Gamma factor
4.1. Contragredient Whittaker functions

There is an analogue of the contragredient which is reflected on the level of
Whittaker functions by a transform (—); the functional equation will relate
the zeta integral of W to that of its transform. We will need the following
two matrices:

0 - 01 =™ 0 - 0
0 ... —10 , 0 0 (71)71—2
w = . y w = .
(="t .. 00 O (=1)° 0

For any element W of Ind%n o, define the transform W of W as W(g) =
W (wg'), where g* :=! g~ 1.
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Observation 4.1. If V' is of Whittaker type, then for v eV, I;VVU s an
element of Ind%¢ because

W(ng) = W(w(ng)") = W(wn‘w  wg") N
= (wn'w )W (wg') = (n)W (g).

Thus Z(m,X;j) lands in A[[X]][X '] by Lemma 3.2. In this section
we state the second main result and recover the rationality properties of
Section 2.2 for Z(w'W, X; j). The second main result is as follows:

Theorem 4.2. Suppose A is a Noetherian W (k)-algebra, and suppose V
in Repy(G) is co-Whittaker and primitive. Let S denote the multiplicative
subset of Theorem 3.5. Then there ezists a unique element ~v(V,X,1) of
STLAIX, X1 such that for any W € W(V, 1),

—— 1
for0<j<n-—2.

_The proof of Theorem 4.2 is in Section 5. We mnow verify that
Z(w'W, ﬁ?j) always lives in STLA[X, X 1.

Proposition 4.3. Suppose V in Rep4(G) is admissible, Whittaker type, G-
finite, Schur, and primitive. Let V* denote the smooth A[G]-module whose
underlying A-module is V' and whose G-action is given by g -v = g'v. Then
V* is also admissible, Whittaker type, G-finite, Schur, and primitive.

Proof. Consider the map Homy, (V,9) — Homy, (V*, %) given by A+ X,
where X : @ — A(wz). We have A(n - v) = Awn'w wv) = ¢(n)A(v), which
shows A indeed defines an element of Homy (V*,1)). Since w? = (—1)""11,,,
it is an isomorphism of A-modules. Admissibility, G-finiteness, and Schur-
ness all hold for V* since g — ¢* is a topological automorphism of the group
(. Since V' is Schur, A must be connected, hence V must be primitive since
it is Schur. O

In particular, LV‘)(") = V'/V*(Ny,v) is free of rank one and we may
define (W),(g) = A(g'v) and take W(V*,¢) to be the A-module {(W), :
v € V'} as before. Note that this is precisely the same as {(W,) :v € V}.
We record this simple observation as a Lemma:
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Lemma 4.4. If A is a generator of Hompy (V,1) then A : z — A(wz) is a
generator of Homy, (V*,¢) and defines W(V*,4). There is an isomorphism
of G-modules W(V, 1) — W(V* 1)) sending W to W.

Thus all the hypotheses for the results of the previous sections, in par-
ticular Theorem 3.5, apply to V* whenever they apply to V, so we get
Z(w'W,X;j)isin STLA[X, X~1]. Now we can make the substition anX for
X in the ratio of polynomials Z(W,X;j) to get Z(m, ﬁ;j). It will
again be in ST A[X, X !] because this process swaps the first and last co-
efficients in the denominator (and ¢ is a unit in A since q is relatively prime
to £).

4.2. Zeta integrals and tensor products

The goal of this subsection is to check that the formation of zeta integrals
commutes with change of base ring A. For any f : A — B, denote by ¥4 ® B
the free rank one B-module with action given by the character f o). The
group action on V ®4 B is given by acting in the first factor. Let i denote
the map V — V ®4 B. Proposition 2.1 (6), gives the following lemma.

Lemma 4.5. (1) IfV is of Whittaker type, so is V @4 B.

(2) Let A generate Hom 4 (V1)) as an A-module. Then \ ® id is a gener-
ator of Hompn|(V @ B,y @ B).

(3) Let Wygp(g) := (foX)(gv) @b define elements of W(V ® B, ® B).
Then f oW, =Wy for anyv e V.

From the definition of integration given in §1.1, it follows that if &y
is the characteristic function of some Hj, then [(f o ®;)d(f o p<)=(fo
1) (Hy) = f ([ @rd(p)). It follows from the definitions that (f o W)(z) =

foW(x).

Corollary 4.6. Let F denote the map of formal Laurent series rings
A[[ X)X Y — B[[X]][X ™Y induced by f, then we have

(1) F(Z(Wy, X5j)) = Z(f o W, X;5) = Z(Wiw), X; 5)

() F(2@W,X:))) = 2(f o w'W, X:j) = Z(w(f o W), X j)

for any W in W(V, 1)), and for 0 < j <n —2.
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The next proposition follows from the linearity of the zeta integrals and
the transform (—).

Proposition 4.7. Suppose there is an element v(V, X, 1) in A[[X]][X 1]
satisfying a functional equation as in Theorem 4.2 for all W, € W(V,1)).
Then the element F(v(V, X,)) € B[[X]][X '] satisfies the functional equa-
tion for all W € W(V ® B,¢ ® B).

4.3. Construction of the Gamma factor

We define the gamma factor to be what it must in order to satisfy the func-
tional equation of Theorem 4.2 for a single, particularly simple Whittaker
function Wy. We seek a Wy such that Z(W, X;0) is a unit in S~LA[X, X ~1].

By Proposition 2.8 and Lemma 2.10, we have that C—Indgz W C
(®~)"2K. Since c—IndIJ‘; Y is isomorphic to C°(F*,A) via restriction
to Gy (recall that C°(F*,A) denotes the locally constant compactly
supported functions F* — A), we find the following:

Proposition 4.8. Suppose V in Rep4(G) is of Whittaker type. Then the
characteristic function of U }17 1s realized as a restricted Whittaker function
Wo($ LO ) for some Wy in W(V, ).

1—1

From now on, the symbol Wy will denote a choice of element in W(V, 1))
whose restriction to (§ Ino,l ) is the characteristic function of Uj. Then
Z(Wy, X) is fUp Wi(8¢9)d*a = p*(U}) = 1. Since we want our gamma fac-
tor to satisfy the functional equation for W, we are left with no choice:

Definition 4.9 (The Gamma Factor). Let A be any Noetherian W (k)-
algebra and suppose V in Rep4(G) is of Whittaker type. We define the
gamma factor of V with respect to 1 to be the element of A[[X]][X ] given

by y(V, X, ) := Z(w'Wo, ixin — 2).

When V' is co-Whittaker and primitive the uniqueness of this gamma
factor will follow from the functional equation: if v and +/ both satisty the
functional equation for all Whittaker functions, then v = Z(w'Wj, ﬁ, n—
2) = +'. In particular for such representations our construction of the gamma

factor does not depend on the choice of Wj.
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4.4. Functional equation for characteristic zero points

If the residue field k(p) of p has characteristic zero, the reduction modulo

p of Z(W,X;j) forms an element of x(p)(X). As k(p) is an uncountable
algebraically closed field of characteristic zero, we may fix an embedding

C < k(p). The proof of [11, Thm. 2.7(iii)(2)] (which occurs in [11, §2.11])
carries over verbatim to the setting where 7 and 7’ are admissible, Whit-
taker type, G-finite representations over any field containing C, hence for

representations over £(p). Thus the reduction modulo p of ¥(W, X;j) is
precisely the integral W(s, W;j) of [10, §4.1], after replacing the complex
variable qf(SJr%) with the indeterminate X, and there exists a unique el-

ement, which we will call v,(s,V ® k(p), ), in k(p)(¢~*) such that for all

W e W(V, ® k(p), 1) and for all j > 0,

V(1 — s, w'W;n —2 = j) = 7p(s,V @ r(p), &)U (s, W, ).

The change of variable s+ 1 — s can be re-written as —(s + 25%) = (s +
”Tfl) —n, so writing the functional equation in terms of X we have shown

the following Lemma:;:

Lemma 4.10. Suppose V' is admissible of Whittaker type, and G-finite. For
each prime p of A with residue characteristic zero, there exists a unique ele-
ment v, (V @ k(p), X, ¥p) in k(p)(X) such that for all W in W(V & k(p), ¥p)
and for 0 < j <mn—2 we have

— 1
Z (w,W’ qniXHﬂL -2 _‘7) - VP(X’V@) n(p)ﬂﬁ;,)Z(VV, X37).

Moreover, v,(V ® k(p), X,1¥p) = v(V, X,4¢) mod p by uniqueness in [10].

4.5. Proof of functional equation when A is reduced and
£-torsion free

In the case that A is reduced and (-torsion free as a W (k)-algebra, we get a
slightly stronger result than that of Theorem 4.2.

Theorem 4.11. If A is a Noetherian W (k)-algebra and A is reduced and {-
torsion free, then the conclusion of Theorem 4.2 holds for any V in Rep 4(G)
which is G-finite, and admissible of Whittaker type.
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Proof. Let p be any characteristic zero prime, and let f, : A — k(p) be re-
duction modulo p. Corollary 4.6 and Lemma 4.10 tell us that

fo (fy(v, X, 4)Z(W, X) - Z <m qun - 2)) ~0

for any W in W(V, 1), not just Wy. This shows that the difference

— 1
YV, X, 0)Z(W,X) - Z <w’W, qn—X; n— 2)

is in the intersection of all characteristic zero primes of A. When A is reduced
its zero divisors are the union of its minimal primes, so it is /-torsion free if
and only if all minimal primes have residue characteristic zero. Thus when A
is reduced and f-torsion free, the intersection of all characteristic zero primes
of A equals zero, so the functional equation holds for any W in W(V, ).

We now prove uniqueness. If there were another element + satisfying
the same property, it would satisfy the functional equation in x(p) for all
Wi by reduction, so it satisfies the functional equation for all W in W(V @
k(p), ). But uniqueness in Lemma 4.10 then shows f,(v(V, X,¢) —+') =0
for all characteristic zero primes p of A. Again, this means 7' = v(V, X, ¢).

We get rationality by observing that whenever V' is admissible of Whit-
taker type, it has a canonical co-Whittaker submodule T" by Proposition 2.30,
which is primitive if V' is primitive. Since (7', X, 1) satisfies the functional
equation for all W in W(T', 1), we must have (T, X, ¢) = v(V, X, ) by the
construction of the gamma factor. But v(7T, X,v) is in ST A[X, X~!] by
Theorem 3.5, which holds for primitive co-Whittaker modules. O

5. Universal Gamma factors

When V is primitive and co-Whittaker, we can remove the hypothesis that
A is reduced and f-torsion free by specializing the gamma factor for the
universal co-Whittaker module e20.

Theorem 5.1 ([7] Thm. 12.1). Any block eZ of the Bernstein center
of Repy (1) (G) is a finitely generated (hence Noetherian), reduced, £-torsion
free W (k)-algebra.

By Proposition 2.31, e2 is co-Whittaker, and since it is clearly primitive,
all the hypotheses of Proposition 4.11 are satisfied. Hence (Thm. 4.11) there
exists a unique gamma factor in S~1(eZ[X, X)), which we will denote
['(e20, X, 1), satisfying the functional equation for all W in W(e2J, ).
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Proof of Theorem 4.2. Since V is primitive and co-Whittaker, there is a
(unique) primitive idempotent e of Z and a ring homomorphism fy : eZ —
Endg(V) = A, and a surjection of A[G]-modules 20 ®y, A — V preserv-
ing the top derivative, so that fy (I'(e20, X, ¢)) = v(e20 @y, A, X, ). Since
['(e20, X, 1) satisfies the functional equation for all W in W(e20,v), we
can apply Proposition 4.7 again to conclude that v(e20 ® A, X, 1) satis-
fies the functional equation for all W in W(e2QU ® A, ). Since e ® A
has a surjection onto V preserving the top derivative, Lemma 2.6 tells us
that W(V,¢) = W(e20 ® A, ). The functional equation shows that Defini-
tion 4.9 gives a unique gamma factor, hence v(V, X, 1) = v(e20 ® A, X, ¢);
it satisfies the functional equation for all W in W(V, ). Note that since
(e, X, 1) is in S~ (eZ[X, X Y]), its image in fy is in the corresponding
fraction ring of A[X, X ~!]. This proves Theorem 4.2. O

We can extend the uniqueness and rationality result to a larger class of
representations, though with a weaker functional equation coming only from
the co-Whittaker case:

Corollary 5.2. LetV be admissible, primitive, of Whittaker type and let T
be its canonical co- Whittaker submodule. Then there exists a unique gamma
factor v(V, X,v) in S~YHA[X, X)) which equals v(T,X,1)), and satisfies
the functional equation for all W in W(T, ).

Proof. When V is admissible of Whittaker type it has a canonical co-
Whittaker sub by Proposition 2.30. We have just shown that its gamma
factor (T, X, 1) satisfies the functional equation for all W in W(T,v). Ap-
plying Proposition 2.6 with & : T" — V' being the inclusion map, we conclude
that W(T,v¢) C W(V, ). The coefficients of the series Z(w'Wy, qr%(; n—2)
in Definition 4.9 are determined by G-translates of the Whittaker function
W, so occurs already in W(T',v), so by definition v(T', X,¢) = v(V, X, ¢).
In particular v(V, X, ) lies in S~tA[X, X '] and satisfies the functional
equation for all W in W(T, ). O

We can make precise the sense in which we have created a universal
gamma factor:

Corollary 5.3. Suppose A is a Noetherian W (k)-algebra, and sup-
pose V is a co-Whittaker A[G]-module in the subcategory eRepyy(x)(G)
of Repw(x)(G). Then there is a homomorphism fv:eZ — A and
fv(T(e, X, v)) equals the unique ~(V,X,v) satisfying a functional
equation for all W in W(V, ).
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Again, we can broaden the class of representations at the cost of a more
restrictive functional equation:

Theorem 5.4. Suppose A is any Noetherian W (k)-algebra, and suppose
V is an admissible A[G]-module of Whittaker type in the subcategory
e Repyy (1) (G). Then there is a homomorphism fyv : eZ — A and the gamma
factor of Corollary 5.2 equals fy (I'(e20, X, v)).

Proof. We define f, to be the homomorphism eZ — Endg(T) = A where
T is the canonical co-Whittaker submodule of Proposition 2.30. Since T lies
in e Repyy (1) (G), e @y, A surjects onto T, and we have fy (I'(e20, X, ¢) =
~(T, X,4) (Prop. 2.6), and since T injects into V' (with top derivative pre-
served), again by Prop. 2.6, we have

fv(T(e2W, X, ) = 1(eW Rez,p, A, X, ¥) = (T, X, 9) =v(V, X, %). O
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